A-_ha_! The Windows Rectangle() call appears to get uppity if asked
[sgt/puzzles] / net.c
CommitLineData
720a8fb7 1/*
2 * net.c: Net game.
3 */
4
5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
8#include <assert.h>
2ef96bd6 9#include <math.h>
720a8fb7 10
11#include "puzzles.h"
12#include "tree234.h"
13
2ef96bd6 14#define PI 3.141592653589793238462643383279502884197169399
15
16#define MATMUL(xr,yr,m,x,y) do { \
17 float rx, ry, xx = (x), yy = (y), *mat = (m); \
18 rx = mat[0] * xx + mat[2] * yy; \
19 ry = mat[1] * xx + mat[3] * yy; \
20 (xr) = rx; (yr) = ry; \
21} while (0)
22
23/* Direction and other bitfields */
720a8fb7 24#define R 0x01
25#define U 0x02
26#define L 0x04
27#define D 0x08
28#define LOCKED 0x10
2ef96bd6 29#define ACTIVE 0x20
30/* Corner flags go in the barriers array */
31#define RU 0x10
32#define UL 0x20
33#define LD 0x40
34#define DR 0x80
720a8fb7 35
36/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
37#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
38#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
39#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
40#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
41 ((n)&3) == 1 ? A(x) : \
42 ((n)&3) == 2 ? F(x) : C(x) )
43
44/* X and Y displacements */
45#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
46#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
47
48/* Bit count */
49#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
50 (((x) & 0x02) >> 1) + ((x) & 0x01) )
51
52#define TILE_SIZE 32
53#define TILE_BORDER 1
54#define WINDOW_OFFSET 16
55
2ef96bd6 56#define ROTATE_TIME 0.1
57#define FLASH_FRAME 0.05
58
59enum {
60 COL_BACKGROUND,
61 COL_LOCKED,
62 COL_BORDER,
63 COL_WIRE,
64 COL_ENDPOINT,
65 COL_POWERED,
66 COL_BARRIER,
67 NCOLOURS
68};
69
720a8fb7 70struct game_params {
71 int width;
72 int height;
73 int wrapping;
74 float barrier_probability;
75};
76
77struct game_state {
2ef96bd6 78 int width, height, cx, cy, wrapping, completed, last_rotate_dir;
720a8fb7 79 unsigned char *tiles;
80 unsigned char *barriers;
81};
82
83#define OFFSET(x2,y2,x1,y1,dir,state) \
84 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
85 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
86
87#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
88#define tile(state, x, y) index(state, (state)->tiles, x, y)
89#define barrier(state, x, y) index(state, (state)->barriers, x, y)
90
91struct xyd {
92 int x, y, direction;
93};
94
95static int xyd_cmp(void *av, void *bv) {
96 struct xyd *a = (struct xyd *)av;
97 struct xyd *b = (struct xyd *)bv;
98 if (a->x < b->x)
99 return -1;
100 if (a->x > b->x)
101 return +1;
102 if (a->y < b->y)
103 return -1;
104 if (a->y > b->y)
105 return +1;
106 if (a->direction < b->direction)
107 return -1;
108 if (a->direction > b->direction)
109 return +1;
110 return 0;
111};
112
113static struct xyd *new_xyd(int x, int y, int direction)
114{
115 struct xyd *xyd = snew(struct xyd);
116 xyd->x = x;
117 xyd->y = y;
118 xyd->direction = direction;
119 return xyd;
120}
121
122/* ----------------------------------------------------------------------
7f77ea24 123 * Manage game parameters.
124 */
125game_params *default_params(void)
126{
127 game_params *ret = snew(game_params);
128
2ef96bd6 129 ret->width = 11;
130 ret->height = 11;
131 ret->wrapping = TRUE;
132 ret->barrier_probability = 0.1;
7f77ea24 133
134 return ret;
135}
136
137void free_params(game_params *params)
138{
139 sfree(params);
140}
141
142/* ----------------------------------------------------------------------
720a8fb7 143 * Randomly select a new game seed.
144 */
145
146char *new_game_seed(game_params *params)
147{
148 /*
149 * The full description of a Net game is far too large to
150 * encode directly in the seed, so by default we'll have to go
151 * for the simple approach of providing a random-number seed.
152 *
153 * (This does not restrict me from _later on_ inventing a seed
154 * string syntax which can never be generated by this code -
155 * for example, strings beginning with a letter - allowing me
156 * to type in a precise game, and have new_game detect it and
157 * understand it and do something completely different.)
158 */
159 char buf[40];
160 sprintf(buf, "%d", rand());
161 return dupstr(buf);
162}
163
164/* ----------------------------------------------------------------------
165 * Construct an initial game state, given a seed and parameters.
166 */
167
168game_state *new_game(game_params *params, char *seed)
169{
170 random_state *rs;
171 game_state *state;
172 tree234 *possibilities, *barriers;
173 int w, h, x, y, nbarriers;
174
175 assert(params->width > 2);
176 assert(params->height > 2);
177
178 /*
179 * Create a blank game state.
180 */
181 state = snew(game_state);
182 w = state->width = params->width;
183 h = state->height = params->height;
2ef96bd6 184 state->cx = state->width / 2;
185 state->cy = state->height / 2;
720a8fb7 186 state->wrapping = params->wrapping;
2ef96bd6 187 state->last_rotate_dir = +1; /* *shrug* */
720a8fb7 188 state->completed = FALSE;
189 state->tiles = snewn(state->width * state->height, unsigned char);
190 memset(state->tiles, 0, state->width * state->height);
191 state->barriers = snewn(state->width * state->height, unsigned char);
192 memset(state->barriers, 0, state->width * state->height);
193
194 /*
195 * Set up border barriers if this is a non-wrapping game.
196 */
197 if (!state->wrapping) {
198 for (x = 0; x < state->width; x++) {
199 barrier(state, x, 0) |= U;
200 barrier(state, x, state->height-1) |= D;
201 }
202 for (y = 0; y < state->height; y++) {
2ef96bd6 203 barrier(state, 0, y) |= L;
204 barrier(state, state->width-1, y) |= R;
720a8fb7 205 }
206 }
207
208 /*
209 * Seed the internal random number generator.
210 */
211 rs = random_init(seed, strlen(seed));
212
213 /*
214 * Construct the unshuffled grid.
215 *
216 * To do this, we simply start at the centre point, repeatedly
217 * choose a random possibility out of the available ways to
218 * extend a used square into an unused one, and do it. After
219 * extending the third line out of a square, we remove the
220 * fourth from the possibilities list to avoid any full-cross
221 * squares (which would make the game too easy because they
222 * only have one orientation).
223 *
224 * The slightly worrying thing is the avoidance of full-cross
225 * squares. Can this cause our unsophisticated construction
226 * algorithm to paint itself into a corner, by getting into a
227 * situation where there are some unreached squares and the
228 * only way to reach any of them is to extend a T-piece into a
229 * full cross?
230 *
231 * Answer: no it can't, and here's a proof.
232 *
233 * Any contiguous group of such unreachable squares must be
234 * surrounded on _all_ sides by T-pieces pointing away from the
235 * group. (If not, then there is a square which can be extended
236 * into one of the `unreachable' ones, and so it wasn't
237 * unreachable after all.) In particular, this implies that
238 * each contiguous group of unreachable squares must be
239 * rectangular in shape (any deviation from that yields a
240 * non-T-piece next to an `unreachable' square).
241 *
242 * So we have a rectangle of unreachable squares, with T-pieces
243 * forming a solid border around the rectangle. The corners of
244 * that border must be connected (since every tile connects all
245 * the lines arriving in it), and therefore the border must
246 * form a closed loop around the rectangle.
247 *
248 * But this can't have happened in the first place, since we
249 * _know_ we've avoided creating closed loops! Hence, no such
250 * situation can ever arise, and the naive grid construction
251 * algorithm will guaranteeably result in a complete grid
252 * containing no unreached squares, no full crosses _and_ no
253 * closed loops. []
254 */
255 possibilities = newtree234(xyd_cmp);
2ef96bd6 256
257 add234(possibilities, new_xyd(state->cx, state->cy, R));
258 add234(possibilities, new_xyd(state->cx, state->cy, U));
259 add234(possibilities, new_xyd(state->cx, state->cy, L));
260 add234(possibilities, new_xyd(state->cx, state->cy, D));
720a8fb7 261
262 while (count234(possibilities) > 0) {
263 int i;
264 struct xyd *xyd;
265 int x1, y1, d1, x2, y2, d2, d;
266
267 /*
268 * Extract a randomly chosen possibility from the list.
269 */
270 i = random_upto(rs, count234(possibilities));
271 xyd = delpos234(possibilities, i);
272 x1 = xyd->x;
273 y1 = xyd->y;
274 d1 = xyd->direction;
275 sfree(xyd);
276
277 OFFSET(x2, y2, x1, y1, d1, state);
278 d2 = F(d1);
279#ifdef DEBUG
280 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
281 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
282#endif
283
284 /*
285 * Make the connection. (We should be moving to an as yet
286 * unused tile.)
287 */
288 tile(state, x1, y1) |= d1;
289 assert(tile(state, x2, y2) == 0);
290 tile(state, x2, y2) |= d2;
291
292 /*
293 * If we have created a T-piece, remove its last
294 * possibility.
295 */
296 if (COUNT(tile(state, x1, y1)) == 3) {
297 struct xyd xyd1, *xydp;
298
299 xyd1.x = x1;
300 xyd1.y = y1;
301 xyd1.direction = 0x0F ^ tile(state, x1, y1);
302
303 xydp = find234(possibilities, &xyd1, NULL);
304
305 if (xydp) {
306#ifdef DEBUG
307 printf("T-piece; removing (%d,%d,%c)\n",
308 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
309#endif
310 del234(possibilities, xydp);
311 sfree(xydp);
312 }
313 }
314
315 /*
316 * Remove all other possibilities that were pointing at the
317 * tile we've just moved into.
318 */
319 for (d = 1; d < 0x10; d <<= 1) {
320 int x3, y3, d3;
321 struct xyd xyd1, *xydp;
322
323 OFFSET(x3, y3, x2, y2, d, state);
324 d3 = F(d);
325
326 xyd1.x = x3;
327 xyd1.y = y3;
328 xyd1.direction = d3;
329
330 xydp = find234(possibilities, &xyd1, NULL);
331
332 if (xydp) {
333#ifdef DEBUG
334 printf("Loop avoidance; removing (%d,%d,%c)\n",
335 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
336#endif
337 del234(possibilities, xydp);
338 sfree(xydp);
339 }
340 }
341
342 /*
343 * Add new possibilities to the list for moving _out_ of
344 * the tile we have just moved into.
345 */
346 for (d = 1; d < 0x10; d <<= 1) {
347 int x3, y3;
348
349 if (d == d2)
350 continue; /* we've got this one already */
351
352 if (!state->wrapping) {
353 if (d == U && y2 == 0)
354 continue;
355 if (d == D && y2 == state->height-1)
356 continue;
357 if (d == L && x2 == 0)
358 continue;
359 if (d == R && x2 == state->width-1)
360 continue;
361 }
362
363 OFFSET(x3, y3, x2, y2, d, state);
364
365 if (tile(state, x3, y3))
366 continue; /* this would create a loop */
367
368#ifdef DEBUG
369 printf("New frontier; adding (%d,%d,%c)\n",
370 x2, y2, "0RU3L567D9abcdef"[d]);
371#endif
372 add234(possibilities, new_xyd(x2, y2, d));
373 }
374 }
375 /* Having done that, we should have no possibilities remaining. */
376 assert(count234(possibilities) == 0);
377 freetree234(possibilities);
378
379 /*
380 * Now compute a list of the possible barrier locations.
381 */
382 barriers = newtree234(xyd_cmp);
2ef96bd6 383 for (y = 0; y < state->height; y++) {
384 for (x = 0; x < state->width; x++) {
720a8fb7 385
2ef96bd6 386 if (!(tile(state, x, y) & R) &&
387 (state->wrapping || x < state->width-1))
720a8fb7 388 add234(barriers, new_xyd(x, y, R));
2ef96bd6 389 if (!(tile(state, x, y) & D) &&
390 (state->wrapping || y < state->height-1))
720a8fb7 391 add234(barriers, new_xyd(x, y, D));
392 }
393 }
394
395 /*
396 * Now shuffle the grid.
397 */
2ef96bd6 398 for (y = 0; y < state->height; y++) {
399 for (x = 0; x < state->width; x++) {
720a8fb7 400 int orig = tile(state, x, y);
401 int rot = random_upto(rs, 4);
402 tile(state, x, y) = ROT(orig, rot);
403 }
404 }
405
406 /*
407 * And now choose barrier locations. (We carefully do this
408 * _after_ shuffling, so that changing the barrier rate in the
409 * params while keeping the game seed the same will give the
410 * same shuffled grid and _only_ change the barrier locations.
411 * Also the way we choose barrier locations, by repeatedly
412 * choosing one possibility from the list until we have enough,
413 * is designed to ensure that raising the barrier rate while
414 * keeping the seed the same will provide a superset of the
415 * previous barrier set - i.e. if you ask for 10 barriers, and
416 * then decide that's still too hard and ask for 20, you'll get
417 * the original 10 plus 10 more, rather than getting 20 new
418 * ones and the chance of remembering your first 10.)
419 */
420 nbarriers = params->barrier_probability * count234(barriers);
421 assert(nbarriers >= 0 && nbarriers <= count234(barriers));
422
423 while (nbarriers > 0) {
424 int i;
425 struct xyd *xyd;
426 int x1, y1, d1, x2, y2, d2;
427
428 /*
429 * Extract a randomly chosen barrier from the list.
430 */
431 i = random_upto(rs, count234(barriers));
432 xyd = delpos234(barriers, i);
433
434 assert(xyd != NULL);
435
436 x1 = xyd->x;
437 y1 = xyd->y;
438 d1 = xyd->direction;
439 sfree(xyd);
440
441 OFFSET(x2, y2, x1, y1, d1, state);
442 d2 = F(d1);
443
444 barrier(state, x1, y1) |= d1;
445 barrier(state, x2, y2) |= d2;
446
447 nbarriers--;
448 }
449
450 /*
451 * Clean up the rest of the barrier list.
452 */
453 {
454 struct xyd *xyd;
455
456 while ( (xyd = delpos234(barriers, 0)) != NULL)
457 sfree(xyd);
458
459 freetree234(barriers);
460 }
461
2ef96bd6 462 /*
463 * Set up the barrier corner flags, for drawing barriers
464 * prettily when they meet.
465 */
466 for (y = 0; y < state->height; y++) {
467 for (x = 0; x < state->width; x++) {
468 int dir;
469
470 for (dir = 1; dir < 0x10; dir <<= 1) {
471 int dir2 = A(dir);
472 int x1, y1, x2, y2, x3, y3;
473 int corner = FALSE;
474
475 if (!(barrier(state, x, y) & dir))
476 continue;
477
478 if (barrier(state, x, y) & dir2)
479 corner = TRUE;
480
481 x1 = x + X(dir), y1 = y + Y(dir);
482 if (x1 >= 0 && x1 < state->width &&
483 y1 >= 0 && y1 < state->width &&
484 (barrier(state, x1, y1) & dir2))
485 corner = TRUE;
486
487 x2 = x + X(dir2), y2 = y + Y(dir2);
488 if (x2 >= 0 && x2 < state->width &&
489 y2 >= 0 && y2 < state->width &&
490 (barrier(state, x2, y2) & dir))
491 corner = TRUE;
492
493 if (corner) {
494 barrier(state, x, y) |= (dir << 4);
495 if (x1 >= 0 && x1 < state->width &&
496 y1 >= 0 && y1 < state->width)
497 barrier(state, x1, y1) |= (A(dir) << 4);
498 if (x2 >= 0 && x2 < state->width &&
499 y2 >= 0 && y2 < state->width)
500 barrier(state, x2, y2) |= (C(dir) << 4);
501 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
502 if (x3 >= 0 && x3 < state->width &&
503 y3 >= 0 && y3 < state->width)
504 barrier(state, x3, y3) |= (F(dir) << 4);
505 }
506 }
507 }
508 }
509
720a8fb7 510 random_free(rs);
511
512 return state;
513}
514
515game_state *dup_game(game_state *state)
516{
517 game_state *ret;
518
519 ret = snew(game_state);
520 ret->width = state->width;
521 ret->height = state->height;
2ef96bd6 522 ret->cx = state->cx;
523 ret->cy = state->cy;
720a8fb7 524 ret->wrapping = state->wrapping;
525 ret->completed = state->completed;
2ef96bd6 526 ret->last_rotate_dir = state->last_rotate_dir;
720a8fb7 527 ret->tiles = snewn(state->width * state->height, unsigned char);
528 memcpy(ret->tiles, state->tiles, state->width * state->height);
529 ret->barriers = snewn(state->width * state->height, unsigned char);
530 memcpy(ret->barriers, state->barriers, state->width * state->height);
531
532 return ret;
533}
534
535void free_game(game_state *state)
536{
537 sfree(state->tiles);
538 sfree(state->barriers);
539 sfree(state);
540}
541
542/* ----------------------------------------------------------------------
543 * Utility routine.
544 */
545
546/*
547 * Compute which squares are reachable from the centre square, as a
548 * quick visual aid to determining how close the game is to
549 * completion. This is also a simple way to tell if the game _is_
550 * completed - just call this function and see whether every square
551 * is marked active.
552 */
553static unsigned char *compute_active(game_state *state)
554{
555 unsigned char *active;
556 tree234 *todo;
557 struct xyd *xyd;
558
559 active = snewn(state->width * state->height, unsigned char);
560 memset(active, 0, state->width * state->height);
561
562 /*
563 * We only store (x,y) pairs in todo, but it's easier to reuse
564 * xyd_cmp and just store direction 0 every time.
565 */
566 todo = newtree234(xyd_cmp);
2ef96bd6 567 index(state, active, state->cx, state->cy) = ACTIVE;
568 add234(todo, new_xyd(state->cx, state->cy, 0));
720a8fb7 569
570 while ( (xyd = delpos234(todo, 0)) != NULL) {
571 int x1, y1, d1, x2, y2, d2;
572
573 x1 = xyd->x;
574 y1 = xyd->y;
575 sfree(xyd);
576
577 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
578 OFFSET(x2, y2, x1, y1, d1, state);
579 d2 = F(d1);
580
581 /*
582 * If the next tile in this direction is connected to
583 * us, and there isn't a barrier in the way, and it
584 * isn't already marked active, then mark it active and
585 * add it to the to-examine list.
586 */
587 if ((tile(state, x1, y1) & d1) &&
588 (tile(state, x2, y2) & d2) &&
589 !(barrier(state, x1, y1) & d1) &&
590 !index(state, active, x2, y2)) {
2ef96bd6 591 index(state, active, x2, y2) = ACTIVE;
720a8fb7 592 add234(todo, new_xyd(x2, y2, 0));
593 }
594 }
595 }
596 /* Now we expect the todo list to have shrunk to zero size. */
597 assert(count234(todo) == 0);
598 freetree234(todo);
599
600 return active;
601}
602
603/* ----------------------------------------------------------------------
604 * Process a move.
605 */
606game_state *make_move(game_state *state, int x, int y, int button)
607{
608 game_state *ret;
609 int tx, ty, orig;
610
611 /*
612 * All moves in Net are made with the mouse.
613 */
614 if (button != LEFT_BUTTON &&
615 button != MIDDLE_BUTTON &&
616 button != RIGHT_BUTTON)
617 return NULL;
618
619 /*
620 * The button must have been clicked on a valid tile.
621 */
7f77ea24 622 x -= WINDOW_OFFSET + TILE_BORDER;
623 y -= WINDOW_OFFSET + TILE_BORDER;
720a8fb7 624 if (x < 0 || y < 0)
625 return NULL;
626 tx = x / TILE_SIZE;
627 ty = y / TILE_SIZE;
628 if (tx >= state->width || ty >= state->height)
629 return NULL;
630 if (tx % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
631 ty % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
632 return NULL;
633
634 /*
635 * The middle button locks or unlocks a tile. (A locked tile
636 * cannot be turned, and is visually marked as being locked.
637 * This is a convenience for the player, so that once they are
638 * sure which way round a tile goes, they can lock it and thus
639 * avoid forgetting later on that they'd already done that one;
640 * and the locking also prevents them turning the tile by
641 * accident. If they change their mind, another middle click
642 * unlocks it.)
643 */
644 if (button == MIDDLE_BUTTON) {
645 ret = dup_game(state);
646 tile(ret, tx, ty) ^= LOCKED;
647 return ret;
648 }
649
650 /*
651 * The left and right buttons have no effect if clicked on a
652 * locked tile.
653 */
654 if (tile(state, tx, ty) & LOCKED)
655 return NULL;
656
657 /*
658 * Otherwise, turn the tile one way or the other. Left button
659 * turns anticlockwise; right button turns clockwise.
660 */
661 ret = dup_game(state);
662 orig = tile(ret, tx, ty);
2ef96bd6 663 if (button == LEFT_BUTTON) {
720a8fb7 664 tile(ret, tx, ty) = A(orig);
2ef96bd6 665 ret->last_rotate_dir = +1;
666 } else {
720a8fb7 667 tile(ret, tx, ty) = C(orig);
2ef96bd6 668 ret->last_rotate_dir = -1;
669 }
720a8fb7 670
671 /*
672 * Check whether the game has been completed.
673 */
674 {
675 unsigned char *active = compute_active(ret);
676 int x1, y1;
677 int complete = TRUE;
678
679 for (x1 = 0; x1 < ret->width; x1++)
680 for (y1 = 0; y1 < ret->height; y1++)
681 if (!index(ret, active, x1, y1)) {
682 complete = FALSE;
683 goto break_label; /* break out of two loops at once */
684 }
685 break_label:
686
687 sfree(active);
688
689 if (complete)
690 ret->completed = TRUE;
691 }
692
693 return ret;
694}
695
696/* ----------------------------------------------------------------------
697 * Routines for drawing the game position on the screen.
698 */
699
2ef96bd6 700struct game_drawstate {
701 int started;
702 int width, height;
703 unsigned char *visible;
704};
705
706game_drawstate *game_new_drawstate(game_state *state)
707{
708 game_drawstate *ds = snew(game_drawstate);
709
710 ds->started = FALSE;
711 ds->width = state->width;
712 ds->height = state->height;
713 ds->visible = snewn(state->width * state->height, unsigned char);
714 memset(ds->visible, 0xFF, state->width * state->height);
715
716 return ds;
717}
718
719void game_free_drawstate(game_drawstate *ds)
720{
721 sfree(ds->visible);
722 sfree(ds);
723}
724
7f77ea24 725void game_size(game_params *params, int *x, int *y)
726{
727 *x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
728 *y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
729}
730
2ef96bd6 731float *game_colours(frontend *fe, game_state *state, int *ncolours)
732{
733 float *ret;
83680571 734
2ef96bd6 735 ret = snewn(NCOLOURS * 3, float);
736 *ncolours = NCOLOURS;
720a8fb7 737
2ef96bd6 738 /*
739 * Basic background colour is whatever the front end thinks is
740 * a sensible default.
741 */
742 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
743
744 /*
745 * Wires are black.
746 */
747 ret[COL_WIRE * 3 + 0] = 0.0;
748 ret[COL_WIRE * 3 + 1] = 0.0;
749 ret[COL_WIRE * 3 + 2] = 0.0;
750
751 /*
752 * Powered wires and powered endpoints are cyan.
753 */
754 ret[COL_POWERED * 3 + 0] = 0.0;
755 ret[COL_POWERED * 3 + 1] = 1.0;
756 ret[COL_POWERED * 3 + 2] = 1.0;
757
758 /*
759 * Barriers are red.
760 */
761 ret[COL_BARRIER * 3 + 0] = 1.0;
762 ret[COL_BARRIER * 3 + 1] = 0.0;
763 ret[COL_BARRIER * 3 + 2] = 0.0;
764
765 /*
766 * Unpowered endpoints are blue.
767 */
768 ret[COL_ENDPOINT * 3 + 0] = 0.0;
769 ret[COL_ENDPOINT * 3 + 1] = 0.0;
770 ret[COL_ENDPOINT * 3 + 2] = 1.0;
771
772 /*
773 * Tile borders are a darker grey than the background.
774 */
775 ret[COL_BORDER * 3 + 0] = 0.5 * ret[COL_BACKGROUND * 3 + 0];
776 ret[COL_BORDER * 3 + 1] = 0.5 * ret[COL_BACKGROUND * 3 + 1];
777 ret[COL_BORDER * 3 + 2] = 0.5 * ret[COL_BACKGROUND * 3 + 2];
778
779 /*
780 * Locked tiles are a grey in between those two.
781 */
782 ret[COL_LOCKED * 3 + 0] = 0.75 * ret[COL_BACKGROUND * 3 + 0];
783 ret[COL_LOCKED * 3 + 1] = 0.75 * ret[COL_BACKGROUND * 3 + 1];
784 ret[COL_LOCKED * 3 + 2] = 0.75 * ret[COL_BACKGROUND * 3 + 2];
785
786 return ret;
787}
788
789static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
790 int colour)
720a8fb7 791{
2ef96bd6 792 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
793 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
794 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
795 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
796 draw_line(fe, x1, y1, x2, y2, colour);
797}
720a8fb7 798
2ef96bd6 799static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
800 int colour)
801{
802 int mx = (x1 < x2 ? x1 : x2);
803 int my = (y1 < y2 ? y1 : y2);
804 int dx = (x2 + x1 - 2*mx + 1);
805 int dy = (y2 + y1 - 2*my + 1);
720a8fb7 806
2ef96bd6 807 draw_rect(fe, mx, my, dx, dy, colour);
808}
720a8fb7 809
2ef96bd6 810static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
811{
812 int bx = WINDOW_OFFSET + TILE_SIZE * x;
813 int by = WINDOW_OFFSET + TILE_SIZE * y;
814 int x1, y1, dx, dy, dir2;
815
816 dir >>= 4;
817
818 dir2 = A(dir);
819 dx = X(dir) + X(dir2);
820 dy = Y(dir) + Y(dir2);
821 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
822 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
823
824 if (phase == 0) {
825 draw_rect_coords(fe, bx+x1, by+y1,
826 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
827 COL_WIRE);
828 draw_rect_coords(fe, bx+x1, by+y1,
829 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
830 COL_WIRE);
831 } else {
832 draw_rect_coords(fe, bx+x1, by+y1,
833 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
834 COL_BARRIER);
720a8fb7 835 }
2ef96bd6 836}
837
838static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
839{
840 int bx = WINDOW_OFFSET + TILE_SIZE * x;
841 int by = WINDOW_OFFSET + TILE_SIZE * y;
842 int x1, y1, w, h;
843
844 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
845 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
846 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
847 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
848
849 if (phase == 0) {
850 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
851 } else {
852 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
853 }
854}
720a8fb7 855
2ef96bd6 856static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
857 float angle)
858{
859 int bx = WINDOW_OFFSET + TILE_SIZE * x;
860 int by = WINDOW_OFFSET + TILE_SIZE * y;
861 float matrix[4];
862 float cx, cy, ex, ey, tx, ty;
863 int dir, col, phase;
720a8fb7 864
2ef96bd6 865 /*
866 * When we draw a single tile, we must draw everything up to
867 * and including the borders around the tile. This means that
868 * if the neighbouring tiles have connections to those borders,
869 * we must draw those connections on the borders themselves.
870 *
871 * This would be terribly fiddly if we ever had to draw a tile
872 * while its neighbour was in mid-rotate, because we'd have to
873 * arrange to _know_ that the neighbour was being rotated and
874 * hence had an anomalous effect on the redraw of this tile.
875 * Fortunately, the drawing algorithm avoids ever calling us in
876 * this circumstance: we're either drawing lots of straight
877 * tiles at game start or after a move is complete, or we're
878 * repeatedly drawing only the rotating tile. So no problem.
879 */
880
881 /*
882 * So. First blank the tile out completely: draw a big
883 * rectangle in border colour, and a smaller rectangle in
884 * background colour to fill it in.
885 */
886 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
887 COL_BORDER);
888 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
889 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
890 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
891
892 /*
893 * Set up the rotation matrix.
894 */
895 matrix[0] = cos(angle * PI / 180.0);
896 matrix[1] = -sin(angle * PI / 180.0);
897 matrix[2] = sin(angle * PI / 180.0);
898 matrix[3] = cos(angle * PI / 180.0);
899
900 /*
901 * Draw the wires.
902 */
903 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0 - 0.5;
904 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
905 for (dir = 1; dir < 0x10; dir <<= 1) {
906 if (tile & dir) {
907 ex = (TILE_SIZE - TILE_BORDER - 1.0) / 2.0 * X(dir);
908 ey = (TILE_SIZE - TILE_BORDER - 1.0) / 2.0 * Y(dir);
909 MATMUL(tx, ty, matrix, ex, ey);
910 draw_thick_line(fe, bx+cx, by+cy, bx+(cx+tx), by+(cy+ty),
911 COL_WIRE);
912 }
913 }
914 for (dir = 1; dir < 0x10; dir <<= 1) {
915 if (tile & dir) {
916 ex = (TILE_SIZE - TILE_BORDER - 1.0) / 2.0 * X(dir);
917 ey = (TILE_SIZE - TILE_BORDER - 1.0) / 2.0 * Y(dir);
918 MATMUL(tx, ty, matrix, ex, ey);
919 draw_line(fe, bx+cx, by+cy, bx+(cx+tx), by+(cy+ty), col);
920 }
921 }
922
923 /*
924 * Draw the box in the middle. We do this in blue if the tile
925 * is an unpowered endpoint, in cyan if the tile is a powered
926 * endpoint, in black if the tile is the centrepiece, and
927 * otherwise not at all.
928 */
929 col = -1;
930 if (x == state->cx && y == state->cy)
931 col = COL_WIRE;
932 else if (COUNT(tile) == 1) {
933 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
934 }
935 if (col >= 0) {
936 int i, points[8];
937
938 points[0] = +1; points[1] = +1;
939 points[2] = +1; points[3] = -1;
940 points[4] = -1; points[5] = -1;
941 points[6] = -1; points[7] = +1;
942
943 for (i = 0; i < 8; i += 2) {
944 ex = (TILE_SIZE * 0.24) * points[i];
945 ey = (TILE_SIZE * 0.24) * points[i+1];
946 MATMUL(tx, ty, matrix, ex, ey);
947 points[i] = bx+cx+tx;
948 points[i+1] = by+cy+ty;
949 }
950
951 draw_polygon(fe, points, 4, TRUE, col);
952 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
953 }
954
955 /*
956 * Draw the points on the border if other tiles are connected
957 * to us.
958 */
959 for (dir = 1; dir < 0x10; dir <<= 1) {
960 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
961
962 dx = X(dir);
963 dy = Y(dir);
964
965 ox = x + dx;
966 oy = y + dy;
967
968 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
969 continue;
970
971 if (!(tile(state, ox, oy) & F(dir)))
972 continue;
973
974 px = bx + (dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
975 py = by + (dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
976 lx = dx * (TILE_BORDER-1);
977 ly = dy * (TILE_BORDER-1);
978 vx = (dy ? 1 : 0);
979 vy = (dx ? 1 : 0);
980
981 if (angle == 0.0 && (tile & dir)) {
982 /*
983 * If we are fully connected to the other tile, we must
984 * draw right across the tile border. (We can use our
985 * own ACTIVE state to determine what colour to do this
986 * in: if we are fully connected to the other tile then
987 * the two ACTIVE states will be the same.)
988 */
989 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
990 draw_rect_coords(fe, px, py, px+lx, py+ly,
991 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
992 } else {
993 /*
994 * The other tile extends into our border, but isn't
995 * actually connected to us. Just draw a single black
996 * dot.
997 */
998 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
999 }
1000 }
1001
1002 /*
1003 * Draw barrier corners, and then barriers.
1004 */
1005 for (phase = 0; phase < 2; phase++) {
1006 for (dir = 1; dir < 0x10; dir <<= 1)
1007 if (barrier(state, x, y) & (dir << 4))
1008 draw_barrier_corner(fe, x, y, dir << 4, phase);
1009 for (dir = 1; dir < 0x10; dir <<= 1)
1010 if (barrier(state, x, y) & dir)
1011 draw_barrier(fe, x, y, dir, phase);
1012 }
1013
1014 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
720a8fb7 1015}
1016
2ef96bd6 1017void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1018 game_state *state, float t)
1019{
1020 int x, y, tx, ty, frame;
1021 unsigned char *active;
1022 float angle = 0.0;
1023
1024 /*
1025 * Clear the screen and draw the exterior barrier lines if this
1026 * is our first call.
1027 */
1028 if (!ds->started) {
1029 int phase;
1030
1031 ds->started = TRUE;
1032
1033 draw_rect(fe, 0, 0,
1034 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1035 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1036 COL_BACKGROUND);
1037 draw_update(fe, 0, 0,
1038 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1039 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1040
1041 for (phase = 0; phase < 2; phase++) {
1042
1043 for (x = 0; x < ds->width; x++) {
1044 if (barrier(state, x, 0) & UL)
1045 draw_barrier_corner(fe, x, -1, LD, phase);
1046 if (barrier(state, x, 0) & RU)
1047 draw_barrier_corner(fe, x, -1, DR, phase);
1048 if (barrier(state, x, 0) & U)
1049 draw_barrier(fe, x, -1, D, phase);
1050 if (barrier(state, x, ds->height-1) & DR)
1051 draw_barrier_corner(fe, x, ds->height, RU, phase);
1052 if (barrier(state, x, ds->height-1) & LD)
1053 draw_barrier_corner(fe, x, ds->height, UL, phase);
1054 if (barrier(state, x, ds->height-1) & D)
1055 draw_barrier(fe, x, ds->height, U, phase);
1056 }
1057
1058 for (y = 0; y < ds->height; y++) {
1059 if (barrier(state, 0, y) & UL)
1060 draw_barrier_corner(fe, -1, y, RU, phase);
1061 if (barrier(state, 0, y) & LD)
1062 draw_barrier_corner(fe, -1, y, DR, phase);
1063 if (barrier(state, 0, y) & L)
1064 draw_barrier(fe, -1, y, R, phase);
1065 if (barrier(state, ds->width-1, y) & RU)
1066 draw_barrier_corner(fe, ds->width, y, UL, phase);
1067 if (barrier(state, ds->width-1, y) & DR)
1068 draw_barrier_corner(fe, ds->width, y, LD, phase);
1069 if (barrier(state, ds->width-1, y) & R)
1070 draw_barrier(fe, ds->width, y, L, phase);
1071 }
1072 }
1073 }
1074
1075 tx = ty = -1;
1076 frame = -1;
1077 if (oldstate && (t < ROTATE_TIME)) {
1078 /*
1079 * We're animating a tile rotation. Find the turning tile,
1080 * if any.
1081 */
1082 for (x = 0; x < oldstate->width; x++)
1083 for (y = 0; y < oldstate->height; y++)
1084 if ((tile(oldstate, x, y) ^ tile(state, x, y)) & 0xF) {
1085 tx = x, ty = y;
1086 goto break_label; /* leave both loops at once */
1087 }
1088 break_label:
1089
1090 if (tx >= 0) {
1091 if (tile(state, tx, ty) == ROT(tile(oldstate, tx, ty),
1092 state->last_rotate_dir))
1093 angle = state->last_rotate_dir * 90.0 * (t / ROTATE_TIME);
1094 else
1095 angle = state->last_rotate_dir * -90.0 * (t / ROTATE_TIME);
1096 state = oldstate;
1097 }
1098 } else if (t > ROTATE_TIME) {
1099 /*
1100 * We're animating a completion flash. Find which frame
1101 * we're at.
1102 */
1103 frame = (t - ROTATE_TIME) / FLASH_FRAME;
1104 }
1105
1106 /*
1107 * Draw any tile which differs from the way it was last drawn.
1108 */
1109 active = compute_active(state);
1110
1111 for (x = 0; x < ds->width; x++)
1112 for (y = 0; y < ds->height; y++) {
1113 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1114
1115 /*
1116 * In a completion flash, we adjust the LOCKED bit
1117 * depending on our distance from the centre point and
1118 * the frame number.
1119 */
1120 if (frame >= 0) {
1121 int xdist, ydist, dist;
1122 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1123 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1124 dist = (xdist > ydist ? xdist : ydist);
1125
1126 if (frame >= dist && frame < dist+4) {
1127 int lock = (frame - dist) & 1;
1128 lock = lock ? LOCKED : 0;
1129 c = (c &~ LOCKED) | lock;
1130 }
1131 }
1132
1133 if (index(state, ds->visible, x, y) != c ||
1134 index(state, ds->visible, x, y) == 0xFF ||
1135 (x == tx && y == ty)) {
1136 draw_tile(fe, state, x, y, c,
1137 (x == tx && y == ty ? angle : 0.0));
1138 if (x == tx && y == ty)
1139 index(state, ds->visible, x, y) = 0xFF;
1140 else
1141 index(state, ds->visible, x, y) = c;
1142 }
1143 }
1144
1145 sfree(active);
1146}
1147
1148float game_anim_length(game_state *oldstate, game_state *newstate)
1149{
1150 float ret = 0.0;
1151 int x, y;
1152
1153 /*
1154 * If there's a tile which has been rotated, allow time to
1155 * animate its rotation.
1156 */
1157 for (x = 0; x < oldstate->width; x++)
1158 for (y = 0; y < oldstate->height; y++)
1159 if ((tile(oldstate, x, y) ^ tile(newstate, x, y)) & 0xF) {
1160 ret = ROTATE_TIME;
1161 goto break_label; /* leave both loops at once */
1162 }
1163 break_label:
1164
1165 /*
1166 * Also, if the game has just been completed, allow time for a
1167 * completion flash.
1168 */
1169 if (!oldstate->completed && newstate->completed) {
1170 int size;
1171 size = 0;
1172 if (size < newstate->cx+1)
1173 size = newstate->cx+1;
1174 if (size < newstate->cy+1)
1175 size = newstate->cy+1;
1176 if (size < newstate->width - newstate->cx)
1177 size = newstate->width - newstate->cx;
1178 if (size < newstate->height - newstate->cy)
1179 size = newstate->height - newstate->cy;
1180 ret += FLASH_FRAME * (size+4);
1181 }
1182
1183 return ret;
1184}