Introduce diagonal movement keys on the numeric keypad, and use them
[sgt/puzzles] / net.c
CommitLineData
720a8fb7 1/*
2 * net.c: Net game.
3 */
4
5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
8#include <assert.h>
2ef96bd6 9#include <math.h>
720a8fb7 10
11#include "puzzles.h"
12#include "tree234.h"
13
2ef96bd6 14#define PI 3.141592653589793238462643383279502884197169399
15
16#define MATMUL(xr,yr,m,x,y) do { \
17 float rx, ry, xx = (x), yy = (y), *mat = (m); \
18 rx = mat[0] * xx + mat[2] * yy; \
19 ry = mat[1] * xx + mat[3] * yy; \
20 (xr) = rx; (yr) = ry; \
21} while (0)
22
23/* Direction and other bitfields */
720a8fb7 24#define R 0x01
25#define U 0x02
26#define L 0x04
27#define D 0x08
28#define LOCKED 0x10
2ef96bd6 29#define ACTIVE 0x20
30/* Corner flags go in the barriers array */
31#define RU 0x10
32#define UL 0x20
33#define LD 0x40
34#define DR 0x80
720a8fb7 35
36/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
37#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
38#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
39#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
40#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
41 ((n)&3) == 1 ? A(x) : \
42 ((n)&3) == 2 ? F(x) : C(x) )
43
44/* X and Y displacements */
45#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
46#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
47
48/* Bit count */
49#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
50 (((x) & 0x02) >> 1) + ((x) & 0x01) )
51
52#define TILE_SIZE 32
53#define TILE_BORDER 1
54#define WINDOW_OFFSET 16
55
2ef96bd6 56#define ROTATE_TIME 0.1
57#define FLASH_FRAME 0.05
58
59enum {
60 COL_BACKGROUND,
61 COL_LOCKED,
62 COL_BORDER,
63 COL_WIRE,
64 COL_ENDPOINT,
65 COL_POWERED,
66 COL_BARRIER,
67 NCOLOURS
68};
69
720a8fb7 70struct game_params {
71 int width;
72 int height;
73 int wrapping;
74 float barrier_probability;
75};
76
77struct game_state {
2ef96bd6 78 int width, height, cx, cy, wrapping, completed, last_rotate_dir;
720a8fb7 79 unsigned char *tiles;
80 unsigned char *barriers;
81};
82
83#define OFFSET(x2,y2,x1,y1,dir,state) \
84 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
85 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
86
87#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
88#define tile(state, x, y) index(state, (state)->tiles, x, y)
89#define barrier(state, x, y) index(state, (state)->barriers, x, y)
90
91struct xyd {
92 int x, y, direction;
93};
94
95static int xyd_cmp(void *av, void *bv) {
96 struct xyd *a = (struct xyd *)av;
97 struct xyd *b = (struct xyd *)bv;
98 if (a->x < b->x)
99 return -1;
100 if (a->x > b->x)
101 return +1;
102 if (a->y < b->y)
103 return -1;
104 if (a->y > b->y)
105 return +1;
106 if (a->direction < b->direction)
107 return -1;
108 if (a->direction > b->direction)
109 return +1;
110 return 0;
111};
112
113static struct xyd *new_xyd(int x, int y, int direction)
114{
115 struct xyd *xyd = snew(struct xyd);
116 xyd->x = x;
117 xyd->y = y;
118 xyd->direction = direction;
119 return xyd;
120}
121
122/* ----------------------------------------------------------------------
7f77ea24 123 * Manage game parameters.
124 */
125game_params *default_params(void)
126{
127 game_params *ret = snew(game_params);
128
eb2ad6f1 129 ret->width = 5;
130 ret->height = 5;
131 ret->wrapping = FALSE;
132 ret->barrier_probability = 0.0;
7f77ea24 133
134 return ret;
135}
136
eb2ad6f1 137int game_fetch_preset(int i, char **name, game_params **params)
138{
139 game_params *ret;
140 char str[80];
141 static const struct { int x, y, wrap; } values[] = {
142 {5, 5, FALSE},
143 {7, 7, FALSE},
144 {9, 9, FALSE},
145 {11, 11, FALSE},
146 {13, 11, FALSE},
147 {5, 5, TRUE},
148 {7, 7, TRUE},
149 {9, 9, TRUE},
150 {11, 11, TRUE},
151 {13, 11, TRUE},
152 };
153
154 if (i < 0 || i >= lenof(values))
155 return FALSE;
156
157 ret = snew(game_params);
158 ret->width = values[i].x;
159 ret->height = values[i].y;
160 ret->wrapping = values[i].wrap;
161 ret->barrier_probability = 0.0;
162
163 sprintf(str, "%dx%d%s", ret->width, ret->height,
164 ret->wrapping ? " wrapping" : "");
165
166 *name = dupstr(str);
167 *params = ret;
168 return TRUE;
169}
170
7f77ea24 171void free_params(game_params *params)
172{
173 sfree(params);
174}
175
eb2ad6f1 176game_params *dup_params(game_params *params)
177{
178 game_params *ret = snew(game_params);
179 *ret = *params; /* structure copy */
180 return ret;
181}
182
7f77ea24 183/* ----------------------------------------------------------------------
720a8fb7 184 * Randomly select a new game seed.
185 */
186
187char *new_game_seed(game_params *params)
188{
189 /*
190 * The full description of a Net game is far too large to
191 * encode directly in the seed, so by default we'll have to go
192 * for the simple approach of providing a random-number seed.
193 *
194 * (This does not restrict me from _later on_ inventing a seed
195 * string syntax which can never be generated by this code -
196 * for example, strings beginning with a letter - allowing me
197 * to type in a precise game, and have new_game detect it and
198 * understand it and do something completely different.)
199 */
200 char buf[40];
201 sprintf(buf, "%d", rand());
202 return dupstr(buf);
203}
204
205/* ----------------------------------------------------------------------
206 * Construct an initial game state, given a seed and parameters.
207 */
208
209game_state *new_game(game_params *params, char *seed)
210{
211 random_state *rs;
212 game_state *state;
213 tree234 *possibilities, *barriers;
214 int w, h, x, y, nbarriers;
215
216 assert(params->width > 2);
217 assert(params->height > 2);
218
219 /*
220 * Create a blank game state.
221 */
222 state = snew(game_state);
223 w = state->width = params->width;
224 h = state->height = params->height;
2ef96bd6 225 state->cx = state->width / 2;
226 state->cy = state->height / 2;
720a8fb7 227 state->wrapping = params->wrapping;
2ef96bd6 228 state->last_rotate_dir = +1; /* *shrug* */
720a8fb7 229 state->completed = FALSE;
230 state->tiles = snewn(state->width * state->height, unsigned char);
231 memset(state->tiles, 0, state->width * state->height);
232 state->barriers = snewn(state->width * state->height, unsigned char);
233 memset(state->barriers, 0, state->width * state->height);
234
235 /*
236 * Set up border barriers if this is a non-wrapping game.
237 */
238 if (!state->wrapping) {
239 for (x = 0; x < state->width; x++) {
240 barrier(state, x, 0) |= U;
241 barrier(state, x, state->height-1) |= D;
242 }
243 for (y = 0; y < state->height; y++) {
2ef96bd6 244 barrier(state, 0, y) |= L;
245 barrier(state, state->width-1, y) |= R;
720a8fb7 246 }
247 }
248
249 /*
250 * Seed the internal random number generator.
251 */
252 rs = random_init(seed, strlen(seed));
253
254 /*
255 * Construct the unshuffled grid.
256 *
257 * To do this, we simply start at the centre point, repeatedly
258 * choose a random possibility out of the available ways to
259 * extend a used square into an unused one, and do it. After
260 * extending the third line out of a square, we remove the
261 * fourth from the possibilities list to avoid any full-cross
262 * squares (which would make the game too easy because they
263 * only have one orientation).
264 *
265 * The slightly worrying thing is the avoidance of full-cross
266 * squares. Can this cause our unsophisticated construction
267 * algorithm to paint itself into a corner, by getting into a
268 * situation where there are some unreached squares and the
269 * only way to reach any of them is to extend a T-piece into a
270 * full cross?
271 *
272 * Answer: no it can't, and here's a proof.
273 *
274 * Any contiguous group of such unreachable squares must be
275 * surrounded on _all_ sides by T-pieces pointing away from the
276 * group. (If not, then there is a square which can be extended
277 * into one of the `unreachable' ones, and so it wasn't
278 * unreachable after all.) In particular, this implies that
279 * each contiguous group of unreachable squares must be
280 * rectangular in shape (any deviation from that yields a
281 * non-T-piece next to an `unreachable' square).
282 *
283 * So we have a rectangle of unreachable squares, with T-pieces
284 * forming a solid border around the rectangle. The corners of
285 * that border must be connected (since every tile connects all
286 * the lines arriving in it), and therefore the border must
287 * form a closed loop around the rectangle.
288 *
289 * But this can't have happened in the first place, since we
290 * _know_ we've avoided creating closed loops! Hence, no such
291 * situation can ever arise, and the naive grid construction
292 * algorithm will guaranteeably result in a complete grid
293 * containing no unreached squares, no full crosses _and_ no
294 * closed loops. []
295 */
296 possibilities = newtree234(xyd_cmp);
2ef96bd6 297
298 add234(possibilities, new_xyd(state->cx, state->cy, R));
299 add234(possibilities, new_xyd(state->cx, state->cy, U));
300 add234(possibilities, new_xyd(state->cx, state->cy, L));
301 add234(possibilities, new_xyd(state->cx, state->cy, D));
720a8fb7 302
303 while (count234(possibilities) > 0) {
304 int i;
305 struct xyd *xyd;
306 int x1, y1, d1, x2, y2, d2, d;
307
308 /*
309 * Extract a randomly chosen possibility from the list.
310 */
311 i = random_upto(rs, count234(possibilities));
312 xyd = delpos234(possibilities, i);
313 x1 = xyd->x;
314 y1 = xyd->y;
315 d1 = xyd->direction;
316 sfree(xyd);
317
318 OFFSET(x2, y2, x1, y1, d1, state);
319 d2 = F(d1);
320#ifdef DEBUG
321 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
322 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
323#endif
324
325 /*
326 * Make the connection. (We should be moving to an as yet
327 * unused tile.)
328 */
329 tile(state, x1, y1) |= d1;
330 assert(tile(state, x2, y2) == 0);
331 tile(state, x2, y2) |= d2;
332
333 /*
334 * If we have created a T-piece, remove its last
335 * possibility.
336 */
337 if (COUNT(tile(state, x1, y1)) == 3) {
338 struct xyd xyd1, *xydp;
339
340 xyd1.x = x1;
341 xyd1.y = y1;
342 xyd1.direction = 0x0F ^ tile(state, x1, y1);
343
344 xydp = find234(possibilities, &xyd1, NULL);
345
346 if (xydp) {
347#ifdef DEBUG
348 printf("T-piece; removing (%d,%d,%c)\n",
349 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
350#endif
351 del234(possibilities, xydp);
352 sfree(xydp);
353 }
354 }
355
356 /*
357 * Remove all other possibilities that were pointing at the
358 * tile we've just moved into.
359 */
360 for (d = 1; d < 0x10; d <<= 1) {
361 int x3, y3, d3;
362 struct xyd xyd1, *xydp;
363
364 OFFSET(x3, y3, x2, y2, d, state);
365 d3 = F(d);
366
367 xyd1.x = x3;
368 xyd1.y = y3;
369 xyd1.direction = d3;
370
371 xydp = find234(possibilities, &xyd1, NULL);
372
373 if (xydp) {
374#ifdef DEBUG
375 printf("Loop avoidance; removing (%d,%d,%c)\n",
376 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
377#endif
378 del234(possibilities, xydp);
379 sfree(xydp);
380 }
381 }
382
383 /*
384 * Add new possibilities to the list for moving _out_ of
385 * the tile we have just moved into.
386 */
387 for (d = 1; d < 0x10; d <<= 1) {
388 int x3, y3;
389
390 if (d == d2)
391 continue; /* we've got this one already */
392
393 if (!state->wrapping) {
394 if (d == U && y2 == 0)
395 continue;
396 if (d == D && y2 == state->height-1)
397 continue;
398 if (d == L && x2 == 0)
399 continue;
400 if (d == R && x2 == state->width-1)
401 continue;
402 }
403
404 OFFSET(x3, y3, x2, y2, d, state);
405
406 if (tile(state, x3, y3))
407 continue; /* this would create a loop */
408
409#ifdef DEBUG
410 printf("New frontier; adding (%d,%d,%c)\n",
411 x2, y2, "0RU3L567D9abcdef"[d]);
412#endif
413 add234(possibilities, new_xyd(x2, y2, d));
414 }
415 }
416 /* Having done that, we should have no possibilities remaining. */
417 assert(count234(possibilities) == 0);
418 freetree234(possibilities);
419
420 /*
421 * Now compute a list of the possible barrier locations.
422 */
423 barriers = newtree234(xyd_cmp);
2ef96bd6 424 for (y = 0; y < state->height; y++) {
425 for (x = 0; x < state->width; x++) {
720a8fb7 426
2ef96bd6 427 if (!(tile(state, x, y) & R) &&
428 (state->wrapping || x < state->width-1))
720a8fb7 429 add234(barriers, new_xyd(x, y, R));
2ef96bd6 430 if (!(tile(state, x, y) & D) &&
431 (state->wrapping || y < state->height-1))
720a8fb7 432 add234(barriers, new_xyd(x, y, D));
433 }
434 }
435
436 /*
437 * Now shuffle the grid.
438 */
2ef96bd6 439 for (y = 0; y < state->height; y++) {
440 for (x = 0; x < state->width; x++) {
720a8fb7 441 int orig = tile(state, x, y);
442 int rot = random_upto(rs, 4);
443 tile(state, x, y) = ROT(orig, rot);
444 }
445 }
446
447 /*
448 * And now choose barrier locations. (We carefully do this
449 * _after_ shuffling, so that changing the barrier rate in the
450 * params while keeping the game seed the same will give the
451 * same shuffled grid and _only_ change the barrier locations.
452 * Also the way we choose barrier locations, by repeatedly
453 * choosing one possibility from the list until we have enough,
454 * is designed to ensure that raising the barrier rate while
455 * keeping the seed the same will provide a superset of the
456 * previous barrier set - i.e. if you ask for 10 barriers, and
457 * then decide that's still too hard and ask for 20, you'll get
458 * the original 10 plus 10 more, rather than getting 20 new
459 * ones and the chance of remembering your first 10.)
460 */
461 nbarriers = params->barrier_probability * count234(barriers);
462 assert(nbarriers >= 0 && nbarriers <= count234(barriers));
463
464 while (nbarriers > 0) {
465 int i;
466 struct xyd *xyd;
467 int x1, y1, d1, x2, y2, d2;
468
469 /*
470 * Extract a randomly chosen barrier from the list.
471 */
472 i = random_upto(rs, count234(barriers));
473 xyd = delpos234(barriers, i);
474
475 assert(xyd != NULL);
476
477 x1 = xyd->x;
478 y1 = xyd->y;
479 d1 = xyd->direction;
480 sfree(xyd);
481
482 OFFSET(x2, y2, x1, y1, d1, state);
483 d2 = F(d1);
484
485 barrier(state, x1, y1) |= d1;
486 barrier(state, x2, y2) |= d2;
487
488 nbarriers--;
489 }
490
491 /*
492 * Clean up the rest of the barrier list.
493 */
494 {
495 struct xyd *xyd;
496
497 while ( (xyd = delpos234(barriers, 0)) != NULL)
498 sfree(xyd);
499
500 freetree234(barriers);
501 }
502
2ef96bd6 503 /*
504 * Set up the barrier corner flags, for drawing barriers
505 * prettily when they meet.
506 */
507 for (y = 0; y < state->height; y++) {
508 for (x = 0; x < state->width; x++) {
509 int dir;
510
511 for (dir = 1; dir < 0x10; dir <<= 1) {
512 int dir2 = A(dir);
513 int x1, y1, x2, y2, x3, y3;
514 int corner = FALSE;
515
516 if (!(barrier(state, x, y) & dir))
517 continue;
518
519 if (barrier(state, x, y) & dir2)
520 corner = TRUE;
521
522 x1 = x + X(dir), y1 = y + Y(dir);
523 if (x1 >= 0 && x1 < state->width &&
eb2ad6f1 524 y1 >= 0 && y1 < state->height &&
2ef96bd6 525 (barrier(state, x1, y1) & dir2))
526 corner = TRUE;
527
528 x2 = x + X(dir2), y2 = y + Y(dir2);
529 if (x2 >= 0 && x2 < state->width &&
eb2ad6f1 530 y2 >= 0 && y2 < state->height &&
2ef96bd6 531 (barrier(state, x2, y2) & dir))
532 corner = TRUE;
533
534 if (corner) {
535 barrier(state, x, y) |= (dir << 4);
536 if (x1 >= 0 && x1 < state->width &&
eb2ad6f1 537 y1 >= 0 && y1 < state->height)
2ef96bd6 538 barrier(state, x1, y1) |= (A(dir) << 4);
539 if (x2 >= 0 && x2 < state->width &&
eb2ad6f1 540 y2 >= 0 && y2 < state->height)
2ef96bd6 541 barrier(state, x2, y2) |= (C(dir) << 4);
542 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
543 if (x3 >= 0 && x3 < state->width &&
eb2ad6f1 544 y3 >= 0 && y3 < state->height)
2ef96bd6 545 barrier(state, x3, y3) |= (F(dir) << 4);
546 }
547 }
548 }
549 }
550
720a8fb7 551 random_free(rs);
552
553 return state;
554}
555
556game_state *dup_game(game_state *state)
557{
558 game_state *ret;
559
560 ret = snew(game_state);
561 ret->width = state->width;
562 ret->height = state->height;
2ef96bd6 563 ret->cx = state->cx;
564 ret->cy = state->cy;
720a8fb7 565 ret->wrapping = state->wrapping;
566 ret->completed = state->completed;
2ef96bd6 567 ret->last_rotate_dir = state->last_rotate_dir;
720a8fb7 568 ret->tiles = snewn(state->width * state->height, unsigned char);
569 memcpy(ret->tiles, state->tiles, state->width * state->height);
570 ret->barriers = snewn(state->width * state->height, unsigned char);
571 memcpy(ret->barriers, state->barriers, state->width * state->height);
572
573 return ret;
574}
575
576void free_game(game_state *state)
577{
578 sfree(state->tiles);
579 sfree(state->barriers);
580 sfree(state);
581}
582
583/* ----------------------------------------------------------------------
584 * Utility routine.
585 */
586
587/*
588 * Compute which squares are reachable from the centre square, as a
589 * quick visual aid to determining how close the game is to
590 * completion. This is also a simple way to tell if the game _is_
591 * completed - just call this function and see whether every square
592 * is marked active.
593 */
594static unsigned char *compute_active(game_state *state)
595{
596 unsigned char *active;
597 tree234 *todo;
598 struct xyd *xyd;
599
600 active = snewn(state->width * state->height, unsigned char);
601 memset(active, 0, state->width * state->height);
602
603 /*
604 * We only store (x,y) pairs in todo, but it's easier to reuse
605 * xyd_cmp and just store direction 0 every time.
606 */
607 todo = newtree234(xyd_cmp);
2ef96bd6 608 index(state, active, state->cx, state->cy) = ACTIVE;
609 add234(todo, new_xyd(state->cx, state->cy, 0));
720a8fb7 610
611 while ( (xyd = delpos234(todo, 0)) != NULL) {
612 int x1, y1, d1, x2, y2, d2;
613
614 x1 = xyd->x;
615 y1 = xyd->y;
616 sfree(xyd);
617
618 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
619 OFFSET(x2, y2, x1, y1, d1, state);
620 d2 = F(d1);
621
622 /*
623 * If the next tile in this direction is connected to
624 * us, and there isn't a barrier in the way, and it
625 * isn't already marked active, then mark it active and
626 * add it to the to-examine list.
627 */
628 if ((tile(state, x1, y1) & d1) &&
629 (tile(state, x2, y2) & d2) &&
630 !(barrier(state, x1, y1) & d1) &&
631 !index(state, active, x2, y2)) {
2ef96bd6 632 index(state, active, x2, y2) = ACTIVE;
720a8fb7 633 add234(todo, new_xyd(x2, y2, 0));
634 }
635 }
636 }
637 /* Now we expect the todo list to have shrunk to zero size. */
638 assert(count234(todo) == 0);
639 freetree234(todo);
640
641 return active;
642}
643
644/* ----------------------------------------------------------------------
645 * Process a move.
646 */
647game_state *make_move(game_state *state, int x, int y, int button)
648{
649 game_state *ret;
650 int tx, ty, orig;
651
652 /*
653 * All moves in Net are made with the mouse.
654 */
655 if (button != LEFT_BUTTON &&
656 button != MIDDLE_BUTTON &&
657 button != RIGHT_BUTTON)
658 return NULL;
659
660 /*
661 * The button must have been clicked on a valid tile.
662 */
7f77ea24 663 x -= WINDOW_OFFSET + TILE_BORDER;
664 y -= WINDOW_OFFSET + TILE_BORDER;
720a8fb7 665 if (x < 0 || y < 0)
666 return NULL;
667 tx = x / TILE_SIZE;
668 ty = y / TILE_SIZE;
669 if (tx >= state->width || ty >= state->height)
670 return NULL;
671 if (tx % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
672 ty % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
673 return NULL;
674
675 /*
676 * The middle button locks or unlocks a tile. (A locked tile
677 * cannot be turned, and is visually marked as being locked.
678 * This is a convenience for the player, so that once they are
679 * sure which way round a tile goes, they can lock it and thus
680 * avoid forgetting later on that they'd already done that one;
681 * and the locking also prevents them turning the tile by
682 * accident. If they change their mind, another middle click
683 * unlocks it.)
684 */
685 if (button == MIDDLE_BUTTON) {
686 ret = dup_game(state);
687 tile(ret, tx, ty) ^= LOCKED;
688 return ret;
689 }
690
691 /*
692 * The left and right buttons have no effect if clicked on a
693 * locked tile.
694 */
695 if (tile(state, tx, ty) & LOCKED)
696 return NULL;
697
698 /*
699 * Otherwise, turn the tile one way or the other. Left button
700 * turns anticlockwise; right button turns clockwise.
701 */
702 ret = dup_game(state);
703 orig = tile(ret, tx, ty);
2ef96bd6 704 if (button == LEFT_BUTTON) {
720a8fb7 705 tile(ret, tx, ty) = A(orig);
2ef96bd6 706 ret->last_rotate_dir = +1;
707 } else {
720a8fb7 708 tile(ret, tx, ty) = C(orig);
2ef96bd6 709 ret->last_rotate_dir = -1;
710 }
720a8fb7 711
712 /*
713 * Check whether the game has been completed.
714 */
715 {
716 unsigned char *active = compute_active(ret);
717 int x1, y1;
718 int complete = TRUE;
719
720 for (x1 = 0; x1 < ret->width; x1++)
721 for (y1 = 0; y1 < ret->height; y1++)
722 if (!index(ret, active, x1, y1)) {
723 complete = FALSE;
724 goto break_label; /* break out of two loops at once */
725 }
726 break_label:
727
728 sfree(active);
729
730 if (complete)
731 ret->completed = TRUE;
732 }
733
734 return ret;
735}
736
737/* ----------------------------------------------------------------------
738 * Routines for drawing the game position on the screen.
739 */
740
2ef96bd6 741struct game_drawstate {
742 int started;
743 int width, height;
744 unsigned char *visible;
745};
746
747game_drawstate *game_new_drawstate(game_state *state)
748{
749 game_drawstate *ds = snew(game_drawstate);
750
751 ds->started = FALSE;
752 ds->width = state->width;
753 ds->height = state->height;
754 ds->visible = snewn(state->width * state->height, unsigned char);
755 memset(ds->visible, 0xFF, state->width * state->height);
756
757 return ds;
758}
759
760void game_free_drawstate(game_drawstate *ds)
761{
762 sfree(ds->visible);
763 sfree(ds);
764}
765
7f77ea24 766void game_size(game_params *params, int *x, int *y)
767{
768 *x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
769 *y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
770}
771
2ef96bd6 772float *game_colours(frontend *fe, game_state *state, int *ncolours)
773{
774 float *ret;
83680571 775
2ef96bd6 776 ret = snewn(NCOLOURS * 3, float);
777 *ncolours = NCOLOURS;
720a8fb7 778
2ef96bd6 779 /*
780 * Basic background colour is whatever the front end thinks is
781 * a sensible default.
782 */
783 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
784
785 /*
786 * Wires are black.
787 */
788 ret[COL_WIRE * 3 + 0] = 0.0;
789 ret[COL_WIRE * 3 + 1] = 0.0;
790 ret[COL_WIRE * 3 + 2] = 0.0;
791
792 /*
793 * Powered wires and powered endpoints are cyan.
794 */
795 ret[COL_POWERED * 3 + 0] = 0.0;
796 ret[COL_POWERED * 3 + 1] = 1.0;
797 ret[COL_POWERED * 3 + 2] = 1.0;
798
799 /*
800 * Barriers are red.
801 */
802 ret[COL_BARRIER * 3 + 0] = 1.0;
803 ret[COL_BARRIER * 3 + 1] = 0.0;
804 ret[COL_BARRIER * 3 + 2] = 0.0;
805
806 /*
807 * Unpowered endpoints are blue.
808 */
809 ret[COL_ENDPOINT * 3 + 0] = 0.0;
810 ret[COL_ENDPOINT * 3 + 1] = 0.0;
811 ret[COL_ENDPOINT * 3 + 2] = 1.0;
812
813 /*
814 * Tile borders are a darker grey than the background.
815 */
816 ret[COL_BORDER * 3 + 0] = 0.5 * ret[COL_BACKGROUND * 3 + 0];
817 ret[COL_BORDER * 3 + 1] = 0.5 * ret[COL_BACKGROUND * 3 + 1];
818 ret[COL_BORDER * 3 + 2] = 0.5 * ret[COL_BACKGROUND * 3 + 2];
819
820 /*
821 * Locked tiles are a grey in between those two.
822 */
823 ret[COL_LOCKED * 3 + 0] = 0.75 * ret[COL_BACKGROUND * 3 + 0];
824 ret[COL_LOCKED * 3 + 1] = 0.75 * ret[COL_BACKGROUND * 3 + 1];
825 ret[COL_LOCKED * 3 + 2] = 0.75 * ret[COL_BACKGROUND * 3 + 2];
826
827 return ret;
828}
829
830static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
831 int colour)
720a8fb7 832{
2ef96bd6 833 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
834 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
835 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
836 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
837 draw_line(fe, x1, y1, x2, y2, colour);
838}
720a8fb7 839
2ef96bd6 840static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
841 int colour)
842{
843 int mx = (x1 < x2 ? x1 : x2);
844 int my = (y1 < y2 ? y1 : y2);
845 int dx = (x2 + x1 - 2*mx + 1);
846 int dy = (y2 + y1 - 2*my + 1);
720a8fb7 847
2ef96bd6 848 draw_rect(fe, mx, my, dx, dy, colour);
849}
720a8fb7 850
2ef96bd6 851static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
852{
853 int bx = WINDOW_OFFSET + TILE_SIZE * x;
854 int by = WINDOW_OFFSET + TILE_SIZE * y;
855 int x1, y1, dx, dy, dir2;
856
857 dir >>= 4;
858
859 dir2 = A(dir);
860 dx = X(dir) + X(dir2);
861 dy = Y(dir) + Y(dir2);
862 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
863 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
864
865 if (phase == 0) {
866 draw_rect_coords(fe, bx+x1, by+y1,
867 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
868 COL_WIRE);
869 draw_rect_coords(fe, bx+x1, by+y1,
870 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
871 COL_WIRE);
872 } else {
873 draw_rect_coords(fe, bx+x1, by+y1,
874 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
875 COL_BARRIER);
720a8fb7 876 }
2ef96bd6 877}
878
879static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
880{
881 int bx = WINDOW_OFFSET + TILE_SIZE * x;
882 int by = WINDOW_OFFSET + TILE_SIZE * y;
883 int x1, y1, w, h;
884
885 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
886 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
887 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
888 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
889
890 if (phase == 0) {
891 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
892 } else {
893 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
894 }
895}
720a8fb7 896
2ef96bd6 897static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
898 float angle)
899{
900 int bx = WINDOW_OFFSET + TILE_SIZE * x;
901 int by = WINDOW_OFFSET + TILE_SIZE * y;
902 float matrix[4];
903 float cx, cy, ex, ey, tx, ty;
904 int dir, col, phase;
720a8fb7 905
2ef96bd6 906 /*
907 * When we draw a single tile, we must draw everything up to
908 * and including the borders around the tile. This means that
909 * if the neighbouring tiles have connections to those borders,
910 * we must draw those connections on the borders themselves.
911 *
912 * This would be terribly fiddly if we ever had to draw a tile
913 * while its neighbour was in mid-rotate, because we'd have to
914 * arrange to _know_ that the neighbour was being rotated and
915 * hence had an anomalous effect on the redraw of this tile.
916 * Fortunately, the drawing algorithm avoids ever calling us in
917 * this circumstance: we're either drawing lots of straight
918 * tiles at game start or after a move is complete, or we're
919 * repeatedly drawing only the rotating tile. So no problem.
920 */
921
922 /*
923 * So. First blank the tile out completely: draw a big
924 * rectangle in border colour, and a smaller rectangle in
925 * background colour to fill it in.
926 */
927 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
928 COL_BORDER);
929 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
930 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
931 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
932
933 /*
934 * Set up the rotation matrix.
935 */
936 matrix[0] = cos(angle * PI / 180.0);
937 matrix[1] = -sin(angle * PI / 180.0);
938 matrix[2] = sin(angle * PI / 180.0);
939 matrix[3] = cos(angle * PI / 180.0);
940
941 /*
942 * Draw the wires.
943 */
944 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0 - 0.5;
945 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
946 for (dir = 1; dir < 0x10; dir <<= 1) {
947 if (tile & dir) {
948 ex = (TILE_SIZE - TILE_BORDER - 1.0) / 2.0 * X(dir);
949 ey = (TILE_SIZE - TILE_BORDER - 1.0) / 2.0 * Y(dir);
950 MATMUL(tx, ty, matrix, ex, ey);
951 draw_thick_line(fe, bx+cx, by+cy, bx+(cx+tx), by+(cy+ty),
952 COL_WIRE);
953 }
954 }
955 for (dir = 1; dir < 0x10; dir <<= 1) {
956 if (tile & dir) {
957 ex = (TILE_SIZE - TILE_BORDER - 1.0) / 2.0 * X(dir);
958 ey = (TILE_SIZE - TILE_BORDER - 1.0) / 2.0 * Y(dir);
959 MATMUL(tx, ty, matrix, ex, ey);
960 draw_line(fe, bx+cx, by+cy, bx+(cx+tx), by+(cy+ty), col);
961 }
962 }
963
964 /*
965 * Draw the box in the middle. We do this in blue if the tile
966 * is an unpowered endpoint, in cyan if the tile is a powered
967 * endpoint, in black if the tile is the centrepiece, and
968 * otherwise not at all.
969 */
970 col = -1;
971 if (x == state->cx && y == state->cy)
972 col = COL_WIRE;
973 else if (COUNT(tile) == 1) {
974 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
975 }
976 if (col >= 0) {
977 int i, points[8];
978
979 points[0] = +1; points[1] = +1;
980 points[2] = +1; points[3] = -1;
981 points[4] = -1; points[5] = -1;
982 points[6] = -1; points[7] = +1;
983
984 for (i = 0; i < 8; i += 2) {
985 ex = (TILE_SIZE * 0.24) * points[i];
986 ey = (TILE_SIZE * 0.24) * points[i+1];
987 MATMUL(tx, ty, matrix, ex, ey);
988 points[i] = bx+cx+tx;
989 points[i+1] = by+cy+ty;
990 }
991
992 draw_polygon(fe, points, 4, TRUE, col);
993 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
994 }
995
996 /*
997 * Draw the points on the border if other tiles are connected
998 * to us.
999 */
1000 for (dir = 1; dir < 0x10; dir <<= 1) {
1001 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
1002
1003 dx = X(dir);
1004 dy = Y(dir);
1005
1006 ox = x + dx;
1007 oy = y + dy;
1008
1009 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
1010 continue;
1011
1012 if (!(tile(state, ox, oy) & F(dir)))
1013 continue;
1014
1015 px = bx + (dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
1016 py = by + (dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
1017 lx = dx * (TILE_BORDER-1);
1018 ly = dy * (TILE_BORDER-1);
1019 vx = (dy ? 1 : 0);
1020 vy = (dx ? 1 : 0);
1021
1022 if (angle == 0.0 && (tile & dir)) {
1023 /*
1024 * If we are fully connected to the other tile, we must
1025 * draw right across the tile border. (We can use our
1026 * own ACTIVE state to determine what colour to do this
1027 * in: if we are fully connected to the other tile then
1028 * the two ACTIVE states will be the same.)
1029 */
1030 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
1031 draw_rect_coords(fe, px, py, px+lx, py+ly,
1032 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
1033 } else {
1034 /*
1035 * The other tile extends into our border, but isn't
1036 * actually connected to us. Just draw a single black
1037 * dot.
1038 */
1039 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
1040 }
1041 }
1042
1043 /*
1044 * Draw barrier corners, and then barriers.
1045 */
1046 for (phase = 0; phase < 2; phase++) {
1047 for (dir = 1; dir < 0x10; dir <<= 1)
1048 if (barrier(state, x, y) & (dir << 4))
1049 draw_barrier_corner(fe, x, y, dir << 4, phase);
1050 for (dir = 1; dir < 0x10; dir <<= 1)
1051 if (barrier(state, x, y) & dir)
1052 draw_barrier(fe, x, y, dir, phase);
1053 }
1054
1055 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
720a8fb7 1056}
1057
2ef96bd6 1058void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1059 game_state *state, float t)
1060{
1061 int x, y, tx, ty, frame;
1062 unsigned char *active;
1063 float angle = 0.0;
1064
1065 /*
1066 * Clear the screen and draw the exterior barrier lines if this
1067 * is our first call.
1068 */
1069 if (!ds->started) {
1070 int phase;
1071
1072 ds->started = TRUE;
1073
1074 draw_rect(fe, 0, 0,
1075 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1076 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1077 COL_BACKGROUND);
1078 draw_update(fe, 0, 0,
1079 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1080 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1081
1082 for (phase = 0; phase < 2; phase++) {
1083
1084 for (x = 0; x < ds->width; x++) {
1085 if (barrier(state, x, 0) & UL)
1086 draw_barrier_corner(fe, x, -1, LD, phase);
1087 if (barrier(state, x, 0) & RU)
1088 draw_barrier_corner(fe, x, -1, DR, phase);
1089 if (barrier(state, x, 0) & U)
1090 draw_barrier(fe, x, -1, D, phase);
1091 if (barrier(state, x, ds->height-1) & DR)
1092 draw_barrier_corner(fe, x, ds->height, RU, phase);
1093 if (barrier(state, x, ds->height-1) & LD)
1094 draw_barrier_corner(fe, x, ds->height, UL, phase);
1095 if (barrier(state, x, ds->height-1) & D)
1096 draw_barrier(fe, x, ds->height, U, phase);
1097 }
1098
1099 for (y = 0; y < ds->height; y++) {
1100 if (barrier(state, 0, y) & UL)
1101 draw_barrier_corner(fe, -1, y, RU, phase);
1102 if (barrier(state, 0, y) & LD)
1103 draw_barrier_corner(fe, -1, y, DR, phase);
1104 if (barrier(state, 0, y) & L)
1105 draw_barrier(fe, -1, y, R, phase);
1106 if (barrier(state, ds->width-1, y) & RU)
1107 draw_barrier_corner(fe, ds->width, y, UL, phase);
1108 if (barrier(state, ds->width-1, y) & DR)
1109 draw_barrier_corner(fe, ds->width, y, LD, phase);
1110 if (barrier(state, ds->width-1, y) & R)
1111 draw_barrier(fe, ds->width, y, L, phase);
1112 }
1113 }
1114 }
1115
1116 tx = ty = -1;
1117 frame = -1;
1118 if (oldstate && (t < ROTATE_TIME)) {
1119 /*
1120 * We're animating a tile rotation. Find the turning tile,
1121 * if any.
1122 */
1123 for (x = 0; x < oldstate->width; x++)
1124 for (y = 0; y < oldstate->height; y++)
1125 if ((tile(oldstate, x, y) ^ tile(state, x, y)) & 0xF) {
1126 tx = x, ty = y;
1127 goto break_label; /* leave both loops at once */
1128 }
1129 break_label:
1130
1131 if (tx >= 0) {
1132 if (tile(state, tx, ty) == ROT(tile(oldstate, tx, ty),
1133 state->last_rotate_dir))
1134 angle = state->last_rotate_dir * 90.0 * (t / ROTATE_TIME);
1135 else
1136 angle = state->last_rotate_dir * -90.0 * (t / ROTATE_TIME);
1137 state = oldstate;
1138 }
1139 } else if (t > ROTATE_TIME) {
1140 /*
1141 * We're animating a completion flash. Find which frame
1142 * we're at.
1143 */
1144 frame = (t - ROTATE_TIME) / FLASH_FRAME;
1145 }
1146
1147 /*
1148 * Draw any tile which differs from the way it was last drawn.
1149 */
1150 active = compute_active(state);
1151
1152 for (x = 0; x < ds->width; x++)
1153 for (y = 0; y < ds->height; y++) {
1154 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1155
1156 /*
1157 * In a completion flash, we adjust the LOCKED bit
1158 * depending on our distance from the centre point and
1159 * the frame number.
1160 */
1161 if (frame >= 0) {
1162 int xdist, ydist, dist;
1163 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1164 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1165 dist = (xdist > ydist ? xdist : ydist);
1166
1167 if (frame >= dist && frame < dist+4) {
1168 int lock = (frame - dist) & 1;
1169 lock = lock ? LOCKED : 0;
1170 c = (c &~ LOCKED) | lock;
1171 }
1172 }
1173
1174 if (index(state, ds->visible, x, y) != c ||
1175 index(state, ds->visible, x, y) == 0xFF ||
1176 (x == tx && y == ty)) {
1177 draw_tile(fe, state, x, y, c,
1178 (x == tx && y == ty ? angle : 0.0));
1179 if (x == tx && y == ty)
1180 index(state, ds->visible, x, y) = 0xFF;
1181 else
1182 index(state, ds->visible, x, y) = c;
1183 }
1184 }
1185
1186 sfree(active);
1187}
1188
1189float game_anim_length(game_state *oldstate, game_state *newstate)
1190{
1191 float ret = 0.0;
1192 int x, y;
1193
1194 /*
1195 * If there's a tile which has been rotated, allow time to
1196 * animate its rotation.
1197 */
1198 for (x = 0; x < oldstate->width; x++)
1199 for (y = 0; y < oldstate->height; y++)
1200 if ((tile(oldstate, x, y) ^ tile(newstate, x, y)) & 0xF) {
1201 ret = ROTATE_TIME;
1202 goto break_label; /* leave both loops at once */
1203 }
1204 break_label:
1205
1206 /*
1207 * Also, if the game has just been completed, allow time for a
1208 * completion flash.
1209 */
1210 if (!oldstate->completed && newstate->completed) {
1211 int size;
1212 size = 0;
1213 if (size < newstate->cx+1)
1214 size = newstate->cx+1;
1215 if (size < newstate->cy+1)
1216 size = newstate->cy+1;
1217 if (size < newstate->width - newstate->cx)
1218 size = newstate->width - newstate->cx;
1219 if (size < newstate->height - newstate->cy)
1220 size = newstate->height - newstate->cy;
1221 ret += FLASH_FRAME * (size+4);
1222 }
1223
1224 return ret;
1225}