It occurred to me yesterday that Net could perfectly well be played
[sgt/puzzles] / net.c
CommitLineData
720a8fb7 1/*
2 * net.c: Net game.
3 */
4
5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
8#include <assert.h>
b0e26073 9#include <ctype.h>
2ef96bd6 10#include <math.h>
720a8fb7 11
12#include "puzzles.h"
13#include "tree234.h"
14
2ef96bd6 15#define PI 3.141592653589793238462643383279502884197169399
16
17#define MATMUL(xr,yr,m,x,y) do { \
18 float rx, ry, xx = (x), yy = (y), *mat = (m); \
19 rx = mat[0] * xx + mat[2] * yy; \
20 ry = mat[1] * xx + mat[3] * yy; \
21 (xr) = rx; (yr) = ry; \
22} while (0)
23
24/* Direction and other bitfields */
720a8fb7 25#define R 0x01
26#define U 0x02
27#define L 0x04
28#define D 0x08
29#define LOCKED 0x10
2ef96bd6 30#define ACTIVE 0x20
31/* Corner flags go in the barriers array */
32#define RU 0x10
33#define UL 0x20
34#define LD 0x40
35#define DR 0x80
720a8fb7 36
37/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
38#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
39#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
40#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
41#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
42 ((n)&3) == 1 ? A(x) : \
43 ((n)&3) == 2 ? F(x) : C(x) )
44
45/* X and Y displacements */
46#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
47#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
48
49/* Bit count */
50#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
51 (((x) & 0x02) >> 1) + ((x) & 0x01) )
52
53#define TILE_SIZE 32
54#define TILE_BORDER 1
55#define WINDOW_OFFSET 16
56
8c1fd974 57#define ROTATE_TIME 0.13F
58#define FLASH_FRAME 0.07F
2ef96bd6 59
60enum {
61 COL_BACKGROUND,
62 COL_LOCKED,
63 COL_BORDER,
64 COL_WIRE,
65 COL_ENDPOINT,
66 COL_POWERED,
67 COL_BARRIER,
68 NCOLOURS
69};
70
720a8fb7 71struct game_params {
72 int width;
73 int height;
74 int wrapping;
c0edd11f 75 int unique;
720a8fb7 76 float barrier_probability;
77};
78
1185e3c5 79struct game_aux_info {
2ac6d24e 80 int width, height;
2ac6d24e 81 unsigned char *tiles;
82};
83
720a8fb7 84struct game_state {
1185e3c5 85 int width, height, cx, cy, wrapping, completed;
86 int last_rotate_x, last_rotate_y, last_rotate_dir;
2ac6d24e 87 int used_solve, just_used_solve;
720a8fb7 88 unsigned char *tiles;
89 unsigned char *barriers;
90};
91
c0edd11f 92#define OFFSETWH(x2,y2,x1,y1,dir,width,height) \
93 ( (x2) = ((x1) + width + X((dir))) % width, \
94 (y2) = ((y1) + height + Y((dir))) % height)
95
720a8fb7 96#define OFFSET(x2,y2,x1,y1,dir,state) \
c0edd11f 97 OFFSETWH(x2,y2,x1,y1,dir,(state)->width,(state)->height)
720a8fb7 98
99#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
100#define tile(state, x, y) index(state, (state)->tiles, x, y)
101#define barrier(state, x, y) index(state, (state)->barriers, x, y)
102
103struct xyd {
104 int x, y, direction;
105};
106
c0edd11f 107static int xyd_cmp(const void *av, const void *bv) {
108 const struct xyd *a = (const struct xyd *)av;
109 const struct xyd *b = (const struct xyd *)bv;
720a8fb7 110 if (a->x < b->x)
111 return -1;
112 if (a->x > b->x)
113 return +1;
114 if (a->y < b->y)
115 return -1;
116 if (a->y > b->y)
117 return +1;
118 if (a->direction < b->direction)
119 return -1;
120 if (a->direction > b->direction)
121 return +1;
122 return 0;
123};
124
c0edd11f 125static int xyd_cmp_nc(void *av, void *bv) { return xyd_cmp(av, bv); }
126
720a8fb7 127static struct xyd *new_xyd(int x, int y, int direction)
128{
129 struct xyd *xyd = snew(struct xyd);
130 xyd->x = x;
131 xyd->y = y;
132 xyd->direction = direction;
133 return xyd;
134}
135
136/* ----------------------------------------------------------------------
7f77ea24 137 * Manage game parameters.
138 */
be8d5aa1 139static game_params *default_params(void)
7f77ea24 140{
141 game_params *ret = snew(game_params);
142
eb2ad6f1 143 ret->width = 5;
144 ret->height = 5;
145 ret->wrapping = FALSE;
c0edd11f 146 ret->unique = TRUE;
eb2ad6f1 147 ret->barrier_probability = 0.0;
7f77ea24 148
149 return ret;
150}
151
be8d5aa1 152static int game_fetch_preset(int i, char **name, game_params **params)
eb2ad6f1 153{
154 game_params *ret;
155 char str[80];
156 static const struct { int x, y, wrap; } values[] = {
157 {5, 5, FALSE},
158 {7, 7, FALSE},
159 {9, 9, FALSE},
160 {11, 11, FALSE},
161 {13, 11, FALSE},
162 {5, 5, TRUE},
163 {7, 7, TRUE},
164 {9, 9, TRUE},
165 {11, 11, TRUE},
166 {13, 11, TRUE},
167 };
168
169 if (i < 0 || i >= lenof(values))
170 return FALSE;
171
172 ret = snew(game_params);
173 ret->width = values[i].x;
174 ret->height = values[i].y;
175 ret->wrapping = values[i].wrap;
c0edd11f 176 ret->unique = TRUE;
eb2ad6f1 177 ret->barrier_probability = 0.0;
178
179 sprintf(str, "%dx%d%s", ret->width, ret->height,
180 ret->wrapping ? " wrapping" : "");
181
182 *name = dupstr(str);
183 *params = ret;
184 return TRUE;
185}
186
be8d5aa1 187static void free_params(game_params *params)
7f77ea24 188{
189 sfree(params);
190}
191
be8d5aa1 192static game_params *dup_params(game_params *params)
eb2ad6f1 193{
194 game_params *ret = snew(game_params);
195 *ret = *params; /* structure copy */
196 return ret;
197}
198
1185e3c5 199static void decode_params(game_params *ret, char const *string)
b0e26073 200{
b0e26073 201 char const *p = string;
202
203 ret->width = atoi(p);
40fde884 204 while (*p && isdigit((unsigned char)*p)) p++;
b0e26073 205 if (*p == 'x') {
206 p++;
207 ret->height = atoi(p);
40fde884 208 while (*p && isdigit((unsigned char)*p)) p++;
b0e26073 209 } else {
210 ret->height = ret->width;
211 }
c0edd11f 212
213 while (*p) {
214 if (*p == 'w') {
215 p++;
216 ret->wrapping = TRUE;
217 } else if (*p == 'b') {
218 p++;
219 ret->barrier_probability = atof(p);
40fde884 220 while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
c0edd11f 221 } else if (*p == 'a') {
222 p++;
223 ret->unique = FALSE;
40fde884 224 } else
225 p++; /* skip any other gunk */
c0edd11f 226 }
b0e26073 227}
228
1185e3c5 229static char *encode_params(game_params *params, int full)
b0e26073 230{
231 char ret[400];
232 int len;
233
234 len = sprintf(ret, "%dx%d", params->width, params->height);
235 if (params->wrapping)
236 ret[len++] = 'w';
1185e3c5 237 if (full && params->barrier_probability)
b0e26073 238 len += sprintf(ret+len, "b%g", params->barrier_probability);
40fde884 239 if (full && !params->unique)
c0edd11f 240 ret[len++] = 'a';
b0e26073 241 assert(len < lenof(ret));
242 ret[len] = '\0';
243
244 return dupstr(ret);
245}
246
be8d5aa1 247static config_item *game_configure(game_params *params)
c8230524 248{
249 config_item *ret;
250 char buf[80];
251
c0edd11f 252 ret = snewn(6, config_item);
c8230524 253
254 ret[0].name = "Width";
95709966 255 ret[0].type = C_STRING;
c8230524 256 sprintf(buf, "%d", params->width);
257 ret[0].sval = dupstr(buf);
258 ret[0].ival = 0;
259
260 ret[1].name = "Height";
95709966 261 ret[1].type = C_STRING;
c8230524 262 sprintf(buf, "%d", params->height);
263 ret[1].sval = dupstr(buf);
264 ret[1].ival = 0;
265
266 ret[2].name = "Walls wrap around";
95709966 267 ret[2].type = C_BOOLEAN;
c8230524 268 ret[2].sval = NULL;
269 ret[2].ival = params->wrapping;
270
271 ret[3].name = "Barrier probability";
95709966 272 ret[3].type = C_STRING;
c8230524 273 sprintf(buf, "%g", params->barrier_probability);
274 ret[3].sval = dupstr(buf);
275 ret[3].ival = 0;
276
c0edd11f 277 ret[4].name = "Ensure unique solution";
278 ret[4].type = C_BOOLEAN;
c8230524 279 ret[4].sval = NULL;
c0edd11f 280 ret[4].ival = params->unique;
281
282 ret[5].name = NULL;
283 ret[5].type = C_END;
284 ret[5].sval = NULL;
285 ret[5].ival = 0;
c8230524 286
287 return ret;
288}
289
be8d5aa1 290static game_params *custom_params(config_item *cfg)
c8230524 291{
292 game_params *ret = snew(game_params);
293
294 ret->width = atoi(cfg[0].sval);
295 ret->height = atoi(cfg[1].sval);
296 ret->wrapping = cfg[2].ival;
95709966 297 ret->barrier_probability = (float)atof(cfg[3].sval);
c0edd11f 298 ret->unique = cfg[4].ival;
c8230524 299
300 return ret;
301}
302
be8d5aa1 303static char *validate_params(game_params *params)
c8230524 304{
305 if (params->width <= 0 && params->height <= 0)
306 return "Width and height must both be greater than zero";
307 if (params->width <= 0)
308 return "Width must be greater than zero";
309 if (params->height <= 0)
310 return "Height must be greater than zero";
311 if (params->width <= 1 && params->height <= 1)
312 return "At least one of width and height must be greater than one";
313 if (params->barrier_probability < 0)
314 return "Barrier probability may not be negative";
315 if (params->barrier_probability > 1)
316 return "Barrier probability may not be greater than 1";
317 return NULL;
318}
319
7f77ea24 320/* ----------------------------------------------------------------------
c0edd11f 321 * Solver used to assure solution uniqueness during generation.
322 */
323
324/*
325 * Test cases I used while debugging all this were
326 *
327 * ./net --generate 1 13x11w#12300
328 * which expands under the non-unique grid generation rules to
329 * 13x11w:5eaade1bd222664436d5e2965c12656b1129dd825219e3274d558d5eb2dab5da18898e571d5a2987be79746bd95726c597447d6da96188c513add829da7681da954db113d3cd244
330 * and has two ambiguous areas.
331 *
332 * An even better one is
333 * 13x11w#507896411361192
334 * which expands to
335 * 13x11w:b7125b1aec598eb31bd58d82572bc11494e5dee4e8db2bdd29b88d41a16bdd996d2996ddec8c83741a1e8674e78328ba71737b8894a9271b1cd1399453d1952e43951d9b712822e
336 * and has an ambiguous area _and_ a situation where loop avoidance
337 * is a necessary deductive technique.
338 *
339 * Then there's
340 * 48x25w#820543338195187
341 * becoming
342 * 48x25w:255989d14cdd185deaa753a93821a12edc1ab97943ac127e2685d7b8b3c48861b2192416139212b316eddd35de43714ebc7628d753db32e596284d9ec52c5a7dc1b4c811a655117d16dc28921b2b4161352cab1d89d18bc836b8b891d55ea4622a1251861b5bc9a8aa3e5bcd745c95229ca6c3b5e21d5832d397e917325793d7eb442dc351b2db2a52ba8e1651642275842d8871d5534aabc6d5b741aaa2d48ed2a7dbbb3151ddb49d5b9a7ed1ab98ee75d613d656dbba347bc514c84556b43a9bc65a3256ead792488b862a9d2a8a39b4255a4949ed7dbd79443292521265896b4399c95ede89d7c8c797a6a57791a849adea489359a158aa12e5dacce862b8333b7ebea7d344d1a3c53198864b73a9dedde7b663abb1b539e1e8853b1b7edb14a2a17ebaae4dbe63598a2e7e9a2dbdad415bc1d8cb88cbab5a8c82925732cd282e641ea3bd7d2c6e776de9117a26be86deb7c82c89524b122cb9397cd1acd2284e744ea62b9279bae85479ababe315c3ac29c431333395b24e6a1e3c43a2da42d4dce84aadd5b154aea555eaddcbd6e527d228c19388d9b424d94214555a7edbdeebe569d4a56dc51a86bd9963e377bb74752bd5eaa5761ba545e297b62a1bda46ab4aee423ad6c661311783cc18786d4289236563cb4a75ec67d481c14814994464cd1b87396dee63e5ab6e952cc584baa1d4c47cb557ec84dbb63d487c8728118673a166846dd3a4ebc23d6cb9c5827d96b4556e91899db32b517eda815ae271a8911bd745447121dc8d321557bc2a435ebec1bbac35b1a291669451174e6aa2218a4a9c5a6ca31ebc45d84e3a82c121e9ced7d55e9a
343 * which has a spot (far right) where slightly more complex loop
344 * avoidance is required.
345 */
346
347static int dsf_canonify(int *dsf, int val)
348{
349 int v2 = val;
350
351 while (dsf[val] != val)
352 val = dsf[val];
353
354 while (v2 != val) {
355 int tmp = dsf[v2];
356 dsf[v2] = val;
357 v2 = tmp;
358 }
359
360 return val;
361}
362
363static void dsf_merge(int *dsf, int v1, int v2)
364{
365 v1 = dsf_canonify(dsf, v1);
366 v2 = dsf_canonify(dsf, v2);
367 dsf[v2] = v1;
368}
369
370struct todo {
371 unsigned char *marked;
372 int *buffer;
373 int buflen;
374 int head, tail;
375};
376
377static struct todo *todo_new(int maxsize)
378{
379 struct todo *todo = snew(struct todo);
380 todo->marked = snewn(maxsize, unsigned char);
381 memset(todo->marked, 0, maxsize);
382 todo->buflen = maxsize + 1;
383 todo->buffer = snewn(todo->buflen, int);
384 todo->head = todo->tail = 0;
385 return todo;
386}
387
388static void todo_free(struct todo *todo)
389{
390 sfree(todo->marked);
391 sfree(todo->buffer);
392 sfree(todo);
393}
394
395static void todo_add(struct todo *todo, int index)
396{
397 if (todo->marked[index])
398 return; /* already on the list */
399 todo->marked[index] = TRUE;
400 todo->buffer[todo->tail++] = index;
401 if (todo->tail == todo->buflen)
402 todo->tail = 0;
403}
404
405static int todo_get(struct todo *todo) {
406 int ret;
407
408 if (todo->head == todo->tail)
409 return -1; /* list is empty */
410 ret = todo->buffer[todo->head++];
411 if (todo->head == todo->buflen)
412 todo->head = 0;
413 todo->marked[ret] = FALSE;
414
415 return ret;
416}
417
418static int net_solver(int w, int h, unsigned char *tiles, int wrapping)
419{
420 unsigned char *tilestate;
421 unsigned char *edgestate;
422 int *deadends;
423 int *equivalence;
424 struct todo *todo;
425 int i, j, x, y;
426 int area;
427 int done_something;
428
429 /*
430 * Set up the solver's data structures.
431 */
432
433 /*
434 * tilestate stores the possible orientations of each tile.
435 * There are up to four of these, so we'll index the array in
436 * fours. tilestate[(y * w + x) * 4] and its three successive
437 * members give the possible orientations, clearing to 255 from
438 * the end as things are ruled out.
439 *
440 * In this loop we also count up the area of the grid (which is
441 * not _necessarily_ equal to w*h, because there might be one
442 * or more blank squares present. This will never happen in a
443 * grid generated _by_ this program, but it's worth keeping the
444 * solver as general as possible.)
445 */
446 tilestate = snewn(w * h * 4, unsigned char);
447 area = 0;
448 for (i = 0; i < w*h; i++) {
449 tilestate[i * 4] = tiles[i] & 0xF;
450 for (j = 1; j < 4; j++) {
451 if (tilestate[i * 4 + j - 1] == 255 ||
452 A(tilestate[i * 4 + j - 1]) == tilestate[i * 4])
453 tilestate[i * 4 + j] = 255;
454 else
455 tilestate[i * 4 + j] = A(tilestate[i * 4 + j - 1]);
456 }
457 if (tiles[i] != 0)
458 area++;
459 }
460
461 /*
462 * edgestate stores the known state of each edge. It is 0 for
463 * unknown, 1 for open (connected) and 2 for closed (not
464 * connected).
465 *
466 * In principle we need only worry about each edge once each,
467 * but in fact it's easier to track each edge twice so that we
468 * can reference it from either side conveniently. Also I'm
469 * going to allocate _five_ bytes per tile, rather than the
470 * obvious four, so that I can index edgestate[(y*w+x) * 5 + d]
471 * where d is 1,2,4,8 and they never overlap.
472 */
473 edgestate = snewn((w * h - 1) * 5 + 9, unsigned char);
474 memset(edgestate, 0, (w * h - 1) * 5 + 9);
475
476 /*
477 * deadends tracks which edges have dead ends on them. It is
478 * indexed by tile and direction: deadends[(y*w+x) * 5 + d]
479 * tells you whether heading out of tile (x,y) in direction d
480 * can reach a limited amount of the grid. Values are area+1
481 * (no dead end known) or less than that (can reach _at most_
482 * this many other tiles by heading this way out of this tile).
483 */
484 deadends = snewn((w * h - 1) * 5 + 9, int);
485 for (i = 0; i < (w * h - 1) * 5 + 9; i++)
486 deadends[i] = area+1;
487
488 /*
489 * equivalence tracks which sets of tiles are known to be
490 * connected to one another, so we can avoid creating loops by
491 * linking together tiles which are already linked through
492 * another route.
493 *
494 * This is a disjoint set forest structure: equivalence[i]
495 * contains the index of another member of the equivalence
496 * class containing i, or contains i itself for precisely one
497 * member in each such class. To find a representative member
498 * of the equivalence class containing i, you keep replacing i
499 * with equivalence[i] until it stops changing; then you go
500 * _back_ along the same path and point everything on it
501 * directly at the representative member so as to speed up
502 * future searches. Then you test equivalence between tiles by
503 * finding the representative of each tile and seeing if
504 * they're the same; and you create new equivalence (merge
505 * classes) by finding the representative of each tile and
506 * setting equivalence[one]=the_other.
507 */
508 equivalence = snewn(w * h, int);
509 for (i = 0; i < w*h; i++)
510 equivalence[i] = i; /* initially all distinct */
511
512 /*
513 * On a non-wrapping grid, we instantly know that all the edges
514 * round the edge are closed.
515 */
516 if (!wrapping) {
517 for (i = 0; i < w; i++) {
518 edgestate[i * 5 + 2] = edgestate[((h-1) * w + i) * 5 + 8] = 2;
519 }
520 for (i = 0; i < h; i++) {
521 edgestate[(i * w + w-1) * 5 + 1] = edgestate[(i * w) * 5 + 4] = 2;
522 }
523 }
524
525 /*
526 * Since most deductions made by this solver are local (the
527 * exception is loop avoidance, where joining two tiles
528 * together on one side of the grid can theoretically permit a
529 * fresh deduction on the other), we can address the scaling
530 * problem inherent in iterating repeatedly over the entire
531 * grid by instead working with a to-do list.
532 */
533 todo = todo_new(w * h);
534
535 /*
536 * Main deductive loop.
537 */
538 done_something = TRUE; /* prevent instant termination! */
539 while (1) {
540 int index;
541
542 /*
543 * Take a tile index off the todo list and process it.
544 */
545 index = todo_get(todo);
546 if (index == -1) {
547 /*
548 * If we have run out of immediate things to do, we
549 * have no choice but to scan the whole grid for
550 * longer-range things we've missed. Hence, I now add
551 * every square on the grid back on to the to-do list.
552 * I also set `done_something' to FALSE at this point;
553 * if we later come back here and find it still FALSE,
554 * we will know we've scanned the entire grid without
555 * finding anything new to do, and we can terminate.
556 */
557 if (!done_something)
558 break;
559 for (i = 0; i < w*h; i++)
560 todo_add(todo, i);
561 done_something = FALSE;
562
563 index = todo_get(todo);
564 }
565
566 y = index / w;
567 x = index % w;
568 {
569 int d, ourclass = dsf_canonify(equivalence, y*w+x);
570 int deadendmax[9];
571
572 deadendmax[1] = deadendmax[2] = deadendmax[4] = deadendmax[8] = 0;
573
574 for (i = j = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
575 int valid;
576 int nnondeadends, nondeadends[4], deadendtotal;
577 int nequiv, equiv[5];
578 int val = tilestate[(y*w+x) * 4 + i];
579
580 valid = TRUE;
581 nnondeadends = deadendtotal = 0;
582 equiv[0] = ourclass;
583 nequiv = 1;
584 for (d = 1; d <= 8; d += d) {
585 /*
586 * Immediately rule out this orientation if it
587 * conflicts with any known edge.
588 */
589 if ((edgestate[(y*w+x) * 5 + d] == 1 && !(val & d)) ||
590 (edgestate[(y*w+x) * 5 + d] == 2 && (val & d)))
591 valid = FALSE;
592
593 if (val & d) {
594 /*
595 * Count up the dead-end statistics.
596 */
597 if (deadends[(y*w+x) * 5 + d] <= area) {
598 deadendtotal += deadends[(y*w+x) * 5 + d];
599 } else {
600 nondeadends[nnondeadends++] = d;
601 }
602
603 /*
604 * Ensure we aren't linking to any tiles,
605 * through edges not already known to be
606 * open, which create a loop.
607 */
608 if (edgestate[(y*w+x) * 5 + d] == 0) {
609 int c, k, x2, y2;
610
611 OFFSETWH(x2, y2, x, y, d, w, h);
612 c = dsf_canonify(equivalence, y2*w+x2);
613 for (k = 0; k < nequiv; k++)
614 if (c == equiv[k])
615 break;
616 if (k == nequiv)
617 equiv[nequiv++] = c;
618 else
619 valid = FALSE;
620 }
621 }
622 }
623
624 if (nnondeadends == 0) {
625 /*
626 * If this orientation links together dead-ends
627 * with a total area of less than the entire
628 * grid, it is invalid.
629 *
630 * (We add 1 to deadendtotal because of the
631 * tile itself, of course; one tile linking
632 * dead ends of size 2 and 3 forms a subnetwork
633 * with a total area of 6, not 5.)
634 */
635 if (deadendtotal+1 < area)
636 valid = FALSE;
637 } else if (nnondeadends == 1) {
638 /*
639 * If this orientation links together one or
640 * more dead-ends with precisely one
641 * non-dead-end, then we may have to mark that
642 * non-dead-end as a dead end going the other
643 * way. However, it depends on whether all
644 * other orientations share the same property.
645 */
646 deadendtotal++;
647 if (deadendmax[nondeadends[0]] < deadendtotal)
648 deadendmax[nondeadends[0]] = deadendtotal;
649 } else {
650 /*
651 * If this orientation links together two or
652 * more non-dead-ends, then we can rule out the
653 * possibility of putting in new dead-end
654 * markings in those directions.
655 */
656 int k;
657 for (k = 0; k < nnondeadends; k++)
658 deadendmax[nondeadends[k]] = area+1;
659 }
660
661 if (valid)
662 tilestate[(y*w+x) * 4 + j++] = val;
663#ifdef SOLVER_DIAGNOSTICS
664 else
665 printf("ruling out orientation %x at %d,%d\n", val, x, y);
666#endif
667 }
668
669 assert(j > 0); /* we can't lose _all_ possibilities! */
670
671 if (j < i) {
672 int a, o;
673 done_something = TRUE;
674
675 /*
676 * We have ruled out at least one tile orientation.
677 * Make sure the rest are blanked.
678 */
679 while (j < 4)
680 tilestate[(y*w+x) * 4 + j++] = 255;
681
682 /*
683 * Now go through them again and see if we've
684 * deduced anything new about any edges.
685 */
686 a = 0xF; o = 0;
687 for (i = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
688 a &= tilestate[(y*w+x) * 4 + i];
689 o |= tilestate[(y*w+x) * 4 + i];
690 }
691 for (d = 1; d <= 8; d += d)
692 if (edgestate[(y*w+x) * 5 + d] == 0) {
693 int x2, y2, d2;
694 OFFSETWH(x2, y2, x, y, d, w, h);
695 d2 = F(d);
696 if (a & d) {
697 /* This edge is open in all orientations. */
698#ifdef SOLVER_DIAGNOSTICS
699 printf("marking edge %d,%d:%d open\n", x, y, d);
700#endif
701 edgestate[(y*w+x) * 5 + d] = 1;
702 edgestate[(y2*w+x2) * 5 + d2] = 1;
703 dsf_merge(equivalence, y*w+x, y2*w+x2);
704 done_something = TRUE;
705 todo_add(todo, y2*w+x2);
706 } else if (!(o & d)) {
707 /* This edge is closed in all orientations. */
708#ifdef SOLVER_DIAGNOSTICS
709 printf("marking edge %d,%d:%d closed\n", x, y, d);
710#endif
711 edgestate[(y*w+x) * 5 + d] = 2;
712 edgestate[(y2*w+x2) * 5 + d2] = 2;
713 done_something = TRUE;
714 todo_add(todo, y2*w+x2);
715 }
716 }
717
718 }
719
720 /*
721 * Now check the dead-end markers and see if any of
722 * them has lowered from the real ones.
723 */
724 for (d = 1; d <= 8; d += d) {
725 int x2, y2, d2;
726 OFFSETWH(x2, y2, x, y, d, w, h);
727 d2 = F(d);
728 if (deadendmax[d] > 0 &&
729 deadends[(y2*w+x2) * 5 + d2] > deadendmax[d]) {
730#ifdef SOLVER_DIAGNOSTICS
731 printf("setting dead end value %d,%d:%d to %d\n",
732 x2, y2, d2, deadendmax[d]);
733#endif
734 deadends[(y2*w+x2) * 5 + d2] = deadendmax[d];
735 done_something = TRUE;
736 todo_add(todo, y2*w+x2);
737 }
738 }
739
740 }
741 }
742
743 /*
744 * Mark all completely determined tiles as locked.
745 */
746 j = TRUE;
747 for (i = 0; i < w*h; i++) {
748 if (tilestate[i * 4 + 1] == 255) {
749 assert(tilestate[i * 4 + 0] != 255);
750 tiles[i] = tilestate[i * 4] | LOCKED;
751 } else {
752 tiles[i] &= ~LOCKED;
753 j = FALSE;
754 }
755 }
756
757 /*
758 * Free up working space.
759 */
760 todo_free(todo);
761 sfree(tilestate);
762 sfree(edgestate);
763 sfree(deadends);
764 sfree(equivalence);
765
766 return j;
767}
768
769/* ----------------------------------------------------------------------
1185e3c5 770 * Randomly select a new game description.
720a8fb7 771 */
772
c0edd11f 773/*
774 * Function to randomly perturb an ambiguous section in a grid, to
775 * attempt to ensure unique solvability.
776 */
777static void perturb(int w, int h, unsigned char *tiles, int wrapping,
778 random_state *rs, int startx, int starty, int startd)
779{
780 struct xyd *perimeter, *perim2, *loop[2], looppos[2];
781 int nperim, perimsize, nloop[2], loopsize[2];
782 int x, y, d, i;
783
784 /*
785 * We know that the tile at (startx,starty) is part of an
786 * ambiguous section, and we also know that its neighbour in
787 * direction startd is fully specified. We begin by tracing all
788 * the way round the ambiguous area.
789 */
790 nperim = perimsize = 0;
791 perimeter = NULL;
792 x = startx;
793 y = starty;
794 d = startd;
795#ifdef PERTURB_DIAGNOSTICS
796 printf("perturb %d,%d:%d\n", x, y, d);
797#endif
798 do {
799 int x2, y2, d2;
800
801 if (nperim >= perimsize) {
802 perimsize = perimsize * 3 / 2 + 32;
803 perimeter = sresize(perimeter, perimsize, struct xyd);
804 }
805 perimeter[nperim].x = x;
806 perimeter[nperim].y = y;
807 perimeter[nperim].direction = d;
808 nperim++;
809#ifdef PERTURB_DIAGNOSTICS
810 printf("perimeter: %d,%d:%d\n", x, y, d);
811#endif
812
813 /*
814 * First, see if we can simply turn left from where we are
815 * and find another locked square.
816 */
817 d2 = A(d);
818 OFFSETWH(x2, y2, x, y, d2, w, h);
819 if ((!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1)) ||
820 (tiles[y2*w+x2] & LOCKED)) {
821 d = d2;
822 } else {
823 /*
824 * Failing that, step left into the new square and look
825 * in front of us.
826 */
827 x = x2;
828 y = y2;
829 OFFSETWH(x2, y2, x, y, d, w, h);
830 if ((wrapping || (abs(x2-x) <= 1 && abs(y2-y) <= 1)) &&
831 !(tiles[y2*w+x2] & LOCKED)) {
832 /*
833 * And failing _that_, we're going to have to step
834 * forward into _that_ square and look right at the
835 * same locked square as we started with.
836 */
837 x = x2;
838 y = y2;
839 d = C(d);
840 }
841 }
842
843 } while (x != startx || y != starty || d != startd);
844
845 /*
846 * Our technique for perturbing this ambiguous area is to
847 * search round its edge for a join we can make: that is, an
848 * edge on the perimeter which is (a) not currently connected,
849 * and (b) connecting it would not yield a full cross on either
850 * side. Then we make that join, search round the network to
851 * find the loop thus constructed, and sever the loop at a
852 * randomly selected other point.
853 */
854 perim2 = snewn(nperim, struct xyd);
855 memcpy(perim2, perimeter, nperim * sizeof(struct xyd));
856 /* Shuffle the perimeter, so as to search it without directional bias. */
857 for (i = nperim; --i ;) {
858 int j = random_upto(rs, i+1);
859 struct xyd t;
860
861 t = perim2[j];
862 perim2[j] = perim2[i];
863 perim2[i] = t;
864 }
865 for (i = 0; i < nperim; i++) {
866 int x2, y2;
867
868 x = perim2[i].x;
869 y = perim2[i].y;
870 d = perim2[i].direction;
871
872 OFFSETWH(x2, y2, x, y, d, w, h);
873 if (!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1))
874 continue; /* can't link across non-wrapping border */
875 if (tiles[y*w+x] & d)
876 continue; /* already linked in this direction! */
877 if (((tiles[y*w+x] | d) & 15) == 15)
878 continue; /* can't turn this tile into a cross */
879 if (((tiles[y2*w+x2] | F(d)) & 15) == 15)
880 continue; /* can't turn other tile into a cross */
881
882 /*
883 * We've found the point at which we're going to make a new
884 * link.
885 */
886#ifdef PERTURB_DIAGNOSTICS
887 printf("linking %d,%d:%d\n", x, y, d);
888#endif
889 tiles[y*w+x] |= d;
890 tiles[y2*w+x2] |= F(d);
891
892 break;
893 }
894
895 if (i == nperim)
896 return; /* nothing we can do! */
897
898 /*
899 * Now we've constructed a new link, we need to find the entire
900 * loop of which it is a part.
901 *
902 * In principle, this involves doing a complete search round
903 * the network. However, I anticipate that in the vast majority
904 * of cases the loop will be quite small, so what I'm going to
905 * do is make _two_ searches round the network in parallel, one
906 * keeping its metaphorical hand on the left-hand wall while
907 * the other keeps its hand on the right. As soon as one of
908 * them gets back to its starting point, I abandon the other.
909 */
910 for (i = 0; i < 2; i++) {
911 loopsize[i] = nloop[i] = 0;
912 loop[i] = NULL;
913 looppos[i].x = x;
914 looppos[i].y = y;
915 looppos[i].direction = d;
916 }
917 while (1) {
918 for (i = 0; i < 2; i++) {
919 int x2, y2, j;
920
921 x = looppos[i].x;
922 y = looppos[i].y;
923 d = looppos[i].direction;
924
925 OFFSETWH(x2, y2, x, y, d, w, h);
926
927 /*
928 * Add this path segment to the loop, unless it exactly
929 * reverses the previous one on the loop in which case
930 * we take it away again.
931 */
932#ifdef PERTURB_DIAGNOSTICS
933 printf("looppos[%d] = %d,%d:%d\n", i, x, y, d);
934#endif
935 if (nloop[i] > 0 &&
936 loop[i][nloop[i]-1].x == x2 &&
937 loop[i][nloop[i]-1].y == y2 &&
938 loop[i][nloop[i]-1].direction == F(d)) {
939#ifdef PERTURB_DIAGNOSTICS
940 printf("removing path segment %d,%d:%d from loop[%d]\n",
941 x2, y2, F(d), i);
942#endif
943 nloop[i]--;
944 } else {
945 if (nloop[i] >= loopsize[i]) {
946 loopsize[i] = loopsize[i] * 3 / 2 + 32;
947 loop[i] = sresize(loop[i], loopsize[i], struct xyd);
948 }
949#ifdef PERTURB_DIAGNOSTICS
950 printf("adding path segment %d,%d:%d to loop[%d]\n",
951 x, y, d, i);
952#endif
953 loop[i][nloop[i]++] = looppos[i];
954 }
955
956#ifdef PERTURB_DIAGNOSTICS
957 printf("tile at new location is %x\n", tiles[y2*w+x2] & 0xF);
958#endif
959 d = F(d);
960 for (j = 0; j < 4; j++) {
961 if (i == 0)
962 d = A(d);
963 else
964 d = C(d);
965#ifdef PERTURB_DIAGNOSTICS
966 printf("trying dir %d\n", d);
967#endif
968 if (tiles[y2*w+x2] & d) {
969 looppos[i].x = x2;
970 looppos[i].y = y2;
971 looppos[i].direction = d;
972 break;
973 }
974 }
975
976 assert(j < 4);
977 assert(nloop[i] > 0);
978
979 if (looppos[i].x == loop[i][0].x &&
980 looppos[i].y == loop[i][0].y &&
981 looppos[i].direction == loop[i][0].direction) {
982#ifdef PERTURB_DIAGNOSTICS
983 printf("loop %d finished tracking\n", i);
984#endif
985
986 /*
987 * Having found our loop, we now sever it at a
988 * randomly chosen point - absolutely any will do -
989 * which is not the one we joined it at to begin
990 * with. Conveniently, the one we joined it at is
991 * loop[i][0], so we just avoid that one.
992 */
993 j = random_upto(rs, nloop[i]-1) + 1;
994 x = loop[i][j].x;
995 y = loop[i][j].y;
996 d = loop[i][j].direction;
997 OFFSETWH(x2, y2, x, y, d, w, h);
998 tiles[y*w+x] &= ~d;
999 tiles[y2*w+x2] &= ~F(d);
1000
1001 break;
1002 }
1003 }
1004 if (i < 2)
1005 break;
1006 }
1007 sfree(loop[0]);
1008 sfree(loop[1]);
1009
1010 /*
1011 * Finally, we must mark the entire disputed section as locked,
1012 * to prevent the perturb function being called on it multiple
1013 * times.
1014 *
1015 * To do this, we _sort_ the perimeter of the area. The
1016 * existing xyd_cmp function will arrange things into columns
1017 * for us, in such a way that each column has the edges in
1018 * vertical order. Then we can work down each column and fill
1019 * in all the squares between an up edge and a down edge.
1020 */
1021 qsort(perimeter, nperim, sizeof(struct xyd), xyd_cmp);
1022 x = y = -1;
1023 for (i = 0; i <= nperim; i++) {
1024 if (i == nperim || perimeter[i].x > x) {
1025 /*
1026 * Fill in everything from the last Up edge to the
1027 * bottom of the grid, if necessary.
1028 */
1029 if (x != -1) {
1030 while (y < h) {
1031#ifdef PERTURB_DIAGNOSTICS
1032 printf("resolved: locking tile %d,%d\n", x, y);
1033#endif
1034 tiles[y * w + x] |= LOCKED;
1035 y++;
1036 }
1037 x = y = -1;
1038 }
1039
1040 if (i == nperim)
1041 break;
1042
1043 x = perimeter[i].x;
1044 y = 0;
1045 }
1046
1047 if (perimeter[i].direction == U) {
1048 x = perimeter[i].x;
1049 y = perimeter[i].y;
1050 } else if (perimeter[i].direction == D) {
1051 /*
1052 * Fill in everything from the last Up edge to here.
1053 */
1054 assert(x == perimeter[i].x && y <= perimeter[i].y);
1055 while (y <= perimeter[i].y) {
1056#ifdef PERTURB_DIAGNOSTICS
1057 printf("resolved: locking tile %d,%d\n", x, y);
1058#endif
1059 tiles[y * w + x] |= LOCKED;
1060 y++;
1061 }
1062 x = y = -1;
1063 }
1064 }
1065
1066 sfree(perimeter);
1067}
1068
1185e3c5 1069static char *new_game_desc(game_params *params, random_state *rs,
6f2d8d7c 1070 game_aux_info **aux)
720a8fb7 1071{
1185e3c5 1072 tree234 *possibilities, *barriertree;
1073 int w, h, x, y, cx, cy, nbarriers;
1074 unsigned char *tiles, *barriers;
1075 char *desc, *p;
6f2d8d7c 1076
1185e3c5 1077 w = params->width;
1078 h = params->height;
720a8fb7 1079
c0edd11f 1080 cx = w / 2;
1081 cy = h / 2;
1082
1185e3c5 1083 tiles = snewn(w * h, unsigned char);
1185e3c5 1084 barriers = snewn(w * h, unsigned char);
720a8fb7 1085
c0edd11f 1086 begin_generation:
1087
1088 memset(tiles, 0, w * h);
1089 memset(barriers, 0, w * h);
720a8fb7 1090
1091 /*
1092 * Construct the unshuffled grid.
1093 *
1094 * To do this, we simply start at the centre point, repeatedly
1095 * choose a random possibility out of the available ways to
1096 * extend a used square into an unused one, and do it. After
1097 * extending the third line out of a square, we remove the
1098 * fourth from the possibilities list to avoid any full-cross
1099 * squares (which would make the game too easy because they
1100 * only have one orientation).
1101 *
1102 * The slightly worrying thing is the avoidance of full-cross
1103 * squares. Can this cause our unsophisticated construction
1104 * algorithm to paint itself into a corner, by getting into a
1105 * situation where there are some unreached squares and the
1106 * only way to reach any of them is to extend a T-piece into a
1107 * full cross?
1108 *
1109 * Answer: no it can't, and here's a proof.
1110 *
1111 * Any contiguous group of such unreachable squares must be
1112 * surrounded on _all_ sides by T-pieces pointing away from the
1113 * group. (If not, then there is a square which can be extended
1114 * into one of the `unreachable' ones, and so it wasn't
1115 * unreachable after all.) In particular, this implies that
1116 * each contiguous group of unreachable squares must be
1117 * rectangular in shape (any deviation from that yields a
1118 * non-T-piece next to an `unreachable' square).
1119 *
1120 * So we have a rectangle of unreachable squares, with T-pieces
1121 * forming a solid border around the rectangle. The corners of
1122 * that border must be connected (since every tile connects all
1123 * the lines arriving in it), and therefore the border must
1124 * form a closed loop around the rectangle.
1125 *
1126 * But this can't have happened in the first place, since we
1127 * _know_ we've avoided creating closed loops! Hence, no such
1128 * situation can ever arise, and the naive grid construction
1129 * algorithm will guaranteeably result in a complete grid
1130 * containing no unreached squares, no full crosses _and_ no
1131 * closed loops. []
1132 */
c0edd11f 1133 possibilities = newtree234(xyd_cmp_nc);
ecadce0d 1134
1185e3c5 1135 if (cx+1 < w)
1136 add234(possibilities, new_xyd(cx, cy, R));
1137 if (cy-1 >= 0)
1138 add234(possibilities, new_xyd(cx, cy, U));
1139 if (cx-1 >= 0)
1140 add234(possibilities, new_xyd(cx, cy, L));
1141 if (cy+1 < h)
1142 add234(possibilities, new_xyd(cx, cy, D));
720a8fb7 1143
1144 while (count234(possibilities) > 0) {
1145 int i;
1146 struct xyd *xyd;
1147 int x1, y1, d1, x2, y2, d2, d;
1148
1149 /*
1150 * Extract a randomly chosen possibility from the list.
1151 */
1152 i = random_upto(rs, count234(possibilities));
1153 xyd = delpos234(possibilities, i);
1154 x1 = xyd->x;
1155 y1 = xyd->y;
1156 d1 = xyd->direction;
1157 sfree(xyd);
1158
1185e3c5 1159 OFFSET(x2, y2, x1, y1, d1, params);
720a8fb7 1160 d2 = F(d1);
1161#ifdef DEBUG
1162 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
1163 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
1164#endif
1165
1166 /*
1167 * Make the connection. (We should be moving to an as yet
1168 * unused tile.)
1169 */
1185e3c5 1170 index(params, tiles, x1, y1) |= d1;
1171 assert(index(params, tiles, x2, y2) == 0);
1172 index(params, tiles, x2, y2) |= d2;
720a8fb7 1173
1174 /*
1175 * If we have created a T-piece, remove its last
1176 * possibility.
1177 */
1185e3c5 1178 if (COUNT(index(params, tiles, x1, y1)) == 3) {
720a8fb7 1179 struct xyd xyd1, *xydp;
1180
1181 xyd1.x = x1;
1182 xyd1.y = y1;
1185e3c5 1183 xyd1.direction = 0x0F ^ index(params, tiles, x1, y1);
720a8fb7 1184
1185 xydp = find234(possibilities, &xyd1, NULL);
1186
1187 if (xydp) {
1188#ifdef DEBUG
1189 printf("T-piece; removing (%d,%d,%c)\n",
1190 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
1191#endif
1192 del234(possibilities, xydp);
1193 sfree(xydp);
1194 }
1195 }
1196
1197 /*
1198 * Remove all other possibilities that were pointing at the
1199 * tile we've just moved into.
1200 */
1201 for (d = 1; d < 0x10; d <<= 1) {
1202 int x3, y3, d3;
1203 struct xyd xyd1, *xydp;
1204
1185e3c5 1205 OFFSET(x3, y3, x2, y2, d, params);
720a8fb7 1206 d3 = F(d);
1207
1208 xyd1.x = x3;
1209 xyd1.y = y3;
1210 xyd1.direction = d3;
1211
1212 xydp = find234(possibilities, &xyd1, NULL);
1213
1214 if (xydp) {
1215#ifdef DEBUG
1216 printf("Loop avoidance; removing (%d,%d,%c)\n",
1217 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
1218#endif
1219 del234(possibilities, xydp);
1220 sfree(xydp);
1221 }
1222 }
1223
1224 /*
1225 * Add new possibilities to the list for moving _out_ of
1226 * the tile we have just moved into.
1227 */
1228 for (d = 1; d < 0x10; d <<= 1) {
1229 int x3, y3;
1230
1231 if (d == d2)
1232 continue; /* we've got this one already */
1233
1185e3c5 1234 if (!params->wrapping) {
720a8fb7 1235 if (d == U && y2 == 0)
1236 continue;
1185e3c5 1237 if (d == D && y2 == h-1)
720a8fb7 1238 continue;
1239 if (d == L && x2 == 0)
1240 continue;
1185e3c5 1241 if (d == R && x2 == w-1)
720a8fb7 1242 continue;
1243 }
1244
1185e3c5 1245 OFFSET(x3, y3, x2, y2, d, params);
720a8fb7 1246
1185e3c5 1247 if (index(params, tiles, x3, y3))
720a8fb7 1248 continue; /* this would create a loop */
1249
1250#ifdef DEBUG
1251 printf("New frontier; adding (%d,%d,%c)\n",
1252 x2, y2, "0RU3L567D9abcdef"[d]);
1253#endif
1254 add234(possibilities, new_xyd(x2, y2, d));
1255 }
1256 }
1257 /* Having done that, we should have no possibilities remaining. */
1258 assert(count234(possibilities) == 0);
1259 freetree234(possibilities);
1260
c0edd11f 1261 if (params->unique) {
1262 int prevn = -1;
1263
1264 /*
1265 * Run the solver to check unique solubility.
1266 */
1267 while (!net_solver(w, h, tiles, params->wrapping)) {
1268 int n = 0;
1269
1270 /*
1271 * We expect (in most cases) that most of the grid will
1272 * be uniquely specified already, and the remaining
1273 * ambiguous sections will be small and separate. So
1274 * our strategy is to find each individual such
1275 * section, and perform a perturbation on the network
1276 * in that area.
1277 */
1278 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
1279 if (x+1 < w && ((tiles[y*w+x] ^ tiles[y*w+x+1]) & LOCKED)) {
1280 n++;
1281 if (tiles[y*w+x] & LOCKED)
1282 perturb(w, h, tiles, params->wrapping, rs, x+1, y, L);
1283 else
1284 perturb(w, h, tiles, params->wrapping, rs, x, y, R);
1285 }
1286 if (y+1 < h && ((tiles[y*w+x] ^ tiles[(y+1)*w+x]) & LOCKED)) {
1287 n++;
1288 if (tiles[y*w+x] & LOCKED)
1289 perturb(w, h, tiles, params->wrapping, rs, x, y+1, U);
1290 else
1291 perturb(w, h, tiles, params->wrapping, rs, x, y, D);
1292 }
1293 }
1294
1295 /*
1296 * Now n counts the number of ambiguous sections we
1297 * have fiddled with. If we haven't managed to decrease
1298 * it from the last time we ran the solver, give up and
1299 * regenerate the entire grid.
1300 */
1301 if (prevn != -1 && prevn <= n)
1302 goto begin_generation; /* (sorry) */
1303
1304 prevn = n;
1305 }
1306
1307 /*
1308 * The solver will have left a lot of LOCKED bits lying
1309 * around in the tiles array. Remove them.
1310 */
1311 for (x = 0; x < w*h; x++)
1312 tiles[x] &= ~LOCKED;
1313 }
1314
720a8fb7 1315 /*
1316 * Now compute a list of the possible barrier locations.
1317 */
c0edd11f 1318 barriertree = newtree234(xyd_cmp_nc);
1185e3c5 1319 for (y = 0; y < h; y++) {
1320 for (x = 0; x < w; x++) {
1321
1322 if (!(index(params, tiles, x, y) & R) &&
1323 (params->wrapping || x < w-1))
1324 add234(barriertree, new_xyd(x, y, R));
1325 if (!(index(params, tiles, x, y) & D) &&
1326 (params->wrapping || y < h-1))
1327 add234(barriertree, new_xyd(x, y, D));
720a8fb7 1328 }
1329 }
1330
1331 /*
1185e3c5 1332 * Save the unshuffled grid in an aux_info.
2ac6d24e 1333 */
1334 {
1185e3c5 1335 game_aux_info *solution;
2ac6d24e 1336
1185e3c5 1337 solution = snew(game_aux_info);
1338 solution->width = w;
1339 solution->height = h;
1340 solution->tiles = snewn(w * h, unsigned char);
1341 memcpy(solution->tiles, tiles, w * h);
2ac6d24e 1342
1185e3c5 1343 *aux = solution;
2ac6d24e 1344 }
1345
1346 /*
720a8fb7 1347 * Now shuffle the grid.
1348 */
1185e3c5 1349 for (y = 0; y < h; y++) {
1350 for (x = 0; x < w; x++) {
1351 int orig = index(params, tiles, x, y);
720a8fb7 1352 int rot = random_upto(rs, 4);
1185e3c5 1353 index(params, tiles, x, y) = ROT(orig, rot);
720a8fb7 1354 }
1355 }
1356
1357 /*
1358 * And now choose barrier locations. (We carefully do this
1359 * _after_ shuffling, so that changing the barrier rate in the
1185e3c5 1360 * params while keeping the random seed the same will give the
720a8fb7 1361 * same shuffled grid and _only_ change the barrier locations.
1362 * Also the way we choose barrier locations, by repeatedly
1363 * choosing one possibility from the list until we have enough,
1364 * is designed to ensure that raising the barrier rate while
1365 * keeping the seed the same will provide a superset of the
1366 * previous barrier set - i.e. if you ask for 10 barriers, and
1367 * then decide that's still too hard and ask for 20, you'll get
1368 * the original 10 plus 10 more, rather than getting 20 new
1369 * ones and the chance of remembering your first 10.)
1370 */
1185e3c5 1371 nbarriers = (int)(params->barrier_probability * count234(barriertree));
1372 assert(nbarriers >= 0 && nbarriers <= count234(barriertree));
720a8fb7 1373
1374 while (nbarriers > 0) {
1375 int i;
1376 struct xyd *xyd;
1377 int x1, y1, d1, x2, y2, d2;
1378
1379 /*
1380 * Extract a randomly chosen barrier from the list.
1381 */
1185e3c5 1382 i = random_upto(rs, count234(barriertree));
1383 xyd = delpos234(barriertree, i);
720a8fb7 1384
1385 assert(xyd != NULL);
1386
1387 x1 = xyd->x;
1388 y1 = xyd->y;
1389 d1 = xyd->direction;
1390 sfree(xyd);
1391
1185e3c5 1392 OFFSET(x2, y2, x1, y1, d1, params);
720a8fb7 1393 d2 = F(d1);
1394
1185e3c5 1395 index(params, barriers, x1, y1) |= d1;
1396 index(params, barriers, x2, y2) |= d2;
720a8fb7 1397
1398 nbarriers--;
1399 }
1400
1401 /*
1402 * Clean up the rest of the barrier list.
1403 */
1404 {
1405 struct xyd *xyd;
1406
1185e3c5 1407 while ( (xyd = delpos234(barriertree, 0)) != NULL)
720a8fb7 1408 sfree(xyd);
1409
1185e3c5 1410 freetree234(barriertree);
1411 }
1412
1413 /*
1414 * Finally, encode the grid into a string game description.
1415 *
1416 * My syntax is extremely simple: each square is encoded as a
1417 * hex digit in which bit 0 means a connection on the right,
1418 * bit 1 means up, bit 2 left and bit 3 down. (i.e. the same
1419 * encoding as used internally). Each digit is followed by
1420 * optional barrier indicators: `v' means a vertical barrier to
1421 * the right of it, and `h' means a horizontal barrier below
1422 * it.
1423 */
1424 desc = snewn(w * h * 3 + 1, char);
1425 p = desc;
1426 for (y = 0; y < h; y++) {
1427 for (x = 0; x < w; x++) {
1428 *p++ = "0123456789abcdef"[index(params, tiles, x, y)];
1429 if ((params->wrapping || x < w-1) &&
1430 (index(params, barriers, x, y) & R))
1431 *p++ = 'v';
1432 if ((params->wrapping || y < h-1) &&
1433 (index(params, barriers, x, y) & D))
1434 *p++ = 'h';
1435 }
1436 }
1437 assert(p - desc <= w*h*3);
366d045b 1438 *p = '\0';
1185e3c5 1439
1440 sfree(tiles);
1441 sfree(barriers);
1442
1443 return desc;
1444}
1445
1446static void game_free_aux_info(game_aux_info *aux)
1447{
1448 sfree(aux->tiles);
1449 sfree(aux);
1450}
1451
1452static char *validate_desc(game_params *params, char *desc)
1453{
1454 int w = params->width, h = params->height;
1455 int i;
1456
1457 for (i = 0; i < w*h; i++) {
1458 if (*desc >= '0' && *desc <= '9')
1459 /* OK */;
1460 else if (*desc >= 'a' && *desc <= 'f')
1461 /* OK */;
1462 else if (*desc >= 'A' && *desc <= 'F')
1463 /* OK */;
1464 else if (!*desc)
1465 return "Game description shorter than expected";
1466 else
1467 return "Game description contained unexpected character";
1468 desc++;
1469 while (*desc == 'h' || *desc == 'v')
1470 desc++;
1471 }
1472 if (*desc)
1473 return "Game description longer than expected";
1474
1475 return NULL;
1476}
1477
1478/* ----------------------------------------------------------------------
1479 * Construct an initial game state, given a description and parameters.
1480 */
1481
1482static game_state *new_game(game_params *params, char *desc)
1483{
1484 game_state *state;
1485 int w, h, x, y;
1486
1487 assert(params->width > 0 && params->height > 0);
1488 assert(params->width > 1 || params->height > 1);
1489
1490 /*
1491 * Create a blank game state.
1492 */
1493 state = snew(game_state);
1494 w = state->width = params->width;
1495 h = state->height = params->height;
1496 state->cx = state->width / 2;
1497 state->cy = state->height / 2;
1498 state->wrapping = params->wrapping;
1499 state->last_rotate_dir = state->last_rotate_x = state->last_rotate_y = 0;
1500 state->completed = state->used_solve = state->just_used_solve = FALSE;
1501 state->tiles = snewn(state->width * state->height, unsigned char);
1502 memset(state->tiles, 0, state->width * state->height);
1503 state->barriers = snewn(state->width * state->height, unsigned char);
1504 memset(state->barriers, 0, state->width * state->height);
1505
1506 /*
1507 * Parse the game description into the grid.
1508 */
1509 for (y = 0; y < h; y++) {
1510 for (x = 0; x < w; x++) {
1511 if (*desc >= '0' && *desc <= '9')
1512 tile(state, x, y) = *desc - '0';
1513 else if (*desc >= 'a' && *desc <= 'f')
1514 tile(state, x, y) = *desc - 'a' + 10;
1515 else if (*desc >= 'A' && *desc <= 'F')
1516 tile(state, x, y) = *desc - 'A' + 10;
1517 if (*desc)
1518 desc++;
1519 while (*desc == 'h' || *desc == 'v') {
1520 int x2, y2, d1, d2;
1521 if (*desc == 'v')
1522 d1 = R;
1523 else
1524 d1 = D;
1525
1526 OFFSET(x2, y2, x, y, d1, state);
1527 d2 = F(d1);
1528
1529 barrier(state, x, y) |= d1;
1530 barrier(state, x2, y2) |= d2;
1531
1532 desc++;
1533 }
1534 }
1535 }
1536
1537 /*
1538 * Set up border barriers if this is a non-wrapping game.
1539 */
1540 if (!state->wrapping) {
1541 for (x = 0; x < state->width; x++) {
1542 barrier(state, x, 0) |= U;
1543 barrier(state, x, state->height-1) |= D;
1544 }
1545 for (y = 0; y < state->height; y++) {
1546 barrier(state, 0, y) |= L;
1547 barrier(state, state->width-1, y) |= R;
1548 }
720a8fb7 1549 }
1550
2ef96bd6 1551 /*
1552 * Set up the barrier corner flags, for drawing barriers
1553 * prettily when they meet.
1554 */
1555 for (y = 0; y < state->height; y++) {
1556 for (x = 0; x < state->width; x++) {
1557 int dir;
1558
1559 for (dir = 1; dir < 0x10; dir <<= 1) {
1560 int dir2 = A(dir);
1561 int x1, y1, x2, y2, x3, y3;
1562 int corner = FALSE;
1563
1564 if (!(barrier(state, x, y) & dir))
1565 continue;
1566
1567 if (barrier(state, x, y) & dir2)
1568 corner = TRUE;
1569
1570 x1 = x + X(dir), y1 = y + Y(dir);
1571 if (x1 >= 0 && x1 < state->width &&
eb2ad6f1 1572 y1 >= 0 && y1 < state->height &&
2ef96bd6 1573 (barrier(state, x1, y1) & dir2))
1574 corner = TRUE;
1575
1576 x2 = x + X(dir2), y2 = y + Y(dir2);
1577 if (x2 >= 0 && x2 < state->width &&
eb2ad6f1 1578 y2 >= 0 && y2 < state->height &&
2ef96bd6 1579 (barrier(state, x2, y2) & dir))
1580 corner = TRUE;
1581
1582 if (corner) {
1583 barrier(state, x, y) |= (dir << 4);
1584 if (x1 >= 0 && x1 < state->width &&
eb2ad6f1 1585 y1 >= 0 && y1 < state->height)
2ef96bd6 1586 barrier(state, x1, y1) |= (A(dir) << 4);
1587 if (x2 >= 0 && x2 < state->width &&
eb2ad6f1 1588 y2 >= 0 && y2 < state->height)
2ef96bd6 1589 barrier(state, x2, y2) |= (C(dir) << 4);
1590 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
1591 if (x3 >= 0 && x3 < state->width &&
eb2ad6f1 1592 y3 >= 0 && y3 < state->height)
2ef96bd6 1593 barrier(state, x3, y3) |= (F(dir) << 4);
1594 }
1595 }
1596 }
1597 }
1598
720a8fb7 1599 return state;
1600}
1601
be8d5aa1 1602static game_state *dup_game(game_state *state)
720a8fb7 1603{
1604 game_state *ret;
1605
1606 ret = snew(game_state);
1607 ret->width = state->width;
1608 ret->height = state->height;
2ef96bd6 1609 ret->cx = state->cx;
1610 ret->cy = state->cy;
720a8fb7 1611 ret->wrapping = state->wrapping;
1612 ret->completed = state->completed;
2ac6d24e 1613 ret->used_solve = state->used_solve;
1614 ret->just_used_solve = state->just_used_solve;
2ef96bd6 1615 ret->last_rotate_dir = state->last_rotate_dir;
1185e3c5 1616 ret->last_rotate_x = state->last_rotate_x;
1617 ret->last_rotate_y = state->last_rotate_y;
720a8fb7 1618 ret->tiles = snewn(state->width * state->height, unsigned char);
1619 memcpy(ret->tiles, state->tiles, state->width * state->height);
1620 ret->barriers = snewn(state->width * state->height, unsigned char);
1621 memcpy(ret->barriers, state->barriers, state->width * state->height);
1622
1623 return ret;
1624}
1625
be8d5aa1 1626static void free_game(game_state *state)
720a8fb7 1627{
1628 sfree(state->tiles);
1629 sfree(state->barriers);
1630 sfree(state);
1631}
1632
2ac6d24e 1633static game_state *solve_game(game_state *state, game_aux_info *aux,
1634 char **error)
1635{
1636 game_state *ret;
1637
1185e3c5 1638 if (!aux) {
c0edd11f 1639 /*
1640 * Run the internal solver on the provided grid. This might
1641 * not yield a complete solution.
1642 */
1643 ret = dup_game(state);
1644 net_solver(ret->width, ret->height, ret->tiles, ret->wrapping);
1645 } else {
1646 assert(aux->width == state->width);
1647 assert(aux->height == state->height);
1648 ret = dup_game(state);
1649 memcpy(ret->tiles, aux->tiles, ret->width * ret->height);
1650 ret->used_solve = ret->just_used_solve = TRUE;
1651 ret->completed = TRUE;
2ac6d24e 1652 }
1653
2ac6d24e 1654 return ret;
1655}
1656
9b4b03d3 1657static char *game_text_format(game_state *state)
1658{
1659 return NULL;
1660}
1661
720a8fb7 1662/* ----------------------------------------------------------------------
1663 * Utility routine.
1664 */
1665
1666/*
1667 * Compute which squares are reachable from the centre square, as a
1668 * quick visual aid to determining how close the game is to
1669 * completion. This is also a simple way to tell if the game _is_
1670 * completed - just call this function and see whether every square
1671 * is marked active.
1672 */
1673static unsigned char *compute_active(game_state *state)
1674{
1675 unsigned char *active;
1676 tree234 *todo;
1677 struct xyd *xyd;
1678
1679 active = snewn(state->width * state->height, unsigned char);
1680 memset(active, 0, state->width * state->height);
1681
1682 /*
1683 * We only store (x,y) pairs in todo, but it's easier to reuse
1684 * xyd_cmp and just store direction 0 every time.
1685 */
c0edd11f 1686 todo = newtree234(xyd_cmp_nc);
2ef96bd6 1687 index(state, active, state->cx, state->cy) = ACTIVE;
1688 add234(todo, new_xyd(state->cx, state->cy, 0));
720a8fb7 1689
1690 while ( (xyd = delpos234(todo, 0)) != NULL) {
1691 int x1, y1, d1, x2, y2, d2;
1692
1693 x1 = xyd->x;
1694 y1 = xyd->y;
1695 sfree(xyd);
1696
1697 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
1698 OFFSET(x2, y2, x1, y1, d1, state);
1699 d2 = F(d1);
1700
1701 /*
1702 * If the next tile in this direction is connected to
1703 * us, and there isn't a barrier in the way, and it
1704 * isn't already marked active, then mark it active and
1705 * add it to the to-examine list.
1706 */
1707 if ((tile(state, x1, y1) & d1) &&
1708 (tile(state, x2, y2) & d2) &&
1709 !(barrier(state, x1, y1) & d1) &&
1710 !index(state, active, x2, y2)) {
2ef96bd6 1711 index(state, active, x2, y2) = ACTIVE;
720a8fb7 1712 add234(todo, new_xyd(x2, y2, 0));
1713 }
1714 }
1715 }
1716 /* Now we expect the todo list to have shrunk to zero size. */
1717 assert(count234(todo) == 0);
1718 freetree234(todo);
1719
1720 return active;
1721}
1722
66164171 1723struct game_ui {
1724 int cur_x, cur_y;
1725 int cur_visible;
cbb5549e 1726 random_state *rs; /* used for jumbling */
66164171 1727};
1728
be8d5aa1 1729static game_ui *new_ui(game_state *state)
74a4e547 1730{
cbb5549e 1731 void *seed;
1732 int seedsize;
66164171 1733 game_ui *ui = snew(game_ui);
1734 ui->cur_x = state->width / 2;
1735 ui->cur_y = state->height / 2;
1736 ui->cur_visible = FALSE;
cbb5549e 1737 get_random_seed(&seed, &seedsize);
1738 ui->rs = random_init(seed, seedsize);
1739 sfree(seed);
66164171 1740
1741 return ui;
74a4e547 1742}
1743
be8d5aa1 1744static void free_ui(game_ui *ui)
74a4e547 1745{
cbb5549e 1746 random_free(ui->rs);
66164171 1747 sfree(ui);
74a4e547 1748}
1749
720a8fb7 1750/* ----------------------------------------------------------------------
1751 * Process a move.
1752 */
be8d5aa1 1753static game_state *make_move(game_state *state, game_ui *ui,
1754 int x, int y, int button)
720a8fb7 1755{
66164171 1756 game_state *ret, *nullret;
720a8fb7 1757 int tx, ty, orig;
1758
66164171 1759 nullret = NULL;
720a8fb7 1760
66164171 1761 if (button == LEFT_BUTTON ||
1762 button == MIDDLE_BUTTON ||
1763 button == RIGHT_BUTTON) {
1764
1765 if (ui->cur_visible) {
1766 ui->cur_visible = FALSE;
1767 nullret = state;
1768 }
1769
1770 /*
1771 * The button must have been clicked on a valid tile.
1772 */
1773 x -= WINDOW_OFFSET + TILE_BORDER;
1774 y -= WINDOW_OFFSET + TILE_BORDER;
1775 if (x < 0 || y < 0)
1776 return nullret;
1777 tx = x / TILE_SIZE;
1778 ty = y / TILE_SIZE;
1779 if (tx >= state->width || ty >= state->height)
1780 return nullret;
1781 if (x % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
1782 y % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
1783 return nullret;
1784 } else if (button == CURSOR_UP || button == CURSOR_DOWN ||
1785 button == CURSOR_RIGHT || button == CURSOR_LEFT) {
1786 if (button == CURSOR_UP && ui->cur_y > 0)
1787 ui->cur_y--;
1788 else if (button == CURSOR_DOWN && ui->cur_y < state->height-1)
1789 ui->cur_y++;
1790 else if (button == CURSOR_LEFT && ui->cur_x > 0)
1791 ui->cur_x--;
1792 else if (button == CURSOR_RIGHT && ui->cur_x < state->width-1)
1793 ui->cur_x++;
1794 else
1795 return nullret; /* no cursor movement */
1796 ui->cur_visible = TRUE;
1797 return state; /* UI activity has occurred */
1798 } else if (button == 'a' || button == 's' || button == 'd' ||
1799 button == 'A' || button == 'S' || button == 'D') {
1800 tx = ui->cur_x;
1801 ty = ui->cur_y;
1802 if (button == 'a' || button == 'A')
1803 button = LEFT_BUTTON;
1804 else if (button == 's' || button == 'S')
1805 button = MIDDLE_BUTTON;
1806 else if (button == 'd' || button == 'D')
1807 button = RIGHT_BUTTON;
0671fa51 1808 ui->cur_visible = TRUE;
cbb5549e 1809 } else if (button == 'j' || button == 'J') {
1810 /* XXX should we have some mouse control for this? */
1811 button = 'J'; /* canonify */
1812 tx = ty = -1; /* shut gcc up :( */
66164171 1813 } else
1814 return nullret;
720a8fb7 1815
1816 /*
1817 * The middle button locks or unlocks a tile. (A locked tile
1818 * cannot be turned, and is visually marked as being locked.
1819 * This is a convenience for the player, so that once they are
1820 * sure which way round a tile goes, they can lock it and thus
1821 * avoid forgetting later on that they'd already done that one;
1822 * and the locking also prevents them turning the tile by
1823 * accident. If they change their mind, another middle click
1824 * unlocks it.)
1825 */
1826 if (button == MIDDLE_BUTTON) {
cbb5549e 1827
720a8fb7 1828 ret = dup_game(state);
2ac6d24e 1829 ret->just_used_solve = FALSE;
720a8fb7 1830 tile(ret, tx, ty) ^= LOCKED;
1185e3c5 1831 ret->last_rotate_dir = ret->last_rotate_x = ret->last_rotate_y = 0;
720a8fb7 1832 return ret;
720a8fb7 1833
cbb5549e 1834 } else if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
720a8fb7 1835
cbb5549e 1836 /*
1837 * The left and right buttons have no effect if clicked on a
1838 * locked tile.
1839 */
1840 if (tile(state, tx, ty) & LOCKED)
1841 return nullret;
1842
1843 /*
1844 * Otherwise, turn the tile one way or the other. Left button
1845 * turns anticlockwise; right button turns clockwise.
1846 */
1847 ret = dup_game(state);
2ac6d24e 1848 ret->just_used_solve = FALSE;
cbb5549e 1849 orig = tile(ret, tx, ty);
1850 if (button == LEFT_BUTTON) {
1851 tile(ret, tx, ty) = A(orig);
1852 ret->last_rotate_dir = +1;
1853 } else {
1854 tile(ret, tx, ty) = C(orig);
1855 ret->last_rotate_dir = -1;
1856 }
1185e3c5 1857 ret->last_rotate_x = tx;
1858 ret->last_rotate_y = ty;
cbb5549e 1859
1860 } else if (button == 'J') {
1861
1862 /*
1863 * Jumble all unlocked tiles to random orientations.
1864 */
1865 int jx, jy;
1866 ret = dup_game(state);
2ac6d24e 1867 ret->just_used_solve = FALSE;
cbb5549e 1868 for (jy = 0; jy < ret->height; jy++) {
1869 for (jx = 0; jx < ret->width; jx++) {
1870 if (!(tile(ret, jx, jy) & LOCKED)) {
1871 int rot = random_upto(ui->rs, 4);
1872 orig = tile(ret, jx, jy);
1873 tile(ret, jx, jy) = ROT(orig, rot);
1874 }
1875 }
1876 }
1877 ret->last_rotate_dir = 0; /* suppress animation */
1185e3c5 1878 ret->last_rotate_x = ret->last_rotate_y = 0;
cbb5549e 1879
1880 } else assert(0);
720a8fb7 1881
1882 /*
1883 * Check whether the game has been completed.
1884 */
1885 {
1886 unsigned char *active = compute_active(ret);
1887 int x1, y1;
1888 int complete = TRUE;
1889
1890 for (x1 = 0; x1 < ret->width; x1++)
1891 for (y1 = 0; y1 < ret->height; y1++)
1185e3c5 1892 if ((tile(ret, x1, y1) & 0xF) && !index(ret, active, x1, y1)) {
720a8fb7 1893 complete = FALSE;
1894 goto break_label; /* break out of two loops at once */
1895 }
1896 break_label:
1897
1898 sfree(active);
1899
1900 if (complete)
1901 ret->completed = TRUE;
1902 }
1903
1904 return ret;
1905}
1906
1907/* ----------------------------------------------------------------------
1908 * Routines for drawing the game position on the screen.
1909 */
1910
2ef96bd6 1911struct game_drawstate {
1912 int started;
1913 int width, height;
1914 unsigned char *visible;
1915};
1916
be8d5aa1 1917static game_drawstate *game_new_drawstate(game_state *state)
2ef96bd6 1918{
1919 game_drawstate *ds = snew(game_drawstate);
1920
1921 ds->started = FALSE;
1922 ds->width = state->width;
1923 ds->height = state->height;
1924 ds->visible = snewn(state->width * state->height, unsigned char);
1925 memset(ds->visible, 0xFF, state->width * state->height);
1926
1927 return ds;
1928}
1929
be8d5aa1 1930static void game_free_drawstate(game_drawstate *ds)
2ef96bd6 1931{
1932 sfree(ds->visible);
1933 sfree(ds);
1934}
1935
be8d5aa1 1936static void game_size(game_params *params, int *x, int *y)
7f77ea24 1937{
1938 *x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
1939 *y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
1940}
1941
be8d5aa1 1942static float *game_colours(frontend *fe, game_state *state, int *ncolours)
2ef96bd6 1943{
1944 float *ret;
83680571 1945
2ef96bd6 1946 ret = snewn(NCOLOURS * 3, float);
1947 *ncolours = NCOLOURS;
720a8fb7 1948
2ef96bd6 1949 /*
1950 * Basic background colour is whatever the front end thinks is
1951 * a sensible default.
1952 */
1953 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1954
1955 /*
1956 * Wires are black.
1957 */
03f856c4 1958 ret[COL_WIRE * 3 + 0] = 0.0F;
1959 ret[COL_WIRE * 3 + 1] = 0.0F;
1960 ret[COL_WIRE * 3 + 2] = 0.0F;
2ef96bd6 1961
1962 /*
1963 * Powered wires and powered endpoints are cyan.
1964 */
03f856c4 1965 ret[COL_POWERED * 3 + 0] = 0.0F;
1966 ret[COL_POWERED * 3 + 1] = 1.0F;
1967 ret[COL_POWERED * 3 + 2] = 1.0F;
2ef96bd6 1968
1969 /*
1970 * Barriers are red.
1971 */
03f856c4 1972 ret[COL_BARRIER * 3 + 0] = 1.0F;
1973 ret[COL_BARRIER * 3 + 1] = 0.0F;
1974 ret[COL_BARRIER * 3 + 2] = 0.0F;
2ef96bd6 1975
1976 /*
1977 * Unpowered endpoints are blue.
1978 */
03f856c4 1979 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
1980 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
1981 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
2ef96bd6 1982
1983 /*
1984 * Tile borders are a darker grey than the background.
1985 */
03f856c4 1986 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
1987 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
1988 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2ef96bd6 1989
1990 /*
1991 * Locked tiles are a grey in between those two.
1992 */
03f856c4 1993 ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
1994 ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
1995 ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2ef96bd6 1996
1997 return ret;
1998}
1999
2000static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
2001 int colour)
720a8fb7 2002{
2ef96bd6 2003 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
2004 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
2005 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
2006 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
2007 draw_line(fe, x1, y1, x2, y2, colour);
2008}
720a8fb7 2009
2ef96bd6 2010static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
2011 int colour)
2012{
2013 int mx = (x1 < x2 ? x1 : x2);
2014 int my = (y1 < y2 ? y1 : y2);
2015 int dx = (x2 + x1 - 2*mx + 1);
2016 int dy = (y2 + y1 - 2*my + 1);
720a8fb7 2017
2ef96bd6 2018 draw_rect(fe, mx, my, dx, dy, colour);
2019}
720a8fb7 2020
2ef96bd6 2021static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
2022{
2023 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2024 int by = WINDOW_OFFSET + TILE_SIZE * y;
2025 int x1, y1, dx, dy, dir2;
2026
2027 dir >>= 4;
2028
2029 dir2 = A(dir);
2030 dx = X(dir) + X(dir2);
2031 dy = Y(dir) + Y(dir2);
2032 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
2033 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
2034
2035 if (phase == 0) {
2036 draw_rect_coords(fe, bx+x1, by+y1,
2037 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
2038 COL_WIRE);
2039 draw_rect_coords(fe, bx+x1, by+y1,
2040 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
2041 COL_WIRE);
2042 } else {
2043 draw_rect_coords(fe, bx+x1, by+y1,
2044 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
2045 COL_BARRIER);
720a8fb7 2046 }
2ef96bd6 2047}
2048
2049static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
2050{
2051 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2052 int by = WINDOW_OFFSET + TILE_SIZE * y;
2053 int x1, y1, w, h;
2054
2055 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
2056 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
2057 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
2058 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
2059
2060 if (phase == 0) {
2061 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
2062 } else {
2063 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
2064 }
2065}
720a8fb7 2066
2ef96bd6 2067static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
66164171 2068 float angle, int cursor)
2ef96bd6 2069{
2070 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2071 int by = WINDOW_OFFSET + TILE_SIZE * y;
2072 float matrix[4];
2073 float cx, cy, ex, ey, tx, ty;
2074 int dir, col, phase;
720a8fb7 2075
2ef96bd6 2076 /*
2077 * When we draw a single tile, we must draw everything up to
2078 * and including the borders around the tile. This means that
2079 * if the neighbouring tiles have connections to those borders,
2080 * we must draw those connections on the borders themselves.
2081 *
2082 * This would be terribly fiddly if we ever had to draw a tile
2083 * while its neighbour was in mid-rotate, because we'd have to
2084 * arrange to _know_ that the neighbour was being rotated and
2085 * hence had an anomalous effect on the redraw of this tile.
2086 * Fortunately, the drawing algorithm avoids ever calling us in
2087 * this circumstance: we're either drawing lots of straight
2088 * tiles at game start or after a move is complete, or we're
2089 * repeatedly drawing only the rotating tile. So no problem.
2090 */
2091
2092 /*
2093 * So. First blank the tile out completely: draw a big
2094 * rectangle in border colour, and a smaller rectangle in
2095 * background colour to fill it in.
2096 */
2097 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
2098 COL_BORDER);
2099 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
2100 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
2101 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
2102
2103 /*
66164171 2104 * Draw an inset outline rectangle as a cursor, in whichever of
2105 * COL_LOCKED and COL_BACKGROUND we aren't currently drawing
2106 * in.
2107 */
2108 if (cursor) {
2109 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8,
2110 bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2111 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2112 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8,
2113 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
2114 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2115 draw_line(fe, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
2116 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2117 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2118 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2119 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2120 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2121 }
2122
2123 /*
2ef96bd6 2124 * Set up the rotation matrix.
2125 */
03f856c4 2126 matrix[0] = (float)cos(angle * PI / 180.0);
2127 matrix[1] = (float)-sin(angle * PI / 180.0);
2128 matrix[2] = (float)sin(angle * PI / 180.0);
2129 matrix[3] = (float)cos(angle * PI / 180.0);
2ef96bd6 2130
2131 /*
2132 * Draw the wires.
2133 */
03f856c4 2134 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
2ef96bd6 2135 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
2136 for (dir = 1; dir < 0x10; dir <<= 1) {
2137 if (tile & dir) {
03f856c4 2138 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
2139 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2ef96bd6 2140 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 2141 draw_thick_line(fe, bx+(int)cx, by+(int)cy,
2142 bx+(int)(cx+tx), by+(int)(cy+ty),
2ef96bd6 2143 COL_WIRE);
2144 }
2145 }
2146 for (dir = 1; dir < 0x10; dir <<= 1) {
2147 if (tile & dir) {
03f856c4 2148 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
2149 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2ef96bd6 2150 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 2151 draw_line(fe, bx+(int)cx, by+(int)cy,
2152 bx+(int)(cx+tx), by+(int)(cy+ty), col);
2ef96bd6 2153 }
2154 }
2155
2156 /*
2157 * Draw the box in the middle. We do this in blue if the tile
2158 * is an unpowered endpoint, in cyan if the tile is a powered
2159 * endpoint, in black if the tile is the centrepiece, and
2160 * otherwise not at all.
2161 */
2162 col = -1;
2163 if (x == state->cx && y == state->cy)
2164 col = COL_WIRE;
2165 else if (COUNT(tile) == 1) {
2166 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
2167 }
2168 if (col >= 0) {
2169 int i, points[8];
2170
2171 points[0] = +1; points[1] = +1;
2172 points[2] = +1; points[3] = -1;
2173 points[4] = -1; points[5] = -1;
2174 points[6] = -1; points[7] = +1;
2175
2176 for (i = 0; i < 8; i += 2) {
03f856c4 2177 ex = (TILE_SIZE * 0.24F) * points[i];
2178 ey = (TILE_SIZE * 0.24F) * points[i+1];
2ef96bd6 2179 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 2180 points[i] = bx+(int)(cx+tx);
2181 points[i+1] = by+(int)(cy+ty);
2ef96bd6 2182 }
2183
2184 draw_polygon(fe, points, 4, TRUE, col);
2185 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
2186 }
2187
2188 /*
2189 * Draw the points on the border if other tiles are connected
2190 * to us.
2191 */
2192 for (dir = 1; dir < 0x10; dir <<= 1) {
2193 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
2194
2195 dx = X(dir);
2196 dy = Y(dir);
2197
2198 ox = x + dx;
2199 oy = y + dy;
2200
2201 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
2202 continue;
2203
2204 if (!(tile(state, ox, oy) & F(dir)))
2205 continue;
2206
03f856c4 2207 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
2208 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
2ef96bd6 2209 lx = dx * (TILE_BORDER-1);
2210 ly = dy * (TILE_BORDER-1);
2211 vx = (dy ? 1 : 0);
2212 vy = (dx ? 1 : 0);
2213
2214 if (angle == 0.0 && (tile & dir)) {
2215 /*
2216 * If we are fully connected to the other tile, we must
2217 * draw right across the tile border. (We can use our
2218 * own ACTIVE state to determine what colour to do this
2219 * in: if we are fully connected to the other tile then
2220 * the two ACTIVE states will be the same.)
2221 */
2222 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
2223 draw_rect_coords(fe, px, py, px+lx, py+ly,
2224 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
2225 } else {
2226 /*
2227 * The other tile extends into our border, but isn't
2228 * actually connected to us. Just draw a single black
2229 * dot.
2230 */
2231 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
2232 }
2233 }
2234
2235 /*
2236 * Draw barrier corners, and then barriers.
2237 */
2238 for (phase = 0; phase < 2; phase++) {
2239 for (dir = 1; dir < 0x10; dir <<= 1)
2240 if (barrier(state, x, y) & (dir << 4))
2241 draw_barrier_corner(fe, x, y, dir << 4, phase);
2242 for (dir = 1; dir < 0x10; dir <<= 1)
2243 if (barrier(state, x, y) & dir)
2244 draw_barrier(fe, x, y, dir, phase);
2245 }
2246
2247 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
720a8fb7 2248}
2249
be8d5aa1 2250static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
c822de4a 2251 game_state *state, int dir, game_ui *ui, float t, float ft)
2ef96bd6 2252{
cbb5549e 2253 int x, y, tx, ty, frame, last_rotate_dir;
2ef96bd6 2254 unsigned char *active;
2255 float angle = 0.0;
2256
2257 /*
2258 * Clear the screen and draw the exterior barrier lines if this
2259 * is our first call.
2260 */
2261 if (!ds->started) {
2262 int phase;
2263
2264 ds->started = TRUE;
2265
2266 draw_rect(fe, 0, 0,
2267 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
2268 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
2269 COL_BACKGROUND);
2270 draw_update(fe, 0, 0,
2271 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
2272 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
2273
2274 for (phase = 0; phase < 2; phase++) {
2275
2276 for (x = 0; x < ds->width; x++) {
2277 if (barrier(state, x, 0) & UL)
2278 draw_barrier_corner(fe, x, -1, LD, phase);
2279 if (barrier(state, x, 0) & RU)
2280 draw_barrier_corner(fe, x, -1, DR, phase);
2281 if (barrier(state, x, 0) & U)
2282 draw_barrier(fe, x, -1, D, phase);
2283 if (barrier(state, x, ds->height-1) & DR)
2284 draw_barrier_corner(fe, x, ds->height, RU, phase);
2285 if (barrier(state, x, ds->height-1) & LD)
2286 draw_barrier_corner(fe, x, ds->height, UL, phase);
2287 if (barrier(state, x, ds->height-1) & D)
2288 draw_barrier(fe, x, ds->height, U, phase);
2289 }
2290
2291 for (y = 0; y < ds->height; y++) {
2292 if (barrier(state, 0, y) & UL)
2293 draw_barrier_corner(fe, -1, y, RU, phase);
2294 if (barrier(state, 0, y) & LD)
2295 draw_barrier_corner(fe, -1, y, DR, phase);
2296 if (barrier(state, 0, y) & L)
2297 draw_barrier(fe, -1, y, R, phase);
2298 if (barrier(state, ds->width-1, y) & RU)
2299 draw_barrier_corner(fe, ds->width, y, UL, phase);
2300 if (barrier(state, ds->width-1, y) & DR)
2301 draw_barrier_corner(fe, ds->width, y, LD, phase);
2302 if (barrier(state, ds->width-1, y) & R)
2303 draw_barrier(fe, ds->width, y, L, phase);
2304 }
2305 }
2306 }
2307
2308 tx = ty = -1;
cbb5549e 2309 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
2310 state->last_rotate_dir;
2311 if (oldstate && (t < ROTATE_TIME) && last_rotate_dir) {
2ef96bd6 2312 /*
1185e3c5 2313 * We're animating a single tile rotation. Find the turning
2314 * tile.
2ef96bd6 2315 */
1185e3c5 2316 tx = (dir==-1 ? oldstate->last_rotate_x : state->last_rotate_x);
2317 ty = (dir==-1 ? oldstate->last_rotate_y : state->last_rotate_y);
2318 angle = last_rotate_dir * dir * 90.0F * (t / ROTATE_TIME);
2319 state = oldstate;
87ed82be 2320 }
1185e3c5 2321
87ed82be 2322 frame = -1;
2323 if (ft > 0) {
2ef96bd6 2324 /*
2325 * We're animating a completion flash. Find which frame
2326 * we're at.
2327 */
87ed82be 2328 frame = (int)(ft / FLASH_FRAME);
2ef96bd6 2329 }
2330
2331 /*
2332 * Draw any tile which differs from the way it was last drawn.
2333 */
2334 active = compute_active(state);
2335
2336 for (x = 0; x < ds->width; x++)
2337 for (y = 0; y < ds->height; y++) {
2338 unsigned char c = tile(state, x, y) | index(state, active, x, y);
2339
2340 /*
2341 * In a completion flash, we adjust the LOCKED bit
2342 * depending on our distance from the centre point and
2343 * the frame number.
2344 */
2345 if (frame >= 0) {
2346 int xdist, ydist, dist;
2347 xdist = (x < state->cx ? state->cx - x : x - state->cx);
2348 ydist = (y < state->cy ? state->cy - y : y - state->cy);
2349 dist = (xdist > ydist ? xdist : ydist);
2350
2351 if (frame >= dist && frame < dist+4) {
2352 int lock = (frame - dist) & 1;
2353 lock = lock ? LOCKED : 0;
2354 c = (c &~ LOCKED) | lock;
2355 }
2356 }
2357
2358 if (index(state, ds->visible, x, y) != c ||
2359 index(state, ds->visible, x, y) == 0xFF ||
66164171 2360 (x == tx && y == ty) ||
2361 (ui->cur_visible && x == ui->cur_x && y == ui->cur_y)) {
2ef96bd6 2362 draw_tile(fe, state, x, y, c,
66164171 2363 (x == tx && y == ty ? angle : 0.0F),
2364 (ui->cur_visible && x == ui->cur_x && y == ui->cur_y));
2365 if ((x == tx && y == ty) ||
2366 (ui->cur_visible && x == ui->cur_x && y == ui->cur_y))
2ef96bd6 2367 index(state, ds->visible, x, y) = 0xFF;
2368 else
2369 index(state, ds->visible, x, y) = c;
2370 }
2371 }
2372
fd1a1a2b 2373 /*
2374 * Update the status bar.
2375 */
2376 {
2377 char statusbuf[256];
1185e3c5 2378 int i, n, n2, a;
fd1a1a2b 2379
2380 n = state->width * state->height;
1185e3c5 2381 for (i = a = n2 = 0; i < n; i++) {
fd1a1a2b 2382 if (active[i])
2383 a++;
1185e3c5 2384 if (state->tiles[i] & 0xF)
2385 n2++;
2386 }
fd1a1a2b 2387
2388 sprintf(statusbuf, "%sActive: %d/%d",
2ac6d24e 2389 (state->used_solve ? "Auto-solved. " :
1185e3c5 2390 state->completed ? "COMPLETED! " : ""), a, n2);
fd1a1a2b 2391
2392 status_bar(fe, statusbuf);
2393 }
2394
2ef96bd6 2395 sfree(active);
2396}
2397
be8d5aa1 2398static float game_anim_length(game_state *oldstate,
2399 game_state *newstate, int dir)
2ef96bd6 2400{
1185e3c5 2401 int last_rotate_dir;
2ef96bd6 2402
2403 /*
2ac6d24e 2404 * Don't animate an auto-solve move.
2405 */
2406 if ((dir > 0 && newstate->just_used_solve) ||
2407 (dir < 0 && oldstate->just_used_solve))
2408 return 0.0F;
2409
2410 /*
cbb5549e 2411 * Don't animate if last_rotate_dir is zero.
2ef96bd6 2412 */
cbb5549e 2413 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
2414 newstate->last_rotate_dir;
1185e3c5 2415 if (last_rotate_dir)
2416 return ROTATE_TIME;
2ef96bd6 2417
87ed82be 2418 return 0.0F;
2419}
2420
be8d5aa1 2421static float game_flash_length(game_state *oldstate,
2422 game_state *newstate, int dir)
87ed82be 2423{
2ef96bd6 2424 /*
87ed82be 2425 * If the game has just been completed, we display a completion
2426 * flash.
2ef96bd6 2427 */
2ac6d24e 2428 if (!oldstate->completed && newstate->completed &&
2429 !oldstate->used_solve && !newstate->used_solve) {
2ef96bd6 2430 int size;
2431 size = 0;
2432 if (size < newstate->cx+1)
2433 size = newstate->cx+1;
2434 if (size < newstate->cy+1)
2435 size = newstate->cy+1;
2436 if (size < newstate->width - newstate->cx)
2437 size = newstate->width - newstate->cx;
2438 if (size < newstate->height - newstate->cy)
2439 size = newstate->height - newstate->cy;
87ed82be 2440 return FLASH_FRAME * (size+4);
2ef96bd6 2441 }
2442
87ed82be 2443 return 0.0F;
2ef96bd6 2444}
fd1a1a2b 2445
be8d5aa1 2446static int game_wants_statusbar(void)
fd1a1a2b 2447{
2448 return TRUE;
2449}
be8d5aa1 2450
2451#ifdef COMBINED
2452#define thegame net
2453#endif
2454
2455const struct game thegame = {
1d228b10 2456 "Net", "games.net",
be8d5aa1 2457 default_params,
2458 game_fetch_preset,
2459 decode_params,
2460 encode_params,
2461 free_params,
2462 dup_params,
1d228b10 2463 TRUE, game_configure, custom_params,
be8d5aa1 2464 validate_params,
1185e3c5 2465 new_game_desc,
6f2d8d7c 2466 game_free_aux_info,
1185e3c5 2467 validate_desc,
be8d5aa1 2468 new_game,
2469 dup_game,
2470 free_game,
2ac6d24e 2471 TRUE, solve_game,
9b4b03d3 2472 FALSE, game_text_format,
be8d5aa1 2473 new_ui,
2474 free_ui,
2475 make_move,
2476 game_size,
2477 game_colours,
2478 game_new_drawstate,
2479 game_free_drawstate,
2480 game_redraw,
2481 game_anim_length,
2482 game_flash_length,
2483 game_wants_statusbar,
2484};