Make Return and Escape work reliably in GTK dialog boxes.
[sgt/puzzles] / net.c
CommitLineData
720a8fb7 1/*
2 * net.c: Net game.
3 */
4
5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
8#include <assert.h>
2ef96bd6 9#include <math.h>
720a8fb7 10
11#include "puzzles.h"
12#include "tree234.h"
13
0c490335 14const char *const game_name = "Net";
c8230524 15const int game_can_configure = TRUE;
0c490335 16
2ef96bd6 17#define PI 3.141592653589793238462643383279502884197169399
18
19#define MATMUL(xr,yr,m,x,y) do { \
20 float rx, ry, xx = (x), yy = (y), *mat = (m); \
21 rx = mat[0] * xx + mat[2] * yy; \
22 ry = mat[1] * xx + mat[3] * yy; \
23 (xr) = rx; (yr) = ry; \
24} while (0)
25
26/* Direction and other bitfields */
720a8fb7 27#define R 0x01
28#define U 0x02
29#define L 0x04
30#define D 0x08
31#define LOCKED 0x10
2ef96bd6 32#define ACTIVE 0x20
33/* Corner flags go in the barriers array */
34#define RU 0x10
35#define UL 0x20
36#define LD 0x40
37#define DR 0x80
720a8fb7 38
39/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
40#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
41#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
42#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
43#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
44 ((n)&3) == 1 ? A(x) : \
45 ((n)&3) == 2 ? F(x) : C(x) )
46
47/* X and Y displacements */
48#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
49#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
50
51/* Bit count */
52#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
53 (((x) & 0x02) >> 1) + ((x) & 0x01) )
54
55#define TILE_SIZE 32
56#define TILE_BORDER 1
57#define WINDOW_OFFSET 16
58
03f856c4 59#define ROTATE_TIME 0.1F
60#define FLASH_FRAME 0.05F
2ef96bd6 61
62enum {
63 COL_BACKGROUND,
64 COL_LOCKED,
65 COL_BORDER,
66 COL_WIRE,
67 COL_ENDPOINT,
68 COL_POWERED,
69 COL_BARRIER,
70 NCOLOURS
71};
72
720a8fb7 73struct game_params {
74 int width;
75 int height;
76 int wrapping;
77 float barrier_probability;
78};
79
80struct game_state {
2ef96bd6 81 int width, height, cx, cy, wrapping, completed, last_rotate_dir;
720a8fb7 82 unsigned char *tiles;
83 unsigned char *barriers;
84};
85
86#define OFFSET(x2,y2,x1,y1,dir,state) \
87 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
88 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
89
90#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
91#define tile(state, x, y) index(state, (state)->tiles, x, y)
92#define barrier(state, x, y) index(state, (state)->barriers, x, y)
93
94struct xyd {
95 int x, y, direction;
96};
97
98static int xyd_cmp(void *av, void *bv) {
99 struct xyd *a = (struct xyd *)av;
100 struct xyd *b = (struct xyd *)bv;
101 if (a->x < b->x)
102 return -1;
103 if (a->x > b->x)
104 return +1;
105 if (a->y < b->y)
106 return -1;
107 if (a->y > b->y)
108 return +1;
109 if (a->direction < b->direction)
110 return -1;
111 if (a->direction > b->direction)
112 return +1;
113 return 0;
114};
115
116static struct xyd *new_xyd(int x, int y, int direction)
117{
118 struct xyd *xyd = snew(struct xyd);
119 xyd->x = x;
120 xyd->y = y;
121 xyd->direction = direction;
122 return xyd;
123}
124
125/* ----------------------------------------------------------------------
7f77ea24 126 * Manage game parameters.
127 */
128game_params *default_params(void)
129{
130 game_params *ret = snew(game_params);
131
eb2ad6f1 132 ret->width = 5;
133 ret->height = 5;
134 ret->wrapping = FALSE;
135 ret->barrier_probability = 0.0;
7f77ea24 136
137 return ret;
138}
139
eb2ad6f1 140int game_fetch_preset(int i, char **name, game_params **params)
141{
142 game_params *ret;
143 char str[80];
144 static const struct { int x, y, wrap; } values[] = {
145 {5, 5, FALSE},
146 {7, 7, FALSE},
147 {9, 9, FALSE},
148 {11, 11, FALSE},
149 {13, 11, FALSE},
150 {5, 5, TRUE},
151 {7, 7, TRUE},
152 {9, 9, TRUE},
153 {11, 11, TRUE},
154 {13, 11, TRUE},
155 };
156
157 if (i < 0 || i >= lenof(values))
158 return FALSE;
159
160 ret = snew(game_params);
161 ret->width = values[i].x;
162 ret->height = values[i].y;
163 ret->wrapping = values[i].wrap;
164 ret->barrier_probability = 0.0;
165
166 sprintf(str, "%dx%d%s", ret->width, ret->height,
167 ret->wrapping ? " wrapping" : "");
168
169 *name = dupstr(str);
170 *params = ret;
171 return TRUE;
172}
173
7f77ea24 174void free_params(game_params *params)
175{
176 sfree(params);
177}
178
eb2ad6f1 179game_params *dup_params(game_params *params)
180{
181 game_params *ret = snew(game_params);
182 *ret = *params; /* structure copy */
183 return ret;
184}
185
c8230524 186config_item *game_configure(game_params *params)
187{
188 config_item *ret;
189 char buf[80];
190
191 ret = snewn(5, config_item);
192
193 ret[0].name = "Width";
95709966 194 ret[0].type = C_STRING;
c8230524 195 sprintf(buf, "%d", params->width);
196 ret[0].sval = dupstr(buf);
197 ret[0].ival = 0;
198
199 ret[1].name = "Height";
95709966 200 ret[1].type = C_STRING;
c8230524 201 sprintf(buf, "%d", params->height);
202 ret[1].sval = dupstr(buf);
203 ret[1].ival = 0;
204
205 ret[2].name = "Walls wrap around";
95709966 206 ret[2].type = C_BOOLEAN;
c8230524 207 ret[2].sval = NULL;
208 ret[2].ival = params->wrapping;
209
210 ret[3].name = "Barrier probability";
95709966 211 ret[3].type = C_STRING;
c8230524 212 sprintf(buf, "%g", params->barrier_probability);
213 ret[3].sval = dupstr(buf);
214 ret[3].ival = 0;
215
216 ret[4].name = NULL;
95709966 217 ret[4].type = C_END;
c8230524 218 ret[4].sval = NULL;
219 ret[4].ival = 0;
220
221 return ret;
222}
223
224game_params *custom_params(config_item *cfg)
225{
226 game_params *ret = snew(game_params);
227
228 ret->width = atoi(cfg[0].sval);
229 ret->height = atoi(cfg[1].sval);
230 ret->wrapping = cfg[2].ival;
95709966 231 ret->barrier_probability = (float)atof(cfg[3].sval);
c8230524 232
233 return ret;
234}
235
236char *validate_params(game_params *params)
237{
238 if (params->width <= 0 && params->height <= 0)
239 return "Width and height must both be greater than zero";
240 if (params->width <= 0)
241 return "Width must be greater than zero";
242 if (params->height <= 0)
243 return "Height must be greater than zero";
244 if (params->width <= 1 && params->height <= 1)
245 return "At least one of width and height must be greater than one";
246 if (params->barrier_probability < 0)
247 return "Barrier probability may not be negative";
248 if (params->barrier_probability > 1)
249 return "Barrier probability may not be greater than 1";
250 return NULL;
251}
252
7f77ea24 253/* ----------------------------------------------------------------------
720a8fb7 254 * Randomly select a new game seed.
255 */
256
48d70ca9 257char *new_game_seed(game_params *params, random_state *rs)
720a8fb7 258{
259 /*
260 * The full description of a Net game is far too large to
261 * encode directly in the seed, so by default we'll have to go
262 * for the simple approach of providing a random-number seed.
263 *
264 * (This does not restrict me from _later on_ inventing a seed
265 * string syntax which can never be generated by this code -
266 * for example, strings beginning with a letter - allowing me
267 * to type in a precise game, and have new_game detect it and
268 * understand it and do something completely different.)
269 */
270 char buf[40];
48d70ca9 271 sprintf(buf, "%lu", random_bits(rs, 32));
720a8fb7 272 return dupstr(buf);
273}
274
5928817c 275char *validate_seed(game_params *params, char *seed)
276{
277 /*
278 * Since any string at all will suffice to seed the RNG, there
279 * is no validation required.
280 */
281 return NULL;
282}
283
720a8fb7 284/* ----------------------------------------------------------------------
285 * Construct an initial game state, given a seed and parameters.
286 */
287
288game_state *new_game(game_params *params, char *seed)
289{
290 random_state *rs;
291 game_state *state;
292 tree234 *possibilities, *barriers;
293 int w, h, x, y, nbarriers;
294
ecadce0d 295 assert(params->width > 0 && params->height > 0);
296 assert(params->width > 1 || params->height > 1);
720a8fb7 297
298 /*
299 * Create a blank game state.
300 */
301 state = snew(game_state);
302 w = state->width = params->width;
303 h = state->height = params->height;
2ef96bd6 304 state->cx = state->width / 2;
305 state->cy = state->height / 2;
720a8fb7 306 state->wrapping = params->wrapping;
2ef96bd6 307 state->last_rotate_dir = +1; /* *shrug* */
720a8fb7 308 state->completed = FALSE;
309 state->tiles = snewn(state->width * state->height, unsigned char);
310 memset(state->tiles, 0, state->width * state->height);
311 state->barriers = snewn(state->width * state->height, unsigned char);
312 memset(state->barriers, 0, state->width * state->height);
313
314 /*
315 * Set up border barriers if this is a non-wrapping game.
316 */
317 if (!state->wrapping) {
318 for (x = 0; x < state->width; x++) {
319 barrier(state, x, 0) |= U;
320 barrier(state, x, state->height-1) |= D;
321 }
322 for (y = 0; y < state->height; y++) {
2ef96bd6 323 barrier(state, 0, y) |= L;
324 barrier(state, state->width-1, y) |= R;
720a8fb7 325 }
326 }
327
328 /*
329 * Seed the internal random number generator.
330 */
331 rs = random_init(seed, strlen(seed));
332
333 /*
334 * Construct the unshuffled grid.
335 *
336 * To do this, we simply start at the centre point, repeatedly
337 * choose a random possibility out of the available ways to
338 * extend a used square into an unused one, and do it. After
339 * extending the third line out of a square, we remove the
340 * fourth from the possibilities list to avoid any full-cross
341 * squares (which would make the game too easy because they
342 * only have one orientation).
343 *
344 * The slightly worrying thing is the avoidance of full-cross
345 * squares. Can this cause our unsophisticated construction
346 * algorithm to paint itself into a corner, by getting into a
347 * situation where there are some unreached squares and the
348 * only way to reach any of them is to extend a T-piece into a
349 * full cross?
350 *
351 * Answer: no it can't, and here's a proof.
352 *
353 * Any contiguous group of such unreachable squares must be
354 * surrounded on _all_ sides by T-pieces pointing away from the
355 * group. (If not, then there is a square which can be extended
356 * into one of the `unreachable' ones, and so it wasn't
357 * unreachable after all.) In particular, this implies that
358 * each contiguous group of unreachable squares must be
359 * rectangular in shape (any deviation from that yields a
360 * non-T-piece next to an `unreachable' square).
361 *
362 * So we have a rectangle of unreachable squares, with T-pieces
363 * forming a solid border around the rectangle. The corners of
364 * that border must be connected (since every tile connects all
365 * the lines arriving in it), and therefore the border must
366 * form a closed loop around the rectangle.
367 *
368 * But this can't have happened in the first place, since we
369 * _know_ we've avoided creating closed loops! Hence, no such
370 * situation can ever arise, and the naive grid construction
371 * algorithm will guaranteeably result in a complete grid
372 * containing no unreached squares, no full crosses _and_ no
373 * closed loops. []
374 */
375 possibilities = newtree234(xyd_cmp);
ecadce0d 376
377 if (state->cx+1 < state->width)
378 add234(possibilities, new_xyd(state->cx, state->cy, R));
379 if (state->cy-1 >= 0)
380 add234(possibilities, new_xyd(state->cx, state->cy, U));
381 if (state->cx-1 >= 0)
382 add234(possibilities, new_xyd(state->cx, state->cy, L));
383 if (state->cy+1 < state->height)
384 add234(possibilities, new_xyd(state->cx, state->cy, D));
720a8fb7 385
386 while (count234(possibilities) > 0) {
387 int i;
388 struct xyd *xyd;
389 int x1, y1, d1, x2, y2, d2, d;
390
391 /*
392 * Extract a randomly chosen possibility from the list.
393 */
394 i = random_upto(rs, count234(possibilities));
395 xyd = delpos234(possibilities, i);
396 x1 = xyd->x;
397 y1 = xyd->y;
398 d1 = xyd->direction;
399 sfree(xyd);
400
401 OFFSET(x2, y2, x1, y1, d1, state);
402 d2 = F(d1);
403#ifdef DEBUG
404 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
405 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
406#endif
407
408 /*
409 * Make the connection. (We should be moving to an as yet
410 * unused tile.)
411 */
412 tile(state, x1, y1) |= d1;
413 assert(tile(state, x2, y2) == 0);
414 tile(state, x2, y2) |= d2;
415
416 /*
417 * If we have created a T-piece, remove its last
418 * possibility.
419 */
420 if (COUNT(tile(state, x1, y1)) == 3) {
421 struct xyd xyd1, *xydp;
422
423 xyd1.x = x1;
424 xyd1.y = y1;
425 xyd1.direction = 0x0F ^ tile(state, x1, y1);
426
427 xydp = find234(possibilities, &xyd1, NULL);
428
429 if (xydp) {
430#ifdef DEBUG
431 printf("T-piece; removing (%d,%d,%c)\n",
432 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
433#endif
434 del234(possibilities, xydp);
435 sfree(xydp);
436 }
437 }
438
439 /*
440 * Remove all other possibilities that were pointing at the
441 * tile we've just moved into.
442 */
443 for (d = 1; d < 0x10; d <<= 1) {
444 int x3, y3, d3;
445 struct xyd xyd1, *xydp;
446
447 OFFSET(x3, y3, x2, y2, d, state);
448 d3 = F(d);
449
450 xyd1.x = x3;
451 xyd1.y = y3;
452 xyd1.direction = d3;
453
454 xydp = find234(possibilities, &xyd1, NULL);
455
456 if (xydp) {
457#ifdef DEBUG
458 printf("Loop avoidance; removing (%d,%d,%c)\n",
459 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
460#endif
461 del234(possibilities, xydp);
462 sfree(xydp);
463 }
464 }
465
466 /*
467 * Add new possibilities to the list for moving _out_ of
468 * the tile we have just moved into.
469 */
470 for (d = 1; d < 0x10; d <<= 1) {
471 int x3, y3;
472
473 if (d == d2)
474 continue; /* we've got this one already */
475
476 if (!state->wrapping) {
477 if (d == U && y2 == 0)
478 continue;
479 if (d == D && y2 == state->height-1)
480 continue;
481 if (d == L && x2 == 0)
482 continue;
483 if (d == R && x2 == state->width-1)
484 continue;
485 }
486
487 OFFSET(x3, y3, x2, y2, d, state);
488
489 if (tile(state, x3, y3))
490 continue; /* this would create a loop */
491
492#ifdef DEBUG
493 printf("New frontier; adding (%d,%d,%c)\n",
494 x2, y2, "0RU3L567D9abcdef"[d]);
495#endif
496 add234(possibilities, new_xyd(x2, y2, d));
497 }
498 }
499 /* Having done that, we should have no possibilities remaining. */
500 assert(count234(possibilities) == 0);
501 freetree234(possibilities);
502
503 /*
504 * Now compute a list of the possible barrier locations.
505 */
506 barriers = newtree234(xyd_cmp);
2ef96bd6 507 for (y = 0; y < state->height; y++) {
508 for (x = 0; x < state->width; x++) {
720a8fb7 509
2ef96bd6 510 if (!(tile(state, x, y) & R) &&
511 (state->wrapping || x < state->width-1))
720a8fb7 512 add234(barriers, new_xyd(x, y, R));
2ef96bd6 513 if (!(tile(state, x, y) & D) &&
514 (state->wrapping || y < state->height-1))
720a8fb7 515 add234(barriers, new_xyd(x, y, D));
516 }
517 }
518
519 /*
520 * Now shuffle the grid.
521 */
2ef96bd6 522 for (y = 0; y < state->height; y++) {
523 for (x = 0; x < state->width; x++) {
720a8fb7 524 int orig = tile(state, x, y);
525 int rot = random_upto(rs, 4);
526 tile(state, x, y) = ROT(orig, rot);
527 }
528 }
529
530 /*
531 * And now choose barrier locations. (We carefully do this
532 * _after_ shuffling, so that changing the barrier rate in the
533 * params while keeping the game seed the same will give the
534 * same shuffled grid and _only_ change the barrier locations.
535 * Also the way we choose barrier locations, by repeatedly
536 * choosing one possibility from the list until we have enough,
537 * is designed to ensure that raising the barrier rate while
538 * keeping the seed the same will provide a superset of the
539 * previous barrier set - i.e. if you ask for 10 barriers, and
540 * then decide that's still too hard and ask for 20, you'll get
541 * the original 10 plus 10 more, rather than getting 20 new
542 * ones and the chance of remembering your first 10.)
543 */
03f856c4 544 nbarriers = (int)(params->barrier_probability * count234(barriers));
720a8fb7 545 assert(nbarriers >= 0 && nbarriers <= count234(barriers));
546
547 while (nbarriers > 0) {
548 int i;
549 struct xyd *xyd;
550 int x1, y1, d1, x2, y2, d2;
551
552 /*
553 * Extract a randomly chosen barrier from the list.
554 */
555 i = random_upto(rs, count234(barriers));
556 xyd = delpos234(barriers, i);
557
558 assert(xyd != NULL);
559
560 x1 = xyd->x;
561 y1 = xyd->y;
562 d1 = xyd->direction;
563 sfree(xyd);
564
565 OFFSET(x2, y2, x1, y1, d1, state);
566 d2 = F(d1);
567
568 barrier(state, x1, y1) |= d1;
569 barrier(state, x2, y2) |= d2;
570
571 nbarriers--;
572 }
573
574 /*
575 * Clean up the rest of the barrier list.
576 */
577 {
578 struct xyd *xyd;
579
580 while ( (xyd = delpos234(barriers, 0)) != NULL)
581 sfree(xyd);
582
583 freetree234(barriers);
584 }
585
2ef96bd6 586 /*
587 * Set up the barrier corner flags, for drawing barriers
588 * prettily when they meet.
589 */
590 for (y = 0; y < state->height; y++) {
591 for (x = 0; x < state->width; x++) {
592 int dir;
593
594 for (dir = 1; dir < 0x10; dir <<= 1) {
595 int dir2 = A(dir);
596 int x1, y1, x2, y2, x3, y3;
597 int corner = FALSE;
598
599 if (!(barrier(state, x, y) & dir))
600 continue;
601
602 if (barrier(state, x, y) & dir2)
603 corner = TRUE;
604
605 x1 = x + X(dir), y1 = y + Y(dir);
606 if (x1 >= 0 && x1 < state->width &&
eb2ad6f1 607 y1 >= 0 && y1 < state->height &&
2ef96bd6 608 (barrier(state, x1, y1) & dir2))
609 corner = TRUE;
610
611 x2 = x + X(dir2), y2 = y + Y(dir2);
612 if (x2 >= 0 && x2 < state->width &&
eb2ad6f1 613 y2 >= 0 && y2 < state->height &&
2ef96bd6 614 (barrier(state, x2, y2) & dir))
615 corner = TRUE;
616
617 if (corner) {
618 barrier(state, x, y) |= (dir << 4);
619 if (x1 >= 0 && x1 < state->width &&
eb2ad6f1 620 y1 >= 0 && y1 < state->height)
2ef96bd6 621 barrier(state, x1, y1) |= (A(dir) << 4);
622 if (x2 >= 0 && x2 < state->width &&
eb2ad6f1 623 y2 >= 0 && y2 < state->height)
2ef96bd6 624 barrier(state, x2, y2) |= (C(dir) << 4);
625 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
626 if (x3 >= 0 && x3 < state->width &&
eb2ad6f1 627 y3 >= 0 && y3 < state->height)
2ef96bd6 628 barrier(state, x3, y3) |= (F(dir) << 4);
629 }
630 }
631 }
632 }
633
720a8fb7 634 random_free(rs);
635
636 return state;
637}
638
639game_state *dup_game(game_state *state)
640{
641 game_state *ret;
642
643 ret = snew(game_state);
644 ret->width = state->width;
645 ret->height = state->height;
2ef96bd6 646 ret->cx = state->cx;
647 ret->cy = state->cy;
720a8fb7 648 ret->wrapping = state->wrapping;
649 ret->completed = state->completed;
2ef96bd6 650 ret->last_rotate_dir = state->last_rotate_dir;
720a8fb7 651 ret->tiles = snewn(state->width * state->height, unsigned char);
652 memcpy(ret->tiles, state->tiles, state->width * state->height);
653 ret->barriers = snewn(state->width * state->height, unsigned char);
654 memcpy(ret->barriers, state->barriers, state->width * state->height);
655
656 return ret;
657}
658
659void free_game(game_state *state)
660{
661 sfree(state->tiles);
662 sfree(state->barriers);
663 sfree(state);
664}
665
666/* ----------------------------------------------------------------------
667 * Utility routine.
668 */
669
670/*
671 * Compute which squares are reachable from the centre square, as a
672 * quick visual aid to determining how close the game is to
673 * completion. This is also a simple way to tell if the game _is_
674 * completed - just call this function and see whether every square
675 * is marked active.
676 */
677static unsigned char *compute_active(game_state *state)
678{
679 unsigned char *active;
680 tree234 *todo;
681 struct xyd *xyd;
682
683 active = snewn(state->width * state->height, unsigned char);
684 memset(active, 0, state->width * state->height);
685
686 /*
687 * We only store (x,y) pairs in todo, but it's easier to reuse
688 * xyd_cmp and just store direction 0 every time.
689 */
690 todo = newtree234(xyd_cmp);
2ef96bd6 691 index(state, active, state->cx, state->cy) = ACTIVE;
692 add234(todo, new_xyd(state->cx, state->cy, 0));
720a8fb7 693
694 while ( (xyd = delpos234(todo, 0)) != NULL) {
695 int x1, y1, d1, x2, y2, d2;
696
697 x1 = xyd->x;
698 y1 = xyd->y;
699 sfree(xyd);
700
701 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
702 OFFSET(x2, y2, x1, y1, d1, state);
703 d2 = F(d1);
704
705 /*
706 * If the next tile in this direction is connected to
707 * us, and there isn't a barrier in the way, and it
708 * isn't already marked active, then mark it active and
709 * add it to the to-examine list.
710 */
711 if ((tile(state, x1, y1) & d1) &&
712 (tile(state, x2, y2) & d2) &&
713 !(barrier(state, x1, y1) & d1) &&
714 !index(state, active, x2, y2)) {
2ef96bd6 715 index(state, active, x2, y2) = ACTIVE;
720a8fb7 716 add234(todo, new_xyd(x2, y2, 0));
717 }
718 }
719 }
720 /* Now we expect the todo list to have shrunk to zero size. */
721 assert(count234(todo) == 0);
722 freetree234(todo);
723
724 return active;
725}
726
727/* ----------------------------------------------------------------------
728 * Process a move.
729 */
730game_state *make_move(game_state *state, int x, int y, int button)
731{
732 game_state *ret;
733 int tx, ty, orig;
734
735 /*
736 * All moves in Net are made with the mouse.
737 */
738 if (button != LEFT_BUTTON &&
739 button != MIDDLE_BUTTON &&
740 button != RIGHT_BUTTON)
741 return NULL;
742
743 /*
744 * The button must have been clicked on a valid tile.
745 */
7f77ea24 746 x -= WINDOW_OFFSET + TILE_BORDER;
747 y -= WINDOW_OFFSET + TILE_BORDER;
720a8fb7 748 if (x < 0 || y < 0)
749 return NULL;
750 tx = x / TILE_SIZE;
751 ty = y / TILE_SIZE;
752 if (tx >= state->width || ty >= state->height)
753 return NULL;
754 if (tx % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
755 ty % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
756 return NULL;
757
758 /*
759 * The middle button locks or unlocks a tile. (A locked tile
760 * cannot be turned, and is visually marked as being locked.
761 * This is a convenience for the player, so that once they are
762 * sure which way round a tile goes, they can lock it and thus
763 * avoid forgetting later on that they'd already done that one;
764 * and the locking also prevents them turning the tile by
765 * accident. If they change their mind, another middle click
766 * unlocks it.)
767 */
768 if (button == MIDDLE_BUTTON) {
769 ret = dup_game(state);
770 tile(ret, tx, ty) ^= LOCKED;
771 return ret;
772 }
773
774 /*
775 * The left and right buttons have no effect if clicked on a
776 * locked tile.
777 */
778 if (tile(state, tx, ty) & LOCKED)
779 return NULL;
780
781 /*
782 * Otherwise, turn the tile one way or the other. Left button
783 * turns anticlockwise; right button turns clockwise.
784 */
785 ret = dup_game(state);
786 orig = tile(ret, tx, ty);
2ef96bd6 787 if (button == LEFT_BUTTON) {
720a8fb7 788 tile(ret, tx, ty) = A(orig);
2ef96bd6 789 ret->last_rotate_dir = +1;
790 } else {
720a8fb7 791 tile(ret, tx, ty) = C(orig);
2ef96bd6 792 ret->last_rotate_dir = -1;
793 }
720a8fb7 794
795 /*
796 * Check whether the game has been completed.
797 */
798 {
799 unsigned char *active = compute_active(ret);
800 int x1, y1;
801 int complete = TRUE;
802
803 for (x1 = 0; x1 < ret->width; x1++)
804 for (y1 = 0; y1 < ret->height; y1++)
805 if (!index(ret, active, x1, y1)) {
806 complete = FALSE;
807 goto break_label; /* break out of two loops at once */
808 }
809 break_label:
810
811 sfree(active);
812
813 if (complete)
814 ret->completed = TRUE;
815 }
816
817 return ret;
818}
819
820/* ----------------------------------------------------------------------
821 * Routines for drawing the game position on the screen.
822 */
823
2ef96bd6 824struct game_drawstate {
825 int started;
826 int width, height;
827 unsigned char *visible;
828};
829
830game_drawstate *game_new_drawstate(game_state *state)
831{
832 game_drawstate *ds = snew(game_drawstate);
833
834 ds->started = FALSE;
835 ds->width = state->width;
836 ds->height = state->height;
837 ds->visible = snewn(state->width * state->height, unsigned char);
838 memset(ds->visible, 0xFF, state->width * state->height);
839
840 return ds;
841}
842
843void game_free_drawstate(game_drawstate *ds)
844{
845 sfree(ds->visible);
846 sfree(ds);
847}
848
7f77ea24 849void game_size(game_params *params, int *x, int *y)
850{
851 *x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
852 *y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
853}
854
2ef96bd6 855float *game_colours(frontend *fe, game_state *state, int *ncolours)
856{
857 float *ret;
83680571 858
2ef96bd6 859 ret = snewn(NCOLOURS * 3, float);
860 *ncolours = NCOLOURS;
720a8fb7 861
2ef96bd6 862 /*
863 * Basic background colour is whatever the front end thinks is
864 * a sensible default.
865 */
866 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
867
868 /*
869 * Wires are black.
870 */
03f856c4 871 ret[COL_WIRE * 3 + 0] = 0.0F;
872 ret[COL_WIRE * 3 + 1] = 0.0F;
873 ret[COL_WIRE * 3 + 2] = 0.0F;
2ef96bd6 874
875 /*
876 * Powered wires and powered endpoints are cyan.
877 */
03f856c4 878 ret[COL_POWERED * 3 + 0] = 0.0F;
879 ret[COL_POWERED * 3 + 1] = 1.0F;
880 ret[COL_POWERED * 3 + 2] = 1.0F;
2ef96bd6 881
882 /*
883 * Barriers are red.
884 */
03f856c4 885 ret[COL_BARRIER * 3 + 0] = 1.0F;
886 ret[COL_BARRIER * 3 + 1] = 0.0F;
887 ret[COL_BARRIER * 3 + 2] = 0.0F;
2ef96bd6 888
889 /*
890 * Unpowered endpoints are blue.
891 */
03f856c4 892 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
893 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
894 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
2ef96bd6 895
896 /*
897 * Tile borders are a darker grey than the background.
898 */
03f856c4 899 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
900 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
901 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2ef96bd6 902
903 /*
904 * Locked tiles are a grey in between those two.
905 */
03f856c4 906 ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
907 ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
908 ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2ef96bd6 909
910 return ret;
911}
912
913static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
914 int colour)
720a8fb7 915{
2ef96bd6 916 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
917 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
918 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
919 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
920 draw_line(fe, x1, y1, x2, y2, colour);
921}
720a8fb7 922
2ef96bd6 923static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
924 int colour)
925{
926 int mx = (x1 < x2 ? x1 : x2);
927 int my = (y1 < y2 ? y1 : y2);
928 int dx = (x2 + x1 - 2*mx + 1);
929 int dy = (y2 + y1 - 2*my + 1);
720a8fb7 930
2ef96bd6 931 draw_rect(fe, mx, my, dx, dy, colour);
932}
720a8fb7 933
2ef96bd6 934static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
935{
936 int bx = WINDOW_OFFSET + TILE_SIZE * x;
937 int by = WINDOW_OFFSET + TILE_SIZE * y;
938 int x1, y1, dx, dy, dir2;
939
940 dir >>= 4;
941
942 dir2 = A(dir);
943 dx = X(dir) + X(dir2);
944 dy = Y(dir) + Y(dir2);
945 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
946 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
947
948 if (phase == 0) {
949 draw_rect_coords(fe, bx+x1, by+y1,
950 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
951 COL_WIRE);
952 draw_rect_coords(fe, bx+x1, by+y1,
953 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
954 COL_WIRE);
955 } else {
956 draw_rect_coords(fe, bx+x1, by+y1,
957 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
958 COL_BARRIER);
720a8fb7 959 }
2ef96bd6 960}
961
962static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
963{
964 int bx = WINDOW_OFFSET + TILE_SIZE * x;
965 int by = WINDOW_OFFSET + TILE_SIZE * y;
966 int x1, y1, w, h;
967
968 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
969 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
970 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
971 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
972
973 if (phase == 0) {
974 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
975 } else {
976 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
977 }
978}
720a8fb7 979
2ef96bd6 980static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
981 float angle)
982{
983 int bx = WINDOW_OFFSET + TILE_SIZE * x;
984 int by = WINDOW_OFFSET + TILE_SIZE * y;
985 float matrix[4];
986 float cx, cy, ex, ey, tx, ty;
987 int dir, col, phase;
720a8fb7 988
2ef96bd6 989 /*
990 * When we draw a single tile, we must draw everything up to
991 * and including the borders around the tile. This means that
992 * if the neighbouring tiles have connections to those borders,
993 * we must draw those connections on the borders themselves.
994 *
995 * This would be terribly fiddly if we ever had to draw a tile
996 * while its neighbour was in mid-rotate, because we'd have to
997 * arrange to _know_ that the neighbour was being rotated and
998 * hence had an anomalous effect on the redraw of this tile.
999 * Fortunately, the drawing algorithm avoids ever calling us in
1000 * this circumstance: we're either drawing lots of straight
1001 * tiles at game start or after a move is complete, or we're
1002 * repeatedly drawing only the rotating tile. So no problem.
1003 */
1004
1005 /*
1006 * So. First blank the tile out completely: draw a big
1007 * rectangle in border colour, and a smaller rectangle in
1008 * background colour to fill it in.
1009 */
1010 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
1011 COL_BORDER);
1012 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
1013 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
1014 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
1015
1016 /*
1017 * Set up the rotation matrix.
1018 */
03f856c4 1019 matrix[0] = (float)cos(angle * PI / 180.0);
1020 matrix[1] = (float)-sin(angle * PI / 180.0);
1021 matrix[2] = (float)sin(angle * PI / 180.0);
1022 matrix[3] = (float)cos(angle * PI / 180.0);
2ef96bd6 1023
1024 /*
1025 * Draw the wires.
1026 */
03f856c4 1027 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
2ef96bd6 1028 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
1029 for (dir = 1; dir < 0x10; dir <<= 1) {
1030 if (tile & dir) {
03f856c4 1031 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1032 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2ef96bd6 1033 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 1034 draw_thick_line(fe, bx+(int)cx, by+(int)cy,
1035 bx+(int)(cx+tx), by+(int)(cy+ty),
2ef96bd6 1036 COL_WIRE);
1037 }
1038 }
1039 for (dir = 1; dir < 0x10; dir <<= 1) {
1040 if (tile & dir) {
03f856c4 1041 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1042 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2ef96bd6 1043 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 1044 draw_line(fe, bx+(int)cx, by+(int)cy,
1045 bx+(int)(cx+tx), by+(int)(cy+ty), col);
2ef96bd6 1046 }
1047 }
1048
1049 /*
1050 * Draw the box in the middle. We do this in blue if the tile
1051 * is an unpowered endpoint, in cyan if the tile is a powered
1052 * endpoint, in black if the tile is the centrepiece, and
1053 * otherwise not at all.
1054 */
1055 col = -1;
1056 if (x == state->cx && y == state->cy)
1057 col = COL_WIRE;
1058 else if (COUNT(tile) == 1) {
1059 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
1060 }
1061 if (col >= 0) {
1062 int i, points[8];
1063
1064 points[0] = +1; points[1] = +1;
1065 points[2] = +1; points[3] = -1;
1066 points[4] = -1; points[5] = -1;
1067 points[6] = -1; points[7] = +1;
1068
1069 for (i = 0; i < 8; i += 2) {
03f856c4 1070 ex = (TILE_SIZE * 0.24F) * points[i];
1071 ey = (TILE_SIZE * 0.24F) * points[i+1];
2ef96bd6 1072 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 1073 points[i] = bx+(int)(cx+tx);
1074 points[i+1] = by+(int)(cy+ty);
2ef96bd6 1075 }
1076
1077 draw_polygon(fe, points, 4, TRUE, col);
1078 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
1079 }
1080
1081 /*
1082 * Draw the points on the border if other tiles are connected
1083 * to us.
1084 */
1085 for (dir = 1; dir < 0x10; dir <<= 1) {
1086 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
1087
1088 dx = X(dir);
1089 dy = Y(dir);
1090
1091 ox = x + dx;
1092 oy = y + dy;
1093
1094 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
1095 continue;
1096
1097 if (!(tile(state, ox, oy) & F(dir)))
1098 continue;
1099
03f856c4 1100 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
1101 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
2ef96bd6 1102 lx = dx * (TILE_BORDER-1);
1103 ly = dy * (TILE_BORDER-1);
1104 vx = (dy ? 1 : 0);
1105 vy = (dx ? 1 : 0);
1106
1107 if (angle == 0.0 && (tile & dir)) {
1108 /*
1109 * If we are fully connected to the other tile, we must
1110 * draw right across the tile border. (We can use our
1111 * own ACTIVE state to determine what colour to do this
1112 * in: if we are fully connected to the other tile then
1113 * the two ACTIVE states will be the same.)
1114 */
1115 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
1116 draw_rect_coords(fe, px, py, px+lx, py+ly,
1117 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
1118 } else {
1119 /*
1120 * The other tile extends into our border, but isn't
1121 * actually connected to us. Just draw a single black
1122 * dot.
1123 */
1124 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
1125 }
1126 }
1127
1128 /*
1129 * Draw barrier corners, and then barriers.
1130 */
1131 for (phase = 0; phase < 2; phase++) {
1132 for (dir = 1; dir < 0x10; dir <<= 1)
1133 if (barrier(state, x, y) & (dir << 4))
1134 draw_barrier_corner(fe, x, y, dir << 4, phase);
1135 for (dir = 1; dir < 0x10; dir <<= 1)
1136 if (barrier(state, x, y) & dir)
1137 draw_barrier(fe, x, y, dir, phase);
1138 }
1139
1140 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
720a8fb7 1141}
1142
2ef96bd6 1143void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
87ed82be 1144 game_state *state, float t, float ft)
2ef96bd6 1145{
1146 int x, y, tx, ty, frame;
1147 unsigned char *active;
1148 float angle = 0.0;
1149
1150 /*
1151 * Clear the screen and draw the exterior barrier lines if this
1152 * is our first call.
1153 */
1154 if (!ds->started) {
1155 int phase;
1156
1157 ds->started = TRUE;
1158
1159 draw_rect(fe, 0, 0,
1160 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1161 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1162 COL_BACKGROUND);
1163 draw_update(fe, 0, 0,
1164 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1165 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1166
1167 for (phase = 0; phase < 2; phase++) {
1168
1169 for (x = 0; x < ds->width; x++) {
1170 if (barrier(state, x, 0) & UL)
1171 draw_barrier_corner(fe, x, -1, LD, phase);
1172 if (barrier(state, x, 0) & RU)
1173 draw_barrier_corner(fe, x, -1, DR, phase);
1174 if (barrier(state, x, 0) & U)
1175 draw_barrier(fe, x, -1, D, phase);
1176 if (barrier(state, x, ds->height-1) & DR)
1177 draw_barrier_corner(fe, x, ds->height, RU, phase);
1178 if (barrier(state, x, ds->height-1) & LD)
1179 draw_barrier_corner(fe, x, ds->height, UL, phase);
1180 if (barrier(state, x, ds->height-1) & D)
1181 draw_barrier(fe, x, ds->height, U, phase);
1182 }
1183
1184 for (y = 0; y < ds->height; y++) {
1185 if (barrier(state, 0, y) & UL)
1186 draw_barrier_corner(fe, -1, y, RU, phase);
1187 if (barrier(state, 0, y) & LD)
1188 draw_barrier_corner(fe, -1, y, DR, phase);
1189 if (barrier(state, 0, y) & L)
1190 draw_barrier(fe, -1, y, R, phase);
1191 if (barrier(state, ds->width-1, y) & RU)
1192 draw_barrier_corner(fe, ds->width, y, UL, phase);
1193 if (barrier(state, ds->width-1, y) & DR)
1194 draw_barrier_corner(fe, ds->width, y, LD, phase);
1195 if (barrier(state, ds->width-1, y) & R)
1196 draw_barrier(fe, ds->width, y, L, phase);
1197 }
1198 }
1199 }
1200
1201 tx = ty = -1;
2ef96bd6 1202 if (oldstate && (t < ROTATE_TIME)) {
1203 /*
1204 * We're animating a tile rotation. Find the turning tile,
1205 * if any.
1206 */
1207 for (x = 0; x < oldstate->width; x++)
1208 for (y = 0; y < oldstate->height; y++)
1209 if ((tile(oldstate, x, y) ^ tile(state, x, y)) & 0xF) {
1210 tx = x, ty = y;
1211 goto break_label; /* leave both loops at once */
1212 }
1213 break_label:
1214
1215 if (tx >= 0) {
1216 if (tile(state, tx, ty) == ROT(tile(oldstate, tx, ty),
1217 state->last_rotate_dir))
03f856c4 1218 angle = state->last_rotate_dir * 90.0F * (t / ROTATE_TIME);
2ef96bd6 1219 else
03f856c4 1220 angle = state->last_rotate_dir * -90.0F * (t / ROTATE_TIME);
2ef96bd6 1221 state = oldstate;
1222 }
87ed82be 1223 }
1224
1225 frame = -1;
1226 if (ft > 0) {
2ef96bd6 1227 /*
1228 * We're animating a completion flash. Find which frame
1229 * we're at.
1230 */
87ed82be 1231 frame = (int)(ft / FLASH_FRAME);
2ef96bd6 1232 }
1233
1234 /*
1235 * Draw any tile which differs from the way it was last drawn.
1236 */
1237 active = compute_active(state);
1238
1239 for (x = 0; x < ds->width; x++)
1240 for (y = 0; y < ds->height; y++) {
1241 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1242
1243 /*
1244 * In a completion flash, we adjust the LOCKED bit
1245 * depending on our distance from the centre point and
1246 * the frame number.
1247 */
1248 if (frame >= 0) {
1249 int xdist, ydist, dist;
1250 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1251 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1252 dist = (xdist > ydist ? xdist : ydist);
1253
1254 if (frame >= dist && frame < dist+4) {
1255 int lock = (frame - dist) & 1;
1256 lock = lock ? LOCKED : 0;
1257 c = (c &~ LOCKED) | lock;
1258 }
1259 }
1260
1261 if (index(state, ds->visible, x, y) != c ||
1262 index(state, ds->visible, x, y) == 0xFF ||
1263 (x == tx && y == ty)) {
1264 draw_tile(fe, state, x, y, c,
03f856c4 1265 (x == tx && y == ty ? angle : 0.0F));
2ef96bd6 1266 if (x == tx && y == ty)
1267 index(state, ds->visible, x, y) = 0xFF;
1268 else
1269 index(state, ds->visible, x, y) = c;
1270 }
1271 }
1272
fd1a1a2b 1273 /*
1274 * Update the status bar.
1275 */
1276 {
1277 char statusbuf[256];
1278 int i, n, a;
1279
1280 n = state->width * state->height;
1281 for (i = a = 0; i < n; i++)
1282 if (active[i])
1283 a++;
1284
1285 sprintf(statusbuf, "%sActive: %d/%d",
1286 (state->completed ? "COMPLETED! " : ""), a, n);
1287
1288 status_bar(fe, statusbuf);
1289 }
1290
2ef96bd6 1291 sfree(active);
1292}
1293
1294float game_anim_length(game_state *oldstate, game_state *newstate)
1295{
2ef96bd6 1296 int x, y;
1297
1298 /*
1299 * If there's a tile which has been rotated, allow time to
1300 * animate its rotation.
1301 */
1302 for (x = 0; x < oldstate->width; x++)
1303 for (y = 0; y < oldstate->height; y++)
1304 if ((tile(oldstate, x, y) ^ tile(newstate, x, y)) & 0xF) {
87ed82be 1305 return ROTATE_TIME;
2ef96bd6 1306 }
2ef96bd6 1307
87ed82be 1308 return 0.0F;
1309}
1310
1311float game_flash_length(game_state *oldstate, game_state *newstate)
1312{
2ef96bd6 1313 /*
87ed82be 1314 * If the game has just been completed, we display a completion
1315 * flash.
2ef96bd6 1316 */
1317 if (!oldstate->completed && newstate->completed) {
1318 int size;
1319 size = 0;
1320 if (size < newstate->cx+1)
1321 size = newstate->cx+1;
1322 if (size < newstate->cy+1)
1323 size = newstate->cy+1;
1324 if (size < newstate->width - newstate->cx)
1325 size = newstate->width - newstate->cx;
1326 if (size < newstate->height - newstate->cy)
1327 size = newstate->height - newstate->cy;
87ed82be 1328 return FLASH_FRAME * (size+4);
2ef96bd6 1329 }
1330
87ed82be 1331 return 0.0F;
2ef96bd6 1332}
fd1a1a2b 1333
1334int game_wants_statusbar(void)
1335{
1336 return TRUE;
1337}