Minimal (i.e., lame) update to Loopy documentation to match reality -- it's
[sgt/puzzles] / net.c
CommitLineData
720a8fb7 1/*
2 * net.c: Net game.
3 */
4
5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
8#include <assert.h>
b0e26073 9#include <ctype.h>
2ef96bd6 10#include <math.h>
720a8fb7 11
12#include "puzzles.h"
13#include "tree234.h"
14
2ef96bd6 15#define MATMUL(xr,yr,m,x,y) do { \
16 float rx, ry, xx = (x), yy = (y), *mat = (m); \
17 rx = mat[0] * xx + mat[2] * yy; \
18 ry = mat[1] * xx + mat[3] * yy; \
19 (xr) = rx; (yr) = ry; \
20} while (0)
21
22/* Direction and other bitfields */
720a8fb7 23#define R 0x01
24#define U 0x02
25#define L 0x04
26#define D 0x08
27#define LOCKED 0x10
2ef96bd6 28#define ACTIVE 0x20
720a8fb7 29
30/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
31#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
32#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
33#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
34#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
35 ((n)&3) == 1 ? A(x) : \
36 ((n)&3) == 2 ? F(x) : C(x) )
37
38/* X and Y displacements */
39#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
40#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
41
42/* Bit count */
43#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
44 (((x) & 0x02) >> 1) + ((x) & 0x01) )
45
1e3e152d 46#define PREFERRED_TILE_SIZE 32
47#define TILE_SIZE (ds->tilesize)
720a8fb7 48#define TILE_BORDER 1
49#define WINDOW_OFFSET 16
50
8c1fd974 51#define ROTATE_TIME 0.13F
52#define FLASH_FRAME 0.07F
2ef96bd6 53
f0ee053c 54/* Transform physical coords to game coords using game_drawstate ds */
55#define GX(x) (((x) + ds->org_x) % ds->width)
56#define GY(y) (((y) + ds->org_y) % ds->height)
57/* ...and game coords to physical coords */
58#define RX(x) (((x) + ds->width - ds->org_x) % ds->width)
59#define RY(y) (((y) + ds->height - ds->org_y) % ds->height)
60
2ef96bd6 61enum {
62 COL_BACKGROUND,
63 COL_LOCKED,
64 COL_BORDER,
65 COL_WIRE,
66 COL_ENDPOINT,
67 COL_POWERED,
68 COL_BARRIER,
69 NCOLOURS
70};
71
720a8fb7 72struct game_params {
73 int width;
74 int height;
75 int wrapping;
c0edd11f 76 int unique;
720a8fb7 77 float barrier_probability;
78};
79
80struct game_state {
f0ee053c 81 int width, height, wrapping, completed;
1185e3c5 82 int last_rotate_x, last_rotate_y, last_rotate_dir;
a440f184 83 int used_solve;
720a8fb7 84 unsigned char *tiles;
85 unsigned char *barriers;
86};
87
c0edd11f 88#define OFFSETWH(x2,y2,x1,y1,dir,width,height) \
89 ( (x2) = ((x1) + width + X((dir))) % width, \
90 (y2) = ((y1) + height + Y((dir))) % height)
91
720a8fb7 92#define OFFSET(x2,y2,x1,y1,dir,state) \
c0edd11f 93 OFFSETWH(x2,y2,x1,y1,dir,(state)->width,(state)->height)
720a8fb7 94
95#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
96#define tile(state, x, y) index(state, (state)->tiles, x, y)
97#define barrier(state, x, y) index(state, (state)->barriers, x, y)
98
99struct xyd {
100 int x, y, direction;
101};
102
c0edd11f 103static int xyd_cmp(const void *av, const void *bv) {
104 const struct xyd *a = (const struct xyd *)av;
105 const struct xyd *b = (const struct xyd *)bv;
720a8fb7 106 if (a->x < b->x)
107 return -1;
108 if (a->x > b->x)
109 return +1;
110 if (a->y < b->y)
111 return -1;
112 if (a->y > b->y)
113 return +1;
114 if (a->direction < b->direction)
115 return -1;
116 if (a->direction > b->direction)
117 return +1;
118 return 0;
23e8c9fd 119}
720a8fb7 120
c0edd11f 121static int xyd_cmp_nc(void *av, void *bv) { return xyd_cmp(av, bv); }
122
720a8fb7 123static struct xyd *new_xyd(int x, int y, int direction)
124{
125 struct xyd *xyd = snew(struct xyd);
126 xyd->x = x;
127 xyd->y = y;
128 xyd->direction = direction;
129 return xyd;
130}
131
132/* ----------------------------------------------------------------------
7f77ea24 133 * Manage game parameters.
134 */
be8d5aa1 135static game_params *default_params(void)
7f77ea24 136{
137 game_params *ret = snew(game_params);
138
eb2ad6f1 139 ret->width = 5;
140 ret->height = 5;
141 ret->wrapping = FALSE;
c0edd11f 142 ret->unique = TRUE;
eb2ad6f1 143 ret->barrier_probability = 0.0;
7f77ea24 144
145 return ret;
146}
147
ab53eb64 148static const struct game_params net_presets[] = {
149 {5, 5, FALSE, TRUE, 0.0},
150 {7, 7, FALSE, TRUE, 0.0},
151 {9, 9, FALSE, TRUE, 0.0},
152 {11, 11, FALSE, TRUE, 0.0},
153 {13, 11, FALSE, TRUE, 0.0},
154 {5, 5, TRUE, TRUE, 0.0},
155 {7, 7, TRUE, TRUE, 0.0},
156 {9, 9, TRUE, TRUE, 0.0},
157 {11, 11, TRUE, TRUE, 0.0},
158 {13, 11, TRUE, TRUE, 0.0},
159};
160
be8d5aa1 161static int game_fetch_preset(int i, char **name, game_params **params)
eb2ad6f1 162{
163 game_params *ret;
164 char str[80];
ab53eb64 165
166 if (i < 0 || i >= lenof(net_presets))
eb2ad6f1 167 return FALSE;
168
169 ret = snew(game_params);
ab53eb64 170 *ret = net_presets[i];
eb2ad6f1 171
172 sprintf(str, "%dx%d%s", ret->width, ret->height,
173 ret->wrapping ? " wrapping" : "");
174
175 *name = dupstr(str);
176 *params = ret;
177 return TRUE;
178}
179
be8d5aa1 180static void free_params(game_params *params)
7f77ea24 181{
182 sfree(params);
183}
184
be8d5aa1 185static game_params *dup_params(game_params *params)
eb2ad6f1 186{
187 game_params *ret = snew(game_params);
188 *ret = *params; /* structure copy */
189 return ret;
190}
191
1185e3c5 192static void decode_params(game_params *ret, char const *string)
b0e26073 193{
b0e26073 194 char const *p = string;
195
196 ret->width = atoi(p);
40fde884 197 while (*p && isdigit((unsigned char)*p)) p++;
b0e26073 198 if (*p == 'x') {
199 p++;
200 ret->height = atoi(p);
40fde884 201 while (*p && isdigit((unsigned char)*p)) p++;
b0e26073 202 } else {
203 ret->height = ret->width;
204 }
c0edd11f 205
206 while (*p) {
207 if (*p == 'w') {
208 p++;
209 ret->wrapping = TRUE;
210 } else if (*p == 'b') {
211 p++;
212 ret->barrier_probability = atof(p);
40fde884 213 while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
c0edd11f 214 } else if (*p == 'a') {
215 p++;
216 ret->unique = FALSE;
40fde884 217 } else
218 p++; /* skip any other gunk */
c0edd11f 219 }
b0e26073 220}
221
1185e3c5 222static char *encode_params(game_params *params, int full)
b0e26073 223{
224 char ret[400];
225 int len;
226
227 len = sprintf(ret, "%dx%d", params->width, params->height);
228 if (params->wrapping)
229 ret[len++] = 'w';
1185e3c5 230 if (full && params->barrier_probability)
b0e26073 231 len += sprintf(ret+len, "b%g", params->barrier_probability);
40fde884 232 if (full && !params->unique)
c0edd11f 233 ret[len++] = 'a';
b0e26073 234 assert(len < lenof(ret));
235 ret[len] = '\0';
236
237 return dupstr(ret);
238}
239
be8d5aa1 240static config_item *game_configure(game_params *params)
c8230524 241{
242 config_item *ret;
243 char buf[80];
244
c0edd11f 245 ret = snewn(6, config_item);
c8230524 246
247 ret[0].name = "Width";
95709966 248 ret[0].type = C_STRING;
c8230524 249 sprintf(buf, "%d", params->width);
250 ret[0].sval = dupstr(buf);
251 ret[0].ival = 0;
252
253 ret[1].name = "Height";
95709966 254 ret[1].type = C_STRING;
c8230524 255 sprintf(buf, "%d", params->height);
256 ret[1].sval = dupstr(buf);
257 ret[1].ival = 0;
258
259 ret[2].name = "Walls wrap around";
95709966 260 ret[2].type = C_BOOLEAN;
c8230524 261 ret[2].sval = NULL;
262 ret[2].ival = params->wrapping;
263
264 ret[3].name = "Barrier probability";
95709966 265 ret[3].type = C_STRING;
c8230524 266 sprintf(buf, "%g", params->barrier_probability);
267 ret[3].sval = dupstr(buf);
268 ret[3].ival = 0;
269
c0edd11f 270 ret[4].name = "Ensure unique solution";
271 ret[4].type = C_BOOLEAN;
c8230524 272 ret[4].sval = NULL;
c0edd11f 273 ret[4].ival = params->unique;
274
275 ret[5].name = NULL;
276 ret[5].type = C_END;
277 ret[5].sval = NULL;
278 ret[5].ival = 0;
c8230524 279
280 return ret;
281}
282
be8d5aa1 283static game_params *custom_params(config_item *cfg)
c8230524 284{
285 game_params *ret = snew(game_params);
286
287 ret->width = atoi(cfg[0].sval);
288 ret->height = atoi(cfg[1].sval);
289 ret->wrapping = cfg[2].ival;
95709966 290 ret->barrier_probability = (float)atof(cfg[3].sval);
c0edd11f 291 ret->unique = cfg[4].ival;
c8230524 292
293 return ret;
294}
295
3ff276f2 296static char *validate_params(game_params *params, int full)
c8230524 297{
ab53eb64 298 if (params->width <= 0 || params->height <= 0)
c8230524 299 return "Width and height must both be greater than zero";
c8230524 300 if (params->width <= 1 && params->height <= 1)
301 return "At least one of width and height must be greater than one";
302 if (params->barrier_probability < 0)
303 return "Barrier probability may not be negative";
304 if (params->barrier_probability > 1)
305 return "Barrier probability may not be greater than 1";
e7c352f5 306
307 /*
308 * Specifying either grid dimension as 2 in a wrapping puzzle
309 * makes it actually impossible to ensure a unique puzzle
310 * solution.
311 *
312 * Proof:
313 *
314 * Without loss of generality, let us assume the puzzle _width_
315 * is 2, so we can conveniently discuss rows without having to
316 * say `rows/columns' all the time. (The height may be 2 as
317 * well, but that doesn't matter.)
318 *
319 * In each row, there are two edges between tiles: the inner
320 * edge (running down the centre of the grid) and the outer
321 * edge (the identified left and right edges of the grid).
322 *
323 * Lemma: In any valid 2xn puzzle there must be at least one
324 * row in which _exactly one_ of the inner edge and outer edge
325 * is connected.
326 *
327 * Proof: No row can have _both_ inner and outer edges
328 * connected, because this would yield a loop. So the only
329 * other way to falsify the lemma is for every row to have
330 * _neither_ the inner nor outer edge connected. But this
331 * means there is no connection at all between the left and
332 * right columns of the puzzle, so there are two disjoint
333 * subgraphs, which is also disallowed. []
334 *
335 * Given such a row, it is always possible to make the
336 * disconnected edge connected and the connected edge
337 * disconnected without changing the state of any other edge.
338 * (This is easily seen by case analysis on the various tiles:
339 * left-pointing and right-pointing endpoints can be exchanged,
340 * likewise T-pieces, and a corner piece can select its
341 * horizontal connectivity independently of its vertical.) This
342 * yields a distinct valid solution.
343 *
344 * Thus, for _every_ row in which exactly one of the inner and
345 * outer edge is connected, there are two valid states for that
346 * row, and hence the total number of solutions of the puzzle
347 * is at least 2^(number of such rows), and in particular is at
348 * least 2 since there must be at least one such row. []
349 */
3ff276f2 350 if (full && params->unique && params->wrapping &&
e7c352f5 351 (params->width == 2 || params->height == 2))
352 return "No wrapping puzzle with a width or height of 2 can have"
353 " a unique solution";
354
c8230524 355 return NULL;
356}
357
7f77ea24 358/* ----------------------------------------------------------------------
c0edd11f 359 * Solver used to assure solution uniqueness during generation.
360 */
361
362/*
363 * Test cases I used while debugging all this were
364 *
365 * ./net --generate 1 13x11w#12300
366 * which expands under the non-unique grid generation rules to
367 * 13x11w:5eaade1bd222664436d5e2965c12656b1129dd825219e3274d558d5eb2dab5da18898e571d5a2987be79746bd95726c597447d6da96188c513add829da7681da954db113d3cd244
368 * and has two ambiguous areas.
369 *
370 * An even better one is
371 * 13x11w#507896411361192
372 * which expands to
373 * 13x11w:b7125b1aec598eb31bd58d82572bc11494e5dee4e8db2bdd29b88d41a16bdd996d2996ddec8c83741a1e8674e78328ba71737b8894a9271b1cd1399453d1952e43951d9b712822e
374 * and has an ambiguous area _and_ a situation where loop avoidance
375 * is a necessary deductive technique.
376 *
377 * Then there's
378 * 48x25w#820543338195187
379 * becoming
380 * 48x25w:255989d14cdd185deaa753a93821a12edc1ab97943ac127e2685d7b8b3c48861b2192416139212b316eddd35de43714ebc7628d753db32e596284d9ec52c5a7dc1b4c811a655117d16dc28921b2b4161352cab1d89d18bc836b8b891d55ea4622a1251861b5bc9a8aa3e5bcd745c95229ca6c3b5e21d5832d397e917325793d7eb442dc351b2db2a52ba8e1651642275842d8871d5534aabc6d5b741aaa2d48ed2a7dbbb3151ddb49d5b9a7ed1ab98ee75d613d656dbba347bc514c84556b43a9bc65a3256ead792488b862a9d2a8a39b4255a4949ed7dbd79443292521265896b4399c95ede89d7c8c797a6a57791a849adea489359a158aa12e5dacce862b8333b7ebea7d344d1a3c53198864b73a9dedde7b663abb1b539e1e8853b1b7edb14a2a17ebaae4dbe63598a2e7e9a2dbdad415bc1d8cb88cbab5a8c82925732cd282e641ea3bd7d2c6e776de9117a26be86deb7c82c89524b122cb9397cd1acd2284e744ea62b9279bae85479ababe315c3ac29c431333395b24e6a1e3c43a2da42d4dce84aadd5b154aea555eaddcbd6e527d228c19388d9b424d94214555a7edbdeebe569d4a56dc51a86bd9963e377bb74752bd5eaa5761ba545e297b62a1bda46ab4aee423ad6c661311783cc18786d4289236563cb4a75ec67d481c14814994464cd1b87396dee63e5ab6e952cc584baa1d4c47cb557ec84dbb63d487c8728118673a166846dd3a4ebc23d6cb9c5827d96b4556e91899db32b517eda815ae271a8911bd745447121dc8d321557bc2a435ebec1bbac35b1a291669451174e6aa2218a4a9c5a6ca31ebc45d84e3a82c121e9ced7d55e9a
381 * which has a spot (far right) where slightly more complex loop
382 * avoidance is required.
383 */
384
c0edd11f 385struct todo {
386 unsigned char *marked;
387 int *buffer;
388 int buflen;
389 int head, tail;
390};
391
392static struct todo *todo_new(int maxsize)
393{
394 struct todo *todo = snew(struct todo);
395 todo->marked = snewn(maxsize, unsigned char);
396 memset(todo->marked, 0, maxsize);
397 todo->buflen = maxsize + 1;
398 todo->buffer = snewn(todo->buflen, int);
399 todo->head = todo->tail = 0;
400 return todo;
401}
402
403static void todo_free(struct todo *todo)
404{
405 sfree(todo->marked);
406 sfree(todo->buffer);
407 sfree(todo);
408}
409
410static void todo_add(struct todo *todo, int index)
411{
412 if (todo->marked[index])
413 return; /* already on the list */
414 todo->marked[index] = TRUE;
415 todo->buffer[todo->tail++] = index;
416 if (todo->tail == todo->buflen)
417 todo->tail = 0;
418}
419
420static int todo_get(struct todo *todo) {
421 int ret;
422
423 if (todo->head == todo->tail)
424 return -1; /* list is empty */
425 ret = todo->buffer[todo->head++];
426 if (todo->head == todo->buflen)
427 todo->head = 0;
428 todo->marked[ret] = FALSE;
429
430 return ret;
431}
432
84942c65 433static int net_solver(int w, int h, unsigned char *tiles,
434 unsigned char *barriers, int wrapping)
c0edd11f 435{
436 unsigned char *tilestate;
437 unsigned char *edgestate;
438 int *deadends;
439 int *equivalence;
440 struct todo *todo;
441 int i, j, x, y;
442 int area;
443 int done_something;
444
445 /*
446 * Set up the solver's data structures.
447 */
448
449 /*
450 * tilestate stores the possible orientations of each tile.
451 * There are up to four of these, so we'll index the array in
452 * fours. tilestate[(y * w + x) * 4] and its three successive
453 * members give the possible orientations, clearing to 255 from
454 * the end as things are ruled out.
455 *
456 * In this loop we also count up the area of the grid (which is
457 * not _necessarily_ equal to w*h, because there might be one
458 * or more blank squares present. This will never happen in a
459 * grid generated _by_ this program, but it's worth keeping the
460 * solver as general as possible.)
461 */
462 tilestate = snewn(w * h * 4, unsigned char);
463 area = 0;
464 for (i = 0; i < w*h; i++) {
465 tilestate[i * 4] = tiles[i] & 0xF;
466 for (j = 1; j < 4; j++) {
467 if (tilestate[i * 4 + j - 1] == 255 ||
468 A(tilestate[i * 4 + j - 1]) == tilestate[i * 4])
469 tilestate[i * 4 + j] = 255;
470 else
471 tilestate[i * 4 + j] = A(tilestate[i * 4 + j - 1]);
472 }
473 if (tiles[i] != 0)
474 area++;
475 }
476
477 /*
478 * edgestate stores the known state of each edge. It is 0 for
479 * unknown, 1 for open (connected) and 2 for closed (not
480 * connected).
481 *
482 * In principle we need only worry about each edge once each,
483 * but in fact it's easier to track each edge twice so that we
484 * can reference it from either side conveniently. Also I'm
485 * going to allocate _five_ bytes per tile, rather than the
486 * obvious four, so that I can index edgestate[(y*w+x) * 5 + d]
487 * where d is 1,2,4,8 and they never overlap.
488 */
489 edgestate = snewn((w * h - 1) * 5 + 9, unsigned char);
490 memset(edgestate, 0, (w * h - 1) * 5 + 9);
491
492 /*
493 * deadends tracks which edges have dead ends on them. It is
494 * indexed by tile and direction: deadends[(y*w+x) * 5 + d]
495 * tells you whether heading out of tile (x,y) in direction d
496 * can reach a limited amount of the grid. Values are area+1
497 * (no dead end known) or less than that (can reach _at most_
498 * this many other tiles by heading this way out of this tile).
499 */
500 deadends = snewn((w * h - 1) * 5 + 9, int);
501 for (i = 0; i < (w * h - 1) * 5 + 9; i++)
502 deadends[i] = area+1;
503
504 /*
505 * equivalence tracks which sets of tiles are known to be
506 * connected to one another, so we can avoid creating loops by
507 * linking together tiles which are already linked through
508 * another route.
509 *
510 * This is a disjoint set forest structure: equivalence[i]
511 * contains the index of another member of the equivalence
512 * class containing i, or contains i itself for precisely one
513 * member in each such class. To find a representative member
514 * of the equivalence class containing i, you keep replacing i
515 * with equivalence[i] until it stops changing; then you go
516 * _back_ along the same path and point everything on it
517 * directly at the representative member so as to speed up
518 * future searches. Then you test equivalence between tiles by
519 * finding the representative of each tile and seeing if
520 * they're the same; and you create new equivalence (merge
521 * classes) by finding the representative of each tile and
522 * setting equivalence[one]=the_other.
523 */
524 equivalence = snewn(w * h, int);
525 for (i = 0; i < w*h; i++)
526 equivalence[i] = i; /* initially all distinct */
527
528 /*
529 * On a non-wrapping grid, we instantly know that all the edges
530 * round the edge are closed.
531 */
532 if (!wrapping) {
533 for (i = 0; i < w; i++) {
534 edgestate[i * 5 + 2] = edgestate[((h-1) * w + i) * 5 + 8] = 2;
535 }
536 for (i = 0; i < h; i++) {
537 edgestate[(i * w + w-1) * 5 + 1] = edgestate[(i * w) * 5 + 4] = 2;
538 }
539 }
540
541 /*
84942c65 542 * If we have barriers available, we can mark those edges as
543 * closed too.
544 */
545 if (barriers) {
546 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
547 int d;
548 for (d = 1; d <= 8; d += d) {
549 if (barriers[y*w+x] & d) {
550 int x2, y2;
551 /*
552 * In principle the barrier list should already
553 * contain each barrier from each side, but
554 * let's not take chances with our internal
555 * consistency.
556 */
557 OFFSETWH(x2, y2, x, y, d, w, h);
558 edgestate[(y*w+x) * 5 + d] = 2;
559 edgestate[(y2*w+x2) * 5 + F(d)] = 2;
560 }
561 }
562 }
563 }
564
565 /*
c0edd11f 566 * Since most deductions made by this solver are local (the
567 * exception is loop avoidance, where joining two tiles
568 * together on one side of the grid can theoretically permit a
569 * fresh deduction on the other), we can address the scaling
570 * problem inherent in iterating repeatedly over the entire
571 * grid by instead working with a to-do list.
572 */
573 todo = todo_new(w * h);
574
575 /*
576 * Main deductive loop.
577 */
578 done_something = TRUE; /* prevent instant termination! */
579 while (1) {
580 int index;
581
582 /*
583 * Take a tile index off the todo list and process it.
584 */
585 index = todo_get(todo);
586 if (index == -1) {
587 /*
588 * If we have run out of immediate things to do, we
589 * have no choice but to scan the whole grid for
590 * longer-range things we've missed. Hence, I now add
591 * every square on the grid back on to the to-do list.
592 * I also set `done_something' to FALSE at this point;
593 * if we later come back here and find it still FALSE,
594 * we will know we've scanned the entire grid without
595 * finding anything new to do, and we can terminate.
596 */
597 if (!done_something)
598 break;
599 for (i = 0; i < w*h; i++)
600 todo_add(todo, i);
601 done_something = FALSE;
602
603 index = todo_get(todo);
604 }
605
606 y = index / w;
607 x = index % w;
608 {
609 int d, ourclass = dsf_canonify(equivalence, y*w+x);
610 int deadendmax[9];
611
612 deadendmax[1] = deadendmax[2] = deadendmax[4] = deadendmax[8] = 0;
613
614 for (i = j = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
615 int valid;
616 int nnondeadends, nondeadends[4], deadendtotal;
617 int nequiv, equiv[5];
618 int val = tilestate[(y*w+x) * 4 + i];
619
620 valid = TRUE;
621 nnondeadends = deadendtotal = 0;
622 equiv[0] = ourclass;
623 nequiv = 1;
624 for (d = 1; d <= 8; d += d) {
625 /*
626 * Immediately rule out this orientation if it
627 * conflicts with any known edge.
628 */
629 if ((edgestate[(y*w+x) * 5 + d] == 1 && !(val & d)) ||
630 (edgestate[(y*w+x) * 5 + d] == 2 && (val & d)))
631 valid = FALSE;
632
633 if (val & d) {
634 /*
635 * Count up the dead-end statistics.
636 */
637 if (deadends[(y*w+x) * 5 + d] <= area) {
638 deadendtotal += deadends[(y*w+x) * 5 + d];
639 } else {
640 nondeadends[nnondeadends++] = d;
641 }
642
643 /*
644 * Ensure we aren't linking to any tiles,
645 * through edges not already known to be
646 * open, which create a loop.
647 */
648 if (edgestate[(y*w+x) * 5 + d] == 0) {
649 int c, k, x2, y2;
650
651 OFFSETWH(x2, y2, x, y, d, w, h);
652 c = dsf_canonify(equivalence, y2*w+x2);
653 for (k = 0; k < nequiv; k++)
654 if (c == equiv[k])
655 break;
656 if (k == nequiv)
657 equiv[nequiv++] = c;
658 else
659 valid = FALSE;
660 }
661 }
662 }
663
664 if (nnondeadends == 0) {
665 /*
666 * If this orientation links together dead-ends
667 * with a total area of less than the entire
668 * grid, it is invalid.
669 *
670 * (We add 1 to deadendtotal because of the
671 * tile itself, of course; one tile linking
672 * dead ends of size 2 and 3 forms a subnetwork
673 * with a total area of 6, not 5.)
674 */
9535138a 675 if (deadendtotal > 0 && deadendtotal+1 < area)
c0edd11f 676 valid = FALSE;
677 } else if (nnondeadends == 1) {
678 /*
679 * If this orientation links together one or
680 * more dead-ends with precisely one
681 * non-dead-end, then we may have to mark that
682 * non-dead-end as a dead end going the other
683 * way. However, it depends on whether all
684 * other orientations share the same property.
685 */
686 deadendtotal++;
687 if (deadendmax[nondeadends[0]] < deadendtotal)
688 deadendmax[nondeadends[0]] = deadendtotal;
689 } else {
690 /*
691 * If this orientation links together two or
692 * more non-dead-ends, then we can rule out the
693 * possibility of putting in new dead-end
694 * markings in those directions.
695 */
696 int k;
697 for (k = 0; k < nnondeadends; k++)
698 deadendmax[nondeadends[k]] = area+1;
699 }
700
701 if (valid)
702 tilestate[(y*w+x) * 4 + j++] = val;
703#ifdef SOLVER_DIAGNOSTICS
704 else
705 printf("ruling out orientation %x at %d,%d\n", val, x, y);
706#endif
707 }
708
709 assert(j > 0); /* we can't lose _all_ possibilities! */
710
711 if (j < i) {
c0edd11f 712 done_something = TRUE;
713
714 /*
715 * We have ruled out at least one tile orientation.
716 * Make sure the rest are blanked.
717 */
718 while (j < 4)
719 tilestate[(y*w+x) * 4 + j++] = 255;
3af1c093 720 }
c0edd11f 721
3af1c093 722 /*
723 * Now go through the tile orientations again and see
724 * if we've deduced anything new about any edges.
725 */
726 {
727 int a, o;
c0edd11f 728 a = 0xF; o = 0;
3af1c093 729
c0edd11f 730 for (i = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
731 a &= tilestate[(y*w+x) * 4 + i];
732 o |= tilestate[(y*w+x) * 4 + i];
733 }
734 for (d = 1; d <= 8; d += d)
735 if (edgestate[(y*w+x) * 5 + d] == 0) {
736 int x2, y2, d2;
737 OFFSETWH(x2, y2, x, y, d, w, h);
738 d2 = F(d);
739 if (a & d) {
740 /* This edge is open in all orientations. */
741#ifdef SOLVER_DIAGNOSTICS
742 printf("marking edge %d,%d:%d open\n", x, y, d);
743#endif
744 edgestate[(y*w+x) * 5 + d] = 1;
745 edgestate[(y2*w+x2) * 5 + d2] = 1;
746 dsf_merge(equivalence, y*w+x, y2*w+x2);
747 done_something = TRUE;
748 todo_add(todo, y2*w+x2);
749 } else if (!(o & d)) {
750 /* This edge is closed in all orientations. */
751#ifdef SOLVER_DIAGNOSTICS
752 printf("marking edge %d,%d:%d closed\n", x, y, d);
753#endif
754 edgestate[(y*w+x) * 5 + d] = 2;
755 edgestate[(y2*w+x2) * 5 + d2] = 2;
756 done_something = TRUE;
757 todo_add(todo, y2*w+x2);
758 }
759 }
760
761 }
762
763 /*
764 * Now check the dead-end markers and see if any of
765 * them has lowered from the real ones.
766 */
767 for (d = 1; d <= 8; d += d) {
768 int x2, y2, d2;
769 OFFSETWH(x2, y2, x, y, d, w, h);
770 d2 = F(d);
771 if (deadendmax[d] > 0 &&
772 deadends[(y2*w+x2) * 5 + d2] > deadendmax[d]) {
773#ifdef SOLVER_DIAGNOSTICS
774 printf("setting dead end value %d,%d:%d to %d\n",
775 x2, y2, d2, deadendmax[d]);
776#endif
777 deadends[(y2*w+x2) * 5 + d2] = deadendmax[d];
778 done_something = TRUE;
779 todo_add(todo, y2*w+x2);
780 }
781 }
782
783 }
784 }
785
786 /*
787 * Mark all completely determined tiles as locked.
788 */
789 j = TRUE;
790 for (i = 0; i < w*h; i++) {
791 if (tilestate[i * 4 + 1] == 255) {
792 assert(tilestate[i * 4 + 0] != 255);
793 tiles[i] = tilestate[i * 4] | LOCKED;
794 } else {
795 tiles[i] &= ~LOCKED;
796 j = FALSE;
797 }
798 }
799
800 /*
801 * Free up working space.
802 */
803 todo_free(todo);
804 sfree(tilestate);
805 sfree(edgestate);
806 sfree(deadends);
807 sfree(equivalence);
808
809 return j;
810}
811
812/* ----------------------------------------------------------------------
1185e3c5 813 * Randomly select a new game description.
720a8fb7 814 */
815
c0edd11f 816/*
817 * Function to randomly perturb an ambiguous section in a grid, to
818 * attempt to ensure unique solvability.
819 */
820static void perturb(int w, int h, unsigned char *tiles, int wrapping,
821 random_state *rs, int startx, int starty, int startd)
822{
823 struct xyd *perimeter, *perim2, *loop[2], looppos[2];
824 int nperim, perimsize, nloop[2], loopsize[2];
825 int x, y, d, i;
826
827 /*
828 * We know that the tile at (startx,starty) is part of an
829 * ambiguous section, and we also know that its neighbour in
830 * direction startd is fully specified. We begin by tracing all
831 * the way round the ambiguous area.
832 */
833 nperim = perimsize = 0;
834 perimeter = NULL;
835 x = startx;
836 y = starty;
837 d = startd;
838#ifdef PERTURB_DIAGNOSTICS
839 printf("perturb %d,%d:%d\n", x, y, d);
840#endif
841 do {
842 int x2, y2, d2;
843
844 if (nperim >= perimsize) {
845 perimsize = perimsize * 3 / 2 + 32;
846 perimeter = sresize(perimeter, perimsize, struct xyd);
847 }
848 perimeter[nperim].x = x;
849 perimeter[nperim].y = y;
850 perimeter[nperim].direction = d;
851 nperim++;
852#ifdef PERTURB_DIAGNOSTICS
853 printf("perimeter: %d,%d:%d\n", x, y, d);
854#endif
855
856 /*
857 * First, see if we can simply turn left from where we are
858 * and find another locked square.
859 */
860 d2 = A(d);
861 OFFSETWH(x2, y2, x, y, d2, w, h);
862 if ((!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1)) ||
863 (tiles[y2*w+x2] & LOCKED)) {
864 d = d2;
865 } else {
866 /*
867 * Failing that, step left into the new square and look
868 * in front of us.
869 */
870 x = x2;
871 y = y2;
872 OFFSETWH(x2, y2, x, y, d, w, h);
873 if ((wrapping || (abs(x2-x) <= 1 && abs(y2-y) <= 1)) &&
874 !(tiles[y2*w+x2] & LOCKED)) {
875 /*
876 * And failing _that_, we're going to have to step
877 * forward into _that_ square and look right at the
878 * same locked square as we started with.
879 */
880 x = x2;
881 y = y2;
882 d = C(d);
883 }
884 }
885
886 } while (x != startx || y != starty || d != startd);
887
888 /*
889 * Our technique for perturbing this ambiguous area is to
890 * search round its edge for a join we can make: that is, an
891 * edge on the perimeter which is (a) not currently connected,
892 * and (b) connecting it would not yield a full cross on either
893 * side. Then we make that join, search round the network to
894 * find the loop thus constructed, and sever the loop at a
895 * randomly selected other point.
896 */
897 perim2 = snewn(nperim, struct xyd);
898 memcpy(perim2, perimeter, nperim * sizeof(struct xyd));
899 /* Shuffle the perimeter, so as to search it without directional bias. */
e3edcacd 900 shuffle(perim2, nperim, sizeof(*perim2), rs);
c0edd11f 901 for (i = 0; i < nperim; i++) {
902 int x2, y2;
903
904 x = perim2[i].x;
905 y = perim2[i].y;
906 d = perim2[i].direction;
907
908 OFFSETWH(x2, y2, x, y, d, w, h);
909 if (!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1))
910 continue; /* can't link across non-wrapping border */
911 if (tiles[y*w+x] & d)
912 continue; /* already linked in this direction! */
913 if (((tiles[y*w+x] | d) & 15) == 15)
914 continue; /* can't turn this tile into a cross */
915 if (((tiles[y2*w+x2] | F(d)) & 15) == 15)
916 continue; /* can't turn other tile into a cross */
917
918 /*
919 * We've found the point at which we're going to make a new
920 * link.
921 */
922#ifdef PERTURB_DIAGNOSTICS
923 printf("linking %d,%d:%d\n", x, y, d);
924#endif
925 tiles[y*w+x] |= d;
926 tiles[y2*w+x2] |= F(d);
927
928 break;
929 }
ab53eb64 930 sfree(perim2);
c0edd11f 931
932 if (i == nperim)
933 return; /* nothing we can do! */
934
935 /*
936 * Now we've constructed a new link, we need to find the entire
937 * loop of which it is a part.
938 *
939 * In principle, this involves doing a complete search round
940 * the network. However, I anticipate that in the vast majority
941 * of cases the loop will be quite small, so what I'm going to
942 * do is make _two_ searches round the network in parallel, one
943 * keeping its metaphorical hand on the left-hand wall while
944 * the other keeps its hand on the right. As soon as one of
945 * them gets back to its starting point, I abandon the other.
946 */
947 for (i = 0; i < 2; i++) {
948 loopsize[i] = nloop[i] = 0;
949 loop[i] = NULL;
950 looppos[i].x = x;
951 looppos[i].y = y;
952 looppos[i].direction = d;
953 }
954 while (1) {
955 for (i = 0; i < 2; i++) {
956 int x2, y2, j;
957
958 x = looppos[i].x;
959 y = looppos[i].y;
960 d = looppos[i].direction;
961
962 OFFSETWH(x2, y2, x, y, d, w, h);
963
964 /*
965 * Add this path segment to the loop, unless it exactly
966 * reverses the previous one on the loop in which case
967 * we take it away again.
968 */
969#ifdef PERTURB_DIAGNOSTICS
970 printf("looppos[%d] = %d,%d:%d\n", i, x, y, d);
971#endif
972 if (nloop[i] > 0 &&
973 loop[i][nloop[i]-1].x == x2 &&
974 loop[i][nloop[i]-1].y == y2 &&
975 loop[i][nloop[i]-1].direction == F(d)) {
976#ifdef PERTURB_DIAGNOSTICS
977 printf("removing path segment %d,%d:%d from loop[%d]\n",
978 x2, y2, F(d), i);
979#endif
980 nloop[i]--;
981 } else {
982 if (nloop[i] >= loopsize[i]) {
983 loopsize[i] = loopsize[i] * 3 / 2 + 32;
984 loop[i] = sresize(loop[i], loopsize[i], struct xyd);
985 }
986#ifdef PERTURB_DIAGNOSTICS
987 printf("adding path segment %d,%d:%d to loop[%d]\n",
988 x, y, d, i);
989#endif
990 loop[i][nloop[i]++] = looppos[i];
991 }
992
993#ifdef PERTURB_DIAGNOSTICS
994 printf("tile at new location is %x\n", tiles[y2*w+x2] & 0xF);
995#endif
996 d = F(d);
997 for (j = 0; j < 4; j++) {
998 if (i == 0)
999 d = A(d);
1000 else
1001 d = C(d);
1002#ifdef PERTURB_DIAGNOSTICS
1003 printf("trying dir %d\n", d);
1004#endif
1005 if (tiles[y2*w+x2] & d) {
1006 looppos[i].x = x2;
1007 looppos[i].y = y2;
1008 looppos[i].direction = d;
1009 break;
1010 }
1011 }
1012
1013 assert(j < 4);
1014 assert(nloop[i] > 0);
1015
1016 if (looppos[i].x == loop[i][0].x &&
1017 looppos[i].y == loop[i][0].y &&
1018 looppos[i].direction == loop[i][0].direction) {
1019#ifdef PERTURB_DIAGNOSTICS
1020 printf("loop %d finished tracking\n", i);
1021#endif
1022
1023 /*
1024 * Having found our loop, we now sever it at a
1025 * randomly chosen point - absolutely any will do -
1026 * which is not the one we joined it at to begin
1027 * with. Conveniently, the one we joined it at is
1028 * loop[i][0], so we just avoid that one.
1029 */
1030 j = random_upto(rs, nloop[i]-1) + 1;
1031 x = loop[i][j].x;
1032 y = loop[i][j].y;
1033 d = loop[i][j].direction;
1034 OFFSETWH(x2, y2, x, y, d, w, h);
1035 tiles[y*w+x] &= ~d;
1036 tiles[y2*w+x2] &= ~F(d);
1037
1038 break;
1039 }
1040 }
1041 if (i < 2)
1042 break;
1043 }
1044 sfree(loop[0]);
1045 sfree(loop[1]);
1046
1047 /*
1048 * Finally, we must mark the entire disputed section as locked,
1049 * to prevent the perturb function being called on it multiple
1050 * times.
1051 *
1052 * To do this, we _sort_ the perimeter of the area. The
1053 * existing xyd_cmp function will arrange things into columns
1054 * for us, in such a way that each column has the edges in
1055 * vertical order. Then we can work down each column and fill
1056 * in all the squares between an up edge and a down edge.
1057 */
1058 qsort(perimeter, nperim, sizeof(struct xyd), xyd_cmp);
1059 x = y = -1;
1060 for (i = 0; i <= nperim; i++) {
1061 if (i == nperim || perimeter[i].x > x) {
1062 /*
1063 * Fill in everything from the last Up edge to the
1064 * bottom of the grid, if necessary.
1065 */
1066 if (x != -1) {
1067 while (y < h) {
1068#ifdef PERTURB_DIAGNOSTICS
1069 printf("resolved: locking tile %d,%d\n", x, y);
1070#endif
1071 tiles[y * w + x] |= LOCKED;
1072 y++;
1073 }
1074 x = y = -1;
1075 }
1076
1077 if (i == nperim)
1078 break;
1079
1080 x = perimeter[i].x;
1081 y = 0;
1082 }
1083
1084 if (perimeter[i].direction == U) {
1085 x = perimeter[i].x;
1086 y = perimeter[i].y;
1087 } else if (perimeter[i].direction == D) {
1088 /*
1089 * Fill in everything from the last Up edge to here.
1090 */
1091 assert(x == perimeter[i].x && y <= perimeter[i].y);
1092 while (y <= perimeter[i].y) {
1093#ifdef PERTURB_DIAGNOSTICS
1094 printf("resolved: locking tile %d,%d\n", x, y);
1095#endif
1096 tiles[y * w + x] |= LOCKED;
1097 y++;
1098 }
1099 x = y = -1;
1100 }
1101 }
1102
1103 sfree(perimeter);
1104}
1105
1185e3c5 1106static char *new_game_desc(game_params *params, random_state *rs,
c566778e 1107 char **aux, int interactive)
720a8fb7 1108{
1185e3c5 1109 tree234 *possibilities, *barriertree;
1110 int w, h, x, y, cx, cy, nbarriers;
1111 unsigned char *tiles, *barriers;
1112 char *desc, *p;
6f2d8d7c 1113
1185e3c5 1114 w = params->width;
1115 h = params->height;
720a8fb7 1116
c0edd11f 1117 cx = w / 2;
1118 cy = h / 2;
1119
1185e3c5 1120 tiles = snewn(w * h, unsigned char);
1185e3c5 1121 barriers = snewn(w * h, unsigned char);
720a8fb7 1122
c0edd11f 1123 begin_generation:
1124
1125 memset(tiles, 0, w * h);
1126 memset(barriers, 0, w * h);
720a8fb7 1127
1128 /*
1129 * Construct the unshuffled grid.
1130 *
1131 * To do this, we simply start at the centre point, repeatedly
1132 * choose a random possibility out of the available ways to
1133 * extend a used square into an unused one, and do it. After
1134 * extending the third line out of a square, we remove the
1135 * fourth from the possibilities list to avoid any full-cross
1136 * squares (which would make the game too easy because they
1137 * only have one orientation).
1138 *
1139 * The slightly worrying thing is the avoidance of full-cross
1140 * squares. Can this cause our unsophisticated construction
1141 * algorithm to paint itself into a corner, by getting into a
1142 * situation where there are some unreached squares and the
1143 * only way to reach any of them is to extend a T-piece into a
1144 * full cross?
1145 *
1146 * Answer: no it can't, and here's a proof.
1147 *
1148 * Any contiguous group of such unreachable squares must be
1149 * surrounded on _all_ sides by T-pieces pointing away from the
1150 * group. (If not, then there is a square which can be extended
1151 * into one of the `unreachable' ones, and so it wasn't
1152 * unreachable after all.) In particular, this implies that
1153 * each contiguous group of unreachable squares must be
1154 * rectangular in shape (any deviation from that yields a
1155 * non-T-piece next to an `unreachable' square).
1156 *
1157 * So we have a rectangle of unreachable squares, with T-pieces
1158 * forming a solid border around the rectangle. The corners of
1159 * that border must be connected (since every tile connects all
1160 * the lines arriving in it), and therefore the border must
1161 * form a closed loop around the rectangle.
1162 *
1163 * But this can't have happened in the first place, since we
1164 * _know_ we've avoided creating closed loops! Hence, no such
1165 * situation can ever arise, and the naive grid construction
1166 * algorithm will guaranteeably result in a complete grid
1167 * containing no unreached squares, no full crosses _and_ no
1168 * closed loops. []
1169 */
c0edd11f 1170 possibilities = newtree234(xyd_cmp_nc);
ecadce0d 1171
1185e3c5 1172 if (cx+1 < w)
1173 add234(possibilities, new_xyd(cx, cy, R));
1174 if (cy-1 >= 0)
1175 add234(possibilities, new_xyd(cx, cy, U));
1176 if (cx-1 >= 0)
1177 add234(possibilities, new_xyd(cx, cy, L));
1178 if (cy+1 < h)
1179 add234(possibilities, new_xyd(cx, cy, D));
720a8fb7 1180
1181 while (count234(possibilities) > 0) {
1182 int i;
1183 struct xyd *xyd;
1184 int x1, y1, d1, x2, y2, d2, d;
1185
1186 /*
1187 * Extract a randomly chosen possibility from the list.
1188 */
1189 i = random_upto(rs, count234(possibilities));
1190 xyd = delpos234(possibilities, i);
1191 x1 = xyd->x;
1192 y1 = xyd->y;
1193 d1 = xyd->direction;
1194 sfree(xyd);
1195
1185e3c5 1196 OFFSET(x2, y2, x1, y1, d1, params);
720a8fb7 1197 d2 = F(d1);
95854b53 1198#ifdef GENERATION_DIAGNOSTICS
720a8fb7 1199 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
1200 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
1201#endif
1202
1203 /*
1204 * Make the connection. (We should be moving to an as yet
1205 * unused tile.)
1206 */
1185e3c5 1207 index(params, tiles, x1, y1) |= d1;
1208 assert(index(params, tiles, x2, y2) == 0);
1209 index(params, tiles, x2, y2) |= d2;
720a8fb7 1210
1211 /*
1212 * If we have created a T-piece, remove its last
1213 * possibility.
1214 */
1185e3c5 1215 if (COUNT(index(params, tiles, x1, y1)) == 3) {
720a8fb7 1216 struct xyd xyd1, *xydp;
1217
1218 xyd1.x = x1;
1219 xyd1.y = y1;
1185e3c5 1220 xyd1.direction = 0x0F ^ index(params, tiles, x1, y1);
720a8fb7 1221
1222 xydp = find234(possibilities, &xyd1, NULL);
1223
1224 if (xydp) {
95854b53 1225#ifdef GENERATION_DIAGNOSTICS
720a8fb7 1226 printf("T-piece; removing (%d,%d,%c)\n",
1227 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
1228#endif
1229 del234(possibilities, xydp);
1230 sfree(xydp);
1231 }
1232 }
1233
1234 /*
1235 * Remove all other possibilities that were pointing at the
1236 * tile we've just moved into.
1237 */
1238 for (d = 1; d < 0x10; d <<= 1) {
1239 int x3, y3, d3;
1240 struct xyd xyd1, *xydp;
1241
1185e3c5 1242 OFFSET(x3, y3, x2, y2, d, params);
720a8fb7 1243 d3 = F(d);
1244
1245 xyd1.x = x3;
1246 xyd1.y = y3;
1247 xyd1.direction = d3;
1248
1249 xydp = find234(possibilities, &xyd1, NULL);
1250
1251 if (xydp) {
95854b53 1252#ifdef GENERATION_DIAGNOSTICS
720a8fb7 1253 printf("Loop avoidance; removing (%d,%d,%c)\n",
1254 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
1255#endif
1256 del234(possibilities, xydp);
1257 sfree(xydp);
1258 }
1259 }
1260
1261 /*
1262 * Add new possibilities to the list for moving _out_ of
1263 * the tile we have just moved into.
1264 */
1265 for (d = 1; d < 0x10; d <<= 1) {
1266 int x3, y3;
1267
1268 if (d == d2)
1269 continue; /* we've got this one already */
1270
1185e3c5 1271 if (!params->wrapping) {
720a8fb7 1272 if (d == U && y2 == 0)
1273 continue;
1185e3c5 1274 if (d == D && y2 == h-1)
720a8fb7 1275 continue;
1276 if (d == L && x2 == 0)
1277 continue;
1185e3c5 1278 if (d == R && x2 == w-1)
720a8fb7 1279 continue;
1280 }
1281
1185e3c5 1282 OFFSET(x3, y3, x2, y2, d, params);
720a8fb7 1283
1185e3c5 1284 if (index(params, tiles, x3, y3))
720a8fb7 1285 continue; /* this would create a loop */
1286
95854b53 1287#ifdef GENERATION_DIAGNOSTICS
720a8fb7 1288 printf("New frontier; adding (%d,%d,%c)\n",
1289 x2, y2, "0RU3L567D9abcdef"[d]);
1290#endif
1291 add234(possibilities, new_xyd(x2, y2, d));
1292 }
1293 }
1294 /* Having done that, we should have no possibilities remaining. */
1295 assert(count234(possibilities) == 0);
1296 freetree234(possibilities);
1297
c0edd11f 1298 if (params->unique) {
1299 int prevn = -1;
1300
1301 /*
1302 * Run the solver to check unique solubility.
1303 */
84942c65 1304 while (!net_solver(w, h, tiles, NULL, params->wrapping)) {
c0edd11f 1305 int n = 0;
1306
1307 /*
1308 * We expect (in most cases) that most of the grid will
1309 * be uniquely specified already, and the remaining
1310 * ambiguous sections will be small and separate. So
1311 * our strategy is to find each individual such
1312 * section, and perform a perturbation on the network
1313 * in that area.
1314 */
1315 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
1316 if (x+1 < w && ((tiles[y*w+x] ^ tiles[y*w+x+1]) & LOCKED)) {
1317 n++;
1318 if (tiles[y*w+x] & LOCKED)
1319 perturb(w, h, tiles, params->wrapping, rs, x+1, y, L);
1320 else
1321 perturb(w, h, tiles, params->wrapping, rs, x, y, R);
1322 }
1323 if (y+1 < h && ((tiles[y*w+x] ^ tiles[(y+1)*w+x]) & LOCKED)) {
1324 n++;
1325 if (tiles[y*w+x] & LOCKED)
1326 perturb(w, h, tiles, params->wrapping, rs, x, y+1, U);
1327 else
1328 perturb(w, h, tiles, params->wrapping, rs, x, y, D);
1329 }
1330 }
1331
1332 /*
1333 * Now n counts the number of ambiguous sections we
1334 * have fiddled with. If we haven't managed to decrease
1335 * it from the last time we ran the solver, give up and
1336 * regenerate the entire grid.
1337 */
1338 if (prevn != -1 && prevn <= n)
1339 goto begin_generation; /* (sorry) */
1340
1341 prevn = n;
1342 }
1343
1344 /*
1345 * The solver will have left a lot of LOCKED bits lying
1346 * around in the tiles array. Remove them.
1347 */
1348 for (x = 0; x < w*h; x++)
1349 tiles[x] &= ~LOCKED;
1350 }
1351
720a8fb7 1352 /*
1353 * Now compute a list of the possible barrier locations.
1354 */
c0edd11f 1355 barriertree = newtree234(xyd_cmp_nc);
1185e3c5 1356 for (y = 0; y < h; y++) {
1357 for (x = 0; x < w; x++) {
1358
1359 if (!(index(params, tiles, x, y) & R) &&
1360 (params->wrapping || x < w-1))
1361 add234(barriertree, new_xyd(x, y, R));
1362 if (!(index(params, tiles, x, y) & D) &&
1363 (params->wrapping || y < h-1))
1364 add234(barriertree, new_xyd(x, y, D));
720a8fb7 1365 }
1366 }
1367
1368 /*
c566778e 1369 * Save the unshuffled grid in aux.
2ac6d24e 1370 */
1371 {
c566778e 1372 char *solution;
1373 int i;
2ac6d24e 1374
c566778e 1375 solution = snewn(w * h + 1, char);
1376 for (i = 0; i < w * h; i++)
1377 solution[i] = "0123456789abcdef"[tiles[i] & 0xF];
1378 solution[w*h] = '\0';
2ac6d24e 1379
1185e3c5 1380 *aux = solution;
2ac6d24e 1381 }
1382
1383 /*
720a8fb7 1384 * Now shuffle the grid.
1385 */
1185e3c5 1386 for (y = 0; y < h; y++) {
1387 for (x = 0; x < w; x++) {
1388 int orig = index(params, tiles, x, y);
720a8fb7 1389 int rot = random_upto(rs, 4);
1185e3c5 1390 index(params, tiles, x, y) = ROT(orig, rot);
720a8fb7 1391 }
1392 }
1393
1394 /*
1395 * And now choose barrier locations. (We carefully do this
1396 * _after_ shuffling, so that changing the barrier rate in the
1185e3c5 1397 * params while keeping the random seed the same will give the
720a8fb7 1398 * same shuffled grid and _only_ change the barrier locations.
1399 * Also the way we choose barrier locations, by repeatedly
1400 * choosing one possibility from the list until we have enough,
1401 * is designed to ensure that raising the barrier rate while
1402 * keeping the seed the same will provide a superset of the
1403 * previous barrier set - i.e. if you ask for 10 barriers, and
1404 * then decide that's still too hard and ask for 20, you'll get
1405 * the original 10 plus 10 more, rather than getting 20 new
1406 * ones and the chance of remembering your first 10.)
1407 */
1185e3c5 1408 nbarriers = (int)(params->barrier_probability * count234(barriertree));
1409 assert(nbarriers >= 0 && nbarriers <= count234(barriertree));
720a8fb7 1410
1411 while (nbarriers > 0) {
1412 int i;
1413 struct xyd *xyd;
1414 int x1, y1, d1, x2, y2, d2;
1415
1416 /*
1417 * Extract a randomly chosen barrier from the list.
1418 */
1185e3c5 1419 i = random_upto(rs, count234(barriertree));
1420 xyd = delpos234(barriertree, i);
720a8fb7 1421
1422 assert(xyd != NULL);
1423
1424 x1 = xyd->x;
1425 y1 = xyd->y;
1426 d1 = xyd->direction;
1427 sfree(xyd);
1428
1185e3c5 1429 OFFSET(x2, y2, x1, y1, d1, params);
720a8fb7 1430 d2 = F(d1);
1431
1185e3c5 1432 index(params, barriers, x1, y1) |= d1;
1433 index(params, barriers, x2, y2) |= d2;
720a8fb7 1434
1435 nbarriers--;
1436 }
1437
1438 /*
1439 * Clean up the rest of the barrier list.
1440 */
1441 {
1442 struct xyd *xyd;
1443
1185e3c5 1444 while ( (xyd = delpos234(barriertree, 0)) != NULL)
720a8fb7 1445 sfree(xyd);
1446
1185e3c5 1447 freetree234(barriertree);
1448 }
1449
1450 /*
1451 * Finally, encode the grid into a string game description.
1452 *
1453 * My syntax is extremely simple: each square is encoded as a
1454 * hex digit in which bit 0 means a connection on the right,
1455 * bit 1 means up, bit 2 left and bit 3 down. (i.e. the same
1456 * encoding as used internally). Each digit is followed by
1457 * optional barrier indicators: `v' means a vertical barrier to
1458 * the right of it, and `h' means a horizontal barrier below
1459 * it.
1460 */
1461 desc = snewn(w * h * 3 + 1, char);
1462 p = desc;
1463 for (y = 0; y < h; y++) {
1464 for (x = 0; x < w; x++) {
1465 *p++ = "0123456789abcdef"[index(params, tiles, x, y)];
1466 if ((params->wrapping || x < w-1) &&
1467 (index(params, barriers, x, y) & R))
1468 *p++ = 'v';
1469 if ((params->wrapping || y < h-1) &&
1470 (index(params, barriers, x, y) & D))
1471 *p++ = 'h';
1472 }
1473 }
1474 assert(p - desc <= w*h*3);
366d045b 1475 *p = '\0';
1185e3c5 1476
1477 sfree(tiles);
1478 sfree(barriers);
1479
1480 return desc;
1481}
1482
1185e3c5 1483static char *validate_desc(game_params *params, char *desc)
1484{
1485 int w = params->width, h = params->height;
1486 int i;
1487
1488 for (i = 0; i < w*h; i++) {
1489 if (*desc >= '0' && *desc <= '9')
1490 /* OK */;
1491 else if (*desc >= 'a' && *desc <= 'f')
1492 /* OK */;
1493 else if (*desc >= 'A' && *desc <= 'F')
1494 /* OK */;
1495 else if (!*desc)
1496 return "Game description shorter than expected";
1497 else
1498 return "Game description contained unexpected character";
1499 desc++;
1500 while (*desc == 'h' || *desc == 'v')
1501 desc++;
1502 }
1503 if (*desc)
1504 return "Game description longer than expected";
1505
1506 return NULL;
1507}
1508
1509/* ----------------------------------------------------------------------
1510 * Construct an initial game state, given a description and parameters.
1511 */
1512
dafd6cf6 1513static game_state *new_game(midend *me, game_params *params, char *desc)
1185e3c5 1514{
1515 game_state *state;
1516 int w, h, x, y;
1517
1518 assert(params->width > 0 && params->height > 0);
1519 assert(params->width > 1 || params->height > 1);
1520
1521 /*
1522 * Create a blank game state.
1523 */
1524 state = snew(game_state);
1525 w = state->width = params->width;
1526 h = state->height = params->height;
1185e3c5 1527 state->wrapping = params->wrapping;
1528 state->last_rotate_dir = state->last_rotate_x = state->last_rotate_y = 0;
a440f184 1529 state->completed = state->used_solve = FALSE;
1185e3c5 1530 state->tiles = snewn(state->width * state->height, unsigned char);
1531 memset(state->tiles, 0, state->width * state->height);
1532 state->barriers = snewn(state->width * state->height, unsigned char);
1533 memset(state->barriers, 0, state->width * state->height);
1534
1535 /*
1536 * Parse the game description into the grid.
1537 */
1538 for (y = 0; y < h; y++) {
1539 for (x = 0; x < w; x++) {
1540 if (*desc >= '0' && *desc <= '9')
1541 tile(state, x, y) = *desc - '0';
1542 else if (*desc >= 'a' && *desc <= 'f')
1543 tile(state, x, y) = *desc - 'a' + 10;
1544 else if (*desc >= 'A' && *desc <= 'F')
1545 tile(state, x, y) = *desc - 'A' + 10;
1546 if (*desc)
1547 desc++;
1548 while (*desc == 'h' || *desc == 'v') {
1549 int x2, y2, d1, d2;
1550 if (*desc == 'v')
1551 d1 = R;
1552 else
1553 d1 = D;
1554
1555 OFFSET(x2, y2, x, y, d1, state);
1556 d2 = F(d1);
1557
1558 barrier(state, x, y) |= d1;
1559 barrier(state, x2, y2) |= d2;
1560
1561 desc++;
1562 }
1563 }
1564 }
1565
1566 /*
1567 * Set up border barriers if this is a non-wrapping game.
1568 */
1569 if (!state->wrapping) {
1570 for (x = 0; x < state->width; x++) {
1571 barrier(state, x, 0) |= U;
1572 barrier(state, x, state->height-1) |= D;
1573 }
1574 for (y = 0; y < state->height; y++) {
1575 barrier(state, 0, y) |= L;
1576 barrier(state, state->width-1, y) |= R;
1577 }
f0ee053c 1578 } else {
1579 /*
1580 * We check whether this is de-facto a non-wrapping game
1581 * despite the parameters, in case we were passed the
1582 * description of a non-wrapping game. This is so that we
1583 * can change some aspects of the UI behaviour.
1584 */
1585 state->wrapping = FALSE;
1586 for (x = 0; x < state->width; x++)
1587 if (!(barrier(state, x, 0) & U) ||
1588 !(barrier(state, x, state->height-1) & D))
1589 state->wrapping = TRUE;
1590 for (y = 0; y < state->width; y++)
1591 if (!(barrier(state, 0, y) & L) ||
1592 !(barrier(state, state->width-1, y) & R))
1593 state->wrapping = TRUE;
720a8fb7 1594 }
1595
720a8fb7 1596 return state;
1597}
1598
be8d5aa1 1599static game_state *dup_game(game_state *state)
720a8fb7 1600{
1601 game_state *ret;
1602
1603 ret = snew(game_state);
1604 ret->width = state->width;
1605 ret->height = state->height;
1606 ret->wrapping = state->wrapping;
1607 ret->completed = state->completed;
2ac6d24e 1608 ret->used_solve = state->used_solve;
2ef96bd6 1609 ret->last_rotate_dir = state->last_rotate_dir;
1185e3c5 1610 ret->last_rotate_x = state->last_rotate_x;
1611 ret->last_rotate_y = state->last_rotate_y;
720a8fb7 1612 ret->tiles = snewn(state->width * state->height, unsigned char);
1613 memcpy(ret->tiles, state->tiles, state->width * state->height);
1614 ret->barriers = snewn(state->width * state->height, unsigned char);
1615 memcpy(ret->barriers, state->barriers, state->width * state->height);
1616
1617 return ret;
1618}
1619
be8d5aa1 1620static void free_game(game_state *state)
720a8fb7 1621{
1622 sfree(state->tiles);
1623 sfree(state->barriers);
1624 sfree(state);
1625}
1626
df11cd4e 1627static char *solve_game(game_state *state, game_state *currstate,
c566778e 1628 char *aux, char **error)
2ac6d24e 1629{
df11cd4e 1630 unsigned char *tiles;
1631 char *ret;
1632 int retlen, retsize;
1633 int i;
c566778e 1634
1635 tiles = snewn(state->width * state->height, unsigned char);
2ac6d24e 1636
1185e3c5 1637 if (!aux) {
c0edd11f 1638 /*
1639 * Run the internal solver on the provided grid. This might
1640 * not yield a complete solution.
1641 */
df11cd4e 1642 memcpy(tiles, state->tiles, state->width * state->height);
1643 net_solver(state->width, state->height, tiles,
1644 state->barriers, state->wrapping);
c0edd11f 1645 } else {
c566778e 1646 for (i = 0; i < state->width * state->height; i++) {
1647 int c = aux[i];
1648
1649 if (c >= '0' && c <= '9')
1650 tiles[i] = c - '0';
1651 else if (c >= 'a' && c <= 'f')
1652 tiles[i] = c - 'a' + 10;
1653 else if (c >= 'A' && c <= 'F')
1654 tiles[i] = c - 'A' + 10;
dafd6cf6 1655
1656 tiles[i] |= LOCKED;
c566778e 1657 }
df11cd4e 1658 }
1659
1660 /*
1661 * Now construct a string which can be passed to execute_move()
1662 * to transform the current grid into the solved one.
1663 */
1664 retsize = 256;
1665 ret = snewn(retsize, char);
1666 retlen = 0;
1667 ret[retlen++] = 'S';
1668
1669 for (i = 0; i < state->width * state->height; i++) {
1670 int from = currstate->tiles[i], to = tiles[i];
1671 int ft = from & (R|L|U|D), tt = to & (R|L|U|D);
1672 int x = i % state->width, y = i / state->width;
1673 int chr = '\0';
1674 char buf[80], *p = buf;
1675
1676 if (from == to)
1677 continue; /* nothing needs doing at all */
1678
1679 /*
1680 * To transform this tile into the desired tile: first
1681 * unlock the tile if it's locked, then rotate it if
1682 * necessary, then lock it if necessary.
1683 */
1684 if (from & LOCKED)
1685 p += sprintf(p, ";L%d,%d", x, y);
1686
1687 if (tt == A(ft))
1688 chr = 'A';
1689 else if (tt == C(ft))
1690 chr = 'C';
1691 else if (tt == F(ft))
1692 chr = 'F';
1693 else {
1694 assert(tt == ft);
1695 chr = '\0';
1696 }
1697 if (chr)
1698 p += sprintf(p, ";%c%d,%d", chr, x, y);
1699
1700 if (to & LOCKED)
1701 p += sprintf(p, ";L%d,%d", x, y);
1702
1703 if (p > buf) {
1704 if (retlen + (p - buf) >= retsize) {
1705 retsize = retlen + (p - buf) + 512;
1706 ret = sresize(ret, retsize, char);
1707 }
1708 memcpy(ret+retlen, buf, p - buf);
1709 retlen += p - buf;
1710 }
2ac6d24e 1711 }
1712
df11cd4e 1713 assert(retlen < retsize);
1714 ret[retlen] = '\0';
1715 ret = sresize(ret, retlen+1, char);
1716
c566778e 1717 sfree(tiles);
1718
2ac6d24e 1719 return ret;
1720}
1721
9b4b03d3 1722static char *game_text_format(game_state *state)
1723{
1724 return NULL;
1725}
1726
720a8fb7 1727/* ----------------------------------------------------------------------
1728 * Utility routine.
1729 */
1730
1731/*
1732 * Compute which squares are reachable from the centre square, as a
1733 * quick visual aid to determining how close the game is to
1734 * completion. This is also a simple way to tell if the game _is_
1735 * completed - just call this function and see whether every square
1736 * is marked active.
1737 */
f0ee053c 1738static unsigned char *compute_active(game_state *state, int cx, int cy)
720a8fb7 1739{
1740 unsigned char *active;
1741 tree234 *todo;
1742 struct xyd *xyd;
1743
1744 active = snewn(state->width * state->height, unsigned char);
1745 memset(active, 0, state->width * state->height);
1746
1747 /*
1748 * We only store (x,y) pairs in todo, but it's easier to reuse
1749 * xyd_cmp and just store direction 0 every time.
1750 */
c0edd11f 1751 todo = newtree234(xyd_cmp_nc);
f0ee053c 1752 index(state, active, cx, cy) = ACTIVE;
1753 add234(todo, new_xyd(cx, cy, 0));
720a8fb7 1754
1755 while ( (xyd = delpos234(todo, 0)) != NULL) {
1756 int x1, y1, d1, x2, y2, d2;
1757
1758 x1 = xyd->x;
1759 y1 = xyd->y;
1760 sfree(xyd);
1761
1762 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
1763 OFFSET(x2, y2, x1, y1, d1, state);
1764 d2 = F(d1);
1765
1766 /*
1767 * If the next tile in this direction is connected to
1768 * us, and there isn't a barrier in the way, and it
1769 * isn't already marked active, then mark it active and
1770 * add it to the to-examine list.
1771 */
1772 if ((tile(state, x1, y1) & d1) &&
1773 (tile(state, x2, y2) & d2) &&
1774 !(barrier(state, x1, y1) & d1) &&
1775 !index(state, active, x2, y2)) {
2ef96bd6 1776 index(state, active, x2, y2) = ACTIVE;
720a8fb7 1777 add234(todo, new_xyd(x2, y2, 0));
1778 }
1779 }
1780 }
1781 /* Now we expect the todo list to have shrunk to zero size. */
1782 assert(count234(todo) == 0);
1783 freetree234(todo);
1784
1785 return active;
1786}
1787
66164171 1788struct game_ui {
f0ee053c 1789 int org_x, org_y; /* origin */
1790 int cx, cy; /* source tile (game coordinates) */
66164171 1791 int cur_x, cur_y;
1792 int cur_visible;
cbb5549e 1793 random_state *rs; /* used for jumbling */
66164171 1794};
1795
be8d5aa1 1796static game_ui *new_ui(game_state *state)
74a4e547 1797{
cbb5549e 1798 void *seed;
1799 int seedsize;
66164171 1800 game_ui *ui = snew(game_ui);
f0ee053c 1801 ui->org_x = ui->org_y = 0;
1802 ui->cur_x = ui->cx = state->width / 2;
1803 ui->cur_y = ui->cy = state->height / 2;
66164171 1804 ui->cur_visible = FALSE;
cbb5549e 1805 get_random_seed(&seed, &seedsize);
1fbb0680 1806 ui->rs = random_new(seed, seedsize);
cbb5549e 1807 sfree(seed);
66164171 1808
1809 return ui;
74a4e547 1810}
1811
be8d5aa1 1812static void free_ui(game_ui *ui)
74a4e547 1813{
cbb5549e 1814 random_free(ui->rs);
66164171 1815 sfree(ui);
74a4e547 1816}
1817
844f605f 1818static char *encode_ui(game_ui *ui)
ae8290c6 1819{
1820 char buf[120];
1821 /*
1822 * We preserve the origin and centre-point coordinates over a
1823 * serialise.
1824 */
1825 sprintf(buf, "O%d,%d;C%d,%d", ui->org_x, ui->org_y, ui->cx, ui->cy);
1826 return dupstr(buf);
1827}
1828
844f605f 1829static void decode_ui(game_ui *ui, char *encoding)
ae8290c6 1830{
1831 sscanf(encoding, "O%d,%d;C%d,%d",
1832 &ui->org_x, &ui->org_y, &ui->cx, &ui->cy);
1833}
1834
07dfb697 1835static void game_changed_state(game_ui *ui, game_state *oldstate,
1836 game_state *newstate)
1837{
1838}
1839
1e3e152d 1840struct game_drawstate {
1841 int started;
1842 int width, height;
1843 int org_x, org_y;
1844 int tilesize;
1845 unsigned char *visible;
1846};
1847
720a8fb7 1848/* ----------------------------------------------------------------------
1849 * Process a move.
1850 */
df11cd4e 1851static char *interpret_move(game_state *state, game_ui *ui,
1852 game_drawstate *ds, int x, int y, int button)
1853{
1854 char *nullret;
118473f5 1855 int tx = -1, ty = -1, dir = 0;
f0ee053c 1856 int shift = button & MOD_SHFT, ctrl = button & MOD_CTRL;
118473f5 1857 enum {
1858 NONE, ROTATE_LEFT, ROTATE_180, ROTATE_RIGHT, TOGGLE_LOCK, JUMBLE,
1859 MOVE_ORIGIN, MOVE_SOURCE, MOVE_ORIGIN_AND_SOURCE, MOVE_CURSOR
1860 } action;
720a8fb7 1861
f0ee053c 1862 button &= ~MOD_MASK;
66164171 1863 nullret = NULL;
118473f5 1864 action = NONE;
720a8fb7 1865
66164171 1866 if (button == LEFT_BUTTON ||
1867 button == MIDDLE_BUTTON ||
1868 button == RIGHT_BUTTON) {
1869
1870 if (ui->cur_visible) {
1871 ui->cur_visible = FALSE;
df11cd4e 1872 nullret = "";
66164171 1873 }
1874
1875 /*
1876 * The button must have been clicked on a valid tile.
1877 */
1878 x -= WINDOW_OFFSET + TILE_BORDER;
1879 y -= WINDOW_OFFSET + TILE_BORDER;
1880 if (x < 0 || y < 0)
1881 return nullret;
1882 tx = x / TILE_SIZE;
1883 ty = y / TILE_SIZE;
1884 if (tx >= state->width || ty >= state->height)
1885 return nullret;
f0ee053c 1886 /* Transform from physical to game coords */
1887 tx = (tx + ui->org_x) % state->width;
1888 ty = (ty + ui->org_y) % state->height;
66164171 1889 if (x % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
1890 y % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
1891 return nullret;
118473f5 1892
1893 action = button == LEFT_BUTTON ? ROTATE_LEFT :
1894 button == RIGHT_BUTTON ? ROTATE_RIGHT : TOGGLE_LOCK;
66164171 1895 } else if (button == CURSOR_UP || button == CURSOR_DOWN ||
1896 button == CURSOR_RIGHT || button == CURSOR_LEFT) {
f0ee053c 1897 switch (button) {
1898 case CURSOR_UP: dir = U; break;
1899 case CURSOR_DOWN: dir = D; break;
1900 case CURSOR_LEFT: dir = L; break;
1901 case CURSOR_RIGHT: dir = R; break;
1902 default: return nullret;
1903 }
118473f5 1904 if (shift && ctrl) action = MOVE_ORIGIN_AND_SOURCE;
1905 else if (shift) action = MOVE_ORIGIN;
1906 else if (ctrl) action = MOVE_SOURCE;
1907 else action = MOVE_CURSOR;
66164171 1908 } else if (button == 'a' || button == 's' || button == 'd' ||
4cd25760 1909 button == 'A' || button == 'S' || button == 'D' ||
118473f5 1910 button == 'f' || button == 'F' ||
4cd25760 1911 button == CURSOR_SELECT) {
66164171 1912 tx = ui->cur_x;
1913 ty = ui->cur_y;
4cd25760 1914 if (button == 'a' || button == 'A' || button == CURSOR_SELECT)
118473f5 1915 action = ROTATE_LEFT;
66164171 1916 else if (button == 's' || button == 'S')
118473f5 1917 action = TOGGLE_LOCK;
66164171 1918 else if (button == 'd' || button == 'D')
118473f5 1919 action = ROTATE_RIGHT;
1920 else if (button == 'f' || button == 'F')
1921 action = ROTATE_180;
0671fa51 1922 ui->cur_visible = TRUE;
cbb5549e 1923 } else if (button == 'j' || button == 'J') {
1924 /* XXX should we have some mouse control for this? */
118473f5 1925 action = JUMBLE;
66164171 1926 } else
1927 return nullret;
720a8fb7 1928
1929 /*
1930 * The middle button locks or unlocks a tile. (A locked tile
1931 * cannot be turned, and is visually marked as being locked.
1932 * This is a convenience for the player, so that once they are
1933 * sure which way round a tile goes, they can lock it and thus
1934 * avoid forgetting later on that they'd already done that one;
1935 * and the locking also prevents them turning the tile by
1936 * accident. If they change their mind, another middle click
1937 * unlocks it.)
1938 */
118473f5 1939 if (action == TOGGLE_LOCK) {
df11cd4e 1940 char buf[80];
1941 sprintf(buf, "L%d,%d", tx, ty);
1942 return dupstr(buf);
118473f5 1943 } else if (action == ROTATE_LEFT || action == ROTATE_RIGHT ||
1944 action == ROTATE_180) {
216147c0 1945 char buf[80];
720a8fb7 1946
cbb5549e 1947 /*
1948 * The left and right buttons have no effect if clicked on a
1949 * locked tile.
1950 */
1951 if (tile(state, tx, ty) & LOCKED)
1952 return nullret;
1953
1954 /*
1955 * Otherwise, turn the tile one way or the other. Left button
1956 * turns anticlockwise; right button turns clockwise.
1957 */
118473f5 1958 sprintf(buf, "%c%d,%d", (int)(action == ROTATE_LEFT ? 'A' :
1959 action == ROTATE_RIGHT ? 'C' : 'F'), tx, ty);
df11cd4e 1960 return dupstr(buf);
118473f5 1961 } else if (action == JUMBLE) {
cbb5549e 1962 /*
1963 * Jumble all unlocked tiles to random orientations.
1964 */
df11cd4e 1965
1966 int jx, jy, maxlen;
1967 char *ret, *p;
1968
1969 /*
1970 * Maximum string length assumes no int can be converted to
1971 * decimal and take more than 11 digits!
1972 */
1973 maxlen = state->width * state->height * 25 + 3;
1974
1975 ret = snewn(maxlen, char);
1976 p = ret;
1977 *p++ = 'J';
1978
1979 for (jy = 0; jy < state->height; jy++) {
1980 for (jx = 0; jx < state->width; jx++) {
1981 if (!(tile(state, jx, jy) & LOCKED)) {
cbb5549e 1982 int rot = random_upto(ui->rs, 4);
df11cd4e 1983 if (rot) {
1984 p += sprintf(p, ";%c%d,%d", "AFC"[rot-1], jx, jy);
1985 }
cbb5549e 1986 }
1987 }
1988 }
df11cd4e 1989 *p++ = '\0';
1990 assert(p - ret < maxlen);
1991 ret = sresize(ret, p - ret, char);
cbb5549e 1992
df11cd4e 1993 return ret;
118473f5 1994 } else if (action == MOVE_ORIGIN || action == MOVE_SOURCE ||
1995 action == MOVE_ORIGIN_AND_SOURCE || action == MOVE_CURSOR) {
1996 assert(dir != 0);
1997 if (action == MOVE_ORIGIN || action == MOVE_ORIGIN_AND_SOURCE) {
1998 if (state->wrapping) {
1999 OFFSET(ui->org_x, ui->org_y, ui->org_x, ui->org_y, dir, state);
2000 } else return nullret; /* disallowed for non-wrapping grids */
2001 }
2002 if (action == MOVE_SOURCE || action == MOVE_ORIGIN_AND_SOURCE) {
2003 OFFSET(ui->cx, ui->cy, ui->cx, ui->cy, dir, state);
2004 }
2005 if (action == MOVE_CURSOR) {
2006 OFFSET(ui->cur_x, ui->cur_y, ui->cur_x, ui->cur_y, dir, state);
2007 ui->cur_visible = TRUE;
2008 }
2009 return "";
ab53eb64 2010 } else {
df11cd4e 2011 return NULL;
2012 }
2013}
2014
2015static game_state *execute_move(game_state *from, char *move)
2016{
2017 game_state *ret;
2018 int tx, ty, n, noanim, orig;
2019
2020 ret = dup_game(from);
df11cd4e 2021
2022 if (move[0] == 'J' || move[0] == 'S') {
2023 if (move[0] == 'S')
a440f184 2024 ret->used_solve = TRUE;
df11cd4e 2025
2026 move++;
2027 if (*move == ';')
2028 move++;
2029 noanim = TRUE;
2030 } else
2031 noanim = FALSE;
2032
2033 ret->last_rotate_dir = 0; /* suppress animation */
2034 ret->last_rotate_x = ret->last_rotate_y = 0;
2035
2036 while (*move) {
2037 if ((move[0] == 'A' || move[0] == 'C' ||
2038 move[0] == 'F' || move[0] == 'L') &&
2039 sscanf(move+1, "%d,%d%n", &tx, &ty, &n) >= 2 &&
2040 tx >= 0 && tx < from->width && ty >= 0 && ty < from->height) {
2041 orig = tile(ret, tx, ty);
2042 if (move[0] == 'A') {
2043 tile(ret, tx, ty) = A(orig);
2044 if (!noanim)
2045 ret->last_rotate_dir = +1;
2046 } else if (move[0] == 'F') {
2047 tile(ret, tx, ty) = F(orig);
118473f5 2048 if (!noanim)
2049 ret->last_rotate_dir = +2; /* + for sake of argument */
df11cd4e 2050 } else if (move[0] == 'C') {
2051 tile(ret, tx, ty) = C(orig);
2052 if (!noanim)
2053 ret->last_rotate_dir = -1;
2054 } else {
2055 assert(move[0] == 'L');
2056 tile(ret, tx, ty) ^= LOCKED;
2057 }
2058
2059 move += 1 + n;
2060 if (*move == ';') move++;
2061 } else {
2062 free_game(ret);
2063 return NULL;
2064 }
2065 }
2066 if (!noanim) {
2067 ret->last_rotate_x = tx;
2068 ret->last_rotate_y = ty;
ab53eb64 2069 }
720a8fb7 2070
2071 /*
2072 * Check whether the game has been completed.
df11cd4e 2073 *
2074 * For this purpose it doesn't matter where the source square
2075 * is, because we can start from anywhere and correctly
2076 * determine whether the game is completed.
720a8fb7 2077 */
2078 {
df11cd4e 2079 unsigned char *active = compute_active(ret, 0, 0);
720a8fb7 2080 int x1, y1;
2081 int complete = TRUE;
2082
2083 for (x1 = 0; x1 < ret->width; x1++)
2084 for (y1 = 0; y1 < ret->height; y1++)
1185e3c5 2085 if ((tile(ret, x1, y1) & 0xF) && !index(ret, active, x1, y1)) {
720a8fb7 2086 complete = FALSE;
2087 goto break_label; /* break out of two loops at once */
2088 }
2089 break_label:
2090
2091 sfree(active);
2092
2093 if (complete)
2094 ret->completed = TRUE;
2095 }
2096
2097 return ret;
2098}
2099
df11cd4e 2100
720a8fb7 2101/* ----------------------------------------------------------------------
2102 * Routines for drawing the game position on the screen.
2103 */
2104
dafd6cf6 2105static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
2ef96bd6 2106{
2107 game_drawstate *ds = snew(game_drawstate);
2108
2109 ds->started = FALSE;
2110 ds->width = state->width;
2111 ds->height = state->height;
f0ee053c 2112 ds->org_x = ds->org_y = -1;
2ef96bd6 2113 ds->visible = snewn(state->width * state->height, unsigned char);
1e3e152d 2114 ds->tilesize = 0; /* undecided yet */
2ef96bd6 2115 memset(ds->visible, 0xFF, state->width * state->height);
2116
2117 return ds;
2118}
2119
dafd6cf6 2120static void game_free_drawstate(drawing *dr, game_drawstate *ds)
2ef96bd6 2121{
2122 sfree(ds->visible);
2123 sfree(ds);
2124}
2125
1f3ee4ee 2126static void game_compute_size(game_params *params, int tilesize,
2127 int *x, int *y)
7f77ea24 2128{
1f3ee4ee 2129 *x = WINDOW_OFFSET * 2 + tilesize * params->width + TILE_BORDER;
2130 *y = WINDOW_OFFSET * 2 + tilesize * params->height + TILE_BORDER;
2131}
1e3e152d 2132
dafd6cf6 2133static void game_set_size(drawing *dr, game_drawstate *ds,
2134 game_params *params, int tilesize)
1f3ee4ee 2135{
2136 ds->tilesize = tilesize;
7f77ea24 2137}
2138
8266f3fc 2139static float *game_colours(frontend *fe, int *ncolours)
2ef96bd6 2140{
2141 float *ret;
83680571 2142
2ef96bd6 2143 ret = snewn(NCOLOURS * 3, float);
2144 *ncolours = NCOLOURS;
720a8fb7 2145
2ef96bd6 2146 /*
2147 * Basic background colour is whatever the front end thinks is
2148 * a sensible default.
2149 */
2150 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2151
2152 /*
2153 * Wires are black.
2154 */
03f856c4 2155 ret[COL_WIRE * 3 + 0] = 0.0F;
2156 ret[COL_WIRE * 3 + 1] = 0.0F;
2157 ret[COL_WIRE * 3 + 2] = 0.0F;
2ef96bd6 2158
2159 /*
2160 * Powered wires and powered endpoints are cyan.
2161 */
03f856c4 2162 ret[COL_POWERED * 3 + 0] = 0.0F;
2163 ret[COL_POWERED * 3 + 1] = 1.0F;
2164 ret[COL_POWERED * 3 + 2] = 1.0F;
2ef96bd6 2165
2166 /*
2167 * Barriers are red.
2168 */
03f856c4 2169 ret[COL_BARRIER * 3 + 0] = 1.0F;
2170 ret[COL_BARRIER * 3 + 1] = 0.0F;
2171 ret[COL_BARRIER * 3 + 2] = 0.0F;
2ef96bd6 2172
2173 /*
2174 * Unpowered endpoints are blue.
2175 */
03f856c4 2176 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
2177 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
2178 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
2ef96bd6 2179
2180 /*
2181 * Tile borders are a darker grey than the background.
2182 */
03f856c4 2183 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2184 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2185 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2ef96bd6 2186
2187 /*
2188 * Locked tiles are a grey in between those two.
2189 */
03f856c4 2190 ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2191 ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2192 ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2ef96bd6 2193
2194 return ret;
2195}
2196
dafd6cf6 2197static void draw_thick_line(drawing *dr, int x1, int y1, int x2, int y2,
2ef96bd6 2198 int colour)
720a8fb7 2199{
dafd6cf6 2200 draw_line(dr, x1-1, y1, x2-1, y2, COL_WIRE);
2201 draw_line(dr, x1+1, y1, x2+1, y2, COL_WIRE);
2202 draw_line(dr, x1, y1-1, x2, y2-1, COL_WIRE);
2203 draw_line(dr, x1, y1+1, x2, y2+1, COL_WIRE);
2204 draw_line(dr, x1, y1, x2, y2, colour);
2ef96bd6 2205}
720a8fb7 2206
dafd6cf6 2207static void draw_rect_coords(drawing *dr, int x1, int y1, int x2, int y2,
2ef96bd6 2208 int colour)
2209{
2210 int mx = (x1 < x2 ? x1 : x2);
2211 int my = (y1 < y2 ? y1 : y2);
2212 int dx = (x2 + x1 - 2*mx + 1);
2213 int dy = (y2 + y1 - 2*my + 1);
720a8fb7 2214
dafd6cf6 2215 draw_rect(dr, mx, my, dx, dy, colour);
2ef96bd6 2216}
720a8fb7 2217
f0ee053c 2218/*
2219 * draw_barrier_corner() and draw_barrier() are passed physical coords
2220 */
dafd6cf6 2221static void draw_barrier_corner(drawing *dr, game_drawstate *ds,
1e3e152d 2222 int x, int y, int dx, int dy, int phase)
2ef96bd6 2223{
2224 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2225 int by = WINDOW_OFFSET + TILE_SIZE * y;
6c333866 2226 int x1, y1;
2ef96bd6 2227
2ef96bd6 2228 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
2229 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
2230
2231 if (phase == 0) {
dafd6cf6 2232 draw_rect_coords(dr, bx+x1+dx, by+y1,
2ef96bd6 2233 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
6c333866 2234 COL_WIRE);
dafd6cf6 2235 draw_rect_coords(dr, bx+x1, by+y1+dy,
2ef96bd6 2236 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
6c333866 2237 COL_WIRE);
2ef96bd6 2238 } else {
dafd6cf6 2239 draw_rect_coords(dr, bx+x1, by+y1,
2ef96bd6 2240 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
6c333866 2241 COL_BARRIER);
720a8fb7 2242 }
2ef96bd6 2243}
2244
dafd6cf6 2245static void draw_barrier(drawing *dr, game_drawstate *ds,
1e3e152d 2246 int x, int y, int dir, int phase)
2ef96bd6 2247{
2248 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2249 int by = WINDOW_OFFSET + TILE_SIZE * y;
2250 int x1, y1, w, h;
2251
2252 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
2253 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
2254 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
2255 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
2256
2257 if (phase == 0) {
dafd6cf6 2258 draw_rect(dr, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
2ef96bd6 2259 } else {
dafd6cf6 2260 draw_rect(dr, bx+x1, by+y1, w, h, COL_BARRIER);
2ef96bd6 2261 }
2262}
720a8fb7 2263
f0ee053c 2264/*
2265 * draw_tile() is passed physical coordinates
2266 */
dafd6cf6 2267static void draw_tile(drawing *dr, game_state *state, game_drawstate *ds,
f0ee053c 2268 int x, int y, int tile, int src, float angle, int cursor)
2ef96bd6 2269{
2270 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2271 int by = WINDOW_OFFSET + TILE_SIZE * y;
2272 float matrix[4];
2273 float cx, cy, ex, ey, tx, ty;
2274 int dir, col, phase;
720a8fb7 2275
2ef96bd6 2276 /*
2277 * When we draw a single tile, we must draw everything up to
2278 * and including the borders around the tile. This means that
2279 * if the neighbouring tiles have connections to those borders,
2280 * we must draw those connections on the borders themselves.
2ef96bd6 2281 */
2282
dafd6cf6 2283 clip(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
6c333866 2284
2ef96bd6 2285 /*
2286 * So. First blank the tile out completely: draw a big
2287 * rectangle in border colour, and a smaller rectangle in
2288 * background colour to fill it in.
2289 */
dafd6cf6 2290 draw_rect(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
2ef96bd6 2291 COL_BORDER);
dafd6cf6 2292 draw_rect(dr, bx+TILE_BORDER, by+TILE_BORDER,
2ef96bd6 2293 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
2294 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
2295
2296 /*
66164171 2297 * Draw an inset outline rectangle as a cursor, in whichever of
2298 * COL_LOCKED and COL_BACKGROUND we aren't currently drawing
2299 * in.
2300 */
2301 if (cursor) {
dafd6cf6 2302 draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE/8,
66164171 2303 bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2304 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
dafd6cf6 2305 draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE/8,
66164171 2306 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
2307 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
dafd6cf6 2308 draw_line(dr, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
66164171 2309 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2310 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
dafd6cf6 2311 draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
66164171 2312 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2313 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2314 }
2315
2316 /*
2ef96bd6 2317 * Set up the rotation matrix.
2318 */
03f856c4 2319 matrix[0] = (float)cos(angle * PI / 180.0);
2320 matrix[1] = (float)-sin(angle * PI / 180.0);
2321 matrix[2] = (float)sin(angle * PI / 180.0);
2322 matrix[3] = (float)cos(angle * PI / 180.0);
2ef96bd6 2323
2324 /*
2325 * Draw the wires.
2326 */
03f856c4 2327 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
2ef96bd6 2328 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
2329 for (dir = 1; dir < 0x10; dir <<= 1) {
2330 if (tile & dir) {
03f856c4 2331 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
2332 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2ef96bd6 2333 MATMUL(tx, ty, matrix, ex, ey);
dafd6cf6 2334 draw_thick_line(dr, bx+(int)cx, by+(int)cy,
03f856c4 2335 bx+(int)(cx+tx), by+(int)(cy+ty),
2ef96bd6 2336 COL_WIRE);
2337 }
2338 }
2339 for (dir = 1; dir < 0x10; dir <<= 1) {
2340 if (tile & dir) {
03f856c4 2341 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
2342 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2ef96bd6 2343 MATMUL(tx, ty, matrix, ex, ey);
dafd6cf6 2344 draw_line(dr, bx+(int)cx, by+(int)cy,
03f856c4 2345 bx+(int)(cx+tx), by+(int)(cy+ty), col);
2ef96bd6 2346 }
2347 }
2348
2349 /*
2350 * Draw the box in the middle. We do this in blue if the tile
2351 * is an unpowered endpoint, in cyan if the tile is a powered
2352 * endpoint, in black if the tile is the centrepiece, and
2353 * otherwise not at all.
2354 */
2355 col = -1;
f0ee053c 2356 if (src)
2ef96bd6 2357 col = COL_WIRE;
2358 else if (COUNT(tile) == 1) {
2359 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
2360 }
2361 if (col >= 0) {
2362 int i, points[8];
2363
2364 points[0] = +1; points[1] = +1;
2365 points[2] = +1; points[3] = -1;
2366 points[4] = -1; points[5] = -1;
2367 points[6] = -1; points[7] = +1;
2368
2369 for (i = 0; i < 8; i += 2) {
03f856c4 2370 ex = (TILE_SIZE * 0.24F) * points[i];
2371 ey = (TILE_SIZE * 0.24F) * points[i+1];
2ef96bd6 2372 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 2373 points[i] = bx+(int)(cx+tx);
2374 points[i+1] = by+(int)(cy+ty);
2ef96bd6 2375 }
2376
dafd6cf6 2377 draw_polygon(dr, points, 4, col, COL_WIRE);
2ef96bd6 2378 }
2379
2380 /*
2381 * Draw the points on the border if other tiles are connected
2382 * to us.
2383 */
2384 for (dir = 1; dir < 0x10; dir <<= 1) {
2385 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
2386
2387 dx = X(dir);
2388 dy = Y(dir);
2389
2390 ox = x + dx;
2391 oy = y + dy;
2392
2393 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
2394 continue;
2395
f0ee053c 2396 if (!(tile(state, GX(ox), GY(oy)) & F(dir)))
2ef96bd6 2397 continue;
2398
03f856c4 2399 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
2400 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
2ef96bd6 2401 lx = dx * (TILE_BORDER-1);
2402 ly = dy * (TILE_BORDER-1);
2403 vx = (dy ? 1 : 0);
2404 vy = (dx ? 1 : 0);
2405
2406 if (angle == 0.0 && (tile & dir)) {
2407 /*
2408 * If we are fully connected to the other tile, we must
2409 * draw right across the tile border. (We can use our
2410 * own ACTIVE state to determine what colour to do this
2411 * in: if we are fully connected to the other tile then
2412 * the two ACTIVE states will be the same.)
2413 */
dafd6cf6 2414 draw_rect_coords(dr, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
2415 draw_rect_coords(dr, px, py, px+lx, py+ly,
2ef96bd6 2416 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
2417 } else {
2418 /*
2419 * The other tile extends into our border, but isn't
2420 * actually connected to us. Just draw a single black
2421 * dot.
2422 */
dafd6cf6 2423 draw_rect_coords(dr, px, py, px, py, COL_WIRE);
2ef96bd6 2424 }
2425 }
2426
2427 /*
2428 * Draw barrier corners, and then barriers.
2429 */
2430 for (phase = 0; phase < 2; phase++) {
6c333866 2431 for (dir = 1; dir < 0x10; dir <<= 1) {
2432 int x1, y1, corner = FALSE;
2433 /*
2434 * If at least one barrier terminates at the corner
2435 * between dir and A(dir), draw a barrier corner.
2436 */
2437 if (barrier(state, GX(x), GY(y)) & (dir | A(dir))) {
2438 corner = TRUE;
2439 } else {
2440 /*
2441 * Only count barriers terminating at this corner
2442 * if they're physically next to the corner. (That
2443 * is, if they've wrapped round from the far side
2444 * of the screen, they don't count.)
2445 */
2446 x1 = x + X(dir);
2447 y1 = y + Y(dir);
2448 if (x1 >= 0 && x1 < state->width &&
2449 y1 >= 0 && y1 < state->height &&
2450 (barrier(state, GX(x1), GY(y1)) & A(dir))) {
2451 corner = TRUE;
2452 } else {
2453 x1 = x + X(A(dir));
2454 y1 = y + Y(A(dir));
2455 if (x1 >= 0 && x1 < state->width &&
2456 y1 >= 0 && y1 < state->height &&
2457 (barrier(state, GX(x1), GY(y1)) & dir))
2458 corner = TRUE;
2459 }
2460 }
2461
2462 if (corner) {
2463 /*
2464 * At least one barrier terminates here. Draw a
2465 * corner.
2466 */
dafd6cf6 2467 draw_barrier_corner(dr, ds, x, y,
6c333866 2468 X(dir)+X(A(dir)), Y(dir)+Y(A(dir)),
2469 phase);
2470 }
2471 }
2472
2ef96bd6 2473 for (dir = 1; dir < 0x10; dir <<= 1)
f0ee053c 2474 if (barrier(state, GX(x), GY(y)) & dir)
dafd6cf6 2475 draw_barrier(dr, ds, x, y, dir, phase);
2ef96bd6 2476 }
2477
dafd6cf6 2478 unclip(dr);
6c333866 2479
dafd6cf6 2480 draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
720a8fb7 2481}
2482
dafd6cf6 2483static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
c822de4a 2484 game_state *state, int dir, game_ui *ui, float t, float ft)
2ef96bd6 2485{
f0ee053c 2486 int x, y, tx, ty, frame, last_rotate_dir, moved_origin = FALSE;
2ef96bd6 2487 unsigned char *active;
2488 float angle = 0.0;
2489
2490 /*
6c333866 2491 * Clear the screen, and draw the exterior barrier lines, if
2492 * this is our first call or if the origin has changed.
2ef96bd6 2493 */
6c333866 2494 if (!ds->started || ui->org_x != ds->org_x || ui->org_y != ds->org_y) {
2495 int phase;
2496
2ef96bd6 2497 ds->started = TRUE;
2498
dafd6cf6 2499 draw_rect(dr, 0, 0,
2ef96bd6 2500 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
2501 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
2502 COL_BACKGROUND);
f0ee053c 2503
f0ee053c 2504 ds->org_x = ui->org_x;
2505 ds->org_y = ui->org_y;
2506 moved_origin = TRUE;
2507
dafd6cf6 2508 draw_update(dr, 0, 0,
2ef96bd6 2509 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
2510 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
6c333866 2511
2ef96bd6 2512 for (phase = 0; phase < 2; phase++) {
2513
2514 for (x = 0; x < ds->width; x++) {
6c333866 2515 if (x+1 < ds->width) {
2516 if (barrier(state, GX(x), GY(0)) & R)
dafd6cf6 2517 draw_barrier_corner(dr, ds, x, -1, +1, +1, phase);
6c333866 2518 if (barrier(state, GX(x), GY(ds->height-1)) & R)
dafd6cf6 2519 draw_barrier_corner(dr, ds, x, ds->height, +1, -1, phase);
6c333866 2520 }
2521 if (barrier(state, GX(x), GY(0)) & U) {
dafd6cf6 2522 draw_barrier_corner(dr, ds, x, -1, -1, +1, phase);
2523 draw_barrier_corner(dr, ds, x, -1, +1, +1, phase);
2524 draw_barrier(dr, ds, x, -1, D, phase);
6c333866 2525 }
2526 if (barrier(state, GX(x), GY(ds->height-1)) & D) {
dafd6cf6 2527 draw_barrier_corner(dr, ds, x, ds->height, -1, -1, phase);
2528 draw_barrier_corner(dr, ds, x, ds->height, +1, -1, phase);
2529 draw_barrier(dr, ds, x, ds->height, U, phase);
6c333866 2530 }
2ef96bd6 2531 }
2532
2533 for (y = 0; y < ds->height; y++) {
6c333866 2534 if (y+1 < ds->height) {
2535 if (barrier(state, GX(0), GY(y)) & D)
dafd6cf6 2536 draw_barrier_corner(dr, ds, -1, y, +1, +1, phase);
6c333866 2537 if (barrier(state, GX(ds->width-1), GY(y)) & D)
dafd6cf6 2538 draw_barrier_corner(dr, ds, ds->width, y, -1, +1, phase);
6c333866 2539 }
2540 if (barrier(state, GX(0), GY(y)) & L) {
dafd6cf6 2541 draw_barrier_corner(dr, ds, -1, y, +1, -1, phase);
2542 draw_barrier_corner(dr, ds, -1, y, +1, +1, phase);
2543 draw_barrier(dr, ds, -1, y, R, phase);
6c333866 2544 }
2545 if (barrier(state, GX(ds->width-1), GY(y)) & R) {
dafd6cf6 2546 draw_barrier_corner(dr, ds, ds->width, y, -1, -1, phase);
2547 draw_barrier_corner(dr, ds, ds->width, y, -1, +1, phase);
2548 draw_barrier(dr, ds, ds->width, y, L, phase);
6c333866 2549 }
2ef96bd6 2550 }
2551 }
2552 }
2553
2554 tx = ty = -1;
cbb5549e 2555 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
2556 state->last_rotate_dir;
2557 if (oldstate && (t < ROTATE_TIME) && last_rotate_dir) {
2ef96bd6 2558 /*
1185e3c5 2559 * We're animating a single tile rotation. Find the turning
2560 * tile.
2ef96bd6 2561 */
1185e3c5 2562 tx = (dir==-1 ? oldstate->last_rotate_x : state->last_rotate_x);
2563 ty = (dir==-1 ? oldstate->last_rotate_y : state->last_rotate_y);
2564 angle = last_rotate_dir * dir * 90.0F * (t / ROTATE_TIME);
2565 state = oldstate;
87ed82be 2566 }
1185e3c5 2567
87ed82be 2568 frame = -1;
2569 if (ft > 0) {
2ef96bd6 2570 /*
2571 * We're animating a completion flash. Find which frame
2572 * we're at.
2573 */
87ed82be 2574 frame = (int)(ft / FLASH_FRAME);
2ef96bd6 2575 }
2576
2577 /*
2578 * Draw any tile which differs from the way it was last drawn.
2579 */
f0ee053c 2580 active = compute_active(state, ui->cx, ui->cy);
2ef96bd6 2581
2582 for (x = 0; x < ds->width; x++)
2583 for (y = 0; y < ds->height; y++) {
f0ee053c 2584 unsigned char c = tile(state, GX(x), GY(y)) |
2585 index(state, active, GX(x), GY(y));
2586 int is_src = GX(x) == ui->cx && GY(y) == ui->cy;
2587 int is_anim = GX(x) == tx && GY(y) == ty;
2588 int is_cursor = ui->cur_visible &&
2589 GX(x) == ui->cur_x && GY(y) == ui->cur_y;
2ef96bd6 2590
2591 /*
2592 * In a completion flash, we adjust the LOCKED bit
2593 * depending on our distance from the centre point and
2594 * the frame number.
2595 */
2596 if (frame >= 0) {
f0ee053c 2597 int rcx = RX(ui->cx), rcy = RY(ui->cy);
2ef96bd6 2598 int xdist, ydist, dist;
f0ee053c 2599 xdist = (x < rcx ? rcx - x : x - rcx);
2600 ydist = (y < rcy ? rcy - y : y - rcy);
2ef96bd6 2601 dist = (xdist > ydist ? xdist : ydist);
2602
2603 if (frame >= dist && frame < dist+4) {
2604 int lock = (frame - dist) & 1;
2605 lock = lock ? LOCKED : 0;
2606 c = (c &~ LOCKED) | lock;
2607 }
2608 }
2609
f0ee053c 2610 if (moved_origin ||
2611 index(state, ds->visible, x, y) != c ||
2ef96bd6 2612 index(state, ds->visible, x, y) == 0xFF ||
f0ee053c 2613 is_src || is_anim || is_cursor) {
dafd6cf6 2614 draw_tile(dr, state, ds, x, y, c,
f0ee053c 2615 is_src, (is_anim ? angle : 0.0F), is_cursor);
2616 if (is_src || is_anim || is_cursor)
2ef96bd6 2617 index(state, ds->visible, x, y) = 0xFF;
2618 else
2619 index(state, ds->visible, x, y) = c;
2620 }
2621 }
2622
fd1a1a2b 2623 /*
2624 * Update the status bar.
2625 */
2626 {
2627 char statusbuf[256];
1185e3c5 2628 int i, n, n2, a;
fd1a1a2b 2629
2630 n = state->width * state->height;
1185e3c5 2631 for (i = a = n2 = 0; i < n; i++) {
fd1a1a2b 2632 if (active[i])
2633 a++;
1185e3c5 2634 if (state->tiles[i] & 0xF)
2635 n2++;
2636 }
fd1a1a2b 2637
2638 sprintf(statusbuf, "%sActive: %d/%d",
2ac6d24e 2639 (state->used_solve ? "Auto-solved. " :
1185e3c5 2640 state->completed ? "COMPLETED! " : ""), a, n2);
fd1a1a2b 2641
dafd6cf6 2642 status_bar(dr, statusbuf);
fd1a1a2b 2643 }
2644
2ef96bd6 2645 sfree(active);
2646}
2647
be8d5aa1 2648static float game_anim_length(game_state *oldstate,
e3f21163 2649 game_state *newstate, int dir, game_ui *ui)
2ef96bd6 2650{
1185e3c5 2651 int last_rotate_dir;
2ef96bd6 2652
2653 /*
cbb5549e 2654 * Don't animate if last_rotate_dir is zero.
2ef96bd6 2655 */
cbb5549e 2656 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
2657 newstate->last_rotate_dir;
1185e3c5 2658 if (last_rotate_dir)
2659 return ROTATE_TIME;
2ef96bd6 2660
87ed82be 2661 return 0.0F;
2662}
2663
be8d5aa1 2664static float game_flash_length(game_state *oldstate,
e3f21163 2665 game_state *newstate, int dir, game_ui *ui)
87ed82be 2666{
2ef96bd6 2667 /*
87ed82be 2668 * If the game has just been completed, we display a completion
2669 * flash.
2ef96bd6 2670 */
2ac6d24e 2671 if (!oldstate->completed && newstate->completed &&
2672 !oldstate->used_solve && !newstate->used_solve) {
f0ee053c 2673 int size = 0;
2674 if (size < newstate->width)
2675 size = newstate->width;
2676 if (size < newstate->height)
2677 size = newstate->height;
87ed82be 2678 return FLASH_FRAME * (size+4);
2ef96bd6 2679 }
2680
87ed82be 2681 return 0.0F;
2ef96bd6 2682}
fd1a1a2b 2683
4d08de49 2684static int game_timing_state(game_state *state, game_ui *ui)
48dcdd62 2685{
2686 return TRUE;
2687}
2688
dafd6cf6 2689static void game_print_size(game_params *params, float *x, float *y)
2690{
2691 int pw, ph;
2692
2693 /*
2694 * I'll use 8mm squares by default.
2695 */
2696 game_compute_size(params, 800, &pw, &ph);
2697 *x = pw / 100.0;
2698 *y = ph / 100.0;
2699}
2700
2701static void draw_diagram(drawing *dr, game_drawstate *ds, int x, int y,
2702 int topleft, int v, int drawlines, int ink)
2703{
2704 int tx, ty, cx, cy, r, br, k, thick;
2705
2706 tx = WINDOW_OFFSET + TILE_SIZE * x;
2707 ty = WINDOW_OFFSET + TILE_SIZE * y;
2708
2709 /*
2710 * Find our centre point.
2711 */
2712 if (topleft) {
2713 cx = tx + (v & L ? TILE_SIZE / 4 : TILE_SIZE / 6);
2714 cy = ty + (v & U ? TILE_SIZE / 4 : TILE_SIZE / 6);
2715 r = TILE_SIZE / 8;
2716 br = TILE_SIZE / 32;
2717 } else {
2718 cx = tx + TILE_SIZE / 2;
2719 cy = ty + TILE_SIZE / 2;
2720 r = TILE_SIZE / 2;
2721 br = TILE_SIZE / 8;
2722 }
2723 thick = r / 20;
2724
2725 /*
2726 * Draw the square block if we have an endpoint.
2727 */
2728 if (v == 1 || v == 2 || v == 4 || v == 8)
2729 draw_rect(dr, cx - br, cy - br, br*2, br*2, ink);
2730
2731 /*
2732 * Draw each radial line.
2733 */
2734 if (drawlines) {
dafd6cf6 2735 for (k = 1; k < 16; k *= 2)
2736 if (v & k) {
2737 int x1 = min(cx, cx + (r-thick) * X(k));
2738 int x2 = max(cx, cx + (r-thick) * X(k));
2739 int y1 = min(cy, cy + (r-thick) * Y(k));
2740 int y2 = max(cy, cy + (r-thick) * Y(k));
2741 draw_rect(dr, x1 - thick, y1 - thick,
2742 (x2 - x1) + 2*thick, (y2 - y1) + 2*thick, ink);
2743 }
2744 }
2745}
2746
2747static void game_print(drawing *dr, game_state *state, int tilesize)
2748{
2749 int w = state->width, h = state->height;
2750 int ink = print_mono_colour(dr, 0);
2751 int x, y;
2752
2753 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2754 game_drawstate ads, *ds = &ads;
4413ef0f 2755 game_set_size(dr, ds, NULL, tilesize);
dafd6cf6 2756
2757 /*
2758 * Border.
2759 */
2760 print_line_width(dr, TILE_SIZE / (state->wrapping ? 128 : 12));
2761 draw_rect_outline(dr, WINDOW_OFFSET, WINDOW_OFFSET,
2762 TILE_SIZE * w, TILE_SIZE * h, ink);
2763
2764 /*
2765 * Grid.
2766 */
2767 print_line_width(dr, TILE_SIZE / 128);
2768 for (x = 1; x < w; x++)
2769 draw_line(dr, WINDOW_OFFSET + TILE_SIZE * x, WINDOW_OFFSET,
2770 WINDOW_OFFSET + TILE_SIZE * x, WINDOW_OFFSET + TILE_SIZE * h,
2771 ink);
2772 for (y = 1; y < h; y++)
2773 draw_line(dr, WINDOW_OFFSET, WINDOW_OFFSET + TILE_SIZE * y,
2774 WINDOW_OFFSET + TILE_SIZE * w, WINDOW_OFFSET + TILE_SIZE * y,
2775 ink);
2776
2777 /*
2778 * Barriers.
2779 */
2780 for (y = 0; y <= h; y++)
2781 for (x = 0; x <= w; x++) {
2782 int b = barrier(state, x % w, y % h);
dafd6cf6 2783 if (x < w && (b & U))
2784 draw_rect(dr, WINDOW_OFFSET + TILE_SIZE * x - TILE_SIZE/24,
2785 WINDOW_OFFSET + TILE_SIZE * y - TILE_SIZE/24,
2786 TILE_SIZE + TILE_SIZE/24 * 2, TILE_SIZE/24 * 2, ink);
2787 if (y < h && (b & L))
2788 draw_rect(dr, WINDOW_OFFSET + TILE_SIZE * x - TILE_SIZE/24,
2789 WINDOW_OFFSET + TILE_SIZE * y - TILE_SIZE/24,
2790 TILE_SIZE/24 * 2, TILE_SIZE + TILE_SIZE/24 * 2, ink);
2791 }
2792
2793 /*
2794 * Grid contents.
2795 */
2796 for (y = 0; y < h; y++)
2797 for (x = 0; x < w; x++) {
2798 int vx, v = tile(state, x, y);
2799 int locked = v & LOCKED;
2800
2801 v &= 0xF;
2802
2803 /*
2804 * Rotate into a standard orientation for the top left
2805 * corner diagram.
2806 */
2807 vx = v;
2808 while (vx != 0 && vx != 15 && vx != 1 && vx != 9 && vx != 13 &&
2809 vx != 5)
2810 vx = A(vx);
2811
2812 /*
2813 * Draw the top left corner diagram.
2814 */
2815 draw_diagram(dr, ds, x, y, TRUE, vx, TRUE, ink);
2816
2817 /*
2818 * Draw the real solution diagram, if we're doing so.
2819 */
2820 draw_diagram(dr, ds, x, y, FALSE, v, locked, ink);
2821 }
2822}
2823
be8d5aa1 2824#ifdef COMBINED
2825#define thegame net
2826#endif
2827
2828const struct game thegame = {
1d228b10 2829 "Net", "games.net",
be8d5aa1 2830 default_params,
2831 game_fetch_preset,
2832 decode_params,
2833 encode_params,
2834 free_params,
2835 dup_params,
1d228b10 2836 TRUE, game_configure, custom_params,
be8d5aa1 2837 validate_params,
1185e3c5 2838 new_game_desc,
1185e3c5 2839 validate_desc,
be8d5aa1 2840 new_game,
2841 dup_game,
2842 free_game,
2ac6d24e 2843 TRUE, solve_game,
9b4b03d3 2844 FALSE, game_text_format,
be8d5aa1 2845 new_ui,
2846 free_ui,
ae8290c6 2847 encode_ui,
2848 decode_ui,
07dfb697 2849 game_changed_state,
df11cd4e 2850 interpret_move,
2851 execute_move,
1f3ee4ee 2852 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
be8d5aa1 2853 game_colours,
2854 game_new_drawstate,
2855 game_free_drawstate,
2856 game_redraw,
2857 game_anim_length,
2858 game_flash_length,
dafd6cf6 2859 TRUE, FALSE, game_print_size, game_print,
ac9f41c4 2860 TRUE, /* wants_statusbar */
48dcdd62 2861 FALSE, game_timing_state,
2705d374 2862 0, /* flags */
be8d5aa1 2863};