Configuration dialog box, on the GTK front end only as yet.
[sgt/puzzles] / net.c
CommitLineData
720a8fb7 1/*
2 * net.c: Net game.
3 */
4
5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
8#include <assert.h>
2ef96bd6 9#include <math.h>
720a8fb7 10
11#include "puzzles.h"
12#include "tree234.h"
13
0c490335 14const char *const game_name = "Net";
c8230524 15const int game_can_configure = TRUE;
0c490335 16
2ef96bd6 17#define PI 3.141592653589793238462643383279502884197169399
18
19#define MATMUL(xr,yr,m,x,y) do { \
20 float rx, ry, xx = (x), yy = (y), *mat = (m); \
21 rx = mat[0] * xx + mat[2] * yy; \
22 ry = mat[1] * xx + mat[3] * yy; \
23 (xr) = rx; (yr) = ry; \
24} while (0)
25
26/* Direction and other bitfields */
720a8fb7 27#define R 0x01
28#define U 0x02
29#define L 0x04
30#define D 0x08
31#define LOCKED 0x10
2ef96bd6 32#define ACTIVE 0x20
33/* Corner flags go in the barriers array */
34#define RU 0x10
35#define UL 0x20
36#define LD 0x40
37#define DR 0x80
720a8fb7 38
39/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
40#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
41#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
42#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
43#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
44 ((n)&3) == 1 ? A(x) : \
45 ((n)&3) == 2 ? F(x) : C(x) )
46
47/* X and Y displacements */
48#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
49#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
50
51/* Bit count */
52#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
53 (((x) & 0x02) >> 1) + ((x) & 0x01) )
54
55#define TILE_SIZE 32
56#define TILE_BORDER 1
57#define WINDOW_OFFSET 16
58
03f856c4 59#define ROTATE_TIME 0.1F
60#define FLASH_FRAME 0.05F
2ef96bd6 61
62enum {
63 COL_BACKGROUND,
64 COL_LOCKED,
65 COL_BORDER,
66 COL_WIRE,
67 COL_ENDPOINT,
68 COL_POWERED,
69 COL_BARRIER,
70 NCOLOURS
71};
72
720a8fb7 73struct game_params {
74 int width;
75 int height;
76 int wrapping;
77 float barrier_probability;
78};
79
80struct game_state {
2ef96bd6 81 int width, height, cx, cy, wrapping, completed, last_rotate_dir;
720a8fb7 82 unsigned char *tiles;
83 unsigned char *barriers;
84};
85
86#define OFFSET(x2,y2,x1,y1,dir,state) \
87 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
88 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
89
90#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
91#define tile(state, x, y) index(state, (state)->tiles, x, y)
92#define barrier(state, x, y) index(state, (state)->barriers, x, y)
93
94struct xyd {
95 int x, y, direction;
96};
97
98static int xyd_cmp(void *av, void *bv) {
99 struct xyd *a = (struct xyd *)av;
100 struct xyd *b = (struct xyd *)bv;
101 if (a->x < b->x)
102 return -1;
103 if (a->x > b->x)
104 return +1;
105 if (a->y < b->y)
106 return -1;
107 if (a->y > b->y)
108 return +1;
109 if (a->direction < b->direction)
110 return -1;
111 if (a->direction > b->direction)
112 return +1;
113 return 0;
114};
115
116static struct xyd *new_xyd(int x, int y, int direction)
117{
118 struct xyd *xyd = snew(struct xyd);
119 xyd->x = x;
120 xyd->y = y;
121 xyd->direction = direction;
122 return xyd;
123}
124
125/* ----------------------------------------------------------------------
7f77ea24 126 * Manage game parameters.
127 */
128game_params *default_params(void)
129{
130 game_params *ret = snew(game_params);
131
eb2ad6f1 132 ret->width = 5;
133 ret->height = 5;
134 ret->wrapping = FALSE;
135 ret->barrier_probability = 0.0;
7f77ea24 136
137 return ret;
138}
139
eb2ad6f1 140int game_fetch_preset(int i, char **name, game_params **params)
141{
142 game_params *ret;
143 char str[80];
144 static const struct { int x, y, wrap; } values[] = {
145 {5, 5, FALSE},
146 {7, 7, FALSE},
147 {9, 9, FALSE},
148 {11, 11, FALSE},
149 {13, 11, FALSE},
150 {5, 5, TRUE},
151 {7, 7, TRUE},
152 {9, 9, TRUE},
153 {11, 11, TRUE},
154 {13, 11, TRUE},
155 };
156
157 if (i < 0 || i >= lenof(values))
158 return FALSE;
159
160 ret = snew(game_params);
161 ret->width = values[i].x;
162 ret->height = values[i].y;
163 ret->wrapping = values[i].wrap;
164 ret->barrier_probability = 0.0;
165
166 sprintf(str, "%dx%d%s", ret->width, ret->height,
167 ret->wrapping ? " wrapping" : "");
168
169 *name = dupstr(str);
170 *params = ret;
171 return TRUE;
172}
173
7f77ea24 174void free_params(game_params *params)
175{
176 sfree(params);
177}
178
eb2ad6f1 179game_params *dup_params(game_params *params)
180{
181 game_params *ret = snew(game_params);
182 *ret = *params; /* structure copy */
183 return ret;
184}
185
c8230524 186config_item *game_configure(game_params *params)
187{
188 config_item *ret;
189 char buf[80];
190
191 ret = snewn(5, config_item);
192
193 ret[0].name = "Width";
194 ret[0].type = STRING;
195 sprintf(buf, "%d", params->width);
196 ret[0].sval = dupstr(buf);
197 ret[0].ival = 0;
198
199 ret[1].name = "Height";
200 ret[1].type = STRING;
201 sprintf(buf, "%d", params->height);
202 ret[1].sval = dupstr(buf);
203 ret[1].ival = 0;
204
205 ret[2].name = "Walls wrap around";
206 ret[2].type = BOOLEAN;
207 ret[2].sval = NULL;
208 ret[2].ival = params->wrapping;
209
210 ret[3].name = "Barrier probability";
211 ret[3].type = STRING;
212 sprintf(buf, "%g", params->barrier_probability);
213 ret[3].sval = dupstr(buf);
214 ret[3].ival = 0;
215
216 ret[4].name = NULL;
217 ret[4].type = ENDCFG;
218 ret[4].sval = NULL;
219 ret[4].ival = 0;
220
221 return ret;
222}
223
224game_params *custom_params(config_item *cfg)
225{
226 game_params *ret = snew(game_params);
227
228 ret->width = atoi(cfg[0].sval);
229 ret->height = atoi(cfg[1].sval);
230 ret->wrapping = cfg[2].ival;
231 ret->barrier_probability = atof(cfg[3].sval);
232
233 return ret;
234}
235
236char *validate_params(game_params *params)
237{
238 if (params->width <= 0 && params->height <= 0)
239 return "Width and height must both be greater than zero";
240 if (params->width <= 0)
241 return "Width must be greater than zero";
242 if (params->height <= 0)
243 return "Height must be greater than zero";
244 if (params->width <= 1 && params->height <= 1)
245 return "At least one of width and height must be greater than one";
246 if (params->barrier_probability < 0)
247 return "Barrier probability may not be negative";
248 if (params->barrier_probability > 1)
249 return "Barrier probability may not be greater than 1";
250 return NULL;
251}
252
7f77ea24 253/* ----------------------------------------------------------------------
720a8fb7 254 * Randomly select a new game seed.
255 */
256
257char *new_game_seed(game_params *params)
258{
259 /*
260 * The full description of a Net game is far too large to
261 * encode directly in the seed, so by default we'll have to go
262 * for the simple approach of providing a random-number seed.
263 *
264 * (This does not restrict me from _later on_ inventing a seed
265 * string syntax which can never be generated by this code -
266 * for example, strings beginning with a letter - allowing me
267 * to type in a precise game, and have new_game detect it and
268 * understand it and do something completely different.)
269 */
270 char buf[40];
271 sprintf(buf, "%d", rand());
272 return dupstr(buf);
273}
274
275/* ----------------------------------------------------------------------
276 * Construct an initial game state, given a seed and parameters.
277 */
278
279game_state *new_game(game_params *params, char *seed)
280{
281 random_state *rs;
282 game_state *state;
283 tree234 *possibilities, *barriers;
284 int w, h, x, y, nbarriers;
285
ecadce0d 286 assert(params->width > 0 && params->height > 0);
287 assert(params->width > 1 || params->height > 1);
720a8fb7 288
289 /*
290 * Create a blank game state.
291 */
292 state = snew(game_state);
293 w = state->width = params->width;
294 h = state->height = params->height;
2ef96bd6 295 state->cx = state->width / 2;
296 state->cy = state->height / 2;
720a8fb7 297 state->wrapping = params->wrapping;
2ef96bd6 298 state->last_rotate_dir = +1; /* *shrug* */
720a8fb7 299 state->completed = FALSE;
300 state->tiles = snewn(state->width * state->height, unsigned char);
301 memset(state->tiles, 0, state->width * state->height);
302 state->barriers = snewn(state->width * state->height, unsigned char);
303 memset(state->barriers, 0, state->width * state->height);
304
305 /*
306 * Set up border barriers if this is a non-wrapping game.
307 */
308 if (!state->wrapping) {
309 for (x = 0; x < state->width; x++) {
310 barrier(state, x, 0) |= U;
311 barrier(state, x, state->height-1) |= D;
312 }
313 for (y = 0; y < state->height; y++) {
2ef96bd6 314 barrier(state, 0, y) |= L;
315 barrier(state, state->width-1, y) |= R;
720a8fb7 316 }
317 }
318
319 /*
320 * Seed the internal random number generator.
321 */
322 rs = random_init(seed, strlen(seed));
323
324 /*
325 * Construct the unshuffled grid.
326 *
327 * To do this, we simply start at the centre point, repeatedly
328 * choose a random possibility out of the available ways to
329 * extend a used square into an unused one, and do it. After
330 * extending the third line out of a square, we remove the
331 * fourth from the possibilities list to avoid any full-cross
332 * squares (which would make the game too easy because they
333 * only have one orientation).
334 *
335 * The slightly worrying thing is the avoidance of full-cross
336 * squares. Can this cause our unsophisticated construction
337 * algorithm to paint itself into a corner, by getting into a
338 * situation where there are some unreached squares and the
339 * only way to reach any of them is to extend a T-piece into a
340 * full cross?
341 *
342 * Answer: no it can't, and here's a proof.
343 *
344 * Any contiguous group of such unreachable squares must be
345 * surrounded on _all_ sides by T-pieces pointing away from the
346 * group. (If not, then there is a square which can be extended
347 * into one of the `unreachable' ones, and so it wasn't
348 * unreachable after all.) In particular, this implies that
349 * each contiguous group of unreachable squares must be
350 * rectangular in shape (any deviation from that yields a
351 * non-T-piece next to an `unreachable' square).
352 *
353 * So we have a rectangle of unreachable squares, with T-pieces
354 * forming a solid border around the rectangle. The corners of
355 * that border must be connected (since every tile connects all
356 * the lines arriving in it), and therefore the border must
357 * form a closed loop around the rectangle.
358 *
359 * But this can't have happened in the first place, since we
360 * _know_ we've avoided creating closed loops! Hence, no such
361 * situation can ever arise, and the naive grid construction
362 * algorithm will guaranteeably result in a complete grid
363 * containing no unreached squares, no full crosses _and_ no
364 * closed loops. []
365 */
366 possibilities = newtree234(xyd_cmp);
ecadce0d 367
368 if (state->cx+1 < state->width)
369 add234(possibilities, new_xyd(state->cx, state->cy, R));
370 if (state->cy-1 >= 0)
371 add234(possibilities, new_xyd(state->cx, state->cy, U));
372 if (state->cx-1 >= 0)
373 add234(possibilities, new_xyd(state->cx, state->cy, L));
374 if (state->cy+1 < state->height)
375 add234(possibilities, new_xyd(state->cx, state->cy, D));
720a8fb7 376
377 while (count234(possibilities) > 0) {
378 int i;
379 struct xyd *xyd;
380 int x1, y1, d1, x2, y2, d2, d;
381
382 /*
383 * Extract a randomly chosen possibility from the list.
384 */
385 i = random_upto(rs, count234(possibilities));
386 xyd = delpos234(possibilities, i);
387 x1 = xyd->x;
388 y1 = xyd->y;
389 d1 = xyd->direction;
390 sfree(xyd);
391
392 OFFSET(x2, y2, x1, y1, d1, state);
393 d2 = F(d1);
394#ifdef DEBUG
395 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
396 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
397#endif
398
399 /*
400 * Make the connection. (We should be moving to an as yet
401 * unused tile.)
402 */
403 tile(state, x1, y1) |= d1;
404 assert(tile(state, x2, y2) == 0);
405 tile(state, x2, y2) |= d2;
406
407 /*
408 * If we have created a T-piece, remove its last
409 * possibility.
410 */
411 if (COUNT(tile(state, x1, y1)) == 3) {
412 struct xyd xyd1, *xydp;
413
414 xyd1.x = x1;
415 xyd1.y = y1;
416 xyd1.direction = 0x0F ^ tile(state, x1, y1);
417
418 xydp = find234(possibilities, &xyd1, NULL);
419
420 if (xydp) {
421#ifdef DEBUG
422 printf("T-piece; removing (%d,%d,%c)\n",
423 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
424#endif
425 del234(possibilities, xydp);
426 sfree(xydp);
427 }
428 }
429
430 /*
431 * Remove all other possibilities that were pointing at the
432 * tile we've just moved into.
433 */
434 for (d = 1; d < 0x10; d <<= 1) {
435 int x3, y3, d3;
436 struct xyd xyd1, *xydp;
437
438 OFFSET(x3, y3, x2, y2, d, state);
439 d3 = F(d);
440
441 xyd1.x = x3;
442 xyd1.y = y3;
443 xyd1.direction = d3;
444
445 xydp = find234(possibilities, &xyd1, NULL);
446
447 if (xydp) {
448#ifdef DEBUG
449 printf("Loop avoidance; removing (%d,%d,%c)\n",
450 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
451#endif
452 del234(possibilities, xydp);
453 sfree(xydp);
454 }
455 }
456
457 /*
458 * Add new possibilities to the list for moving _out_ of
459 * the tile we have just moved into.
460 */
461 for (d = 1; d < 0x10; d <<= 1) {
462 int x3, y3;
463
464 if (d == d2)
465 continue; /* we've got this one already */
466
467 if (!state->wrapping) {
468 if (d == U && y2 == 0)
469 continue;
470 if (d == D && y2 == state->height-1)
471 continue;
472 if (d == L && x2 == 0)
473 continue;
474 if (d == R && x2 == state->width-1)
475 continue;
476 }
477
478 OFFSET(x3, y3, x2, y2, d, state);
479
480 if (tile(state, x3, y3))
481 continue; /* this would create a loop */
482
483#ifdef DEBUG
484 printf("New frontier; adding (%d,%d,%c)\n",
485 x2, y2, "0RU3L567D9abcdef"[d]);
486#endif
487 add234(possibilities, new_xyd(x2, y2, d));
488 }
489 }
490 /* Having done that, we should have no possibilities remaining. */
491 assert(count234(possibilities) == 0);
492 freetree234(possibilities);
493
494 /*
495 * Now compute a list of the possible barrier locations.
496 */
497 barriers = newtree234(xyd_cmp);
2ef96bd6 498 for (y = 0; y < state->height; y++) {
499 for (x = 0; x < state->width; x++) {
720a8fb7 500
2ef96bd6 501 if (!(tile(state, x, y) & R) &&
502 (state->wrapping || x < state->width-1))
720a8fb7 503 add234(barriers, new_xyd(x, y, R));
2ef96bd6 504 if (!(tile(state, x, y) & D) &&
505 (state->wrapping || y < state->height-1))
720a8fb7 506 add234(barriers, new_xyd(x, y, D));
507 }
508 }
509
510 /*
511 * Now shuffle the grid.
512 */
2ef96bd6 513 for (y = 0; y < state->height; y++) {
514 for (x = 0; x < state->width; x++) {
720a8fb7 515 int orig = tile(state, x, y);
516 int rot = random_upto(rs, 4);
517 tile(state, x, y) = ROT(orig, rot);
518 }
519 }
520
521 /*
522 * And now choose barrier locations. (We carefully do this
523 * _after_ shuffling, so that changing the barrier rate in the
524 * params while keeping the game seed the same will give the
525 * same shuffled grid and _only_ change the barrier locations.
526 * Also the way we choose barrier locations, by repeatedly
527 * choosing one possibility from the list until we have enough,
528 * is designed to ensure that raising the barrier rate while
529 * keeping the seed the same will provide a superset of the
530 * previous barrier set - i.e. if you ask for 10 barriers, and
531 * then decide that's still too hard and ask for 20, you'll get
532 * the original 10 plus 10 more, rather than getting 20 new
533 * ones and the chance of remembering your first 10.)
534 */
03f856c4 535 nbarriers = (int)(params->barrier_probability * count234(barriers));
720a8fb7 536 assert(nbarriers >= 0 && nbarriers <= count234(barriers));
537
538 while (nbarriers > 0) {
539 int i;
540 struct xyd *xyd;
541 int x1, y1, d1, x2, y2, d2;
542
543 /*
544 * Extract a randomly chosen barrier from the list.
545 */
546 i = random_upto(rs, count234(barriers));
547 xyd = delpos234(barriers, i);
548
549 assert(xyd != NULL);
550
551 x1 = xyd->x;
552 y1 = xyd->y;
553 d1 = xyd->direction;
554 sfree(xyd);
555
556 OFFSET(x2, y2, x1, y1, d1, state);
557 d2 = F(d1);
558
559 barrier(state, x1, y1) |= d1;
560 barrier(state, x2, y2) |= d2;
561
562 nbarriers--;
563 }
564
565 /*
566 * Clean up the rest of the barrier list.
567 */
568 {
569 struct xyd *xyd;
570
571 while ( (xyd = delpos234(barriers, 0)) != NULL)
572 sfree(xyd);
573
574 freetree234(barriers);
575 }
576
2ef96bd6 577 /*
578 * Set up the barrier corner flags, for drawing barriers
579 * prettily when they meet.
580 */
581 for (y = 0; y < state->height; y++) {
582 for (x = 0; x < state->width; x++) {
583 int dir;
584
585 for (dir = 1; dir < 0x10; dir <<= 1) {
586 int dir2 = A(dir);
587 int x1, y1, x2, y2, x3, y3;
588 int corner = FALSE;
589
590 if (!(barrier(state, x, y) & dir))
591 continue;
592
593 if (barrier(state, x, y) & dir2)
594 corner = TRUE;
595
596 x1 = x + X(dir), y1 = y + Y(dir);
597 if (x1 >= 0 && x1 < state->width &&
eb2ad6f1 598 y1 >= 0 && y1 < state->height &&
2ef96bd6 599 (barrier(state, x1, y1) & dir2))
600 corner = TRUE;
601
602 x2 = x + X(dir2), y2 = y + Y(dir2);
603 if (x2 >= 0 && x2 < state->width &&
eb2ad6f1 604 y2 >= 0 && y2 < state->height &&
2ef96bd6 605 (barrier(state, x2, y2) & dir))
606 corner = TRUE;
607
608 if (corner) {
609 barrier(state, x, y) |= (dir << 4);
610 if (x1 >= 0 && x1 < state->width &&
eb2ad6f1 611 y1 >= 0 && y1 < state->height)
2ef96bd6 612 barrier(state, x1, y1) |= (A(dir) << 4);
613 if (x2 >= 0 && x2 < state->width &&
eb2ad6f1 614 y2 >= 0 && y2 < state->height)
2ef96bd6 615 barrier(state, x2, y2) |= (C(dir) << 4);
616 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
617 if (x3 >= 0 && x3 < state->width &&
eb2ad6f1 618 y3 >= 0 && y3 < state->height)
2ef96bd6 619 barrier(state, x3, y3) |= (F(dir) << 4);
620 }
621 }
622 }
623 }
624
720a8fb7 625 random_free(rs);
626
627 return state;
628}
629
630game_state *dup_game(game_state *state)
631{
632 game_state *ret;
633
634 ret = snew(game_state);
635 ret->width = state->width;
636 ret->height = state->height;
2ef96bd6 637 ret->cx = state->cx;
638 ret->cy = state->cy;
720a8fb7 639 ret->wrapping = state->wrapping;
640 ret->completed = state->completed;
2ef96bd6 641 ret->last_rotate_dir = state->last_rotate_dir;
720a8fb7 642 ret->tiles = snewn(state->width * state->height, unsigned char);
643 memcpy(ret->tiles, state->tiles, state->width * state->height);
644 ret->barriers = snewn(state->width * state->height, unsigned char);
645 memcpy(ret->barriers, state->barriers, state->width * state->height);
646
647 return ret;
648}
649
650void free_game(game_state *state)
651{
652 sfree(state->tiles);
653 sfree(state->barriers);
654 sfree(state);
655}
656
657/* ----------------------------------------------------------------------
658 * Utility routine.
659 */
660
661/*
662 * Compute which squares are reachable from the centre square, as a
663 * quick visual aid to determining how close the game is to
664 * completion. This is also a simple way to tell if the game _is_
665 * completed - just call this function and see whether every square
666 * is marked active.
667 */
668static unsigned char *compute_active(game_state *state)
669{
670 unsigned char *active;
671 tree234 *todo;
672 struct xyd *xyd;
673
674 active = snewn(state->width * state->height, unsigned char);
675 memset(active, 0, state->width * state->height);
676
677 /*
678 * We only store (x,y) pairs in todo, but it's easier to reuse
679 * xyd_cmp and just store direction 0 every time.
680 */
681 todo = newtree234(xyd_cmp);
2ef96bd6 682 index(state, active, state->cx, state->cy) = ACTIVE;
683 add234(todo, new_xyd(state->cx, state->cy, 0));
720a8fb7 684
685 while ( (xyd = delpos234(todo, 0)) != NULL) {
686 int x1, y1, d1, x2, y2, d2;
687
688 x1 = xyd->x;
689 y1 = xyd->y;
690 sfree(xyd);
691
692 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
693 OFFSET(x2, y2, x1, y1, d1, state);
694 d2 = F(d1);
695
696 /*
697 * If the next tile in this direction is connected to
698 * us, and there isn't a barrier in the way, and it
699 * isn't already marked active, then mark it active and
700 * add it to the to-examine list.
701 */
702 if ((tile(state, x1, y1) & d1) &&
703 (tile(state, x2, y2) & d2) &&
704 !(barrier(state, x1, y1) & d1) &&
705 !index(state, active, x2, y2)) {
2ef96bd6 706 index(state, active, x2, y2) = ACTIVE;
720a8fb7 707 add234(todo, new_xyd(x2, y2, 0));
708 }
709 }
710 }
711 /* Now we expect the todo list to have shrunk to zero size. */
712 assert(count234(todo) == 0);
713 freetree234(todo);
714
715 return active;
716}
717
718/* ----------------------------------------------------------------------
719 * Process a move.
720 */
721game_state *make_move(game_state *state, int x, int y, int button)
722{
723 game_state *ret;
724 int tx, ty, orig;
725
726 /*
727 * All moves in Net are made with the mouse.
728 */
729 if (button != LEFT_BUTTON &&
730 button != MIDDLE_BUTTON &&
731 button != RIGHT_BUTTON)
732 return NULL;
733
734 /*
735 * The button must have been clicked on a valid tile.
736 */
7f77ea24 737 x -= WINDOW_OFFSET + TILE_BORDER;
738 y -= WINDOW_OFFSET + TILE_BORDER;
720a8fb7 739 if (x < 0 || y < 0)
740 return NULL;
741 tx = x / TILE_SIZE;
742 ty = y / TILE_SIZE;
743 if (tx >= state->width || ty >= state->height)
744 return NULL;
745 if (tx % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
746 ty % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
747 return NULL;
748
749 /*
750 * The middle button locks or unlocks a tile. (A locked tile
751 * cannot be turned, and is visually marked as being locked.
752 * This is a convenience for the player, so that once they are
753 * sure which way round a tile goes, they can lock it and thus
754 * avoid forgetting later on that they'd already done that one;
755 * and the locking also prevents them turning the tile by
756 * accident. If they change their mind, another middle click
757 * unlocks it.)
758 */
759 if (button == MIDDLE_BUTTON) {
760 ret = dup_game(state);
761 tile(ret, tx, ty) ^= LOCKED;
762 return ret;
763 }
764
765 /*
766 * The left and right buttons have no effect if clicked on a
767 * locked tile.
768 */
769 if (tile(state, tx, ty) & LOCKED)
770 return NULL;
771
772 /*
773 * Otherwise, turn the tile one way or the other. Left button
774 * turns anticlockwise; right button turns clockwise.
775 */
776 ret = dup_game(state);
777 orig = tile(ret, tx, ty);
2ef96bd6 778 if (button == LEFT_BUTTON) {
720a8fb7 779 tile(ret, tx, ty) = A(orig);
2ef96bd6 780 ret->last_rotate_dir = +1;
781 } else {
720a8fb7 782 tile(ret, tx, ty) = C(orig);
2ef96bd6 783 ret->last_rotate_dir = -1;
784 }
720a8fb7 785
786 /*
787 * Check whether the game has been completed.
788 */
789 {
790 unsigned char *active = compute_active(ret);
791 int x1, y1;
792 int complete = TRUE;
793
794 for (x1 = 0; x1 < ret->width; x1++)
795 for (y1 = 0; y1 < ret->height; y1++)
796 if (!index(ret, active, x1, y1)) {
797 complete = FALSE;
798 goto break_label; /* break out of two loops at once */
799 }
800 break_label:
801
802 sfree(active);
803
804 if (complete)
805 ret->completed = TRUE;
806 }
807
808 return ret;
809}
810
811/* ----------------------------------------------------------------------
812 * Routines for drawing the game position on the screen.
813 */
814
2ef96bd6 815struct game_drawstate {
816 int started;
817 int width, height;
818 unsigned char *visible;
819};
820
821game_drawstate *game_new_drawstate(game_state *state)
822{
823 game_drawstate *ds = snew(game_drawstate);
824
825 ds->started = FALSE;
826 ds->width = state->width;
827 ds->height = state->height;
828 ds->visible = snewn(state->width * state->height, unsigned char);
829 memset(ds->visible, 0xFF, state->width * state->height);
830
831 return ds;
832}
833
834void game_free_drawstate(game_drawstate *ds)
835{
836 sfree(ds->visible);
837 sfree(ds);
838}
839
7f77ea24 840void game_size(game_params *params, int *x, int *y)
841{
842 *x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
843 *y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
844}
845
2ef96bd6 846float *game_colours(frontend *fe, game_state *state, int *ncolours)
847{
848 float *ret;
83680571 849
2ef96bd6 850 ret = snewn(NCOLOURS * 3, float);
851 *ncolours = NCOLOURS;
720a8fb7 852
2ef96bd6 853 /*
854 * Basic background colour is whatever the front end thinks is
855 * a sensible default.
856 */
857 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
858
859 /*
860 * Wires are black.
861 */
03f856c4 862 ret[COL_WIRE * 3 + 0] = 0.0F;
863 ret[COL_WIRE * 3 + 1] = 0.0F;
864 ret[COL_WIRE * 3 + 2] = 0.0F;
2ef96bd6 865
866 /*
867 * Powered wires and powered endpoints are cyan.
868 */
03f856c4 869 ret[COL_POWERED * 3 + 0] = 0.0F;
870 ret[COL_POWERED * 3 + 1] = 1.0F;
871 ret[COL_POWERED * 3 + 2] = 1.0F;
2ef96bd6 872
873 /*
874 * Barriers are red.
875 */
03f856c4 876 ret[COL_BARRIER * 3 + 0] = 1.0F;
877 ret[COL_BARRIER * 3 + 1] = 0.0F;
878 ret[COL_BARRIER * 3 + 2] = 0.0F;
2ef96bd6 879
880 /*
881 * Unpowered endpoints are blue.
882 */
03f856c4 883 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
884 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
885 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
2ef96bd6 886
887 /*
888 * Tile borders are a darker grey than the background.
889 */
03f856c4 890 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
891 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
892 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2ef96bd6 893
894 /*
895 * Locked tiles are a grey in between those two.
896 */
03f856c4 897 ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
898 ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
899 ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2ef96bd6 900
901 return ret;
902}
903
904static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
905 int colour)
720a8fb7 906{
2ef96bd6 907 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
908 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
909 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
910 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
911 draw_line(fe, x1, y1, x2, y2, colour);
912}
720a8fb7 913
2ef96bd6 914static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
915 int colour)
916{
917 int mx = (x1 < x2 ? x1 : x2);
918 int my = (y1 < y2 ? y1 : y2);
919 int dx = (x2 + x1 - 2*mx + 1);
920 int dy = (y2 + y1 - 2*my + 1);
720a8fb7 921
2ef96bd6 922 draw_rect(fe, mx, my, dx, dy, colour);
923}
720a8fb7 924
2ef96bd6 925static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
926{
927 int bx = WINDOW_OFFSET + TILE_SIZE * x;
928 int by = WINDOW_OFFSET + TILE_SIZE * y;
929 int x1, y1, dx, dy, dir2;
930
931 dir >>= 4;
932
933 dir2 = A(dir);
934 dx = X(dir) + X(dir2);
935 dy = Y(dir) + Y(dir2);
936 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
937 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
938
939 if (phase == 0) {
940 draw_rect_coords(fe, bx+x1, by+y1,
941 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
942 COL_WIRE);
943 draw_rect_coords(fe, bx+x1, by+y1,
944 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
945 COL_WIRE);
946 } else {
947 draw_rect_coords(fe, bx+x1, by+y1,
948 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
949 COL_BARRIER);
720a8fb7 950 }
2ef96bd6 951}
952
953static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
954{
955 int bx = WINDOW_OFFSET + TILE_SIZE * x;
956 int by = WINDOW_OFFSET + TILE_SIZE * y;
957 int x1, y1, w, h;
958
959 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
960 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
961 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
962 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
963
964 if (phase == 0) {
965 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
966 } else {
967 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
968 }
969}
720a8fb7 970
2ef96bd6 971static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
972 float angle)
973{
974 int bx = WINDOW_OFFSET + TILE_SIZE * x;
975 int by = WINDOW_OFFSET + TILE_SIZE * y;
976 float matrix[4];
977 float cx, cy, ex, ey, tx, ty;
978 int dir, col, phase;
720a8fb7 979
2ef96bd6 980 /*
981 * When we draw a single tile, we must draw everything up to
982 * and including the borders around the tile. This means that
983 * if the neighbouring tiles have connections to those borders,
984 * we must draw those connections on the borders themselves.
985 *
986 * This would be terribly fiddly if we ever had to draw a tile
987 * while its neighbour was in mid-rotate, because we'd have to
988 * arrange to _know_ that the neighbour was being rotated and
989 * hence had an anomalous effect on the redraw of this tile.
990 * Fortunately, the drawing algorithm avoids ever calling us in
991 * this circumstance: we're either drawing lots of straight
992 * tiles at game start or after a move is complete, or we're
993 * repeatedly drawing only the rotating tile. So no problem.
994 */
995
996 /*
997 * So. First blank the tile out completely: draw a big
998 * rectangle in border colour, and a smaller rectangle in
999 * background colour to fill it in.
1000 */
1001 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
1002 COL_BORDER);
1003 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
1004 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
1005 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
1006
1007 /*
1008 * Set up the rotation matrix.
1009 */
03f856c4 1010 matrix[0] = (float)cos(angle * PI / 180.0);
1011 matrix[1] = (float)-sin(angle * PI / 180.0);
1012 matrix[2] = (float)sin(angle * PI / 180.0);
1013 matrix[3] = (float)cos(angle * PI / 180.0);
2ef96bd6 1014
1015 /*
1016 * Draw the wires.
1017 */
03f856c4 1018 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
2ef96bd6 1019 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
1020 for (dir = 1; dir < 0x10; dir <<= 1) {
1021 if (tile & dir) {
03f856c4 1022 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1023 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2ef96bd6 1024 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 1025 draw_thick_line(fe, bx+(int)cx, by+(int)cy,
1026 bx+(int)(cx+tx), by+(int)(cy+ty),
2ef96bd6 1027 COL_WIRE);
1028 }
1029 }
1030 for (dir = 1; dir < 0x10; dir <<= 1) {
1031 if (tile & dir) {
03f856c4 1032 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1033 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2ef96bd6 1034 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 1035 draw_line(fe, bx+(int)cx, by+(int)cy,
1036 bx+(int)(cx+tx), by+(int)(cy+ty), col);
2ef96bd6 1037 }
1038 }
1039
1040 /*
1041 * Draw the box in the middle. We do this in blue if the tile
1042 * is an unpowered endpoint, in cyan if the tile is a powered
1043 * endpoint, in black if the tile is the centrepiece, and
1044 * otherwise not at all.
1045 */
1046 col = -1;
1047 if (x == state->cx && y == state->cy)
1048 col = COL_WIRE;
1049 else if (COUNT(tile) == 1) {
1050 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
1051 }
1052 if (col >= 0) {
1053 int i, points[8];
1054
1055 points[0] = +1; points[1] = +1;
1056 points[2] = +1; points[3] = -1;
1057 points[4] = -1; points[5] = -1;
1058 points[6] = -1; points[7] = +1;
1059
1060 for (i = 0; i < 8; i += 2) {
03f856c4 1061 ex = (TILE_SIZE * 0.24F) * points[i];
1062 ey = (TILE_SIZE * 0.24F) * points[i+1];
2ef96bd6 1063 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 1064 points[i] = bx+(int)(cx+tx);
1065 points[i+1] = by+(int)(cy+ty);
2ef96bd6 1066 }
1067
1068 draw_polygon(fe, points, 4, TRUE, col);
1069 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
1070 }
1071
1072 /*
1073 * Draw the points on the border if other tiles are connected
1074 * to us.
1075 */
1076 for (dir = 1; dir < 0x10; dir <<= 1) {
1077 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
1078
1079 dx = X(dir);
1080 dy = Y(dir);
1081
1082 ox = x + dx;
1083 oy = y + dy;
1084
1085 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
1086 continue;
1087
1088 if (!(tile(state, ox, oy) & F(dir)))
1089 continue;
1090
03f856c4 1091 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
1092 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
2ef96bd6 1093 lx = dx * (TILE_BORDER-1);
1094 ly = dy * (TILE_BORDER-1);
1095 vx = (dy ? 1 : 0);
1096 vy = (dx ? 1 : 0);
1097
1098 if (angle == 0.0 && (tile & dir)) {
1099 /*
1100 * If we are fully connected to the other tile, we must
1101 * draw right across the tile border. (We can use our
1102 * own ACTIVE state to determine what colour to do this
1103 * in: if we are fully connected to the other tile then
1104 * the two ACTIVE states will be the same.)
1105 */
1106 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
1107 draw_rect_coords(fe, px, py, px+lx, py+ly,
1108 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
1109 } else {
1110 /*
1111 * The other tile extends into our border, but isn't
1112 * actually connected to us. Just draw a single black
1113 * dot.
1114 */
1115 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
1116 }
1117 }
1118
1119 /*
1120 * Draw barrier corners, and then barriers.
1121 */
1122 for (phase = 0; phase < 2; phase++) {
1123 for (dir = 1; dir < 0x10; dir <<= 1)
1124 if (barrier(state, x, y) & (dir << 4))
1125 draw_barrier_corner(fe, x, y, dir << 4, phase);
1126 for (dir = 1; dir < 0x10; dir <<= 1)
1127 if (barrier(state, x, y) & dir)
1128 draw_barrier(fe, x, y, dir, phase);
1129 }
1130
1131 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
720a8fb7 1132}
1133
2ef96bd6 1134void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
87ed82be 1135 game_state *state, float t, float ft)
2ef96bd6 1136{
1137 int x, y, tx, ty, frame;
1138 unsigned char *active;
1139 float angle = 0.0;
1140
1141 /*
1142 * Clear the screen and draw the exterior barrier lines if this
1143 * is our first call.
1144 */
1145 if (!ds->started) {
1146 int phase;
1147
1148 ds->started = TRUE;
1149
1150 draw_rect(fe, 0, 0,
1151 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1152 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1153 COL_BACKGROUND);
1154 draw_update(fe, 0, 0,
1155 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1156 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1157
1158 for (phase = 0; phase < 2; phase++) {
1159
1160 for (x = 0; x < ds->width; x++) {
1161 if (barrier(state, x, 0) & UL)
1162 draw_barrier_corner(fe, x, -1, LD, phase);
1163 if (barrier(state, x, 0) & RU)
1164 draw_barrier_corner(fe, x, -1, DR, phase);
1165 if (barrier(state, x, 0) & U)
1166 draw_barrier(fe, x, -1, D, phase);
1167 if (barrier(state, x, ds->height-1) & DR)
1168 draw_barrier_corner(fe, x, ds->height, RU, phase);
1169 if (barrier(state, x, ds->height-1) & LD)
1170 draw_barrier_corner(fe, x, ds->height, UL, phase);
1171 if (barrier(state, x, ds->height-1) & D)
1172 draw_barrier(fe, x, ds->height, U, phase);
1173 }
1174
1175 for (y = 0; y < ds->height; y++) {
1176 if (barrier(state, 0, y) & UL)
1177 draw_barrier_corner(fe, -1, y, RU, phase);
1178 if (barrier(state, 0, y) & LD)
1179 draw_barrier_corner(fe, -1, y, DR, phase);
1180 if (barrier(state, 0, y) & L)
1181 draw_barrier(fe, -1, y, R, phase);
1182 if (barrier(state, ds->width-1, y) & RU)
1183 draw_barrier_corner(fe, ds->width, y, UL, phase);
1184 if (barrier(state, ds->width-1, y) & DR)
1185 draw_barrier_corner(fe, ds->width, y, LD, phase);
1186 if (barrier(state, ds->width-1, y) & R)
1187 draw_barrier(fe, ds->width, y, L, phase);
1188 }
1189 }
1190 }
1191
1192 tx = ty = -1;
2ef96bd6 1193 if (oldstate && (t < ROTATE_TIME)) {
1194 /*
1195 * We're animating a tile rotation. Find the turning tile,
1196 * if any.
1197 */
1198 for (x = 0; x < oldstate->width; x++)
1199 for (y = 0; y < oldstate->height; y++)
1200 if ((tile(oldstate, x, y) ^ tile(state, x, y)) & 0xF) {
1201 tx = x, ty = y;
1202 goto break_label; /* leave both loops at once */
1203 }
1204 break_label:
1205
1206 if (tx >= 0) {
1207 if (tile(state, tx, ty) == ROT(tile(oldstate, tx, ty),
1208 state->last_rotate_dir))
03f856c4 1209 angle = state->last_rotate_dir * 90.0F * (t / ROTATE_TIME);
2ef96bd6 1210 else
03f856c4 1211 angle = state->last_rotate_dir * -90.0F * (t / ROTATE_TIME);
2ef96bd6 1212 state = oldstate;
1213 }
87ed82be 1214 }
1215
1216 frame = -1;
1217 if (ft > 0) {
2ef96bd6 1218 /*
1219 * We're animating a completion flash. Find which frame
1220 * we're at.
1221 */
87ed82be 1222 frame = (int)(ft / FLASH_FRAME);
2ef96bd6 1223 }
1224
1225 /*
1226 * Draw any tile which differs from the way it was last drawn.
1227 */
1228 active = compute_active(state);
1229
1230 for (x = 0; x < ds->width; x++)
1231 for (y = 0; y < ds->height; y++) {
1232 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1233
1234 /*
1235 * In a completion flash, we adjust the LOCKED bit
1236 * depending on our distance from the centre point and
1237 * the frame number.
1238 */
1239 if (frame >= 0) {
1240 int xdist, ydist, dist;
1241 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1242 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1243 dist = (xdist > ydist ? xdist : ydist);
1244
1245 if (frame >= dist && frame < dist+4) {
1246 int lock = (frame - dist) & 1;
1247 lock = lock ? LOCKED : 0;
1248 c = (c &~ LOCKED) | lock;
1249 }
1250 }
1251
1252 if (index(state, ds->visible, x, y) != c ||
1253 index(state, ds->visible, x, y) == 0xFF ||
1254 (x == tx && y == ty)) {
1255 draw_tile(fe, state, x, y, c,
03f856c4 1256 (x == tx && y == ty ? angle : 0.0F));
2ef96bd6 1257 if (x == tx && y == ty)
1258 index(state, ds->visible, x, y) = 0xFF;
1259 else
1260 index(state, ds->visible, x, y) = c;
1261 }
1262 }
1263
fd1a1a2b 1264 /*
1265 * Update the status bar.
1266 */
1267 {
1268 char statusbuf[256];
1269 int i, n, a;
1270
1271 n = state->width * state->height;
1272 for (i = a = 0; i < n; i++)
1273 if (active[i])
1274 a++;
1275
1276 sprintf(statusbuf, "%sActive: %d/%d",
1277 (state->completed ? "COMPLETED! " : ""), a, n);
1278
1279 status_bar(fe, statusbuf);
1280 }
1281
2ef96bd6 1282 sfree(active);
1283}
1284
1285float game_anim_length(game_state *oldstate, game_state *newstate)
1286{
2ef96bd6 1287 int x, y;
1288
1289 /*
1290 * If there's a tile which has been rotated, allow time to
1291 * animate its rotation.
1292 */
1293 for (x = 0; x < oldstate->width; x++)
1294 for (y = 0; y < oldstate->height; y++)
1295 if ((tile(oldstate, x, y) ^ tile(newstate, x, y)) & 0xF) {
87ed82be 1296 return ROTATE_TIME;
2ef96bd6 1297 }
2ef96bd6 1298
87ed82be 1299 return 0.0F;
1300}
1301
1302float game_flash_length(game_state *oldstate, game_state *newstate)
1303{
2ef96bd6 1304 /*
87ed82be 1305 * If the game has just been completed, we display a completion
1306 * flash.
2ef96bd6 1307 */
1308 if (!oldstate->completed && newstate->completed) {
1309 int size;
1310 size = 0;
1311 if (size < newstate->cx+1)
1312 size = newstate->cx+1;
1313 if (size < newstate->cy+1)
1314 size = newstate->cy+1;
1315 if (size < newstate->width - newstate->cx)
1316 size = newstate->width - newstate->cx;
1317 if (size < newstate->height - newstate->cy)
1318 size = newstate->height - newstate->cy;
87ed82be 1319 return FLASH_FRAME * (size+4);
2ef96bd6 1320 }
1321
87ed82be 1322 return 0.0F;
2ef96bd6 1323}
fd1a1a2b 1324
1325int game_wants_statusbar(void)
1326{
1327 return TRUE;
1328}