Have each game declare a name which is used for window titles etc.
[sgt/puzzles] / net.c
CommitLineData
720a8fb7 1/*
2 * net.c: Net game.
3 */
4
5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
8#include <assert.h>
2ef96bd6 9#include <math.h>
720a8fb7 10
11#include "puzzles.h"
12#include "tree234.h"
13
0c490335 14const char *const game_name = "Net";
15
2ef96bd6 16#define PI 3.141592653589793238462643383279502884197169399
17
18#define MATMUL(xr,yr,m,x,y) do { \
19 float rx, ry, xx = (x), yy = (y), *mat = (m); \
20 rx = mat[0] * xx + mat[2] * yy; \
21 ry = mat[1] * xx + mat[3] * yy; \
22 (xr) = rx; (yr) = ry; \
23} while (0)
24
25/* Direction and other bitfields */
720a8fb7 26#define R 0x01
27#define U 0x02
28#define L 0x04
29#define D 0x08
30#define LOCKED 0x10
2ef96bd6 31#define ACTIVE 0x20
32/* Corner flags go in the barriers array */
33#define RU 0x10
34#define UL 0x20
35#define LD 0x40
36#define DR 0x80
720a8fb7 37
38/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
39#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
40#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
41#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
42#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
43 ((n)&3) == 1 ? A(x) : \
44 ((n)&3) == 2 ? F(x) : C(x) )
45
46/* X and Y displacements */
47#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
48#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
49
50/* Bit count */
51#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
52 (((x) & 0x02) >> 1) + ((x) & 0x01) )
53
54#define TILE_SIZE 32
55#define TILE_BORDER 1
56#define WINDOW_OFFSET 16
57
03f856c4 58#define ROTATE_TIME 0.1F
59#define FLASH_FRAME 0.05F
2ef96bd6 60
61enum {
62 COL_BACKGROUND,
63 COL_LOCKED,
64 COL_BORDER,
65 COL_WIRE,
66 COL_ENDPOINT,
67 COL_POWERED,
68 COL_BARRIER,
69 NCOLOURS
70};
71
720a8fb7 72struct game_params {
73 int width;
74 int height;
75 int wrapping;
76 float barrier_probability;
77};
78
79struct game_state {
2ef96bd6 80 int width, height, cx, cy, wrapping, completed, last_rotate_dir;
720a8fb7 81 unsigned char *tiles;
82 unsigned char *barriers;
83};
84
85#define OFFSET(x2,y2,x1,y1,dir,state) \
86 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
87 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
88
89#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
90#define tile(state, x, y) index(state, (state)->tiles, x, y)
91#define barrier(state, x, y) index(state, (state)->barriers, x, y)
92
93struct xyd {
94 int x, y, direction;
95};
96
97static int xyd_cmp(void *av, void *bv) {
98 struct xyd *a = (struct xyd *)av;
99 struct xyd *b = (struct xyd *)bv;
100 if (a->x < b->x)
101 return -1;
102 if (a->x > b->x)
103 return +1;
104 if (a->y < b->y)
105 return -1;
106 if (a->y > b->y)
107 return +1;
108 if (a->direction < b->direction)
109 return -1;
110 if (a->direction > b->direction)
111 return +1;
112 return 0;
113};
114
115static struct xyd *new_xyd(int x, int y, int direction)
116{
117 struct xyd *xyd = snew(struct xyd);
118 xyd->x = x;
119 xyd->y = y;
120 xyd->direction = direction;
121 return xyd;
122}
123
124/* ----------------------------------------------------------------------
7f77ea24 125 * Manage game parameters.
126 */
127game_params *default_params(void)
128{
129 game_params *ret = snew(game_params);
130
eb2ad6f1 131 ret->width = 5;
132 ret->height = 5;
133 ret->wrapping = FALSE;
134 ret->barrier_probability = 0.0;
7f77ea24 135
136 return ret;
137}
138
eb2ad6f1 139int game_fetch_preset(int i, char **name, game_params **params)
140{
141 game_params *ret;
142 char str[80];
143 static const struct { int x, y, wrap; } values[] = {
144 {5, 5, FALSE},
145 {7, 7, FALSE},
146 {9, 9, FALSE},
147 {11, 11, FALSE},
148 {13, 11, FALSE},
149 {5, 5, TRUE},
150 {7, 7, TRUE},
151 {9, 9, TRUE},
152 {11, 11, TRUE},
153 {13, 11, TRUE},
154 };
155
156 if (i < 0 || i >= lenof(values))
157 return FALSE;
158
159 ret = snew(game_params);
160 ret->width = values[i].x;
161 ret->height = values[i].y;
162 ret->wrapping = values[i].wrap;
163 ret->barrier_probability = 0.0;
164
165 sprintf(str, "%dx%d%s", ret->width, ret->height,
166 ret->wrapping ? " wrapping" : "");
167
168 *name = dupstr(str);
169 *params = ret;
170 return TRUE;
171}
172
7f77ea24 173void free_params(game_params *params)
174{
175 sfree(params);
176}
177
eb2ad6f1 178game_params *dup_params(game_params *params)
179{
180 game_params *ret = snew(game_params);
181 *ret = *params; /* structure copy */
182 return ret;
183}
184
7f77ea24 185/* ----------------------------------------------------------------------
720a8fb7 186 * Randomly select a new game seed.
187 */
188
189char *new_game_seed(game_params *params)
190{
191 /*
192 * The full description of a Net game is far too large to
193 * encode directly in the seed, so by default we'll have to go
194 * for the simple approach of providing a random-number seed.
195 *
196 * (This does not restrict me from _later on_ inventing a seed
197 * string syntax which can never be generated by this code -
198 * for example, strings beginning with a letter - allowing me
199 * to type in a precise game, and have new_game detect it and
200 * understand it and do something completely different.)
201 */
202 char buf[40];
203 sprintf(buf, "%d", rand());
204 return dupstr(buf);
205}
206
207/* ----------------------------------------------------------------------
208 * Construct an initial game state, given a seed and parameters.
209 */
210
211game_state *new_game(game_params *params, char *seed)
212{
213 random_state *rs;
214 game_state *state;
215 tree234 *possibilities, *barriers;
216 int w, h, x, y, nbarriers;
217
218 assert(params->width > 2);
219 assert(params->height > 2);
220
221 /*
222 * Create a blank game state.
223 */
224 state = snew(game_state);
225 w = state->width = params->width;
226 h = state->height = params->height;
2ef96bd6 227 state->cx = state->width / 2;
228 state->cy = state->height / 2;
720a8fb7 229 state->wrapping = params->wrapping;
2ef96bd6 230 state->last_rotate_dir = +1; /* *shrug* */
720a8fb7 231 state->completed = FALSE;
232 state->tiles = snewn(state->width * state->height, unsigned char);
233 memset(state->tiles, 0, state->width * state->height);
234 state->barriers = snewn(state->width * state->height, unsigned char);
235 memset(state->barriers, 0, state->width * state->height);
236
237 /*
238 * Set up border barriers if this is a non-wrapping game.
239 */
240 if (!state->wrapping) {
241 for (x = 0; x < state->width; x++) {
242 barrier(state, x, 0) |= U;
243 barrier(state, x, state->height-1) |= D;
244 }
245 for (y = 0; y < state->height; y++) {
2ef96bd6 246 barrier(state, 0, y) |= L;
247 barrier(state, state->width-1, y) |= R;
720a8fb7 248 }
249 }
250
251 /*
252 * Seed the internal random number generator.
253 */
254 rs = random_init(seed, strlen(seed));
255
256 /*
257 * Construct the unshuffled grid.
258 *
259 * To do this, we simply start at the centre point, repeatedly
260 * choose a random possibility out of the available ways to
261 * extend a used square into an unused one, and do it. After
262 * extending the third line out of a square, we remove the
263 * fourth from the possibilities list to avoid any full-cross
264 * squares (which would make the game too easy because they
265 * only have one orientation).
266 *
267 * The slightly worrying thing is the avoidance of full-cross
268 * squares. Can this cause our unsophisticated construction
269 * algorithm to paint itself into a corner, by getting into a
270 * situation where there are some unreached squares and the
271 * only way to reach any of them is to extend a T-piece into a
272 * full cross?
273 *
274 * Answer: no it can't, and here's a proof.
275 *
276 * Any contiguous group of such unreachable squares must be
277 * surrounded on _all_ sides by T-pieces pointing away from the
278 * group. (If not, then there is a square which can be extended
279 * into one of the `unreachable' ones, and so it wasn't
280 * unreachable after all.) In particular, this implies that
281 * each contiguous group of unreachable squares must be
282 * rectangular in shape (any deviation from that yields a
283 * non-T-piece next to an `unreachable' square).
284 *
285 * So we have a rectangle of unreachable squares, with T-pieces
286 * forming a solid border around the rectangle. The corners of
287 * that border must be connected (since every tile connects all
288 * the lines arriving in it), and therefore the border must
289 * form a closed loop around the rectangle.
290 *
291 * But this can't have happened in the first place, since we
292 * _know_ we've avoided creating closed loops! Hence, no such
293 * situation can ever arise, and the naive grid construction
294 * algorithm will guaranteeably result in a complete grid
295 * containing no unreached squares, no full crosses _and_ no
296 * closed loops. []
297 */
298 possibilities = newtree234(xyd_cmp);
2ef96bd6 299
300 add234(possibilities, new_xyd(state->cx, state->cy, R));
301 add234(possibilities, new_xyd(state->cx, state->cy, U));
302 add234(possibilities, new_xyd(state->cx, state->cy, L));
303 add234(possibilities, new_xyd(state->cx, state->cy, D));
720a8fb7 304
305 while (count234(possibilities) > 0) {
306 int i;
307 struct xyd *xyd;
308 int x1, y1, d1, x2, y2, d2, d;
309
310 /*
311 * Extract a randomly chosen possibility from the list.
312 */
313 i = random_upto(rs, count234(possibilities));
314 xyd = delpos234(possibilities, i);
315 x1 = xyd->x;
316 y1 = xyd->y;
317 d1 = xyd->direction;
318 sfree(xyd);
319
320 OFFSET(x2, y2, x1, y1, d1, state);
321 d2 = F(d1);
322#ifdef DEBUG
323 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
324 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
325#endif
326
327 /*
328 * Make the connection. (We should be moving to an as yet
329 * unused tile.)
330 */
331 tile(state, x1, y1) |= d1;
332 assert(tile(state, x2, y2) == 0);
333 tile(state, x2, y2) |= d2;
334
335 /*
336 * If we have created a T-piece, remove its last
337 * possibility.
338 */
339 if (COUNT(tile(state, x1, y1)) == 3) {
340 struct xyd xyd1, *xydp;
341
342 xyd1.x = x1;
343 xyd1.y = y1;
344 xyd1.direction = 0x0F ^ tile(state, x1, y1);
345
346 xydp = find234(possibilities, &xyd1, NULL);
347
348 if (xydp) {
349#ifdef DEBUG
350 printf("T-piece; removing (%d,%d,%c)\n",
351 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
352#endif
353 del234(possibilities, xydp);
354 sfree(xydp);
355 }
356 }
357
358 /*
359 * Remove all other possibilities that were pointing at the
360 * tile we've just moved into.
361 */
362 for (d = 1; d < 0x10; d <<= 1) {
363 int x3, y3, d3;
364 struct xyd xyd1, *xydp;
365
366 OFFSET(x3, y3, x2, y2, d, state);
367 d3 = F(d);
368
369 xyd1.x = x3;
370 xyd1.y = y3;
371 xyd1.direction = d3;
372
373 xydp = find234(possibilities, &xyd1, NULL);
374
375 if (xydp) {
376#ifdef DEBUG
377 printf("Loop avoidance; removing (%d,%d,%c)\n",
378 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
379#endif
380 del234(possibilities, xydp);
381 sfree(xydp);
382 }
383 }
384
385 /*
386 * Add new possibilities to the list for moving _out_ of
387 * the tile we have just moved into.
388 */
389 for (d = 1; d < 0x10; d <<= 1) {
390 int x3, y3;
391
392 if (d == d2)
393 continue; /* we've got this one already */
394
395 if (!state->wrapping) {
396 if (d == U && y2 == 0)
397 continue;
398 if (d == D && y2 == state->height-1)
399 continue;
400 if (d == L && x2 == 0)
401 continue;
402 if (d == R && x2 == state->width-1)
403 continue;
404 }
405
406 OFFSET(x3, y3, x2, y2, d, state);
407
408 if (tile(state, x3, y3))
409 continue; /* this would create a loop */
410
411#ifdef DEBUG
412 printf("New frontier; adding (%d,%d,%c)\n",
413 x2, y2, "0RU3L567D9abcdef"[d]);
414#endif
415 add234(possibilities, new_xyd(x2, y2, d));
416 }
417 }
418 /* Having done that, we should have no possibilities remaining. */
419 assert(count234(possibilities) == 0);
420 freetree234(possibilities);
421
422 /*
423 * Now compute a list of the possible barrier locations.
424 */
425 barriers = newtree234(xyd_cmp);
2ef96bd6 426 for (y = 0; y < state->height; y++) {
427 for (x = 0; x < state->width; x++) {
720a8fb7 428
2ef96bd6 429 if (!(tile(state, x, y) & R) &&
430 (state->wrapping || x < state->width-1))
720a8fb7 431 add234(barriers, new_xyd(x, y, R));
2ef96bd6 432 if (!(tile(state, x, y) & D) &&
433 (state->wrapping || y < state->height-1))
720a8fb7 434 add234(barriers, new_xyd(x, y, D));
435 }
436 }
437
438 /*
439 * Now shuffle the grid.
440 */
2ef96bd6 441 for (y = 0; y < state->height; y++) {
442 for (x = 0; x < state->width; x++) {
720a8fb7 443 int orig = tile(state, x, y);
444 int rot = random_upto(rs, 4);
445 tile(state, x, y) = ROT(orig, rot);
446 }
447 }
448
449 /*
450 * And now choose barrier locations. (We carefully do this
451 * _after_ shuffling, so that changing the barrier rate in the
452 * params while keeping the game seed the same will give the
453 * same shuffled grid and _only_ change the barrier locations.
454 * Also the way we choose barrier locations, by repeatedly
455 * choosing one possibility from the list until we have enough,
456 * is designed to ensure that raising the barrier rate while
457 * keeping the seed the same will provide a superset of the
458 * previous barrier set - i.e. if you ask for 10 barriers, and
459 * then decide that's still too hard and ask for 20, you'll get
460 * the original 10 plus 10 more, rather than getting 20 new
461 * ones and the chance of remembering your first 10.)
462 */
03f856c4 463 nbarriers = (int)(params->barrier_probability * count234(barriers));
720a8fb7 464 assert(nbarriers >= 0 && nbarriers <= count234(barriers));
465
466 while (nbarriers > 0) {
467 int i;
468 struct xyd *xyd;
469 int x1, y1, d1, x2, y2, d2;
470
471 /*
472 * Extract a randomly chosen barrier from the list.
473 */
474 i = random_upto(rs, count234(barriers));
475 xyd = delpos234(barriers, i);
476
477 assert(xyd != NULL);
478
479 x1 = xyd->x;
480 y1 = xyd->y;
481 d1 = xyd->direction;
482 sfree(xyd);
483
484 OFFSET(x2, y2, x1, y1, d1, state);
485 d2 = F(d1);
486
487 barrier(state, x1, y1) |= d1;
488 barrier(state, x2, y2) |= d2;
489
490 nbarriers--;
491 }
492
493 /*
494 * Clean up the rest of the barrier list.
495 */
496 {
497 struct xyd *xyd;
498
499 while ( (xyd = delpos234(barriers, 0)) != NULL)
500 sfree(xyd);
501
502 freetree234(barriers);
503 }
504
2ef96bd6 505 /*
506 * Set up the barrier corner flags, for drawing barriers
507 * prettily when they meet.
508 */
509 for (y = 0; y < state->height; y++) {
510 for (x = 0; x < state->width; x++) {
511 int dir;
512
513 for (dir = 1; dir < 0x10; dir <<= 1) {
514 int dir2 = A(dir);
515 int x1, y1, x2, y2, x3, y3;
516 int corner = FALSE;
517
518 if (!(barrier(state, x, y) & dir))
519 continue;
520
521 if (barrier(state, x, y) & dir2)
522 corner = TRUE;
523
524 x1 = x + X(dir), y1 = y + Y(dir);
525 if (x1 >= 0 && x1 < state->width &&
eb2ad6f1 526 y1 >= 0 && y1 < state->height &&
2ef96bd6 527 (barrier(state, x1, y1) & dir2))
528 corner = TRUE;
529
530 x2 = x + X(dir2), y2 = y + Y(dir2);
531 if (x2 >= 0 && x2 < state->width &&
eb2ad6f1 532 y2 >= 0 && y2 < state->height &&
2ef96bd6 533 (barrier(state, x2, y2) & dir))
534 corner = TRUE;
535
536 if (corner) {
537 barrier(state, x, y) |= (dir << 4);
538 if (x1 >= 0 && x1 < state->width &&
eb2ad6f1 539 y1 >= 0 && y1 < state->height)
2ef96bd6 540 barrier(state, x1, y1) |= (A(dir) << 4);
541 if (x2 >= 0 && x2 < state->width &&
eb2ad6f1 542 y2 >= 0 && y2 < state->height)
2ef96bd6 543 barrier(state, x2, y2) |= (C(dir) << 4);
544 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
545 if (x3 >= 0 && x3 < state->width &&
eb2ad6f1 546 y3 >= 0 && y3 < state->height)
2ef96bd6 547 barrier(state, x3, y3) |= (F(dir) << 4);
548 }
549 }
550 }
551 }
552
720a8fb7 553 random_free(rs);
554
555 return state;
556}
557
558game_state *dup_game(game_state *state)
559{
560 game_state *ret;
561
562 ret = snew(game_state);
563 ret->width = state->width;
564 ret->height = state->height;
2ef96bd6 565 ret->cx = state->cx;
566 ret->cy = state->cy;
720a8fb7 567 ret->wrapping = state->wrapping;
568 ret->completed = state->completed;
2ef96bd6 569 ret->last_rotate_dir = state->last_rotate_dir;
720a8fb7 570 ret->tiles = snewn(state->width * state->height, unsigned char);
571 memcpy(ret->tiles, state->tiles, state->width * state->height);
572 ret->barriers = snewn(state->width * state->height, unsigned char);
573 memcpy(ret->barriers, state->barriers, state->width * state->height);
574
575 return ret;
576}
577
578void free_game(game_state *state)
579{
580 sfree(state->tiles);
581 sfree(state->barriers);
582 sfree(state);
583}
584
585/* ----------------------------------------------------------------------
586 * Utility routine.
587 */
588
589/*
590 * Compute which squares are reachable from the centre square, as a
591 * quick visual aid to determining how close the game is to
592 * completion. This is also a simple way to tell if the game _is_
593 * completed - just call this function and see whether every square
594 * is marked active.
595 */
596static unsigned char *compute_active(game_state *state)
597{
598 unsigned char *active;
599 tree234 *todo;
600 struct xyd *xyd;
601
602 active = snewn(state->width * state->height, unsigned char);
603 memset(active, 0, state->width * state->height);
604
605 /*
606 * We only store (x,y) pairs in todo, but it's easier to reuse
607 * xyd_cmp and just store direction 0 every time.
608 */
609 todo = newtree234(xyd_cmp);
2ef96bd6 610 index(state, active, state->cx, state->cy) = ACTIVE;
611 add234(todo, new_xyd(state->cx, state->cy, 0));
720a8fb7 612
613 while ( (xyd = delpos234(todo, 0)) != NULL) {
614 int x1, y1, d1, x2, y2, d2;
615
616 x1 = xyd->x;
617 y1 = xyd->y;
618 sfree(xyd);
619
620 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
621 OFFSET(x2, y2, x1, y1, d1, state);
622 d2 = F(d1);
623
624 /*
625 * If the next tile in this direction is connected to
626 * us, and there isn't a barrier in the way, and it
627 * isn't already marked active, then mark it active and
628 * add it to the to-examine list.
629 */
630 if ((tile(state, x1, y1) & d1) &&
631 (tile(state, x2, y2) & d2) &&
632 !(barrier(state, x1, y1) & d1) &&
633 !index(state, active, x2, y2)) {
2ef96bd6 634 index(state, active, x2, y2) = ACTIVE;
720a8fb7 635 add234(todo, new_xyd(x2, y2, 0));
636 }
637 }
638 }
639 /* Now we expect the todo list to have shrunk to zero size. */
640 assert(count234(todo) == 0);
641 freetree234(todo);
642
643 return active;
644}
645
646/* ----------------------------------------------------------------------
647 * Process a move.
648 */
649game_state *make_move(game_state *state, int x, int y, int button)
650{
651 game_state *ret;
652 int tx, ty, orig;
653
654 /*
655 * All moves in Net are made with the mouse.
656 */
657 if (button != LEFT_BUTTON &&
658 button != MIDDLE_BUTTON &&
659 button != RIGHT_BUTTON)
660 return NULL;
661
662 /*
663 * The button must have been clicked on a valid tile.
664 */
7f77ea24 665 x -= WINDOW_OFFSET + TILE_BORDER;
666 y -= WINDOW_OFFSET + TILE_BORDER;
720a8fb7 667 if (x < 0 || y < 0)
668 return NULL;
669 tx = x / TILE_SIZE;
670 ty = y / TILE_SIZE;
671 if (tx >= state->width || ty >= state->height)
672 return NULL;
673 if (tx % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
674 ty % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
675 return NULL;
676
677 /*
678 * The middle button locks or unlocks a tile. (A locked tile
679 * cannot be turned, and is visually marked as being locked.
680 * This is a convenience for the player, so that once they are
681 * sure which way round a tile goes, they can lock it and thus
682 * avoid forgetting later on that they'd already done that one;
683 * and the locking also prevents them turning the tile by
684 * accident. If they change their mind, another middle click
685 * unlocks it.)
686 */
687 if (button == MIDDLE_BUTTON) {
688 ret = dup_game(state);
689 tile(ret, tx, ty) ^= LOCKED;
690 return ret;
691 }
692
693 /*
694 * The left and right buttons have no effect if clicked on a
695 * locked tile.
696 */
697 if (tile(state, tx, ty) & LOCKED)
698 return NULL;
699
700 /*
701 * Otherwise, turn the tile one way or the other. Left button
702 * turns anticlockwise; right button turns clockwise.
703 */
704 ret = dup_game(state);
705 orig = tile(ret, tx, ty);
2ef96bd6 706 if (button == LEFT_BUTTON) {
720a8fb7 707 tile(ret, tx, ty) = A(orig);
2ef96bd6 708 ret->last_rotate_dir = +1;
709 } else {
720a8fb7 710 tile(ret, tx, ty) = C(orig);
2ef96bd6 711 ret->last_rotate_dir = -1;
712 }
720a8fb7 713
714 /*
715 * Check whether the game has been completed.
716 */
717 {
718 unsigned char *active = compute_active(ret);
719 int x1, y1;
720 int complete = TRUE;
721
722 for (x1 = 0; x1 < ret->width; x1++)
723 for (y1 = 0; y1 < ret->height; y1++)
724 if (!index(ret, active, x1, y1)) {
725 complete = FALSE;
726 goto break_label; /* break out of two loops at once */
727 }
728 break_label:
729
730 sfree(active);
731
732 if (complete)
733 ret->completed = TRUE;
734 }
735
736 return ret;
737}
738
739/* ----------------------------------------------------------------------
740 * Routines for drawing the game position on the screen.
741 */
742
2ef96bd6 743struct game_drawstate {
744 int started;
745 int width, height;
746 unsigned char *visible;
747};
748
749game_drawstate *game_new_drawstate(game_state *state)
750{
751 game_drawstate *ds = snew(game_drawstate);
752
753 ds->started = FALSE;
754 ds->width = state->width;
755 ds->height = state->height;
756 ds->visible = snewn(state->width * state->height, unsigned char);
757 memset(ds->visible, 0xFF, state->width * state->height);
758
759 return ds;
760}
761
762void game_free_drawstate(game_drawstate *ds)
763{
764 sfree(ds->visible);
765 sfree(ds);
766}
767
7f77ea24 768void game_size(game_params *params, int *x, int *y)
769{
770 *x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
771 *y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
772}
773
2ef96bd6 774float *game_colours(frontend *fe, game_state *state, int *ncolours)
775{
776 float *ret;
83680571 777
2ef96bd6 778 ret = snewn(NCOLOURS * 3, float);
779 *ncolours = NCOLOURS;
720a8fb7 780
2ef96bd6 781 /*
782 * Basic background colour is whatever the front end thinks is
783 * a sensible default.
784 */
785 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
786
787 /*
788 * Wires are black.
789 */
03f856c4 790 ret[COL_WIRE * 3 + 0] = 0.0F;
791 ret[COL_WIRE * 3 + 1] = 0.0F;
792 ret[COL_WIRE * 3 + 2] = 0.0F;
2ef96bd6 793
794 /*
795 * Powered wires and powered endpoints are cyan.
796 */
03f856c4 797 ret[COL_POWERED * 3 + 0] = 0.0F;
798 ret[COL_POWERED * 3 + 1] = 1.0F;
799 ret[COL_POWERED * 3 + 2] = 1.0F;
2ef96bd6 800
801 /*
802 * Barriers are red.
803 */
03f856c4 804 ret[COL_BARRIER * 3 + 0] = 1.0F;
805 ret[COL_BARRIER * 3 + 1] = 0.0F;
806 ret[COL_BARRIER * 3 + 2] = 0.0F;
2ef96bd6 807
808 /*
809 * Unpowered endpoints are blue.
810 */
03f856c4 811 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
812 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
813 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
2ef96bd6 814
815 /*
816 * Tile borders are a darker grey than the background.
817 */
03f856c4 818 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
819 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
820 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2ef96bd6 821
822 /*
823 * Locked tiles are a grey in between those two.
824 */
03f856c4 825 ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
826 ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
827 ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2ef96bd6 828
829 return ret;
830}
831
832static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
833 int colour)
720a8fb7 834{
2ef96bd6 835 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
836 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
837 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
838 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
839 draw_line(fe, x1, y1, x2, y2, colour);
840}
720a8fb7 841
2ef96bd6 842static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
843 int colour)
844{
845 int mx = (x1 < x2 ? x1 : x2);
846 int my = (y1 < y2 ? y1 : y2);
847 int dx = (x2 + x1 - 2*mx + 1);
848 int dy = (y2 + y1 - 2*my + 1);
720a8fb7 849
2ef96bd6 850 draw_rect(fe, mx, my, dx, dy, colour);
851}
720a8fb7 852
2ef96bd6 853static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
854{
855 int bx = WINDOW_OFFSET + TILE_SIZE * x;
856 int by = WINDOW_OFFSET + TILE_SIZE * y;
857 int x1, y1, dx, dy, dir2;
858
859 dir >>= 4;
860
861 dir2 = A(dir);
862 dx = X(dir) + X(dir2);
863 dy = Y(dir) + Y(dir2);
864 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
865 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
866
867 if (phase == 0) {
868 draw_rect_coords(fe, bx+x1, by+y1,
869 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
870 COL_WIRE);
871 draw_rect_coords(fe, bx+x1, by+y1,
872 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
873 COL_WIRE);
874 } else {
875 draw_rect_coords(fe, bx+x1, by+y1,
876 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
877 COL_BARRIER);
720a8fb7 878 }
2ef96bd6 879}
880
881static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
882{
883 int bx = WINDOW_OFFSET + TILE_SIZE * x;
884 int by = WINDOW_OFFSET + TILE_SIZE * y;
885 int x1, y1, w, h;
886
887 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
888 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
889 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
890 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
891
892 if (phase == 0) {
893 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
894 } else {
895 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
896 }
897}
720a8fb7 898
2ef96bd6 899static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
900 float angle)
901{
902 int bx = WINDOW_OFFSET + TILE_SIZE * x;
903 int by = WINDOW_OFFSET + TILE_SIZE * y;
904 float matrix[4];
905 float cx, cy, ex, ey, tx, ty;
906 int dir, col, phase;
720a8fb7 907
2ef96bd6 908 /*
909 * When we draw a single tile, we must draw everything up to
910 * and including the borders around the tile. This means that
911 * if the neighbouring tiles have connections to those borders,
912 * we must draw those connections on the borders themselves.
913 *
914 * This would be terribly fiddly if we ever had to draw a tile
915 * while its neighbour was in mid-rotate, because we'd have to
916 * arrange to _know_ that the neighbour was being rotated and
917 * hence had an anomalous effect on the redraw of this tile.
918 * Fortunately, the drawing algorithm avoids ever calling us in
919 * this circumstance: we're either drawing lots of straight
920 * tiles at game start or after a move is complete, or we're
921 * repeatedly drawing only the rotating tile. So no problem.
922 */
923
924 /*
925 * So. First blank the tile out completely: draw a big
926 * rectangle in border colour, and a smaller rectangle in
927 * background colour to fill it in.
928 */
929 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
930 COL_BORDER);
931 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
932 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
933 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
934
935 /*
936 * Set up the rotation matrix.
937 */
03f856c4 938 matrix[0] = (float)cos(angle * PI / 180.0);
939 matrix[1] = (float)-sin(angle * PI / 180.0);
940 matrix[2] = (float)sin(angle * PI / 180.0);
941 matrix[3] = (float)cos(angle * PI / 180.0);
2ef96bd6 942
943 /*
944 * Draw the wires.
945 */
03f856c4 946 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
2ef96bd6 947 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
948 for (dir = 1; dir < 0x10; dir <<= 1) {
949 if (tile & dir) {
03f856c4 950 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
951 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2ef96bd6 952 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 953 draw_thick_line(fe, bx+(int)cx, by+(int)cy,
954 bx+(int)(cx+tx), by+(int)(cy+ty),
2ef96bd6 955 COL_WIRE);
956 }
957 }
958 for (dir = 1; dir < 0x10; dir <<= 1) {
959 if (tile & dir) {
03f856c4 960 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
961 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2ef96bd6 962 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 963 draw_line(fe, bx+(int)cx, by+(int)cy,
964 bx+(int)(cx+tx), by+(int)(cy+ty), col);
2ef96bd6 965 }
966 }
967
968 /*
969 * Draw the box in the middle. We do this in blue if the tile
970 * is an unpowered endpoint, in cyan if the tile is a powered
971 * endpoint, in black if the tile is the centrepiece, and
972 * otherwise not at all.
973 */
974 col = -1;
975 if (x == state->cx && y == state->cy)
976 col = COL_WIRE;
977 else if (COUNT(tile) == 1) {
978 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
979 }
980 if (col >= 0) {
981 int i, points[8];
982
983 points[0] = +1; points[1] = +1;
984 points[2] = +1; points[3] = -1;
985 points[4] = -1; points[5] = -1;
986 points[6] = -1; points[7] = +1;
987
988 for (i = 0; i < 8; i += 2) {
03f856c4 989 ex = (TILE_SIZE * 0.24F) * points[i];
990 ey = (TILE_SIZE * 0.24F) * points[i+1];
2ef96bd6 991 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 992 points[i] = bx+(int)(cx+tx);
993 points[i+1] = by+(int)(cy+ty);
2ef96bd6 994 }
995
996 draw_polygon(fe, points, 4, TRUE, col);
997 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
998 }
999
1000 /*
1001 * Draw the points on the border if other tiles are connected
1002 * to us.
1003 */
1004 for (dir = 1; dir < 0x10; dir <<= 1) {
1005 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
1006
1007 dx = X(dir);
1008 dy = Y(dir);
1009
1010 ox = x + dx;
1011 oy = y + dy;
1012
1013 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
1014 continue;
1015
1016 if (!(tile(state, ox, oy) & F(dir)))
1017 continue;
1018
03f856c4 1019 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
1020 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
2ef96bd6 1021 lx = dx * (TILE_BORDER-1);
1022 ly = dy * (TILE_BORDER-1);
1023 vx = (dy ? 1 : 0);
1024 vy = (dx ? 1 : 0);
1025
1026 if (angle == 0.0 && (tile & dir)) {
1027 /*
1028 * If we are fully connected to the other tile, we must
1029 * draw right across the tile border. (We can use our
1030 * own ACTIVE state to determine what colour to do this
1031 * in: if we are fully connected to the other tile then
1032 * the two ACTIVE states will be the same.)
1033 */
1034 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
1035 draw_rect_coords(fe, px, py, px+lx, py+ly,
1036 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
1037 } else {
1038 /*
1039 * The other tile extends into our border, but isn't
1040 * actually connected to us. Just draw a single black
1041 * dot.
1042 */
1043 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
1044 }
1045 }
1046
1047 /*
1048 * Draw barrier corners, and then barriers.
1049 */
1050 for (phase = 0; phase < 2; phase++) {
1051 for (dir = 1; dir < 0x10; dir <<= 1)
1052 if (barrier(state, x, y) & (dir << 4))
1053 draw_barrier_corner(fe, x, y, dir << 4, phase);
1054 for (dir = 1; dir < 0x10; dir <<= 1)
1055 if (barrier(state, x, y) & dir)
1056 draw_barrier(fe, x, y, dir, phase);
1057 }
1058
1059 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
720a8fb7 1060}
1061
2ef96bd6 1062void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1063 game_state *state, float t)
1064{
1065 int x, y, tx, ty, frame;
1066 unsigned char *active;
1067 float angle = 0.0;
1068
1069 /*
1070 * Clear the screen and draw the exterior barrier lines if this
1071 * is our first call.
1072 */
1073 if (!ds->started) {
1074 int phase;
1075
1076 ds->started = TRUE;
1077
1078 draw_rect(fe, 0, 0,
1079 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1080 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1081 COL_BACKGROUND);
1082 draw_update(fe, 0, 0,
1083 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1084 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1085
1086 for (phase = 0; phase < 2; phase++) {
1087
1088 for (x = 0; x < ds->width; x++) {
1089 if (barrier(state, x, 0) & UL)
1090 draw_barrier_corner(fe, x, -1, LD, phase);
1091 if (barrier(state, x, 0) & RU)
1092 draw_barrier_corner(fe, x, -1, DR, phase);
1093 if (barrier(state, x, 0) & U)
1094 draw_barrier(fe, x, -1, D, phase);
1095 if (barrier(state, x, ds->height-1) & DR)
1096 draw_barrier_corner(fe, x, ds->height, RU, phase);
1097 if (barrier(state, x, ds->height-1) & LD)
1098 draw_barrier_corner(fe, x, ds->height, UL, phase);
1099 if (barrier(state, x, ds->height-1) & D)
1100 draw_barrier(fe, x, ds->height, U, phase);
1101 }
1102
1103 for (y = 0; y < ds->height; y++) {
1104 if (barrier(state, 0, y) & UL)
1105 draw_barrier_corner(fe, -1, y, RU, phase);
1106 if (barrier(state, 0, y) & LD)
1107 draw_barrier_corner(fe, -1, y, DR, phase);
1108 if (barrier(state, 0, y) & L)
1109 draw_barrier(fe, -1, y, R, phase);
1110 if (barrier(state, ds->width-1, y) & RU)
1111 draw_barrier_corner(fe, ds->width, y, UL, phase);
1112 if (barrier(state, ds->width-1, y) & DR)
1113 draw_barrier_corner(fe, ds->width, y, LD, phase);
1114 if (barrier(state, ds->width-1, y) & R)
1115 draw_barrier(fe, ds->width, y, L, phase);
1116 }
1117 }
1118 }
1119
1120 tx = ty = -1;
1121 frame = -1;
1122 if (oldstate && (t < ROTATE_TIME)) {
1123 /*
1124 * We're animating a tile rotation. Find the turning tile,
1125 * if any.
1126 */
1127 for (x = 0; x < oldstate->width; x++)
1128 for (y = 0; y < oldstate->height; y++)
1129 if ((tile(oldstate, x, y) ^ tile(state, x, y)) & 0xF) {
1130 tx = x, ty = y;
1131 goto break_label; /* leave both loops at once */
1132 }
1133 break_label:
1134
1135 if (tx >= 0) {
1136 if (tile(state, tx, ty) == ROT(tile(oldstate, tx, ty),
1137 state->last_rotate_dir))
03f856c4 1138 angle = state->last_rotate_dir * 90.0F * (t / ROTATE_TIME);
2ef96bd6 1139 else
03f856c4 1140 angle = state->last_rotate_dir * -90.0F * (t / ROTATE_TIME);
2ef96bd6 1141 state = oldstate;
1142 }
1143 } else if (t > ROTATE_TIME) {
1144 /*
1145 * We're animating a completion flash. Find which frame
1146 * we're at.
1147 */
03f856c4 1148 frame = (int)((t - ROTATE_TIME) / FLASH_FRAME);
2ef96bd6 1149 }
1150
1151 /*
1152 * Draw any tile which differs from the way it was last drawn.
1153 */
1154 active = compute_active(state);
1155
1156 for (x = 0; x < ds->width; x++)
1157 for (y = 0; y < ds->height; y++) {
1158 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1159
1160 /*
1161 * In a completion flash, we adjust the LOCKED bit
1162 * depending on our distance from the centre point and
1163 * the frame number.
1164 */
1165 if (frame >= 0) {
1166 int xdist, ydist, dist;
1167 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1168 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1169 dist = (xdist > ydist ? xdist : ydist);
1170
1171 if (frame >= dist && frame < dist+4) {
1172 int lock = (frame - dist) & 1;
1173 lock = lock ? LOCKED : 0;
1174 c = (c &~ LOCKED) | lock;
1175 }
1176 }
1177
1178 if (index(state, ds->visible, x, y) != c ||
1179 index(state, ds->visible, x, y) == 0xFF ||
1180 (x == tx && y == ty)) {
1181 draw_tile(fe, state, x, y, c,
03f856c4 1182 (x == tx && y == ty ? angle : 0.0F));
2ef96bd6 1183 if (x == tx && y == ty)
1184 index(state, ds->visible, x, y) = 0xFF;
1185 else
1186 index(state, ds->visible, x, y) = c;
1187 }
1188 }
1189
1190 sfree(active);
1191}
1192
1193float game_anim_length(game_state *oldstate, game_state *newstate)
1194{
03f856c4 1195 float ret = 0.0F;
2ef96bd6 1196 int x, y;
1197
1198 /*
1199 * If there's a tile which has been rotated, allow time to
1200 * animate its rotation.
1201 */
1202 for (x = 0; x < oldstate->width; x++)
1203 for (y = 0; y < oldstate->height; y++)
1204 if ((tile(oldstate, x, y) ^ tile(newstate, x, y)) & 0xF) {
1205 ret = ROTATE_TIME;
1206 goto break_label; /* leave both loops at once */
1207 }
1208 break_label:
1209
1210 /*
1211 * Also, if the game has just been completed, allow time for a
1212 * completion flash.
1213 */
1214 if (!oldstate->completed && newstate->completed) {
1215 int size;
1216 size = 0;
1217 if (size < newstate->cx+1)
1218 size = newstate->cx+1;
1219 if (size < newstate->cy+1)
1220 size = newstate->cy+1;
1221 if (size < newstate->width - newstate->cx)
1222 size = newstate->width - newstate->cx;
1223 if (size < newstate->height - newstate->cy)
1224 size = newstate->height - newstate->cy;
1225 ret += FLASH_FRAME * (size+4);
1226 }
1227
1228 return ret;
1229}