Ability to build a .CHM for Puzzles. I haven't yet arranged for it
[sgt/puzzles] / net.c
CommitLineData
720a8fb7 1/*
2 * net.c: Net game.
3 */
4
5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
8#include <assert.h>
b0e26073 9#include <ctype.h>
2ef96bd6 10#include <math.h>
720a8fb7 11
12#include "puzzles.h"
13#include "tree234.h"
14
2ef96bd6 15#define MATMUL(xr,yr,m,x,y) do { \
16 float rx, ry, xx = (x), yy = (y), *mat = (m); \
17 rx = mat[0] * xx + mat[2] * yy; \
18 ry = mat[1] * xx + mat[3] * yy; \
19 (xr) = rx; (yr) = ry; \
20} while (0)
21
22/* Direction and other bitfields */
720a8fb7 23#define R 0x01
24#define U 0x02
25#define L 0x04
26#define D 0x08
27#define LOCKED 0x10
2ef96bd6 28#define ACTIVE 0x20
720a8fb7 29
30/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
31#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
32#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
33#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
34#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
35 ((n)&3) == 1 ? A(x) : \
36 ((n)&3) == 2 ? F(x) : C(x) )
37
38/* X and Y displacements */
39#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
40#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
41
42/* Bit count */
43#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
44 (((x) & 0x02) >> 1) + ((x) & 0x01) )
45
1e3e152d 46#define PREFERRED_TILE_SIZE 32
47#define TILE_SIZE (ds->tilesize)
720a8fb7 48#define TILE_BORDER 1
49#define WINDOW_OFFSET 16
50
8c1fd974 51#define ROTATE_TIME 0.13F
52#define FLASH_FRAME 0.07F
2ef96bd6 53
f0ee053c 54/* Transform physical coords to game coords using game_drawstate ds */
55#define GX(x) (((x) + ds->org_x) % ds->width)
56#define GY(y) (((y) + ds->org_y) % ds->height)
57/* ...and game coords to physical coords */
58#define RX(x) (((x) + ds->width - ds->org_x) % ds->width)
59#define RY(y) (((y) + ds->height - ds->org_y) % ds->height)
60
2ef96bd6 61enum {
62 COL_BACKGROUND,
63 COL_LOCKED,
64 COL_BORDER,
65 COL_WIRE,
66 COL_ENDPOINT,
67 COL_POWERED,
68 COL_BARRIER,
69 NCOLOURS
70};
71
720a8fb7 72struct game_params {
73 int width;
74 int height;
75 int wrapping;
c0edd11f 76 int unique;
720a8fb7 77 float barrier_probability;
78};
79
80struct game_state {
f0ee053c 81 int width, height, wrapping, completed;
1185e3c5 82 int last_rotate_x, last_rotate_y, last_rotate_dir;
a440f184 83 int used_solve;
720a8fb7 84 unsigned char *tiles;
85 unsigned char *barriers;
86};
87
c0edd11f 88#define OFFSETWH(x2,y2,x1,y1,dir,width,height) \
89 ( (x2) = ((x1) + width + X((dir))) % width, \
90 (y2) = ((y1) + height + Y((dir))) % height)
91
720a8fb7 92#define OFFSET(x2,y2,x1,y1,dir,state) \
c0edd11f 93 OFFSETWH(x2,y2,x1,y1,dir,(state)->width,(state)->height)
720a8fb7 94
95#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
96#define tile(state, x, y) index(state, (state)->tiles, x, y)
97#define barrier(state, x, y) index(state, (state)->barriers, x, y)
98
99struct xyd {
100 int x, y, direction;
101};
102
c0edd11f 103static int xyd_cmp(const void *av, const void *bv) {
104 const struct xyd *a = (const struct xyd *)av;
105 const struct xyd *b = (const struct xyd *)bv;
720a8fb7 106 if (a->x < b->x)
107 return -1;
108 if (a->x > b->x)
109 return +1;
110 if (a->y < b->y)
111 return -1;
112 if (a->y > b->y)
113 return +1;
114 if (a->direction < b->direction)
115 return -1;
116 if (a->direction > b->direction)
117 return +1;
118 return 0;
23e8c9fd 119}
720a8fb7 120
c0edd11f 121static int xyd_cmp_nc(void *av, void *bv) { return xyd_cmp(av, bv); }
122
720a8fb7 123static struct xyd *new_xyd(int x, int y, int direction)
124{
125 struct xyd *xyd = snew(struct xyd);
126 xyd->x = x;
127 xyd->y = y;
128 xyd->direction = direction;
129 return xyd;
130}
131
132/* ----------------------------------------------------------------------
7f77ea24 133 * Manage game parameters.
134 */
be8d5aa1 135static game_params *default_params(void)
7f77ea24 136{
137 game_params *ret = snew(game_params);
138
eb2ad6f1 139 ret->width = 5;
140 ret->height = 5;
141 ret->wrapping = FALSE;
c0edd11f 142 ret->unique = TRUE;
eb2ad6f1 143 ret->barrier_probability = 0.0;
7f77ea24 144
145 return ret;
146}
147
ab53eb64 148static const struct game_params net_presets[] = {
149 {5, 5, FALSE, TRUE, 0.0},
150 {7, 7, FALSE, TRUE, 0.0},
151 {9, 9, FALSE, TRUE, 0.0},
152 {11, 11, FALSE, TRUE, 0.0},
153 {13, 11, FALSE, TRUE, 0.0},
154 {5, 5, TRUE, TRUE, 0.0},
155 {7, 7, TRUE, TRUE, 0.0},
156 {9, 9, TRUE, TRUE, 0.0},
157 {11, 11, TRUE, TRUE, 0.0},
158 {13, 11, TRUE, TRUE, 0.0},
159};
160
be8d5aa1 161static int game_fetch_preset(int i, char **name, game_params **params)
eb2ad6f1 162{
163 game_params *ret;
164 char str[80];
ab53eb64 165
166 if (i < 0 || i >= lenof(net_presets))
eb2ad6f1 167 return FALSE;
168
169 ret = snew(game_params);
ab53eb64 170 *ret = net_presets[i];
eb2ad6f1 171
172 sprintf(str, "%dx%d%s", ret->width, ret->height,
173 ret->wrapping ? " wrapping" : "");
174
175 *name = dupstr(str);
176 *params = ret;
177 return TRUE;
178}
179
be8d5aa1 180static void free_params(game_params *params)
7f77ea24 181{
182 sfree(params);
183}
184
be8d5aa1 185static game_params *dup_params(game_params *params)
eb2ad6f1 186{
187 game_params *ret = snew(game_params);
188 *ret = *params; /* structure copy */
189 return ret;
190}
191
1185e3c5 192static void decode_params(game_params *ret, char const *string)
b0e26073 193{
b0e26073 194 char const *p = string;
195
196 ret->width = atoi(p);
40fde884 197 while (*p && isdigit((unsigned char)*p)) p++;
b0e26073 198 if (*p == 'x') {
199 p++;
200 ret->height = atoi(p);
40fde884 201 while (*p && isdigit((unsigned char)*p)) p++;
b0e26073 202 } else {
203 ret->height = ret->width;
204 }
c0edd11f 205
206 while (*p) {
207 if (*p == 'w') {
208 p++;
209 ret->wrapping = TRUE;
210 } else if (*p == 'b') {
211 p++;
212 ret->barrier_probability = atof(p);
40fde884 213 while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
c0edd11f 214 } else if (*p == 'a') {
215 p++;
216 ret->unique = FALSE;
40fde884 217 } else
218 p++; /* skip any other gunk */
c0edd11f 219 }
b0e26073 220}
221
1185e3c5 222static char *encode_params(game_params *params, int full)
b0e26073 223{
224 char ret[400];
225 int len;
226
227 len = sprintf(ret, "%dx%d", params->width, params->height);
228 if (params->wrapping)
229 ret[len++] = 'w';
1185e3c5 230 if (full && params->barrier_probability)
b0e26073 231 len += sprintf(ret+len, "b%g", params->barrier_probability);
40fde884 232 if (full && !params->unique)
c0edd11f 233 ret[len++] = 'a';
b0e26073 234 assert(len < lenof(ret));
235 ret[len] = '\0';
236
237 return dupstr(ret);
238}
239
be8d5aa1 240static config_item *game_configure(game_params *params)
c8230524 241{
242 config_item *ret;
243 char buf[80];
244
c0edd11f 245 ret = snewn(6, config_item);
c8230524 246
247 ret[0].name = "Width";
95709966 248 ret[0].type = C_STRING;
c8230524 249 sprintf(buf, "%d", params->width);
250 ret[0].sval = dupstr(buf);
251 ret[0].ival = 0;
252
253 ret[1].name = "Height";
95709966 254 ret[1].type = C_STRING;
c8230524 255 sprintf(buf, "%d", params->height);
256 ret[1].sval = dupstr(buf);
257 ret[1].ival = 0;
258
259 ret[2].name = "Walls wrap around";
95709966 260 ret[2].type = C_BOOLEAN;
c8230524 261 ret[2].sval = NULL;
262 ret[2].ival = params->wrapping;
263
264 ret[3].name = "Barrier probability";
95709966 265 ret[3].type = C_STRING;
c8230524 266 sprintf(buf, "%g", params->barrier_probability);
267 ret[3].sval = dupstr(buf);
268 ret[3].ival = 0;
269
c0edd11f 270 ret[4].name = "Ensure unique solution";
271 ret[4].type = C_BOOLEAN;
c8230524 272 ret[4].sval = NULL;
c0edd11f 273 ret[4].ival = params->unique;
274
275 ret[5].name = NULL;
276 ret[5].type = C_END;
277 ret[5].sval = NULL;
278 ret[5].ival = 0;
c8230524 279
280 return ret;
281}
282
be8d5aa1 283static game_params *custom_params(config_item *cfg)
c8230524 284{
285 game_params *ret = snew(game_params);
286
287 ret->width = atoi(cfg[0].sval);
288 ret->height = atoi(cfg[1].sval);
289 ret->wrapping = cfg[2].ival;
95709966 290 ret->barrier_probability = (float)atof(cfg[3].sval);
c0edd11f 291 ret->unique = cfg[4].ival;
c8230524 292
293 return ret;
294}
295
3ff276f2 296static char *validate_params(game_params *params, int full)
c8230524 297{
ab53eb64 298 if (params->width <= 0 || params->height <= 0)
c8230524 299 return "Width and height must both be greater than zero";
c8230524 300 if (params->width <= 1 && params->height <= 1)
301 return "At least one of width and height must be greater than one";
302 if (params->barrier_probability < 0)
303 return "Barrier probability may not be negative";
304 if (params->barrier_probability > 1)
305 return "Barrier probability may not be greater than 1";
e7c352f5 306
307 /*
308 * Specifying either grid dimension as 2 in a wrapping puzzle
309 * makes it actually impossible to ensure a unique puzzle
310 * solution.
311 *
312 * Proof:
313 *
314 * Without loss of generality, let us assume the puzzle _width_
315 * is 2, so we can conveniently discuss rows without having to
316 * say `rows/columns' all the time. (The height may be 2 as
317 * well, but that doesn't matter.)
318 *
319 * In each row, there are two edges between tiles: the inner
320 * edge (running down the centre of the grid) and the outer
321 * edge (the identified left and right edges of the grid).
322 *
323 * Lemma: In any valid 2xn puzzle there must be at least one
324 * row in which _exactly one_ of the inner edge and outer edge
325 * is connected.
326 *
327 * Proof: No row can have _both_ inner and outer edges
328 * connected, because this would yield a loop. So the only
329 * other way to falsify the lemma is for every row to have
330 * _neither_ the inner nor outer edge connected. But this
331 * means there is no connection at all between the left and
332 * right columns of the puzzle, so there are two disjoint
333 * subgraphs, which is also disallowed. []
334 *
335 * Given such a row, it is always possible to make the
336 * disconnected edge connected and the connected edge
337 * disconnected without changing the state of any other edge.
338 * (This is easily seen by case analysis on the various tiles:
339 * left-pointing and right-pointing endpoints can be exchanged,
340 * likewise T-pieces, and a corner piece can select its
341 * horizontal connectivity independently of its vertical.) This
342 * yields a distinct valid solution.
343 *
344 * Thus, for _every_ row in which exactly one of the inner and
345 * outer edge is connected, there are two valid states for that
346 * row, and hence the total number of solutions of the puzzle
347 * is at least 2^(number of such rows), and in particular is at
348 * least 2 since there must be at least one such row. []
349 */
3ff276f2 350 if (full && params->unique && params->wrapping &&
e7c352f5 351 (params->width == 2 || params->height == 2))
352 return "No wrapping puzzle with a width or height of 2 can have"
353 " a unique solution";
354
c8230524 355 return NULL;
356}
357
7f77ea24 358/* ----------------------------------------------------------------------
c0edd11f 359 * Solver used to assure solution uniqueness during generation.
360 */
361
362/*
363 * Test cases I used while debugging all this were
364 *
365 * ./net --generate 1 13x11w#12300
366 * which expands under the non-unique grid generation rules to
367 * 13x11w:5eaade1bd222664436d5e2965c12656b1129dd825219e3274d558d5eb2dab5da18898e571d5a2987be79746bd95726c597447d6da96188c513add829da7681da954db113d3cd244
368 * and has two ambiguous areas.
369 *
370 * An even better one is
371 * 13x11w#507896411361192
372 * which expands to
373 * 13x11w:b7125b1aec598eb31bd58d82572bc11494e5dee4e8db2bdd29b88d41a16bdd996d2996ddec8c83741a1e8674e78328ba71737b8894a9271b1cd1399453d1952e43951d9b712822e
374 * and has an ambiguous area _and_ a situation where loop avoidance
375 * is a necessary deductive technique.
376 *
377 * Then there's
378 * 48x25w#820543338195187
379 * becoming
380 * 48x25w:255989d14cdd185deaa753a93821a12edc1ab97943ac127e2685d7b8b3c48861b2192416139212b316eddd35de43714ebc7628d753db32e596284d9ec52c5a7dc1b4c811a655117d16dc28921b2b4161352cab1d89d18bc836b8b891d55ea4622a1251861b5bc9a8aa3e5bcd745c95229ca6c3b5e21d5832d397e917325793d7eb442dc351b2db2a52ba8e1651642275842d8871d5534aabc6d5b741aaa2d48ed2a7dbbb3151ddb49d5b9a7ed1ab98ee75d613d656dbba347bc514c84556b43a9bc65a3256ead792488b862a9d2a8a39b4255a4949ed7dbd79443292521265896b4399c95ede89d7c8c797a6a57791a849adea489359a158aa12e5dacce862b8333b7ebea7d344d1a3c53198864b73a9dedde7b663abb1b539e1e8853b1b7edb14a2a17ebaae4dbe63598a2e7e9a2dbdad415bc1d8cb88cbab5a8c82925732cd282e641ea3bd7d2c6e776de9117a26be86deb7c82c89524b122cb9397cd1acd2284e744ea62b9279bae85479ababe315c3ac29c431333395b24e6a1e3c43a2da42d4dce84aadd5b154aea555eaddcbd6e527d228c19388d9b424d94214555a7edbdeebe569d4a56dc51a86bd9963e377bb74752bd5eaa5761ba545e297b62a1bda46ab4aee423ad6c661311783cc18786d4289236563cb4a75ec67d481c14814994464cd1b87396dee63e5ab6e952cc584baa1d4c47cb557ec84dbb63d487c8728118673a166846dd3a4ebc23d6cb9c5827d96b4556e91899db32b517eda815ae271a8911bd745447121dc8d321557bc2a435ebec1bbac35b1a291669451174e6aa2218a4a9c5a6ca31ebc45d84e3a82c121e9ced7d55e9a
381 * which has a spot (far right) where slightly more complex loop
382 * avoidance is required.
383 */
384
c0edd11f 385struct todo {
386 unsigned char *marked;
387 int *buffer;
388 int buflen;
389 int head, tail;
390};
391
392static struct todo *todo_new(int maxsize)
393{
394 struct todo *todo = snew(struct todo);
395 todo->marked = snewn(maxsize, unsigned char);
396 memset(todo->marked, 0, maxsize);
397 todo->buflen = maxsize + 1;
398 todo->buffer = snewn(todo->buflen, int);
399 todo->head = todo->tail = 0;
400 return todo;
401}
402
403static void todo_free(struct todo *todo)
404{
405 sfree(todo->marked);
406 sfree(todo->buffer);
407 sfree(todo);
408}
409
410static void todo_add(struct todo *todo, int index)
411{
412 if (todo->marked[index])
413 return; /* already on the list */
414 todo->marked[index] = TRUE;
415 todo->buffer[todo->tail++] = index;
416 if (todo->tail == todo->buflen)
417 todo->tail = 0;
418}
419
420static int todo_get(struct todo *todo) {
421 int ret;
422
423 if (todo->head == todo->tail)
424 return -1; /* list is empty */
425 ret = todo->buffer[todo->head++];
426 if (todo->head == todo->buflen)
427 todo->head = 0;
428 todo->marked[ret] = FALSE;
429
430 return ret;
431}
432
84942c65 433static int net_solver(int w, int h, unsigned char *tiles,
434 unsigned char *barriers, int wrapping)
c0edd11f 435{
436 unsigned char *tilestate;
437 unsigned char *edgestate;
438 int *deadends;
439 int *equivalence;
440 struct todo *todo;
441 int i, j, x, y;
442 int area;
443 int done_something;
444
445 /*
446 * Set up the solver's data structures.
447 */
448
449 /*
450 * tilestate stores the possible orientations of each tile.
451 * There are up to four of these, so we'll index the array in
452 * fours. tilestate[(y * w + x) * 4] and its three successive
453 * members give the possible orientations, clearing to 255 from
454 * the end as things are ruled out.
455 *
456 * In this loop we also count up the area of the grid (which is
457 * not _necessarily_ equal to w*h, because there might be one
458 * or more blank squares present. This will never happen in a
459 * grid generated _by_ this program, but it's worth keeping the
460 * solver as general as possible.)
461 */
462 tilestate = snewn(w * h * 4, unsigned char);
463 area = 0;
464 for (i = 0; i < w*h; i++) {
465 tilestate[i * 4] = tiles[i] & 0xF;
466 for (j = 1; j < 4; j++) {
467 if (tilestate[i * 4 + j - 1] == 255 ||
468 A(tilestate[i * 4 + j - 1]) == tilestate[i * 4])
469 tilestate[i * 4 + j] = 255;
470 else
471 tilestate[i * 4 + j] = A(tilestate[i * 4 + j - 1]);
472 }
473 if (tiles[i] != 0)
474 area++;
475 }
476
477 /*
478 * edgestate stores the known state of each edge. It is 0 for
479 * unknown, 1 for open (connected) and 2 for closed (not
480 * connected).
481 *
482 * In principle we need only worry about each edge once each,
483 * but in fact it's easier to track each edge twice so that we
484 * can reference it from either side conveniently. Also I'm
485 * going to allocate _five_ bytes per tile, rather than the
486 * obvious four, so that I can index edgestate[(y*w+x) * 5 + d]
487 * where d is 1,2,4,8 and they never overlap.
488 */
489 edgestate = snewn((w * h - 1) * 5 + 9, unsigned char);
490 memset(edgestate, 0, (w * h - 1) * 5 + 9);
491
492 /*
493 * deadends tracks which edges have dead ends on them. It is
494 * indexed by tile and direction: deadends[(y*w+x) * 5 + d]
495 * tells you whether heading out of tile (x,y) in direction d
496 * can reach a limited amount of the grid. Values are area+1
497 * (no dead end known) or less than that (can reach _at most_
498 * this many other tiles by heading this way out of this tile).
499 */
500 deadends = snewn((w * h - 1) * 5 + 9, int);
501 for (i = 0; i < (w * h - 1) * 5 + 9; i++)
502 deadends[i] = area+1;
503
504 /*
505 * equivalence tracks which sets of tiles are known to be
506 * connected to one another, so we can avoid creating loops by
507 * linking together tiles which are already linked through
508 * another route.
509 *
510 * This is a disjoint set forest structure: equivalence[i]
511 * contains the index of another member of the equivalence
512 * class containing i, or contains i itself for precisely one
513 * member in each such class. To find a representative member
514 * of the equivalence class containing i, you keep replacing i
515 * with equivalence[i] until it stops changing; then you go
516 * _back_ along the same path and point everything on it
517 * directly at the representative member so as to speed up
518 * future searches. Then you test equivalence between tiles by
519 * finding the representative of each tile and seeing if
520 * they're the same; and you create new equivalence (merge
521 * classes) by finding the representative of each tile and
522 * setting equivalence[one]=the_other.
523 */
cd28b679 524 equivalence = snew_dsf(w * h);
c0edd11f 525
526 /*
527 * On a non-wrapping grid, we instantly know that all the edges
528 * round the edge are closed.
529 */
530 if (!wrapping) {
531 for (i = 0; i < w; i++) {
532 edgestate[i * 5 + 2] = edgestate[((h-1) * w + i) * 5 + 8] = 2;
533 }
534 for (i = 0; i < h; i++) {
535 edgestate[(i * w + w-1) * 5 + 1] = edgestate[(i * w) * 5 + 4] = 2;
536 }
537 }
538
539 /*
84942c65 540 * If we have barriers available, we can mark those edges as
541 * closed too.
542 */
543 if (barriers) {
544 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
545 int d;
546 for (d = 1; d <= 8; d += d) {
547 if (barriers[y*w+x] & d) {
548 int x2, y2;
549 /*
550 * In principle the barrier list should already
551 * contain each barrier from each side, but
552 * let's not take chances with our internal
553 * consistency.
554 */
555 OFFSETWH(x2, y2, x, y, d, w, h);
556 edgestate[(y*w+x) * 5 + d] = 2;
557 edgestate[(y2*w+x2) * 5 + F(d)] = 2;
558 }
559 }
560 }
561 }
562
563 /*
c0edd11f 564 * Since most deductions made by this solver are local (the
565 * exception is loop avoidance, where joining two tiles
566 * together on one side of the grid can theoretically permit a
567 * fresh deduction on the other), we can address the scaling
568 * problem inherent in iterating repeatedly over the entire
569 * grid by instead working with a to-do list.
570 */
571 todo = todo_new(w * h);
572
573 /*
574 * Main deductive loop.
575 */
576 done_something = TRUE; /* prevent instant termination! */
577 while (1) {
578 int index;
579
580 /*
581 * Take a tile index off the todo list and process it.
582 */
583 index = todo_get(todo);
584 if (index == -1) {
585 /*
586 * If we have run out of immediate things to do, we
587 * have no choice but to scan the whole grid for
588 * longer-range things we've missed. Hence, I now add
589 * every square on the grid back on to the to-do list.
590 * I also set `done_something' to FALSE at this point;
591 * if we later come back here and find it still FALSE,
592 * we will know we've scanned the entire grid without
593 * finding anything new to do, and we can terminate.
594 */
595 if (!done_something)
596 break;
597 for (i = 0; i < w*h; i++)
598 todo_add(todo, i);
599 done_something = FALSE;
600
601 index = todo_get(todo);
602 }
603
604 y = index / w;
605 x = index % w;
606 {
607 int d, ourclass = dsf_canonify(equivalence, y*w+x);
608 int deadendmax[9];
609
610 deadendmax[1] = deadendmax[2] = deadendmax[4] = deadendmax[8] = 0;
611
612 for (i = j = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
613 int valid;
614 int nnondeadends, nondeadends[4], deadendtotal;
615 int nequiv, equiv[5];
616 int val = tilestate[(y*w+x) * 4 + i];
617
618 valid = TRUE;
619 nnondeadends = deadendtotal = 0;
620 equiv[0] = ourclass;
621 nequiv = 1;
622 for (d = 1; d <= 8; d += d) {
623 /*
624 * Immediately rule out this orientation if it
625 * conflicts with any known edge.
626 */
627 if ((edgestate[(y*w+x) * 5 + d] == 1 && !(val & d)) ||
628 (edgestate[(y*w+x) * 5 + d] == 2 && (val & d)))
629 valid = FALSE;
630
631 if (val & d) {
632 /*
633 * Count up the dead-end statistics.
634 */
635 if (deadends[(y*w+x) * 5 + d] <= area) {
636 deadendtotal += deadends[(y*w+x) * 5 + d];
637 } else {
638 nondeadends[nnondeadends++] = d;
639 }
640
641 /*
642 * Ensure we aren't linking to any tiles,
643 * through edges not already known to be
644 * open, which create a loop.
645 */
646 if (edgestate[(y*w+x) * 5 + d] == 0) {
647 int c, k, x2, y2;
648
649 OFFSETWH(x2, y2, x, y, d, w, h);
650 c = dsf_canonify(equivalence, y2*w+x2);
651 for (k = 0; k < nequiv; k++)
652 if (c == equiv[k])
653 break;
654 if (k == nequiv)
655 equiv[nequiv++] = c;
656 else
657 valid = FALSE;
658 }
659 }
660 }
661
662 if (nnondeadends == 0) {
663 /*
664 * If this orientation links together dead-ends
665 * with a total area of less than the entire
666 * grid, it is invalid.
667 *
668 * (We add 1 to deadendtotal because of the
669 * tile itself, of course; one tile linking
670 * dead ends of size 2 and 3 forms a subnetwork
671 * with a total area of 6, not 5.)
672 */
9535138a 673 if (deadendtotal > 0 && deadendtotal+1 < area)
c0edd11f 674 valid = FALSE;
675 } else if (nnondeadends == 1) {
676 /*
677 * If this orientation links together one or
678 * more dead-ends with precisely one
679 * non-dead-end, then we may have to mark that
680 * non-dead-end as a dead end going the other
681 * way. However, it depends on whether all
682 * other orientations share the same property.
683 */
684 deadendtotal++;
685 if (deadendmax[nondeadends[0]] < deadendtotal)
686 deadendmax[nondeadends[0]] = deadendtotal;
687 } else {
688 /*
689 * If this orientation links together two or
690 * more non-dead-ends, then we can rule out the
691 * possibility of putting in new dead-end
692 * markings in those directions.
693 */
694 int k;
695 for (k = 0; k < nnondeadends; k++)
696 deadendmax[nondeadends[k]] = area+1;
697 }
698
699 if (valid)
700 tilestate[(y*w+x) * 4 + j++] = val;
701#ifdef SOLVER_DIAGNOSTICS
702 else
703 printf("ruling out orientation %x at %d,%d\n", val, x, y);
704#endif
705 }
706
707 assert(j > 0); /* we can't lose _all_ possibilities! */
708
709 if (j < i) {
c0edd11f 710 done_something = TRUE;
711
712 /*
713 * We have ruled out at least one tile orientation.
714 * Make sure the rest are blanked.
715 */
716 while (j < 4)
717 tilestate[(y*w+x) * 4 + j++] = 255;
3af1c093 718 }
c0edd11f 719
3af1c093 720 /*
721 * Now go through the tile orientations again and see
722 * if we've deduced anything new about any edges.
723 */
724 {
725 int a, o;
c0edd11f 726 a = 0xF; o = 0;
3af1c093 727
c0edd11f 728 for (i = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
729 a &= tilestate[(y*w+x) * 4 + i];
730 o |= tilestate[(y*w+x) * 4 + i];
731 }
732 for (d = 1; d <= 8; d += d)
733 if (edgestate[(y*w+x) * 5 + d] == 0) {
734 int x2, y2, d2;
735 OFFSETWH(x2, y2, x, y, d, w, h);
736 d2 = F(d);
737 if (a & d) {
738 /* This edge is open in all orientations. */
739#ifdef SOLVER_DIAGNOSTICS
740 printf("marking edge %d,%d:%d open\n", x, y, d);
741#endif
742 edgestate[(y*w+x) * 5 + d] = 1;
743 edgestate[(y2*w+x2) * 5 + d2] = 1;
744 dsf_merge(equivalence, y*w+x, y2*w+x2);
745 done_something = TRUE;
746 todo_add(todo, y2*w+x2);
747 } else if (!(o & d)) {
748 /* This edge is closed in all orientations. */
749#ifdef SOLVER_DIAGNOSTICS
750 printf("marking edge %d,%d:%d closed\n", x, y, d);
751#endif
752 edgestate[(y*w+x) * 5 + d] = 2;
753 edgestate[(y2*w+x2) * 5 + d2] = 2;
754 done_something = TRUE;
755 todo_add(todo, y2*w+x2);
756 }
757 }
758
759 }
760
761 /*
762 * Now check the dead-end markers and see if any of
763 * them has lowered from the real ones.
764 */
765 for (d = 1; d <= 8; d += d) {
766 int x2, y2, d2;
767 OFFSETWH(x2, y2, x, y, d, w, h);
768 d2 = F(d);
769 if (deadendmax[d] > 0 &&
770 deadends[(y2*w+x2) * 5 + d2] > deadendmax[d]) {
771#ifdef SOLVER_DIAGNOSTICS
772 printf("setting dead end value %d,%d:%d to %d\n",
773 x2, y2, d2, deadendmax[d]);
774#endif
775 deadends[(y2*w+x2) * 5 + d2] = deadendmax[d];
776 done_something = TRUE;
777 todo_add(todo, y2*w+x2);
778 }
779 }
780
781 }
782 }
783
784 /*
785 * Mark all completely determined tiles as locked.
786 */
787 j = TRUE;
788 for (i = 0; i < w*h; i++) {
789 if (tilestate[i * 4 + 1] == 255) {
790 assert(tilestate[i * 4 + 0] != 255);
791 tiles[i] = tilestate[i * 4] | LOCKED;
792 } else {
793 tiles[i] &= ~LOCKED;
794 j = FALSE;
795 }
796 }
797
798 /*
799 * Free up working space.
800 */
801 todo_free(todo);
802 sfree(tilestate);
803 sfree(edgestate);
804 sfree(deadends);
805 sfree(equivalence);
806
807 return j;
808}
809
810/* ----------------------------------------------------------------------
1185e3c5 811 * Randomly select a new game description.
720a8fb7 812 */
813
c0edd11f 814/*
815 * Function to randomly perturb an ambiguous section in a grid, to
816 * attempt to ensure unique solvability.
817 */
818static void perturb(int w, int h, unsigned char *tiles, int wrapping,
819 random_state *rs, int startx, int starty, int startd)
820{
821 struct xyd *perimeter, *perim2, *loop[2], looppos[2];
822 int nperim, perimsize, nloop[2], loopsize[2];
823 int x, y, d, i;
824
825 /*
826 * We know that the tile at (startx,starty) is part of an
827 * ambiguous section, and we also know that its neighbour in
828 * direction startd is fully specified. We begin by tracing all
829 * the way round the ambiguous area.
830 */
831 nperim = perimsize = 0;
832 perimeter = NULL;
833 x = startx;
834 y = starty;
835 d = startd;
836#ifdef PERTURB_DIAGNOSTICS
837 printf("perturb %d,%d:%d\n", x, y, d);
838#endif
839 do {
840 int x2, y2, d2;
841
842 if (nperim >= perimsize) {
843 perimsize = perimsize * 3 / 2 + 32;
844 perimeter = sresize(perimeter, perimsize, struct xyd);
845 }
846 perimeter[nperim].x = x;
847 perimeter[nperim].y = y;
848 perimeter[nperim].direction = d;
849 nperim++;
850#ifdef PERTURB_DIAGNOSTICS
851 printf("perimeter: %d,%d:%d\n", x, y, d);
852#endif
853
854 /*
855 * First, see if we can simply turn left from where we are
856 * and find another locked square.
857 */
858 d2 = A(d);
859 OFFSETWH(x2, y2, x, y, d2, w, h);
860 if ((!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1)) ||
861 (tiles[y2*w+x2] & LOCKED)) {
862 d = d2;
863 } else {
864 /*
865 * Failing that, step left into the new square and look
866 * in front of us.
867 */
868 x = x2;
869 y = y2;
870 OFFSETWH(x2, y2, x, y, d, w, h);
871 if ((wrapping || (abs(x2-x) <= 1 && abs(y2-y) <= 1)) &&
872 !(tiles[y2*w+x2] & LOCKED)) {
873 /*
874 * And failing _that_, we're going to have to step
875 * forward into _that_ square and look right at the
876 * same locked square as we started with.
877 */
878 x = x2;
879 y = y2;
880 d = C(d);
881 }
882 }
883
884 } while (x != startx || y != starty || d != startd);
885
886 /*
887 * Our technique for perturbing this ambiguous area is to
888 * search round its edge for a join we can make: that is, an
889 * edge on the perimeter which is (a) not currently connected,
890 * and (b) connecting it would not yield a full cross on either
891 * side. Then we make that join, search round the network to
892 * find the loop thus constructed, and sever the loop at a
893 * randomly selected other point.
894 */
895 perim2 = snewn(nperim, struct xyd);
896 memcpy(perim2, perimeter, nperim * sizeof(struct xyd));
897 /* Shuffle the perimeter, so as to search it without directional bias. */
e3edcacd 898 shuffle(perim2, nperim, sizeof(*perim2), rs);
c0edd11f 899 for (i = 0; i < nperim; i++) {
900 int x2, y2;
901
902 x = perim2[i].x;
903 y = perim2[i].y;
904 d = perim2[i].direction;
905
906 OFFSETWH(x2, y2, x, y, d, w, h);
907 if (!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1))
908 continue; /* can't link across non-wrapping border */
909 if (tiles[y*w+x] & d)
910 continue; /* already linked in this direction! */
911 if (((tiles[y*w+x] | d) & 15) == 15)
912 continue; /* can't turn this tile into a cross */
913 if (((tiles[y2*w+x2] | F(d)) & 15) == 15)
914 continue; /* can't turn other tile into a cross */
915
916 /*
917 * We've found the point at which we're going to make a new
918 * link.
919 */
920#ifdef PERTURB_DIAGNOSTICS
921 printf("linking %d,%d:%d\n", x, y, d);
922#endif
923 tiles[y*w+x] |= d;
924 tiles[y2*w+x2] |= F(d);
925
926 break;
927 }
ab53eb64 928 sfree(perim2);
c0edd11f 929
930 if (i == nperim)
931 return; /* nothing we can do! */
932
933 /*
934 * Now we've constructed a new link, we need to find the entire
935 * loop of which it is a part.
936 *
937 * In principle, this involves doing a complete search round
938 * the network. However, I anticipate that in the vast majority
939 * of cases the loop will be quite small, so what I'm going to
940 * do is make _two_ searches round the network in parallel, one
941 * keeping its metaphorical hand on the left-hand wall while
942 * the other keeps its hand on the right. As soon as one of
943 * them gets back to its starting point, I abandon the other.
944 */
945 for (i = 0; i < 2; i++) {
946 loopsize[i] = nloop[i] = 0;
947 loop[i] = NULL;
948 looppos[i].x = x;
949 looppos[i].y = y;
950 looppos[i].direction = d;
951 }
952 while (1) {
953 for (i = 0; i < 2; i++) {
954 int x2, y2, j;
955
956 x = looppos[i].x;
957 y = looppos[i].y;
958 d = looppos[i].direction;
959
960 OFFSETWH(x2, y2, x, y, d, w, h);
961
962 /*
963 * Add this path segment to the loop, unless it exactly
964 * reverses the previous one on the loop in which case
965 * we take it away again.
966 */
967#ifdef PERTURB_DIAGNOSTICS
968 printf("looppos[%d] = %d,%d:%d\n", i, x, y, d);
969#endif
970 if (nloop[i] > 0 &&
971 loop[i][nloop[i]-1].x == x2 &&
972 loop[i][nloop[i]-1].y == y2 &&
973 loop[i][nloop[i]-1].direction == F(d)) {
974#ifdef PERTURB_DIAGNOSTICS
975 printf("removing path segment %d,%d:%d from loop[%d]\n",
976 x2, y2, F(d), i);
977#endif
978 nloop[i]--;
979 } else {
980 if (nloop[i] >= loopsize[i]) {
981 loopsize[i] = loopsize[i] * 3 / 2 + 32;
982 loop[i] = sresize(loop[i], loopsize[i], struct xyd);
983 }
984#ifdef PERTURB_DIAGNOSTICS
985 printf("adding path segment %d,%d:%d to loop[%d]\n",
986 x, y, d, i);
987#endif
988 loop[i][nloop[i]++] = looppos[i];
989 }
990
991#ifdef PERTURB_DIAGNOSTICS
992 printf("tile at new location is %x\n", tiles[y2*w+x2] & 0xF);
993#endif
994 d = F(d);
995 for (j = 0; j < 4; j++) {
996 if (i == 0)
997 d = A(d);
998 else
999 d = C(d);
1000#ifdef PERTURB_DIAGNOSTICS
1001 printf("trying dir %d\n", d);
1002#endif
1003 if (tiles[y2*w+x2] & d) {
1004 looppos[i].x = x2;
1005 looppos[i].y = y2;
1006 looppos[i].direction = d;
1007 break;
1008 }
1009 }
1010
1011 assert(j < 4);
1012 assert(nloop[i] > 0);
1013
1014 if (looppos[i].x == loop[i][0].x &&
1015 looppos[i].y == loop[i][0].y &&
1016 looppos[i].direction == loop[i][0].direction) {
1017#ifdef PERTURB_DIAGNOSTICS
1018 printf("loop %d finished tracking\n", i);
1019#endif
1020
1021 /*
1022 * Having found our loop, we now sever it at a
1023 * randomly chosen point - absolutely any will do -
1024 * which is not the one we joined it at to begin
1025 * with. Conveniently, the one we joined it at is
1026 * loop[i][0], so we just avoid that one.
1027 */
1028 j = random_upto(rs, nloop[i]-1) + 1;
1029 x = loop[i][j].x;
1030 y = loop[i][j].y;
1031 d = loop[i][j].direction;
1032 OFFSETWH(x2, y2, x, y, d, w, h);
1033 tiles[y*w+x] &= ~d;
1034 tiles[y2*w+x2] &= ~F(d);
1035
1036 break;
1037 }
1038 }
1039 if (i < 2)
1040 break;
1041 }
1042 sfree(loop[0]);
1043 sfree(loop[1]);
1044
1045 /*
1046 * Finally, we must mark the entire disputed section as locked,
1047 * to prevent the perturb function being called on it multiple
1048 * times.
1049 *
1050 * To do this, we _sort_ the perimeter of the area. The
1051 * existing xyd_cmp function will arrange things into columns
1052 * for us, in such a way that each column has the edges in
1053 * vertical order. Then we can work down each column and fill
1054 * in all the squares between an up edge and a down edge.
1055 */
1056 qsort(perimeter, nperim, sizeof(struct xyd), xyd_cmp);
1057 x = y = -1;
1058 for (i = 0; i <= nperim; i++) {
1059 if (i == nperim || perimeter[i].x > x) {
1060 /*
1061 * Fill in everything from the last Up edge to the
1062 * bottom of the grid, if necessary.
1063 */
1064 if (x != -1) {
1065 while (y < h) {
1066#ifdef PERTURB_DIAGNOSTICS
1067 printf("resolved: locking tile %d,%d\n", x, y);
1068#endif
1069 tiles[y * w + x] |= LOCKED;
1070 y++;
1071 }
1072 x = y = -1;
1073 }
1074
1075 if (i == nperim)
1076 break;
1077
1078 x = perimeter[i].x;
1079 y = 0;
1080 }
1081
1082 if (perimeter[i].direction == U) {
1083 x = perimeter[i].x;
1084 y = perimeter[i].y;
1085 } else if (perimeter[i].direction == D) {
1086 /*
1087 * Fill in everything from the last Up edge to here.
1088 */
1089 assert(x == perimeter[i].x && y <= perimeter[i].y);
1090 while (y <= perimeter[i].y) {
1091#ifdef PERTURB_DIAGNOSTICS
1092 printf("resolved: locking tile %d,%d\n", x, y);
1093#endif
1094 tiles[y * w + x] |= LOCKED;
1095 y++;
1096 }
1097 x = y = -1;
1098 }
1099 }
1100
1101 sfree(perimeter);
1102}
1103
1185e3c5 1104static char *new_game_desc(game_params *params, random_state *rs,
c566778e 1105 char **aux, int interactive)
720a8fb7 1106{
1185e3c5 1107 tree234 *possibilities, *barriertree;
1108 int w, h, x, y, cx, cy, nbarriers;
1109 unsigned char *tiles, *barriers;
1110 char *desc, *p;
6f2d8d7c 1111
1185e3c5 1112 w = params->width;
1113 h = params->height;
720a8fb7 1114
c0edd11f 1115 cx = w / 2;
1116 cy = h / 2;
1117
1185e3c5 1118 tiles = snewn(w * h, unsigned char);
1185e3c5 1119 barriers = snewn(w * h, unsigned char);
720a8fb7 1120
c0edd11f 1121 begin_generation:
1122
1123 memset(tiles, 0, w * h);
1124 memset(barriers, 0, w * h);
720a8fb7 1125
1126 /*
1127 * Construct the unshuffled grid.
1128 *
1129 * To do this, we simply start at the centre point, repeatedly
1130 * choose a random possibility out of the available ways to
1131 * extend a used square into an unused one, and do it. After
1132 * extending the third line out of a square, we remove the
1133 * fourth from the possibilities list to avoid any full-cross
1134 * squares (which would make the game too easy because they
1135 * only have one orientation).
1136 *
1137 * The slightly worrying thing is the avoidance of full-cross
1138 * squares. Can this cause our unsophisticated construction
1139 * algorithm to paint itself into a corner, by getting into a
1140 * situation where there are some unreached squares and the
1141 * only way to reach any of them is to extend a T-piece into a
1142 * full cross?
1143 *
1144 * Answer: no it can't, and here's a proof.
1145 *
1146 * Any contiguous group of such unreachable squares must be
1147 * surrounded on _all_ sides by T-pieces pointing away from the
1148 * group. (If not, then there is a square which can be extended
1149 * into one of the `unreachable' ones, and so it wasn't
1150 * unreachable after all.) In particular, this implies that
1151 * each contiguous group of unreachable squares must be
1152 * rectangular in shape (any deviation from that yields a
1153 * non-T-piece next to an `unreachable' square).
1154 *
1155 * So we have a rectangle of unreachable squares, with T-pieces
1156 * forming a solid border around the rectangle. The corners of
1157 * that border must be connected (since every tile connects all
1158 * the lines arriving in it), and therefore the border must
1159 * form a closed loop around the rectangle.
1160 *
1161 * But this can't have happened in the first place, since we
1162 * _know_ we've avoided creating closed loops! Hence, no such
1163 * situation can ever arise, and the naive grid construction
1164 * algorithm will guaranteeably result in a complete grid
1165 * containing no unreached squares, no full crosses _and_ no
1166 * closed loops. []
1167 */
c0edd11f 1168 possibilities = newtree234(xyd_cmp_nc);
ecadce0d 1169
1185e3c5 1170 if (cx+1 < w)
1171 add234(possibilities, new_xyd(cx, cy, R));
1172 if (cy-1 >= 0)
1173 add234(possibilities, new_xyd(cx, cy, U));
1174 if (cx-1 >= 0)
1175 add234(possibilities, new_xyd(cx, cy, L));
1176 if (cy+1 < h)
1177 add234(possibilities, new_xyd(cx, cy, D));
720a8fb7 1178
1179 while (count234(possibilities) > 0) {
1180 int i;
1181 struct xyd *xyd;
1182 int x1, y1, d1, x2, y2, d2, d;
1183
1184 /*
1185 * Extract a randomly chosen possibility from the list.
1186 */
1187 i = random_upto(rs, count234(possibilities));
1188 xyd = delpos234(possibilities, i);
1189 x1 = xyd->x;
1190 y1 = xyd->y;
1191 d1 = xyd->direction;
1192 sfree(xyd);
1193
1185e3c5 1194 OFFSET(x2, y2, x1, y1, d1, params);
720a8fb7 1195 d2 = F(d1);
95854b53 1196#ifdef GENERATION_DIAGNOSTICS
720a8fb7 1197 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
1198 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
1199#endif
1200
1201 /*
1202 * Make the connection. (We should be moving to an as yet
1203 * unused tile.)
1204 */
1185e3c5 1205 index(params, tiles, x1, y1) |= d1;
1206 assert(index(params, tiles, x2, y2) == 0);
1207 index(params, tiles, x2, y2) |= d2;
720a8fb7 1208
1209 /*
1210 * If we have created a T-piece, remove its last
1211 * possibility.
1212 */
1185e3c5 1213 if (COUNT(index(params, tiles, x1, y1)) == 3) {
720a8fb7 1214 struct xyd xyd1, *xydp;
1215
1216 xyd1.x = x1;
1217 xyd1.y = y1;
1185e3c5 1218 xyd1.direction = 0x0F ^ index(params, tiles, x1, y1);
720a8fb7 1219
1220 xydp = find234(possibilities, &xyd1, NULL);
1221
1222 if (xydp) {
95854b53 1223#ifdef GENERATION_DIAGNOSTICS
720a8fb7 1224 printf("T-piece; removing (%d,%d,%c)\n",
1225 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
1226#endif
1227 del234(possibilities, xydp);
1228 sfree(xydp);
1229 }
1230 }
1231
1232 /*
1233 * Remove all other possibilities that were pointing at the
1234 * tile we've just moved into.
1235 */
1236 for (d = 1; d < 0x10; d <<= 1) {
1237 int x3, y3, d3;
1238 struct xyd xyd1, *xydp;
1239
1185e3c5 1240 OFFSET(x3, y3, x2, y2, d, params);
720a8fb7 1241 d3 = F(d);
1242
1243 xyd1.x = x3;
1244 xyd1.y = y3;
1245 xyd1.direction = d3;
1246
1247 xydp = find234(possibilities, &xyd1, NULL);
1248
1249 if (xydp) {
95854b53 1250#ifdef GENERATION_DIAGNOSTICS
720a8fb7 1251 printf("Loop avoidance; removing (%d,%d,%c)\n",
1252 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
1253#endif
1254 del234(possibilities, xydp);
1255 sfree(xydp);
1256 }
1257 }
1258
1259 /*
1260 * Add new possibilities to the list for moving _out_ of
1261 * the tile we have just moved into.
1262 */
1263 for (d = 1; d < 0x10; d <<= 1) {
1264 int x3, y3;
1265
1266 if (d == d2)
1267 continue; /* we've got this one already */
1268
1185e3c5 1269 if (!params->wrapping) {
720a8fb7 1270 if (d == U && y2 == 0)
1271 continue;
1185e3c5 1272 if (d == D && y2 == h-1)
720a8fb7 1273 continue;
1274 if (d == L && x2 == 0)
1275 continue;
1185e3c5 1276 if (d == R && x2 == w-1)
720a8fb7 1277 continue;
1278 }
1279
1185e3c5 1280 OFFSET(x3, y3, x2, y2, d, params);
720a8fb7 1281
1185e3c5 1282 if (index(params, tiles, x3, y3))
720a8fb7 1283 continue; /* this would create a loop */
1284
95854b53 1285#ifdef GENERATION_DIAGNOSTICS
720a8fb7 1286 printf("New frontier; adding (%d,%d,%c)\n",
1287 x2, y2, "0RU3L567D9abcdef"[d]);
1288#endif
1289 add234(possibilities, new_xyd(x2, y2, d));
1290 }
1291 }
1292 /* Having done that, we should have no possibilities remaining. */
1293 assert(count234(possibilities) == 0);
1294 freetree234(possibilities);
1295
c0edd11f 1296 if (params->unique) {
1297 int prevn = -1;
1298
1299 /*
1300 * Run the solver to check unique solubility.
1301 */
84942c65 1302 while (!net_solver(w, h, tiles, NULL, params->wrapping)) {
c0edd11f 1303 int n = 0;
1304
1305 /*
1306 * We expect (in most cases) that most of the grid will
1307 * be uniquely specified already, and the remaining
1308 * ambiguous sections will be small and separate. So
1309 * our strategy is to find each individual such
1310 * section, and perform a perturbation on the network
1311 * in that area.
1312 */
1313 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
1314 if (x+1 < w && ((tiles[y*w+x] ^ tiles[y*w+x+1]) & LOCKED)) {
1315 n++;
1316 if (tiles[y*w+x] & LOCKED)
1317 perturb(w, h, tiles, params->wrapping, rs, x+1, y, L);
1318 else
1319 perturb(w, h, tiles, params->wrapping, rs, x, y, R);
1320 }
1321 if (y+1 < h && ((tiles[y*w+x] ^ tiles[(y+1)*w+x]) & LOCKED)) {
1322 n++;
1323 if (tiles[y*w+x] & LOCKED)
1324 perturb(w, h, tiles, params->wrapping, rs, x, y+1, U);
1325 else
1326 perturb(w, h, tiles, params->wrapping, rs, x, y, D);
1327 }
1328 }
1329
1330 /*
1331 * Now n counts the number of ambiguous sections we
1332 * have fiddled with. If we haven't managed to decrease
1333 * it from the last time we ran the solver, give up and
1334 * regenerate the entire grid.
1335 */
1336 if (prevn != -1 && prevn <= n)
1337 goto begin_generation; /* (sorry) */
1338
1339 prevn = n;
1340 }
1341
1342 /*
1343 * The solver will have left a lot of LOCKED bits lying
1344 * around in the tiles array. Remove them.
1345 */
1346 for (x = 0; x < w*h; x++)
1347 tiles[x] &= ~LOCKED;
1348 }
1349
720a8fb7 1350 /*
1351 * Now compute a list of the possible barrier locations.
1352 */
c0edd11f 1353 barriertree = newtree234(xyd_cmp_nc);
1185e3c5 1354 for (y = 0; y < h; y++) {
1355 for (x = 0; x < w; x++) {
1356
1357 if (!(index(params, tiles, x, y) & R) &&
1358 (params->wrapping || x < w-1))
1359 add234(barriertree, new_xyd(x, y, R));
1360 if (!(index(params, tiles, x, y) & D) &&
1361 (params->wrapping || y < h-1))
1362 add234(barriertree, new_xyd(x, y, D));
720a8fb7 1363 }
1364 }
1365
1366 /*
c566778e 1367 * Save the unshuffled grid in aux.
2ac6d24e 1368 */
1369 {
c566778e 1370 char *solution;
1371 int i;
2ac6d24e 1372
c566778e 1373 solution = snewn(w * h + 1, char);
1374 for (i = 0; i < w * h; i++)
1375 solution[i] = "0123456789abcdef"[tiles[i] & 0xF];
1376 solution[w*h] = '\0';
2ac6d24e 1377
1185e3c5 1378 *aux = solution;
2ac6d24e 1379 }
1380
1381 /*
720a8fb7 1382 * Now shuffle the grid.
1383 */
1185e3c5 1384 for (y = 0; y < h; y++) {
1385 for (x = 0; x < w; x++) {
1386 int orig = index(params, tiles, x, y);
720a8fb7 1387 int rot = random_upto(rs, 4);
1185e3c5 1388 index(params, tiles, x, y) = ROT(orig, rot);
720a8fb7 1389 }
1390 }
1391
1392 /*
1393 * And now choose barrier locations. (We carefully do this
1394 * _after_ shuffling, so that changing the barrier rate in the
1185e3c5 1395 * params while keeping the random seed the same will give the
720a8fb7 1396 * same shuffled grid and _only_ change the barrier locations.
1397 * Also the way we choose barrier locations, by repeatedly
1398 * choosing one possibility from the list until we have enough,
1399 * is designed to ensure that raising the barrier rate while
1400 * keeping the seed the same will provide a superset of the
1401 * previous barrier set - i.e. if you ask for 10 barriers, and
1402 * then decide that's still too hard and ask for 20, you'll get
1403 * the original 10 plus 10 more, rather than getting 20 new
1404 * ones and the chance of remembering your first 10.)
1405 */
1185e3c5 1406 nbarriers = (int)(params->barrier_probability * count234(barriertree));
1407 assert(nbarriers >= 0 && nbarriers <= count234(barriertree));
720a8fb7 1408
1409 while (nbarriers > 0) {
1410 int i;
1411 struct xyd *xyd;
1412 int x1, y1, d1, x2, y2, d2;
1413
1414 /*
1415 * Extract a randomly chosen barrier from the list.
1416 */
1185e3c5 1417 i = random_upto(rs, count234(barriertree));
1418 xyd = delpos234(barriertree, i);
720a8fb7 1419
1420 assert(xyd != NULL);
1421
1422 x1 = xyd->x;
1423 y1 = xyd->y;
1424 d1 = xyd->direction;
1425 sfree(xyd);
1426
1185e3c5 1427 OFFSET(x2, y2, x1, y1, d1, params);
720a8fb7 1428 d2 = F(d1);
1429
1185e3c5 1430 index(params, barriers, x1, y1) |= d1;
1431 index(params, barriers, x2, y2) |= d2;
720a8fb7 1432
1433 nbarriers--;
1434 }
1435
1436 /*
1437 * Clean up the rest of the barrier list.
1438 */
1439 {
1440 struct xyd *xyd;
1441
1185e3c5 1442 while ( (xyd = delpos234(barriertree, 0)) != NULL)
720a8fb7 1443 sfree(xyd);
1444
1185e3c5 1445 freetree234(barriertree);
1446 }
1447
1448 /*
1449 * Finally, encode the grid into a string game description.
1450 *
1451 * My syntax is extremely simple: each square is encoded as a
1452 * hex digit in which bit 0 means a connection on the right,
1453 * bit 1 means up, bit 2 left and bit 3 down. (i.e. the same
1454 * encoding as used internally). Each digit is followed by
1455 * optional barrier indicators: `v' means a vertical barrier to
1456 * the right of it, and `h' means a horizontal barrier below
1457 * it.
1458 */
1459 desc = snewn(w * h * 3 + 1, char);
1460 p = desc;
1461 for (y = 0; y < h; y++) {
1462 for (x = 0; x < w; x++) {
1463 *p++ = "0123456789abcdef"[index(params, tiles, x, y)];
1464 if ((params->wrapping || x < w-1) &&
1465 (index(params, barriers, x, y) & R))
1466 *p++ = 'v';
1467 if ((params->wrapping || y < h-1) &&
1468 (index(params, barriers, x, y) & D))
1469 *p++ = 'h';
1470 }
1471 }
1472 assert(p - desc <= w*h*3);
366d045b 1473 *p = '\0';
1185e3c5 1474
1475 sfree(tiles);
1476 sfree(barriers);
1477
1478 return desc;
1479}
1480
1185e3c5 1481static char *validate_desc(game_params *params, char *desc)
1482{
1483 int w = params->width, h = params->height;
1484 int i;
1485
1486 for (i = 0; i < w*h; i++) {
1487 if (*desc >= '0' && *desc <= '9')
1488 /* OK */;
1489 else if (*desc >= 'a' && *desc <= 'f')
1490 /* OK */;
1491 else if (*desc >= 'A' && *desc <= 'F')
1492 /* OK */;
1493 else if (!*desc)
1494 return "Game description shorter than expected";
1495 else
1496 return "Game description contained unexpected character";
1497 desc++;
1498 while (*desc == 'h' || *desc == 'v')
1499 desc++;
1500 }
1501 if (*desc)
1502 return "Game description longer than expected";
1503
1504 return NULL;
1505}
1506
1507/* ----------------------------------------------------------------------
1508 * Construct an initial game state, given a description and parameters.
1509 */
1510
dafd6cf6 1511static game_state *new_game(midend *me, game_params *params, char *desc)
1185e3c5 1512{
1513 game_state *state;
1514 int w, h, x, y;
1515
1516 assert(params->width > 0 && params->height > 0);
1517 assert(params->width > 1 || params->height > 1);
1518
1519 /*
1520 * Create a blank game state.
1521 */
1522 state = snew(game_state);
1523 w = state->width = params->width;
1524 h = state->height = params->height;
1185e3c5 1525 state->wrapping = params->wrapping;
1526 state->last_rotate_dir = state->last_rotate_x = state->last_rotate_y = 0;
a440f184 1527 state->completed = state->used_solve = FALSE;
1185e3c5 1528 state->tiles = snewn(state->width * state->height, unsigned char);
1529 memset(state->tiles, 0, state->width * state->height);
1530 state->barriers = snewn(state->width * state->height, unsigned char);
1531 memset(state->barriers, 0, state->width * state->height);
1532
1533 /*
1534 * Parse the game description into the grid.
1535 */
1536 for (y = 0; y < h; y++) {
1537 for (x = 0; x < w; x++) {
1538 if (*desc >= '0' && *desc <= '9')
1539 tile(state, x, y) = *desc - '0';
1540 else if (*desc >= 'a' && *desc <= 'f')
1541 tile(state, x, y) = *desc - 'a' + 10;
1542 else if (*desc >= 'A' && *desc <= 'F')
1543 tile(state, x, y) = *desc - 'A' + 10;
1544 if (*desc)
1545 desc++;
1546 while (*desc == 'h' || *desc == 'v') {
1547 int x2, y2, d1, d2;
1548 if (*desc == 'v')
1549 d1 = R;
1550 else
1551 d1 = D;
1552
1553 OFFSET(x2, y2, x, y, d1, state);
1554 d2 = F(d1);
1555
1556 barrier(state, x, y) |= d1;
1557 barrier(state, x2, y2) |= d2;
1558
1559 desc++;
1560 }
1561 }
1562 }
1563
1564 /*
1565 * Set up border barriers if this is a non-wrapping game.
1566 */
1567 if (!state->wrapping) {
1568 for (x = 0; x < state->width; x++) {
1569 barrier(state, x, 0) |= U;
1570 barrier(state, x, state->height-1) |= D;
1571 }
1572 for (y = 0; y < state->height; y++) {
1573 barrier(state, 0, y) |= L;
1574 barrier(state, state->width-1, y) |= R;
1575 }
f0ee053c 1576 } else {
1577 /*
1578 * We check whether this is de-facto a non-wrapping game
1579 * despite the parameters, in case we were passed the
1580 * description of a non-wrapping game. This is so that we
1581 * can change some aspects of the UI behaviour.
1582 */
1583 state->wrapping = FALSE;
1584 for (x = 0; x < state->width; x++)
1585 if (!(barrier(state, x, 0) & U) ||
1586 !(barrier(state, x, state->height-1) & D))
1587 state->wrapping = TRUE;
1588 for (y = 0; y < state->width; y++)
1589 if (!(barrier(state, 0, y) & L) ||
1590 !(barrier(state, state->width-1, y) & R))
1591 state->wrapping = TRUE;
720a8fb7 1592 }
1593
720a8fb7 1594 return state;
1595}
1596
be8d5aa1 1597static game_state *dup_game(game_state *state)
720a8fb7 1598{
1599 game_state *ret;
1600
1601 ret = snew(game_state);
1602 ret->width = state->width;
1603 ret->height = state->height;
1604 ret->wrapping = state->wrapping;
1605 ret->completed = state->completed;
2ac6d24e 1606 ret->used_solve = state->used_solve;
2ef96bd6 1607 ret->last_rotate_dir = state->last_rotate_dir;
1185e3c5 1608 ret->last_rotate_x = state->last_rotate_x;
1609 ret->last_rotate_y = state->last_rotate_y;
720a8fb7 1610 ret->tiles = snewn(state->width * state->height, unsigned char);
1611 memcpy(ret->tiles, state->tiles, state->width * state->height);
1612 ret->barriers = snewn(state->width * state->height, unsigned char);
1613 memcpy(ret->barriers, state->barriers, state->width * state->height);
1614
1615 return ret;
1616}
1617
be8d5aa1 1618static void free_game(game_state *state)
720a8fb7 1619{
1620 sfree(state->tiles);
1621 sfree(state->barriers);
1622 sfree(state);
1623}
1624
df11cd4e 1625static char *solve_game(game_state *state, game_state *currstate,
c566778e 1626 char *aux, char **error)
2ac6d24e 1627{
df11cd4e 1628 unsigned char *tiles;
1629 char *ret;
1630 int retlen, retsize;
1631 int i;
c566778e 1632
1633 tiles = snewn(state->width * state->height, unsigned char);
2ac6d24e 1634
1185e3c5 1635 if (!aux) {
c0edd11f 1636 /*
1637 * Run the internal solver on the provided grid. This might
1638 * not yield a complete solution.
1639 */
df11cd4e 1640 memcpy(tiles, state->tiles, state->width * state->height);
1641 net_solver(state->width, state->height, tiles,
1642 state->barriers, state->wrapping);
c0edd11f 1643 } else {
c566778e 1644 for (i = 0; i < state->width * state->height; i++) {
1645 int c = aux[i];
1646
1647 if (c >= '0' && c <= '9')
1648 tiles[i] = c - '0';
1649 else if (c >= 'a' && c <= 'f')
1650 tiles[i] = c - 'a' + 10;
1651 else if (c >= 'A' && c <= 'F')
1652 tiles[i] = c - 'A' + 10;
dafd6cf6 1653
1654 tiles[i] |= LOCKED;
c566778e 1655 }
df11cd4e 1656 }
1657
1658 /*
1659 * Now construct a string which can be passed to execute_move()
1660 * to transform the current grid into the solved one.
1661 */
1662 retsize = 256;
1663 ret = snewn(retsize, char);
1664 retlen = 0;
1665 ret[retlen++] = 'S';
1666
1667 for (i = 0; i < state->width * state->height; i++) {
1668 int from = currstate->tiles[i], to = tiles[i];
1669 int ft = from & (R|L|U|D), tt = to & (R|L|U|D);
1670 int x = i % state->width, y = i / state->width;
1671 int chr = '\0';
1672 char buf[80], *p = buf;
1673
1674 if (from == to)
1675 continue; /* nothing needs doing at all */
1676
1677 /*
1678 * To transform this tile into the desired tile: first
1679 * unlock the tile if it's locked, then rotate it if
1680 * necessary, then lock it if necessary.
1681 */
1682 if (from & LOCKED)
1683 p += sprintf(p, ";L%d,%d", x, y);
1684
1685 if (tt == A(ft))
1686 chr = 'A';
1687 else if (tt == C(ft))
1688 chr = 'C';
1689 else if (tt == F(ft))
1690 chr = 'F';
1691 else {
1692 assert(tt == ft);
1693 chr = '\0';
1694 }
1695 if (chr)
1696 p += sprintf(p, ";%c%d,%d", chr, x, y);
1697
1698 if (to & LOCKED)
1699 p += sprintf(p, ";L%d,%d", x, y);
1700
1701 if (p > buf) {
1702 if (retlen + (p - buf) >= retsize) {
1703 retsize = retlen + (p - buf) + 512;
1704 ret = sresize(ret, retsize, char);
1705 }
1706 memcpy(ret+retlen, buf, p - buf);
1707 retlen += p - buf;
1708 }
2ac6d24e 1709 }
1710
df11cd4e 1711 assert(retlen < retsize);
1712 ret[retlen] = '\0';
1713 ret = sresize(ret, retlen+1, char);
1714
c566778e 1715 sfree(tiles);
1716
2ac6d24e 1717 return ret;
1718}
1719
9b4b03d3 1720static char *game_text_format(game_state *state)
1721{
1722 return NULL;
1723}
1724
720a8fb7 1725/* ----------------------------------------------------------------------
1726 * Utility routine.
1727 */
1728
1729/*
1730 * Compute which squares are reachable from the centre square, as a
1731 * quick visual aid to determining how close the game is to
1732 * completion. This is also a simple way to tell if the game _is_
1733 * completed - just call this function and see whether every square
1734 * is marked active.
1735 */
f0ee053c 1736static unsigned char *compute_active(game_state *state, int cx, int cy)
720a8fb7 1737{
1738 unsigned char *active;
1739 tree234 *todo;
1740 struct xyd *xyd;
1741
1742 active = snewn(state->width * state->height, unsigned char);
1743 memset(active, 0, state->width * state->height);
1744
1745 /*
1746 * We only store (x,y) pairs in todo, but it's easier to reuse
1747 * xyd_cmp and just store direction 0 every time.
1748 */
c0edd11f 1749 todo = newtree234(xyd_cmp_nc);
f0ee053c 1750 index(state, active, cx, cy) = ACTIVE;
1751 add234(todo, new_xyd(cx, cy, 0));
720a8fb7 1752
1753 while ( (xyd = delpos234(todo, 0)) != NULL) {
1754 int x1, y1, d1, x2, y2, d2;
1755
1756 x1 = xyd->x;
1757 y1 = xyd->y;
1758 sfree(xyd);
1759
1760 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
1761 OFFSET(x2, y2, x1, y1, d1, state);
1762 d2 = F(d1);
1763
1764 /*
1765 * If the next tile in this direction is connected to
1766 * us, and there isn't a barrier in the way, and it
1767 * isn't already marked active, then mark it active and
1768 * add it to the to-examine list.
1769 */
1770 if ((tile(state, x1, y1) & d1) &&
1771 (tile(state, x2, y2) & d2) &&
1772 !(barrier(state, x1, y1) & d1) &&
1773 !index(state, active, x2, y2)) {
2ef96bd6 1774 index(state, active, x2, y2) = ACTIVE;
720a8fb7 1775 add234(todo, new_xyd(x2, y2, 0));
1776 }
1777 }
1778 }
1779 /* Now we expect the todo list to have shrunk to zero size. */
1780 assert(count234(todo) == 0);
1781 freetree234(todo);
1782
1783 return active;
1784}
1785
66164171 1786struct game_ui {
f0ee053c 1787 int org_x, org_y; /* origin */
1788 int cx, cy; /* source tile (game coordinates) */
66164171 1789 int cur_x, cur_y;
1790 int cur_visible;
cbb5549e 1791 random_state *rs; /* used for jumbling */
66164171 1792};
1793
be8d5aa1 1794static game_ui *new_ui(game_state *state)
74a4e547 1795{
cbb5549e 1796 void *seed;
1797 int seedsize;
66164171 1798 game_ui *ui = snew(game_ui);
f0ee053c 1799 ui->org_x = ui->org_y = 0;
1800 ui->cur_x = ui->cx = state->width / 2;
1801 ui->cur_y = ui->cy = state->height / 2;
66164171 1802 ui->cur_visible = FALSE;
cbb5549e 1803 get_random_seed(&seed, &seedsize);
1fbb0680 1804 ui->rs = random_new(seed, seedsize);
cbb5549e 1805 sfree(seed);
66164171 1806
1807 return ui;
74a4e547 1808}
1809
be8d5aa1 1810static void free_ui(game_ui *ui)
74a4e547 1811{
cbb5549e 1812 random_free(ui->rs);
66164171 1813 sfree(ui);
74a4e547 1814}
1815
844f605f 1816static char *encode_ui(game_ui *ui)
ae8290c6 1817{
1818 char buf[120];
1819 /*
1820 * We preserve the origin and centre-point coordinates over a
1821 * serialise.
1822 */
1823 sprintf(buf, "O%d,%d;C%d,%d", ui->org_x, ui->org_y, ui->cx, ui->cy);
1824 return dupstr(buf);
1825}
1826
844f605f 1827static void decode_ui(game_ui *ui, char *encoding)
ae8290c6 1828{
1829 sscanf(encoding, "O%d,%d;C%d,%d",
1830 &ui->org_x, &ui->org_y, &ui->cx, &ui->cy);
1831}
1832
07dfb697 1833static void game_changed_state(game_ui *ui, game_state *oldstate,
1834 game_state *newstate)
1835{
1836}
1837
1e3e152d 1838struct game_drawstate {
1839 int started;
1840 int width, height;
1841 int org_x, org_y;
1842 int tilesize;
1843 unsigned char *visible;
1844};
1845
720a8fb7 1846/* ----------------------------------------------------------------------
1847 * Process a move.
1848 */
df11cd4e 1849static char *interpret_move(game_state *state, game_ui *ui,
1850 game_drawstate *ds, int x, int y, int button)
1851{
1852 char *nullret;
118473f5 1853 int tx = -1, ty = -1, dir = 0;
f0ee053c 1854 int shift = button & MOD_SHFT, ctrl = button & MOD_CTRL;
118473f5 1855 enum {
1856 NONE, ROTATE_LEFT, ROTATE_180, ROTATE_RIGHT, TOGGLE_LOCK, JUMBLE,
1857 MOVE_ORIGIN, MOVE_SOURCE, MOVE_ORIGIN_AND_SOURCE, MOVE_CURSOR
1858 } action;
720a8fb7 1859
f0ee053c 1860 button &= ~MOD_MASK;
66164171 1861 nullret = NULL;
118473f5 1862 action = NONE;
720a8fb7 1863
66164171 1864 if (button == LEFT_BUTTON ||
1865 button == MIDDLE_BUTTON ||
1866 button == RIGHT_BUTTON) {
1867
1868 if (ui->cur_visible) {
1869 ui->cur_visible = FALSE;
df11cd4e 1870 nullret = "";
66164171 1871 }
1872
1873 /*
1874 * The button must have been clicked on a valid tile.
1875 */
1876 x -= WINDOW_OFFSET + TILE_BORDER;
1877 y -= WINDOW_OFFSET + TILE_BORDER;
1878 if (x < 0 || y < 0)
1879 return nullret;
1880 tx = x / TILE_SIZE;
1881 ty = y / TILE_SIZE;
1882 if (tx >= state->width || ty >= state->height)
1883 return nullret;
f0ee053c 1884 /* Transform from physical to game coords */
1885 tx = (tx + ui->org_x) % state->width;
1886 ty = (ty + ui->org_y) % state->height;
66164171 1887 if (x % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
1888 y % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
1889 return nullret;
118473f5 1890
1891 action = button == LEFT_BUTTON ? ROTATE_LEFT :
1892 button == RIGHT_BUTTON ? ROTATE_RIGHT : TOGGLE_LOCK;
66164171 1893 } else if (button == CURSOR_UP || button == CURSOR_DOWN ||
1894 button == CURSOR_RIGHT || button == CURSOR_LEFT) {
f0ee053c 1895 switch (button) {
1896 case CURSOR_UP: dir = U; break;
1897 case CURSOR_DOWN: dir = D; break;
1898 case CURSOR_LEFT: dir = L; break;
1899 case CURSOR_RIGHT: dir = R; break;
1900 default: return nullret;
1901 }
118473f5 1902 if (shift && ctrl) action = MOVE_ORIGIN_AND_SOURCE;
1903 else if (shift) action = MOVE_ORIGIN;
1904 else if (ctrl) action = MOVE_SOURCE;
1905 else action = MOVE_CURSOR;
66164171 1906 } else if (button == 'a' || button == 's' || button == 'd' ||
4cd25760 1907 button == 'A' || button == 'S' || button == 'D' ||
118473f5 1908 button == 'f' || button == 'F' ||
4cd25760 1909 button == CURSOR_SELECT) {
66164171 1910 tx = ui->cur_x;
1911 ty = ui->cur_y;
4cd25760 1912 if (button == 'a' || button == 'A' || button == CURSOR_SELECT)
118473f5 1913 action = ROTATE_LEFT;
66164171 1914 else if (button == 's' || button == 'S')
118473f5 1915 action = TOGGLE_LOCK;
66164171 1916 else if (button == 'd' || button == 'D')
118473f5 1917 action = ROTATE_RIGHT;
1918 else if (button == 'f' || button == 'F')
1919 action = ROTATE_180;
0671fa51 1920 ui->cur_visible = TRUE;
cbb5549e 1921 } else if (button == 'j' || button == 'J') {
1922 /* XXX should we have some mouse control for this? */
118473f5 1923 action = JUMBLE;
66164171 1924 } else
1925 return nullret;
720a8fb7 1926
1927 /*
1928 * The middle button locks or unlocks a tile. (A locked tile
1929 * cannot be turned, and is visually marked as being locked.
1930 * This is a convenience for the player, so that once they are
1931 * sure which way round a tile goes, they can lock it and thus
1932 * avoid forgetting later on that they'd already done that one;
1933 * and the locking also prevents them turning the tile by
1934 * accident. If they change their mind, another middle click
1935 * unlocks it.)
1936 */
118473f5 1937 if (action == TOGGLE_LOCK) {
df11cd4e 1938 char buf[80];
1939 sprintf(buf, "L%d,%d", tx, ty);
1940 return dupstr(buf);
118473f5 1941 } else if (action == ROTATE_LEFT || action == ROTATE_RIGHT ||
1942 action == ROTATE_180) {
216147c0 1943 char buf[80];
720a8fb7 1944
cbb5549e 1945 /*
1946 * The left and right buttons have no effect if clicked on a
1947 * locked tile.
1948 */
1949 if (tile(state, tx, ty) & LOCKED)
1950 return nullret;
1951
1952 /*
1953 * Otherwise, turn the tile one way or the other. Left button
1954 * turns anticlockwise; right button turns clockwise.
1955 */
118473f5 1956 sprintf(buf, "%c%d,%d", (int)(action == ROTATE_LEFT ? 'A' :
1957 action == ROTATE_RIGHT ? 'C' : 'F'), tx, ty);
df11cd4e 1958 return dupstr(buf);
118473f5 1959 } else if (action == JUMBLE) {
cbb5549e 1960 /*
1961 * Jumble all unlocked tiles to random orientations.
1962 */
df11cd4e 1963
1964 int jx, jy, maxlen;
1965 char *ret, *p;
1966
1967 /*
1968 * Maximum string length assumes no int can be converted to
1969 * decimal and take more than 11 digits!
1970 */
1971 maxlen = state->width * state->height * 25 + 3;
1972
1973 ret = snewn(maxlen, char);
1974 p = ret;
1975 *p++ = 'J';
1976
1977 for (jy = 0; jy < state->height; jy++) {
1978 for (jx = 0; jx < state->width; jx++) {
1979 if (!(tile(state, jx, jy) & LOCKED)) {
cbb5549e 1980 int rot = random_upto(ui->rs, 4);
df11cd4e 1981 if (rot) {
1982 p += sprintf(p, ";%c%d,%d", "AFC"[rot-1], jx, jy);
1983 }
cbb5549e 1984 }
1985 }
1986 }
df11cd4e 1987 *p++ = '\0';
1988 assert(p - ret < maxlen);
1989 ret = sresize(ret, p - ret, char);
cbb5549e 1990
df11cd4e 1991 return ret;
118473f5 1992 } else if (action == MOVE_ORIGIN || action == MOVE_SOURCE ||
1993 action == MOVE_ORIGIN_AND_SOURCE || action == MOVE_CURSOR) {
1994 assert(dir != 0);
1995 if (action == MOVE_ORIGIN || action == MOVE_ORIGIN_AND_SOURCE) {
1996 if (state->wrapping) {
1997 OFFSET(ui->org_x, ui->org_y, ui->org_x, ui->org_y, dir, state);
1998 } else return nullret; /* disallowed for non-wrapping grids */
1999 }
2000 if (action == MOVE_SOURCE || action == MOVE_ORIGIN_AND_SOURCE) {
2001 OFFSET(ui->cx, ui->cy, ui->cx, ui->cy, dir, state);
2002 }
2003 if (action == MOVE_CURSOR) {
2004 OFFSET(ui->cur_x, ui->cur_y, ui->cur_x, ui->cur_y, dir, state);
2005 ui->cur_visible = TRUE;
2006 }
2007 return "";
ab53eb64 2008 } else {
df11cd4e 2009 return NULL;
2010 }
2011}
2012
2013static game_state *execute_move(game_state *from, char *move)
2014{
2015 game_state *ret;
2016 int tx, ty, n, noanim, orig;
2017
2018 ret = dup_game(from);
df11cd4e 2019
2020 if (move[0] == 'J' || move[0] == 'S') {
2021 if (move[0] == 'S')
a440f184 2022 ret->used_solve = TRUE;
df11cd4e 2023
2024 move++;
2025 if (*move == ';')
2026 move++;
2027 noanim = TRUE;
2028 } else
2029 noanim = FALSE;
2030
2031 ret->last_rotate_dir = 0; /* suppress animation */
2032 ret->last_rotate_x = ret->last_rotate_y = 0;
2033
2034 while (*move) {
2035 if ((move[0] == 'A' || move[0] == 'C' ||
2036 move[0] == 'F' || move[0] == 'L') &&
2037 sscanf(move+1, "%d,%d%n", &tx, &ty, &n) >= 2 &&
2038 tx >= 0 && tx < from->width && ty >= 0 && ty < from->height) {
2039 orig = tile(ret, tx, ty);
2040 if (move[0] == 'A') {
2041 tile(ret, tx, ty) = A(orig);
2042 if (!noanim)
2043 ret->last_rotate_dir = +1;
2044 } else if (move[0] == 'F') {
2045 tile(ret, tx, ty) = F(orig);
118473f5 2046 if (!noanim)
2047 ret->last_rotate_dir = +2; /* + for sake of argument */
df11cd4e 2048 } else if (move[0] == 'C') {
2049 tile(ret, tx, ty) = C(orig);
2050 if (!noanim)
2051 ret->last_rotate_dir = -1;
2052 } else {
2053 assert(move[0] == 'L');
2054 tile(ret, tx, ty) ^= LOCKED;
2055 }
2056
2057 move += 1 + n;
2058 if (*move == ';') move++;
2059 } else {
2060 free_game(ret);
2061 return NULL;
2062 }
2063 }
2064 if (!noanim) {
2065 ret->last_rotate_x = tx;
2066 ret->last_rotate_y = ty;
ab53eb64 2067 }
720a8fb7 2068
2069 /*
2070 * Check whether the game has been completed.
df11cd4e 2071 *
2072 * For this purpose it doesn't matter where the source square
2073 * is, because we can start from anywhere and correctly
2074 * determine whether the game is completed.
720a8fb7 2075 */
2076 {
df11cd4e 2077 unsigned char *active = compute_active(ret, 0, 0);
720a8fb7 2078 int x1, y1;
2079 int complete = TRUE;
2080
2081 for (x1 = 0; x1 < ret->width; x1++)
2082 for (y1 = 0; y1 < ret->height; y1++)
1185e3c5 2083 if ((tile(ret, x1, y1) & 0xF) && !index(ret, active, x1, y1)) {
720a8fb7 2084 complete = FALSE;
2085 goto break_label; /* break out of two loops at once */
2086 }
2087 break_label:
2088
2089 sfree(active);
2090
2091 if (complete)
2092 ret->completed = TRUE;
2093 }
2094
2095 return ret;
2096}
2097
df11cd4e 2098
720a8fb7 2099/* ----------------------------------------------------------------------
2100 * Routines for drawing the game position on the screen.
2101 */
2102
dafd6cf6 2103static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
2ef96bd6 2104{
2105 game_drawstate *ds = snew(game_drawstate);
2106
2107 ds->started = FALSE;
2108 ds->width = state->width;
2109 ds->height = state->height;
f0ee053c 2110 ds->org_x = ds->org_y = -1;
2ef96bd6 2111 ds->visible = snewn(state->width * state->height, unsigned char);
1e3e152d 2112 ds->tilesize = 0; /* undecided yet */
2ef96bd6 2113 memset(ds->visible, 0xFF, state->width * state->height);
2114
2115 return ds;
2116}
2117
dafd6cf6 2118static void game_free_drawstate(drawing *dr, game_drawstate *ds)
2ef96bd6 2119{
2120 sfree(ds->visible);
2121 sfree(ds);
2122}
2123
1f3ee4ee 2124static void game_compute_size(game_params *params, int tilesize,
2125 int *x, int *y)
7f77ea24 2126{
1f3ee4ee 2127 *x = WINDOW_OFFSET * 2 + tilesize * params->width + TILE_BORDER;
2128 *y = WINDOW_OFFSET * 2 + tilesize * params->height + TILE_BORDER;
2129}
1e3e152d 2130
dafd6cf6 2131static void game_set_size(drawing *dr, game_drawstate *ds,
2132 game_params *params, int tilesize)
1f3ee4ee 2133{
2134 ds->tilesize = tilesize;
7f77ea24 2135}
2136
8266f3fc 2137static float *game_colours(frontend *fe, int *ncolours)
2ef96bd6 2138{
2139 float *ret;
83680571 2140
2ef96bd6 2141 ret = snewn(NCOLOURS * 3, float);
2142 *ncolours = NCOLOURS;
720a8fb7 2143
2ef96bd6 2144 /*
2145 * Basic background colour is whatever the front end thinks is
2146 * a sensible default.
2147 */
2148 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2149
2150 /*
2151 * Wires are black.
2152 */
03f856c4 2153 ret[COL_WIRE * 3 + 0] = 0.0F;
2154 ret[COL_WIRE * 3 + 1] = 0.0F;
2155 ret[COL_WIRE * 3 + 2] = 0.0F;
2ef96bd6 2156
2157 /*
2158 * Powered wires and powered endpoints are cyan.
2159 */
03f856c4 2160 ret[COL_POWERED * 3 + 0] = 0.0F;
2161 ret[COL_POWERED * 3 + 1] = 1.0F;
2162 ret[COL_POWERED * 3 + 2] = 1.0F;
2ef96bd6 2163
2164 /*
2165 * Barriers are red.
2166 */
03f856c4 2167 ret[COL_BARRIER * 3 + 0] = 1.0F;
2168 ret[COL_BARRIER * 3 + 1] = 0.0F;
2169 ret[COL_BARRIER * 3 + 2] = 0.0F;
2ef96bd6 2170
2171 /*
2172 * Unpowered endpoints are blue.
2173 */
03f856c4 2174 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
2175 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
2176 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
2ef96bd6 2177
2178 /*
2179 * Tile borders are a darker grey than the background.
2180 */
03f856c4 2181 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2182 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2183 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2ef96bd6 2184
2185 /*
2186 * Locked tiles are a grey in between those two.
2187 */
03f856c4 2188 ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2189 ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2190 ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2ef96bd6 2191
2192 return ret;
2193}
2194
dafd6cf6 2195static void draw_thick_line(drawing *dr, int x1, int y1, int x2, int y2,
2ef96bd6 2196 int colour)
720a8fb7 2197{
dafd6cf6 2198 draw_line(dr, x1-1, y1, x2-1, y2, COL_WIRE);
2199 draw_line(dr, x1+1, y1, x2+1, y2, COL_WIRE);
2200 draw_line(dr, x1, y1-1, x2, y2-1, COL_WIRE);
2201 draw_line(dr, x1, y1+1, x2, y2+1, COL_WIRE);
2202 draw_line(dr, x1, y1, x2, y2, colour);
2ef96bd6 2203}
720a8fb7 2204
dafd6cf6 2205static void draw_rect_coords(drawing *dr, int x1, int y1, int x2, int y2,
2ef96bd6 2206 int colour)
2207{
2208 int mx = (x1 < x2 ? x1 : x2);
2209 int my = (y1 < y2 ? y1 : y2);
2210 int dx = (x2 + x1 - 2*mx + 1);
2211 int dy = (y2 + y1 - 2*my + 1);
720a8fb7 2212
dafd6cf6 2213 draw_rect(dr, mx, my, dx, dy, colour);
2ef96bd6 2214}
720a8fb7 2215
f0ee053c 2216/*
2217 * draw_barrier_corner() and draw_barrier() are passed physical coords
2218 */
dafd6cf6 2219static void draw_barrier_corner(drawing *dr, game_drawstate *ds,
1e3e152d 2220 int x, int y, int dx, int dy, int phase)
2ef96bd6 2221{
2222 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2223 int by = WINDOW_OFFSET + TILE_SIZE * y;
6c333866 2224 int x1, y1;
2ef96bd6 2225
2ef96bd6 2226 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
2227 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
2228
2229 if (phase == 0) {
dafd6cf6 2230 draw_rect_coords(dr, bx+x1+dx, by+y1,
2ef96bd6 2231 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
6c333866 2232 COL_WIRE);
dafd6cf6 2233 draw_rect_coords(dr, bx+x1, by+y1+dy,
2ef96bd6 2234 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
6c333866 2235 COL_WIRE);
2ef96bd6 2236 } else {
dafd6cf6 2237 draw_rect_coords(dr, bx+x1, by+y1,
2ef96bd6 2238 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
6c333866 2239 COL_BARRIER);
720a8fb7 2240 }
2ef96bd6 2241}
2242
dafd6cf6 2243static void draw_barrier(drawing *dr, game_drawstate *ds,
1e3e152d 2244 int x, int y, int dir, int phase)
2ef96bd6 2245{
2246 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2247 int by = WINDOW_OFFSET + TILE_SIZE * y;
2248 int x1, y1, w, h;
2249
2250 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
2251 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
2252 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
2253 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
2254
2255 if (phase == 0) {
dafd6cf6 2256 draw_rect(dr, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
2ef96bd6 2257 } else {
dafd6cf6 2258 draw_rect(dr, bx+x1, by+y1, w, h, COL_BARRIER);
2ef96bd6 2259 }
2260}
720a8fb7 2261
f0ee053c 2262/*
2263 * draw_tile() is passed physical coordinates
2264 */
dafd6cf6 2265static void draw_tile(drawing *dr, game_state *state, game_drawstate *ds,
f0ee053c 2266 int x, int y, int tile, int src, float angle, int cursor)
2ef96bd6 2267{
2268 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2269 int by = WINDOW_OFFSET + TILE_SIZE * y;
2270 float matrix[4];
2271 float cx, cy, ex, ey, tx, ty;
2272 int dir, col, phase;
720a8fb7 2273
2ef96bd6 2274 /*
2275 * When we draw a single tile, we must draw everything up to
2276 * and including the borders around the tile. This means that
2277 * if the neighbouring tiles have connections to those borders,
2278 * we must draw those connections on the borders themselves.
2ef96bd6 2279 */
2280
dafd6cf6 2281 clip(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
6c333866 2282
2ef96bd6 2283 /*
2284 * So. First blank the tile out completely: draw a big
2285 * rectangle in border colour, and a smaller rectangle in
2286 * background colour to fill it in.
2287 */
dafd6cf6 2288 draw_rect(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
2ef96bd6 2289 COL_BORDER);
dafd6cf6 2290 draw_rect(dr, bx+TILE_BORDER, by+TILE_BORDER,
2ef96bd6 2291 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
2292 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
2293
2294 /*
66164171 2295 * Draw an inset outline rectangle as a cursor, in whichever of
2296 * COL_LOCKED and COL_BACKGROUND we aren't currently drawing
2297 * in.
2298 */
2299 if (cursor) {
dafd6cf6 2300 draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE/8,
66164171 2301 bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2302 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
dafd6cf6 2303 draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE/8,
66164171 2304 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
2305 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
dafd6cf6 2306 draw_line(dr, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
66164171 2307 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2308 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
dafd6cf6 2309 draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
66164171 2310 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2311 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2312 }
2313
2314 /*
2ef96bd6 2315 * Set up the rotation matrix.
2316 */
03f856c4 2317 matrix[0] = (float)cos(angle * PI / 180.0);
2318 matrix[1] = (float)-sin(angle * PI / 180.0);
2319 matrix[2] = (float)sin(angle * PI / 180.0);
2320 matrix[3] = (float)cos(angle * PI / 180.0);
2ef96bd6 2321
2322 /*
2323 * Draw the wires.
2324 */
03f856c4 2325 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
2ef96bd6 2326 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
2327 for (dir = 1; dir < 0x10; dir <<= 1) {
2328 if (tile & dir) {
03f856c4 2329 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
2330 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2ef96bd6 2331 MATMUL(tx, ty, matrix, ex, ey);
dafd6cf6 2332 draw_thick_line(dr, bx+(int)cx, by+(int)cy,
03f856c4 2333 bx+(int)(cx+tx), by+(int)(cy+ty),
2ef96bd6 2334 COL_WIRE);
2335 }
2336 }
2337 for (dir = 1; dir < 0x10; dir <<= 1) {
2338 if (tile & dir) {
03f856c4 2339 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
2340 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2ef96bd6 2341 MATMUL(tx, ty, matrix, ex, ey);
dafd6cf6 2342 draw_line(dr, bx+(int)cx, by+(int)cy,
03f856c4 2343 bx+(int)(cx+tx), by+(int)(cy+ty), col);
2ef96bd6 2344 }
2345 }
2346
2347 /*
2348 * Draw the box in the middle. We do this in blue if the tile
2349 * is an unpowered endpoint, in cyan if the tile is a powered
2350 * endpoint, in black if the tile is the centrepiece, and
2351 * otherwise not at all.
2352 */
2353 col = -1;
f0ee053c 2354 if (src)
2ef96bd6 2355 col = COL_WIRE;
2356 else if (COUNT(tile) == 1) {
2357 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
2358 }
2359 if (col >= 0) {
2360 int i, points[8];
2361
2362 points[0] = +1; points[1] = +1;
2363 points[2] = +1; points[3] = -1;
2364 points[4] = -1; points[5] = -1;
2365 points[6] = -1; points[7] = +1;
2366
2367 for (i = 0; i < 8; i += 2) {
03f856c4 2368 ex = (TILE_SIZE * 0.24F) * points[i];
2369 ey = (TILE_SIZE * 0.24F) * points[i+1];
2ef96bd6 2370 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 2371 points[i] = bx+(int)(cx+tx);
2372 points[i+1] = by+(int)(cy+ty);
2ef96bd6 2373 }
2374
dafd6cf6 2375 draw_polygon(dr, points, 4, col, COL_WIRE);
2ef96bd6 2376 }
2377
2378 /*
2379 * Draw the points on the border if other tiles are connected
2380 * to us.
2381 */
2382 for (dir = 1; dir < 0x10; dir <<= 1) {
2383 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
2384
2385 dx = X(dir);
2386 dy = Y(dir);
2387
2388 ox = x + dx;
2389 oy = y + dy;
2390
2391 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
2392 continue;
2393
f0ee053c 2394 if (!(tile(state, GX(ox), GY(oy)) & F(dir)))
2ef96bd6 2395 continue;
2396
03f856c4 2397 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
2398 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
2ef96bd6 2399 lx = dx * (TILE_BORDER-1);
2400 ly = dy * (TILE_BORDER-1);
2401 vx = (dy ? 1 : 0);
2402 vy = (dx ? 1 : 0);
2403
2404 if (angle == 0.0 && (tile & dir)) {
2405 /*
2406 * If we are fully connected to the other tile, we must
2407 * draw right across the tile border. (We can use our
2408 * own ACTIVE state to determine what colour to do this
2409 * in: if we are fully connected to the other tile then
2410 * the two ACTIVE states will be the same.)
2411 */
dafd6cf6 2412 draw_rect_coords(dr, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
2413 draw_rect_coords(dr, px, py, px+lx, py+ly,
2ef96bd6 2414 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
2415 } else {
2416 /*
2417 * The other tile extends into our border, but isn't
2418 * actually connected to us. Just draw a single black
2419 * dot.
2420 */
dafd6cf6 2421 draw_rect_coords(dr, px, py, px, py, COL_WIRE);
2ef96bd6 2422 }
2423 }
2424
2425 /*
2426 * Draw barrier corners, and then barriers.
2427 */
2428 for (phase = 0; phase < 2; phase++) {
6c333866 2429 for (dir = 1; dir < 0x10; dir <<= 1) {
2430 int x1, y1, corner = FALSE;
2431 /*
2432 * If at least one barrier terminates at the corner
2433 * between dir and A(dir), draw a barrier corner.
2434 */
2435 if (barrier(state, GX(x), GY(y)) & (dir | A(dir))) {
2436 corner = TRUE;
2437 } else {
2438 /*
2439 * Only count barriers terminating at this corner
2440 * if they're physically next to the corner. (That
2441 * is, if they've wrapped round from the far side
2442 * of the screen, they don't count.)
2443 */
2444 x1 = x + X(dir);
2445 y1 = y + Y(dir);
2446 if (x1 >= 0 && x1 < state->width &&
2447 y1 >= 0 && y1 < state->height &&
2448 (barrier(state, GX(x1), GY(y1)) & A(dir))) {
2449 corner = TRUE;
2450 } else {
2451 x1 = x + X(A(dir));
2452 y1 = y + Y(A(dir));
2453 if (x1 >= 0 && x1 < state->width &&
2454 y1 >= 0 && y1 < state->height &&
2455 (barrier(state, GX(x1), GY(y1)) & dir))
2456 corner = TRUE;
2457 }
2458 }
2459
2460 if (corner) {
2461 /*
2462 * At least one barrier terminates here. Draw a
2463 * corner.
2464 */
dafd6cf6 2465 draw_barrier_corner(dr, ds, x, y,
6c333866 2466 X(dir)+X(A(dir)), Y(dir)+Y(A(dir)),
2467 phase);
2468 }
2469 }
2470
2ef96bd6 2471 for (dir = 1; dir < 0x10; dir <<= 1)
f0ee053c 2472 if (barrier(state, GX(x), GY(y)) & dir)
dafd6cf6 2473 draw_barrier(dr, ds, x, y, dir, phase);
2ef96bd6 2474 }
2475
dafd6cf6 2476 unclip(dr);
6c333866 2477
dafd6cf6 2478 draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
720a8fb7 2479}
2480
dafd6cf6 2481static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
c822de4a 2482 game_state *state, int dir, game_ui *ui, float t, float ft)
2ef96bd6 2483{
f0ee053c 2484 int x, y, tx, ty, frame, last_rotate_dir, moved_origin = FALSE;
2ef96bd6 2485 unsigned char *active;
2486 float angle = 0.0;
2487
2488 /*
6c333866 2489 * Clear the screen, and draw the exterior barrier lines, if
2490 * this is our first call or if the origin has changed.
2ef96bd6 2491 */
6c333866 2492 if (!ds->started || ui->org_x != ds->org_x || ui->org_y != ds->org_y) {
2493 int phase;
2494
2ef96bd6 2495 ds->started = TRUE;
2496
dafd6cf6 2497 draw_rect(dr, 0, 0,
2ef96bd6 2498 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
2499 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
2500 COL_BACKGROUND);
f0ee053c 2501
f0ee053c 2502 ds->org_x = ui->org_x;
2503 ds->org_y = ui->org_y;
2504 moved_origin = TRUE;
2505
dafd6cf6 2506 draw_update(dr, 0, 0,
2ef96bd6 2507 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
2508 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
6c333866 2509
2ef96bd6 2510 for (phase = 0; phase < 2; phase++) {
2511
2512 for (x = 0; x < ds->width; x++) {
6c333866 2513 if (x+1 < ds->width) {
2514 if (barrier(state, GX(x), GY(0)) & R)
dafd6cf6 2515 draw_barrier_corner(dr, ds, x, -1, +1, +1, phase);
6c333866 2516 if (barrier(state, GX(x), GY(ds->height-1)) & R)
dafd6cf6 2517 draw_barrier_corner(dr, ds, x, ds->height, +1, -1, phase);
6c333866 2518 }
2519 if (barrier(state, GX(x), GY(0)) & U) {
dafd6cf6 2520 draw_barrier_corner(dr, ds, x, -1, -1, +1, phase);
2521 draw_barrier_corner(dr, ds, x, -1, +1, +1, phase);
2522 draw_barrier(dr, ds, x, -1, D, phase);
6c333866 2523 }
2524 if (barrier(state, GX(x), GY(ds->height-1)) & D) {
dafd6cf6 2525 draw_barrier_corner(dr, ds, x, ds->height, -1, -1, phase);
2526 draw_barrier_corner(dr, ds, x, ds->height, +1, -1, phase);
2527 draw_barrier(dr, ds, x, ds->height, U, phase);
6c333866 2528 }
2ef96bd6 2529 }
2530
2531 for (y = 0; y < ds->height; y++) {
6c333866 2532 if (y+1 < ds->height) {
2533 if (barrier(state, GX(0), GY(y)) & D)
dafd6cf6 2534 draw_barrier_corner(dr, ds, -1, y, +1, +1, phase);
6c333866 2535 if (barrier(state, GX(ds->width-1), GY(y)) & D)
dafd6cf6 2536 draw_barrier_corner(dr, ds, ds->width, y, -1, +1, phase);
6c333866 2537 }
2538 if (barrier(state, GX(0), GY(y)) & L) {
dafd6cf6 2539 draw_barrier_corner(dr, ds, -1, y, +1, -1, phase);
2540 draw_barrier_corner(dr, ds, -1, y, +1, +1, phase);
2541 draw_barrier(dr, ds, -1, y, R, phase);
6c333866 2542 }
2543 if (barrier(state, GX(ds->width-1), GY(y)) & R) {
dafd6cf6 2544 draw_barrier_corner(dr, ds, ds->width, y, -1, -1, phase);
2545 draw_barrier_corner(dr, ds, ds->width, y, -1, +1, phase);
2546 draw_barrier(dr, ds, ds->width, y, L, phase);
6c333866 2547 }
2ef96bd6 2548 }
2549 }
2550 }
2551
2552 tx = ty = -1;
cbb5549e 2553 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
2554 state->last_rotate_dir;
2555 if (oldstate && (t < ROTATE_TIME) && last_rotate_dir) {
2ef96bd6 2556 /*
1185e3c5 2557 * We're animating a single tile rotation. Find the turning
2558 * tile.
2ef96bd6 2559 */
1185e3c5 2560 tx = (dir==-1 ? oldstate->last_rotate_x : state->last_rotate_x);
2561 ty = (dir==-1 ? oldstate->last_rotate_y : state->last_rotate_y);
2562 angle = last_rotate_dir * dir * 90.0F * (t / ROTATE_TIME);
2563 state = oldstate;
87ed82be 2564 }
1185e3c5 2565
87ed82be 2566 frame = -1;
2567 if (ft > 0) {
2ef96bd6 2568 /*
2569 * We're animating a completion flash. Find which frame
2570 * we're at.
2571 */
87ed82be 2572 frame = (int)(ft / FLASH_FRAME);
2ef96bd6 2573 }
2574
2575 /*
2576 * Draw any tile which differs from the way it was last drawn.
2577 */
f0ee053c 2578 active = compute_active(state, ui->cx, ui->cy);
2ef96bd6 2579
2580 for (x = 0; x < ds->width; x++)
2581 for (y = 0; y < ds->height; y++) {
f0ee053c 2582 unsigned char c = tile(state, GX(x), GY(y)) |
2583 index(state, active, GX(x), GY(y));
2584 int is_src = GX(x) == ui->cx && GY(y) == ui->cy;
2585 int is_anim = GX(x) == tx && GY(y) == ty;
2586 int is_cursor = ui->cur_visible &&
2587 GX(x) == ui->cur_x && GY(y) == ui->cur_y;
2ef96bd6 2588
2589 /*
2590 * In a completion flash, we adjust the LOCKED bit
2591 * depending on our distance from the centre point and
2592 * the frame number.
2593 */
2594 if (frame >= 0) {
f0ee053c 2595 int rcx = RX(ui->cx), rcy = RY(ui->cy);
2ef96bd6 2596 int xdist, ydist, dist;
f0ee053c 2597 xdist = (x < rcx ? rcx - x : x - rcx);
2598 ydist = (y < rcy ? rcy - y : y - rcy);
2ef96bd6 2599 dist = (xdist > ydist ? xdist : ydist);
2600
2601 if (frame >= dist && frame < dist+4) {
2602 int lock = (frame - dist) & 1;
2603 lock = lock ? LOCKED : 0;
2604 c = (c &~ LOCKED) | lock;
2605 }
2606 }
2607
f0ee053c 2608 if (moved_origin ||
2609 index(state, ds->visible, x, y) != c ||
2ef96bd6 2610 index(state, ds->visible, x, y) == 0xFF ||
f0ee053c 2611 is_src || is_anim || is_cursor) {
dafd6cf6 2612 draw_tile(dr, state, ds, x, y, c,
f0ee053c 2613 is_src, (is_anim ? angle : 0.0F), is_cursor);
2614 if (is_src || is_anim || is_cursor)
2ef96bd6 2615 index(state, ds->visible, x, y) = 0xFF;
2616 else
2617 index(state, ds->visible, x, y) = c;
2618 }
2619 }
2620
fd1a1a2b 2621 /*
2622 * Update the status bar.
2623 */
2624 {
2625 char statusbuf[256];
1185e3c5 2626 int i, n, n2, a;
fd1a1a2b 2627
2628 n = state->width * state->height;
1185e3c5 2629 for (i = a = n2 = 0; i < n; i++) {
fd1a1a2b 2630 if (active[i])
2631 a++;
1185e3c5 2632 if (state->tiles[i] & 0xF)
2633 n2++;
2634 }
fd1a1a2b 2635
2636 sprintf(statusbuf, "%sActive: %d/%d",
2ac6d24e 2637 (state->used_solve ? "Auto-solved. " :
1185e3c5 2638 state->completed ? "COMPLETED! " : ""), a, n2);
fd1a1a2b 2639
dafd6cf6 2640 status_bar(dr, statusbuf);
fd1a1a2b 2641 }
2642
2ef96bd6 2643 sfree(active);
2644}
2645
be8d5aa1 2646static float game_anim_length(game_state *oldstate,
e3f21163 2647 game_state *newstate, int dir, game_ui *ui)
2ef96bd6 2648{
1185e3c5 2649 int last_rotate_dir;
2ef96bd6 2650
2651 /*
cbb5549e 2652 * Don't animate if last_rotate_dir is zero.
2ef96bd6 2653 */
cbb5549e 2654 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
2655 newstate->last_rotate_dir;
1185e3c5 2656 if (last_rotate_dir)
2657 return ROTATE_TIME;
2ef96bd6 2658
87ed82be 2659 return 0.0F;
2660}
2661
be8d5aa1 2662static float game_flash_length(game_state *oldstate,
e3f21163 2663 game_state *newstate, int dir, game_ui *ui)
87ed82be 2664{
2ef96bd6 2665 /*
87ed82be 2666 * If the game has just been completed, we display a completion
2667 * flash.
2ef96bd6 2668 */
2ac6d24e 2669 if (!oldstate->completed && newstate->completed &&
2670 !oldstate->used_solve && !newstate->used_solve) {
f0ee053c 2671 int size = 0;
2672 if (size < newstate->width)
2673 size = newstate->width;
2674 if (size < newstate->height)
2675 size = newstate->height;
87ed82be 2676 return FLASH_FRAME * (size+4);
2ef96bd6 2677 }
2678
87ed82be 2679 return 0.0F;
2ef96bd6 2680}
fd1a1a2b 2681
4d08de49 2682static int game_timing_state(game_state *state, game_ui *ui)
48dcdd62 2683{
2684 return TRUE;
2685}
2686
dafd6cf6 2687static void game_print_size(game_params *params, float *x, float *y)
2688{
2689 int pw, ph;
2690
2691 /*
2692 * I'll use 8mm squares by default.
2693 */
2694 game_compute_size(params, 800, &pw, &ph);
2695 *x = pw / 100.0;
2696 *y = ph / 100.0;
2697}
2698
2699static void draw_diagram(drawing *dr, game_drawstate *ds, int x, int y,
2700 int topleft, int v, int drawlines, int ink)
2701{
2702 int tx, ty, cx, cy, r, br, k, thick;
2703
2704 tx = WINDOW_OFFSET + TILE_SIZE * x;
2705 ty = WINDOW_OFFSET + TILE_SIZE * y;
2706
2707 /*
2708 * Find our centre point.
2709 */
2710 if (topleft) {
2711 cx = tx + (v & L ? TILE_SIZE / 4 : TILE_SIZE / 6);
2712 cy = ty + (v & U ? TILE_SIZE / 4 : TILE_SIZE / 6);
2713 r = TILE_SIZE / 8;
2714 br = TILE_SIZE / 32;
2715 } else {
2716 cx = tx + TILE_SIZE / 2;
2717 cy = ty + TILE_SIZE / 2;
2718 r = TILE_SIZE / 2;
2719 br = TILE_SIZE / 8;
2720 }
2721 thick = r / 20;
2722
2723 /*
2724 * Draw the square block if we have an endpoint.
2725 */
2726 if (v == 1 || v == 2 || v == 4 || v == 8)
2727 draw_rect(dr, cx - br, cy - br, br*2, br*2, ink);
2728
2729 /*
2730 * Draw each radial line.
2731 */
2732 if (drawlines) {
dafd6cf6 2733 for (k = 1; k < 16; k *= 2)
2734 if (v & k) {
2735 int x1 = min(cx, cx + (r-thick) * X(k));
2736 int x2 = max(cx, cx + (r-thick) * X(k));
2737 int y1 = min(cy, cy + (r-thick) * Y(k));
2738 int y2 = max(cy, cy + (r-thick) * Y(k));
2739 draw_rect(dr, x1 - thick, y1 - thick,
2740 (x2 - x1) + 2*thick, (y2 - y1) + 2*thick, ink);
2741 }
2742 }
2743}
2744
2745static void game_print(drawing *dr, game_state *state, int tilesize)
2746{
2747 int w = state->width, h = state->height;
2748 int ink = print_mono_colour(dr, 0);
2749 int x, y;
2750
2751 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2752 game_drawstate ads, *ds = &ads;
4413ef0f 2753 game_set_size(dr, ds, NULL, tilesize);
dafd6cf6 2754
2755 /*
2756 * Border.
2757 */
2758 print_line_width(dr, TILE_SIZE / (state->wrapping ? 128 : 12));
2759 draw_rect_outline(dr, WINDOW_OFFSET, WINDOW_OFFSET,
2760 TILE_SIZE * w, TILE_SIZE * h, ink);
2761
2762 /*
2763 * Grid.
2764 */
2765 print_line_width(dr, TILE_SIZE / 128);
2766 for (x = 1; x < w; x++)
2767 draw_line(dr, WINDOW_OFFSET + TILE_SIZE * x, WINDOW_OFFSET,
2768 WINDOW_OFFSET + TILE_SIZE * x, WINDOW_OFFSET + TILE_SIZE * h,
2769 ink);
2770 for (y = 1; y < h; y++)
2771 draw_line(dr, WINDOW_OFFSET, WINDOW_OFFSET + TILE_SIZE * y,
2772 WINDOW_OFFSET + TILE_SIZE * w, WINDOW_OFFSET + TILE_SIZE * y,
2773 ink);
2774
2775 /*
2776 * Barriers.
2777 */
2778 for (y = 0; y <= h; y++)
2779 for (x = 0; x <= w; x++) {
2780 int b = barrier(state, x % w, y % h);
dafd6cf6 2781 if (x < w && (b & U))
2782 draw_rect(dr, WINDOW_OFFSET + TILE_SIZE * x - TILE_SIZE/24,
2783 WINDOW_OFFSET + TILE_SIZE * y - TILE_SIZE/24,
2784 TILE_SIZE + TILE_SIZE/24 * 2, TILE_SIZE/24 * 2, ink);
2785 if (y < h && (b & L))
2786 draw_rect(dr, WINDOW_OFFSET + TILE_SIZE * x - TILE_SIZE/24,
2787 WINDOW_OFFSET + TILE_SIZE * y - TILE_SIZE/24,
2788 TILE_SIZE/24 * 2, TILE_SIZE + TILE_SIZE/24 * 2, ink);
2789 }
2790
2791 /*
2792 * Grid contents.
2793 */
2794 for (y = 0; y < h; y++)
2795 for (x = 0; x < w; x++) {
2796 int vx, v = tile(state, x, y);
2797 int locked = v & LOCKED;
2798
2799 v &= 0xF;
2800
2801 /*
2802 * Rotate into a standard orientation for the top left
2803 * corner diagram.
2804 */
2805 vx = v;
2806 while (vx != 0 && vx != 15 && vx != 1 && vx != 9 && vx != 13 &&
2807 vx != 5)
2808 vx = A(vx);
2809
2810 /*
2811 * Draw the top left corner diagram.
2812 */
2813 draw_diagram(dr, ds, x, y, TRUE, vx, TRUE, ink);
2814
2815 /*
2816 * Draw the real solution diagram, if we're doing so.
2817 */
2818 draw_diagram(dr, ds, x, y, FALSE, v, locked, ink);
2819 }
2820}
2821
be8d5aa1 2822#ifdef COMBINED
2823#define thegame net
2824#endif
2825
2826const struct game thegame = {
1d228b10 2827 "Net", "games.net",
be8d5aa1 2828 default_params,
2829 game_fetch_preset,
2830 decode_params,
2831 encode_params,
2832 free_params,
2833 dup_params,
1d228b10 2834 TRUE, game_configure, custom_params,
be8d5aa1 2835 validate_params,
1185e3c5 2836 new_game_desc,
1185e3c5 2837 validate_desc,
be8d5aa1 2838 new_game,
2839 dup_game,
2840 free_game,
2ac6d24e 2841 TRUE, solve_game,
9b4b03d3 2842 FALSE, game_text_format,
be8d5aa1 2843 new_ui,
2844 free_ui,
ae8290c6 2845 encode_ui,
2846 decode_ui,
07dfb697 2847 game_changed_state,
df11cd4e 2848 interpret_move,
2849 execute_move,
1f3ee4ee 2850 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
be8d5aa1 2851 game_colours,
2852 game_new_drawstate,
2853 game_free_drawstate,
2854 game_redraw,
2855 game_anim_length,
2856 game_flash_length,
dafd6cf6 2857 TRUE, FALSE, game_print_size, game_print,
ac9f41c4 2858 TRUE, /* wants_statusbar */
48dcdd62 2859 FALSE, game_timing_state,
2705d374 2860 0, /* flags */
be8d5aa1 2861};