Remove arbitrary restriction on Net minimum game size. (Awww, cute
[sgt/puzzles] / net.c
CommitLineData
720a8fb7 1/*
2 * net.c: Net game.
3 */
4
5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
8#include <assert.h>
2ef96bd6 9#include <math.h>
720a8fb7 10
11#include "puzzles.h"
12#include "tree234.h"
13
0c490335 14const char *const game_name = "Net";
15
2ef96bd6 16#define PI 3.141592653589793238462643383279502884197169399
17
18#define MATMUL(xr,yr,m,x,y) do { \
19 float rx, ry, xx = (x), yy = (y), *mat = (m); \
20 rx = mat[0] * xx + mat[2] * yy; \
21 ry = mat[1] * xx + mat[3] * yy; \
22 (xr) = rx; (yr) = ry; \
23} while (0)
24
25/* Direction and other bitfields */
720a8fb7 26#define R 0x01
27#define U 0x02
28#define L 0x04
29#define D 0x08
30#define LOCKED 0x10
2ef96bd6 31#define ACTIVE 0x20
32/* Corner flags go in the barriers array */
33#define RU 0x10
34#define UL 0x20
35#define LD 0x40
36#define DR 0x80
720a8fb7 37
38/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
39#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
40#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
41#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
42#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
43 ((n)&3) == 1 ? A(x) : \
44 ((n)&3) == 2 ? F(x) : C(x) )
45
46/* X and Y displacements */
47#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
48#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
49
50/* Bit count */
51#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
52 (((x) & 0x02) >> 1) + ((x) & 0x01) )
53
54#define TILE_SIZE 32
55#define TILE_BORDER 1
56#define WINDOW_OFFSET 16
57
03f856c4 58#define ROTATE_TIME 0.1F
59#define FLASH_FRAME 0.05F
2ef96bd6 60
61enum {
62 COL_BACKGROUND,
63 COL_LOCKED,
64 COL_BORDER,
65 COL_WIRE,
66 COL_ENDPOINT,
67 COL_POWERED,
68 COL_BARRIER,
69 NCOLOURS
70};
71
720a8fb7 72struct game_params {
73 int width;
74 int height;
75 int wrapping;
76 float barrier_probability;
77};
78
79struct game_state {
2ef96bd6 80 int width, height, cx, cy, wrapping, completed, last_rotate_dir;
720a8fb7 81 unsigned char *tiles;
82 unsigned char *barriers;
83};
84
85#define OFFSET(x2,y2,x1,y1,dir,state) \
86 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
87 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
88
89#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
90#define tile(state, x, y) index(state, (state)->tiles, x, y)
91#define barrier(state, x, y) index(state, (state)->barriers, x, y)
92
93struct xyd {
94 int x, y, direction;
95};
96
97static int xyd_cmp(void *av, void *bv) {
98 struct xyd *a = (struct xyd *)av;
99 struct xyd *b = (struct xyd *)bv;
100 if (a->x < b->x)
101 return -1;
102 if (a->x > b->x)
103 return +1;
104 if (a->y < b->y)
105 return -1;
106 if (a->y > b->y)
107 return +1;
108 if (a->direction < b->direction)
109 return -1;
110 if (a->direction > b->direction)
111 return +1;
112 return 0;
113};
114
115static struct xyd *new_xyd(int x, int y, int direction)
116{
117 struct xyd *xyd = snew(struct xyd);
118 xyd->x = x;
119 xyd->y = y;
120 xyd->direction = direction;
121 return xyd;
122}
123
124/* ----------------------------------------------------------------------
7f77ea24 125 * Manage game parameters.
126 */
127game_params *default_params(void)
128{
129 game_params *ret = snew(game_params);
130
eb2ad6f1 131 ret->width = 5;
132 ret->height = 5;
133 ret->wrapping = FALSE;
134 ret->barrier_probability = 0.0;
7f77ea24 135
136 return ret;
137}
138
eb2ad6f1 139int game_fetch_preset(int i, char **name, game_params **params)
140{
141 game_params *ret;
142 char str[80];
143 static const struct { int x, y, wrap; } values[] = {
144 {5, 5, FALSE},
145 {7, 7, FALSE},
146 {9, 9, FALSE},
147 {11, 11, FALSE},
148 {13, 11, FALSE},
149 {5, 5, TRUE},
150 {7, 7, TRUE},
151 {9, 9, TRUE},
152 {11, 11, TRUE},
153 {13, 11, TRUE},
154 };
155
156 if (i < 0 || i >= lenof(values))
157 return FALSE;
158
159 ret = snew(game_params);
160 ret->width = values[i].x;
161 ret->height = values[i].y;
162 ret->wrapping = values[i].wrap;
163 ret->barrier_probability = 0.0;
164
165 sprintf(str, "%dx%d%s", ret->width, ret->height,
166 ret->wrapping ? " wrapping" : "");
167
168 *name = dupstr(str);
169 *params = ret;
170 return TRUE;
171}
172
7f77ea24 173void free_params(game_params *params)
174{
175 sfree(params);
176}
177
eb2ad6f1 178game_params *dup_params(game_params *params)
179{
180 game_params *ret = snew(game_params);
181 *ret = *params; /* structure copy */
182 return ret;
183}
184
7f77ea24 185/* ----------------------------------------------------------------------
720a8fb7 186 * Randomly select a new game seed.
187 */
188
189char *new_game_seed(game_params *params)
190{
191 /*
192 * The full description of a Net game is far too large to
193 * encode directly in the seed, so by default we'll have to go
194 * for the simple approach of providing a random-number seed.
195 *
196 * (This does not restrict me from _later on_ inventing a seed
197 * string syntax which can never be generated by this code -
198 * for example, strings beginning with a letter - allowing me
199 * to type in a precise game, and have new_game detect it and
200 * understand it and do something completely different.)
201 */
202 char buf[40];
203 sprintf(buf, "%d", rand());
204 return dupstr(buf);
205}
206
207/* ----------------------------------------------------------------------
208 * Construct an initial game state, given a seed and parameters.
209 */
210
211game_state *new_game(game_params *params, char *seed)
212{
213 random_state *rs;
214 game_state *state;
215 tree234 *possibilities, *barriers;
216 int w, h, x, y, nbarriers;
217
ecadce0d 218 assert(params->width > 0 && params->height > 0);
219 assert(params->width > 1 || params->height > 1);
720a8fb7 220
221 /*
222 * Create a blank game state.
223 */
224 state = snew(game_state);
225 w = state->width = params->width;
226 h = state->height = params->height;
2ef96bd6 227 state->cx = state->width / 2;
228 state->cy = state->height / 2;
720a8fb7 229 state->wrapping = params->wrapping;
2ef96bd6 230 state->last_rotate_dir = +1; /* *shrug* */
720a8fb7 231 state->completed = FALSE;
232 state->tiles = snewn(state->width * state->height, unsigned char);
233 memset(state->tiles, 0, state->width * state->height);
234 state->barriers = snewn(state->width * state->height, unsigned char);
235 memset(state->barriers, 0, state->width * state->height);
236
237 /*
238 * Set up border barriers if this is a non-wrapping game.
239 */
240 if (!state->wrapping) {
241 for (x = 0; x < state->width; x++) {
242 barrier(state, x, 0) |= U;
243 barrier(state, x, state->height-1) |= D;
244 }
245 for (y = 0; y < state->height; y++) {
2ef96bd6 246 barrier(state, 0, y) |= L;
247 barrier(state, state->width-1, y) |= R;
720a8fb7 248 }
249 }
250
251 /*
252 * Seed the internal random number generator.
253 */
254 rs = random_init(seed, strlen(seed));
255
256 /*
257 * Construct the unshuffled grid.
258 *
259 * To do this, we simply start at the centre point, repeatedly
260 * choose a random possibility out of the available ways to
261 * extend a used square into an unused one, and do it. After
262 * extending the third line out of a square, we remove the
263 * fourth from the possibilities list to avoid any full-cross
264 * squares (which would make the game too easy because they
265 * only have one orientation).
266 *
267 * The slightly worrying thing is the avoidance of full-cross
268 * squares. Can this cause our unsophisticated construction
269 * algorithm to paint itself into a corner, by getting into a
270 * situation where there are some unreached squares and the
271 * only way to reach any of them is to extend a T-piece into a
272 * full cross?
273 *
274 * Answer: no it can't, and here's a proof.
275 *
276 * Any contiguous group of such unreachable squares must be
277 * surrounded on _all_ sides by T-pieces pointing away from the
278 * group. (If not, then there is a square which can be extended
279 * into one of the `unreachable' ones, and so it wasn't
280 * unreachable after all.) In particular, this implies that
281 * each contiguous group of unreachable squares must be
282 * rectangular in shape (any deviation from that yields a
283 * non-T-piece next to an `unreachable' square).
284 *
285 * So we have a rectangle of unreachable squares, with T-pieces
286 * forming a solid border around the rectangle. The corners of
287 * that border must be connected (since every tile connects all
288 * the lines arriving in it), and therefore the border must
289 * form a closed loop around the rectangle.
290 *
291 * But this can't have happened in the first place, since we
292 * _know_ we've avoided creating closed loops! Hence, no such
293 * situation can ever arise, and the naive grid construction
294 * algorithm will guaranteeably result in a complete grid
295 * containing no unreached squares, no full crosses _and_ no
296 * closed loops. []
297 */
298 possibilities = newtree234(xyd_cmp);
ecadce0d 299
300 if (state->cx+1 < state->width)
301 add234(possibilities, new_xyd(state->cx, state->cy, R));
302 if (state->cy-1 >= 0)
303 add234(possibilities, new_xyd(state->cx, state->cy, U));
304 if (state->cx-1 >= 0)
305 add234(possibilities, new_xyd(state->cx, state->cy, L));
306 if (state->cy+1 < state->height)
307 add234(possibilities, new_xyd(state->cx, state->cy, D));
720a8fb7 308
309 while (count234(possibilities) > 0) {
310 int i;
311 struct xyd *xyd;
312 int x1, y1, d1, x2, y2, d2, d;
313
314 /*
315 * Extract a randomly chosen possibility from the list.
316 */
317 i = random_upto(rs, count234(possibilities));
318 xyd = delpos234(possibilities, i);
319 x1 = xyd->x;
320 y1 = xyd->y;
321 d1 = xyd->direction;
322 sfree(xyd);
323
324 OFFSET(x2, y2, x1, y1, d1, state);
325 d2 = F(d1);
326#ifdef DEBUG
327 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
328 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
329#endif
330
331 /*
332 * Make the connection. (We should be moving to an as yet
333 * unused tile.)
334 */
335 tile(state, x1, y1) |= d1;
336 assert(tile(state, x2, y2) == 0);
337 tile(state, x2, y2) |= d2;
338
339 /*
340 * If we have created a T-piece, remove its last
341 * possibility.
342 */
343 if (COUNT(tile(state, x1, y1)) == 3) {
344 struct xyd xyd1, *xydp;
345
346 xyd1.x = x1;
347 xyd1.y = y1;
348 xyd1.direction = 0x0F ^ tile(state, x1, y1);
349
350 xydp = find234(possibilities, &xyd1, NULL);
351
352 if (xydp) {
353#ifdef DEBUG
354 printf("T-piece; removing (%d,%d,%c)\n",
355 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
356#endif
357 del234(possibilities, xydp);
358 sfree(xydp);
359 }
360 }
361
362 /*
363 * Remove all other possibilities that were pointing at the
364 * tile we've just moved into.
365 */
366 for (d = 1; d < 0x10; d <<= 1) {
367 int x3, y3, d3;
368 struct xyd xyd1, *xydp;
369
370 OFFSET(x3, y3, x2, y2, d, state);
371 d3 = F(d);
372
373 xyd1.x = x3;
374 xyd1.y = y3;
375 xyd1.direction = d3;
376
377 xydp = find234(possibilities, &xyd1, NULL);
378
379 if (xydp) {
380#ifdef DEBUG
381 printf("Loop avoidance; removing (%d,%d,%c)\n",
382 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
383#endif
384 del234(possibilities, xydp);
385 sfree(xydp);
386 }
387 }
388
389 /*
390 * Add new possibilities to the list for moving _out_ of
391 * the tile we have just moved into.
392 */
393 for (d = 1; d < 0x10; d <<= 1) {
394 int x3, y3;
395
396 if (d == d2)
397 continue; /* we've got this one already */
398
399 if (!state->wrapping) {
400 if (d == U && y2 == 0)
401 continue;
402 if (d == D && y2 == state->height-1)
403 continue;
404 if (d == L && x2 == 0)
405 continue;
406 if (d == R && x2 == state->width-1)
407 continue;
408 }
409
410 OFFSET(x3, y3, x2, y2, d, state);
411
412 if (tile(state, x3, y3))
413 continue; /* this would create a loop */
414
415#ifdef DEBUG
416 printf("New frontier; adding (%d,%d,%c)\n",
417 x2, y2, "0RU3L567D9abcdef"[d]);
418#endif
419 add234(possibilities, new_xyd(x2, y2, d));
420 }
421 }
422 /* Having done that, we should have no possibilities remaining. */
423 assert(count234(possibilities) == 0);
424 freetree234(possibilities);
425
426 /*
427 * Now compute a list of the possible barrier locations.
428 */
429 barriers = newtree234(xyd_cmp);
2ef96bd6 430 for (y = 0; y < state->height; y++) {
431 for (x = 0; x < state->width; x++) {
720a8fb7 432
2ef96bd6 433 if (!(tile(state, x, y) & R) &&
434 (state->wrapping || x < state->width-1))
720a8fb7 435 add234(barriers, new_xyd(x, y, R));
2ef96bd6 436 if (!(tile(state, x, y) & D) &&
437 (state->wrapping || y < state->height-1))
720a8fb7 438 add234(barriers, new_xyd(x, y, D));
439 }
440 }
441
442 /*
443 * Now shuffle the grid.
444 */
2ef96bd6 445 for (y = 0; y < state->height; y++) {
446 for (x = 0; x < state->width; x++) {
720a8fb7 447 int orig = tile(state, x, y);
448 int rot = random_upto(rs, 4);
449 tile(state, x, y) = ROT(orig, rot);
450 }
451 }
452
453 /*
454 * And now choose barrier locations. (We carefully do this
455 * _after_ shuffling, so that changing the barrier rate in the
456 * params while keeping the game seed the same will give the
457 * same shuffled grid and _only_ change the barrier locations.
458 * Also the way we choose barrier locations, by repeatedly
459 * choosing one possibility from the list until we have enough,
460 * is designed to ensure that raising the barrier rate while
461 * keeping the seed the same will provide a superset of the
462 * previous barrier set - i.e. if you ask for 10 barriers, and
463 * then decide that's still too hard and ask for 20, you'll get
464 * the original 10 plus 10 more, rather than getting 20 new
465 * ones and the chance of remembering your first 10.)
466 */
03f856c4 467 nbarriers = (int)(params->barrier_probability * count234(barriers));
720a8fb7 468 assert(nbarriers >= 0 && nbarriers <= count234(barriers));
469
470 while (nbarriers > 0) {
471 int i;
472 struct xyd *xyd;
473 int x1, y1, d1, x2, y2, d2;
474
475 /*
476 * Extract a randomly chosen barrier from the list.
477 */
478 i = random_upto(rs, count234(barriers));
479 xyd = delpos234(barriers, i);
480
481 assert(xyd != NULL);
482
483 x1 = xyd->x;
484 y1 = xyd->y;
485 d1 = xyd->direction;
486 sfree(xyd);
487
488 OFFSET(x2, y2, x1, y1, d1, state);
489 d2 = F(d1);
490
491 barrier(state, x1, y1) |= d1;
492 barrier(state, x2, y2) |= d2;
493
494 nbarriers--;
495 }
496
497 /*
498 * Clean up the rest of the barrier list.
499 */
500 {
501 struct xyd *xyd;
502
503 while ( (xyd = delpos234(barriers, 0)) != NULL)
504 sfree(xyd);
505
506 freetree234(barriers);
507 }
508
2ef96bd6 509 /*
510 * Set up the barrier corner flags, for drawing barriers
511 * prettily when they meet.
512 */
513 for (y = 0; y < state->height; y++) {
514 for (x = 0; x < state->width; x++) {
515 int dir;
516
517 for (dir = 1; dir < 0x10; dir <<= 1) {
518 int dir2 = A(dir);
519 int x1, y1, x2, y2, x3, y3;
520 int corner = FALSE;
521
522 if (!(barrier(state, x, y) & dir))
523 continue;
524
525 if (barrier(state, x, y) & dir2)
526 corner = TRUE;
527
528 x1 = x + X(dir), y1 = y + Y(dir);
529 if (x1 >= 0 && x1 < state->width &&
eb2ad6f1 530 y1 >= 0 && y1 < state->height &&
2ef96bd6 531 (barrier(state, x1, y1) & dir2))
532 corner = TRUE;
533
534 x2 = x + X(dir2), y2 = y + Y(dir2);
535 if (x2 >= 0 && x2 < state->width &&
eb2ad6f1 536 y2 >= 0 && y2 < state->height &&
2ef96bd6 537 (barrier(state, x2, y2) & dir))
538 corner = TRUE;
539
540 if (corner) {
541 barrier(state, x, y) |= (dir << 4);
542 if (x1 >= 0 && x1 < state->width &&
eb2ad6f1 543 y1 >= 0 && y1 < state->height)
2ef96bd6 544 barrier(state, x1, y1) |= (A(dir) << 4);
545 if (x2 >= 0 && x2 < state->width &&
eb2ad6f1 546 y2 >= 0 && y2 < state->height)
2ef96bd6 547 barrier(state, x2, y2) |= (C(dir) << 4);
548 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
549 if (x3 >= 0 && x3 < state->width &&
eb2ad6f1 550 y3 >= 0 && y3 < state->height)
2ef96bd6 551 barrier(state, x3, y3) |= (F(dir) << 4);
552 }
553 }
554 }
555 }
556
720a8fb7 557 random_free(rs);
558
559 return state;
560}
561
562game_state *dup_game(game_state *state)
563{
564 game_state *ret;
565
566 ret = snew(game_state);
567 ret->width = state->width;
568 ret->height = state->height;
2ef96bd6 569 ret->cx = state->cx;
570 ret->cy = state->cy;
720a8fb7 571 ret->wrapping = state->wrapping;
572 ret->completed = state->completed;
2ef96bd6 573 ret->last_rotate_dir = state->last_rotate_dir;
720a8fb7 574 ret->tiles = snewn(state->width * state->height, unsigned char);
575 memcpy(ret->tiles, state->tiles, state->width * state->height);
576 ret->barriers = snewn(state->width * state->height, unsigned char);
577 memcpy(ret->barriers, state->barriers, state->width * state->height);
578
579 return ret;
580}
581
582void free_game(game_state *state)
583{
584 sfree(state->tiles);
585 sfree(state->barriers);
586 sfree(state);
587}
588
589/* ----------------------------------------------------------------------
590 * Utility routine.
591 */
592
593/*
594 * Compute which squares are reachable from the centre square, as a
595 * quick visual aid to determining how close the game is to
596 * completion. This is also a simple way to tell if the game _is_
597 * completed - just call this function and see whether every square
598 * is marked active.
599 */
600static unsigned char *compute_active(game_state *state)
601{
602 unsigned char *active;
603 tree234 *todo;
604 struct xyd *xyd;
605
606 active = snewn(state->width * state->height, unsigned char);
607 memset(active, 0, state->width * state->height);
608
609 /*
610 * We only store (x,y) pairs in todo, but it's easier to reuse
611 * xyd_cmp and just store direction 0 every time.
612 */
613 todo = newtree234(xyd_cmp);
2ef96bd6 614 index(state, active, state->cx, state->cy) = ACTIVE;
615 add234(todo, new_xyd(state->cx, state->cy, 0));
720a8fb7 616
617 while ( (xyd = delpos234(todo, 0)) != NULL) {
618 int x1, y1, d1, x2, y2, d2;
619
620 x1 = xyd->x;
621 y1 = xyd->y;
622 sfree(xyd);
623
624 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
625 OFFSET(x2, y2, x1, y1, d1, state);
626 d2 = F(d1);
627
628 /*
629 * If the next tile in this direction is connected to
630 * us, and there isn't a barrier in the way, and it
631 * isn't already marked active, then mark it active and
632 * add it to the to-examine list.
633 */
634 if ((tile(state, x1, y1) & d1) &&
635 (tile(state, x2, y2) & d2) &&
636 !(barrier(state, x1, y1) & d1) &&
637 !index(state, active, x2, y2)) {
2ef96bd6 638 index(state, active, x2, y2) = ACTIVE;
720a8fb7 639 add234(todo, new_xyd(x2, y2, 0));
640 }
641 }
642 }
643 /* Now we expect the todo list to have shrunk to zero size. */
644 assert(count234(todo) == 0);
645 freetree234(todo);
646
647 return active;
648}
649
650/* ----------------------------------------------------------------------
651 * Process a move.
652 */
653game_state *make_move(game_state *state, int x, int y, int button)
654{
655 game_state *ret;
656 int tx, ty, orig;
657
658 /*
659 * All moves in Net are made with the mouse.
660 */
661 if (button != LEFT_BUTTON &&
662 button != MIDDLE_BUTTON &&
663 button != RIGHT_BUTTON)
664 return NULL;
665
666 /*
667 * The button must have been clicked on a valid tile.
668 */
7f77ea24 669 x -= WINDOW_OFFSET + TILE_BORDER;
670 y -= WINDOW_OFFSET + TILE_BORDER;
720a8fb7 671 if (x < 0 || y < 0)
672 return NULL;
673 tx = x / TILE_SIZE;
674 ty = y / TILE_SIZE;
675 if (tx >= state->width || ty >= state->height)
676 return NULL;
677 if (tx % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
678 ty % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
679 return NULL;
680
681 /*
682 * The middle button locks or unlocks a tile. (A locked tile
683 * cannot be turned, and is visually marked as being locked.
684 * This is a convenience for the player, so that once they are
685 * sure which way round a tile goes, they can lock it and thus
686 * avoid forgetting later on that they'd already done that one;
687 * and the locking also prevents them turning the tile by
688 * accident. If they change their mind, another middle click
689 * unlocks it.)
690 */
691 if (button == MIDDLE_BUTTON) {
692 ret = dup_game(state);
693 tile(ret, tx, ty) ^= LOCKED;
694 return ret;
695 }
696
697 /*
698 * The left and right buttons have no effect if clicked on a
699 * locked tile.
700 */
701 if (tile(state, tx, ty) & LOCKED)
702 return NULL;
703
704 /*
705 * Otherwise, turn the tile one way or the other. Left button
706 * turns anticlockwise; right button turns clockwise.
707 */
708 ret = dup_game(state);
709 orig = tile(ret, tx, ty);
2ef96bd6 710 if (button == LEFT_BUTTON) {
720a8fb7 711 tile(ret, tx, ty) = A(orig);
2ef96bd6 712 ret->last_rotate_dir = +1;
713 } else {
720a8fb7 714 tile(ret, tx, ty) = C(orig);
2ef96bd6 715 ret->last_rotate_dir = -1;
716 }
720a8fb7 717
718 /*
719 * Check whether the game has been completed.
720 */
721 {
722 unsigned char *active = compute_active(ret);
723 int x1, y1;
724 int complete = TRUE;
725
726 for (x1 = 0; x1 < ret->width; x1++)
727 for (y1 = 0; y1 < ret->height; y1++)
728 if (!index(ret, active, x1, y1)) {
729 complete = FALSE;
730 goto break_label; /* break out of two loops at once */
731 }
732 break_label:
733
734 sfree(active);
735
736 if (complete)
737 ret->completed = TRUE;
738 }
739
740 return ret;
741}
742
743/* ----------------------------------------------------------------------
744 * Routines for drawing the game position on the screen.
745 */
746
2ef96bd6 747struct game_drawstate {
748 int started;
749 int width, height;
750 unsigned char *visible;
751};
752
753game_drawstate *game_new_drawstate(game_state *state)
754{
755 game_drawstate *ds = snew(game_drawstate);
756
757 ds->started = FALSE;
758 ds->width = state->width;
759 ds->height = state->height;
760 ds->visible = snewn(state->width * state->height, unsigned char);
761 memset(ds->visible, 0xFF, state->width * state->height);
762
763 return ds;
764}
765
766void game_free_drawstate(game_drawstate *ds)
767{
768 sfree(ds->visible);
769 sfree(ds);
770}
771
7f77ea24 772void game_size(game_params *params, int *x, int *y)
773{
774 *x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
775 *y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
776}
777
2ef96bd6 778float *game_colours(frontend *fe, game_state *state, int *ncolours)
779{
780 float *ret;
83680571 781
2ef96bd6 782 ret = snewn(NCOLOURS * 3, float);
783 *ncolours = NCOLOURS;
720a8fb7 784
2ef96bd6 785 /*
786 * Basic background colour is whatever the front end thinks is
787 * a sensible default.
788 */
789 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
790
791 /*
792 * Wires are black.
793 */
03f856c4 794 ret[COL_WIRE * 3 + 0] = 0.0F;
795 ret[COL_WIRE * 3 + 1] = 0.0F;
796 ret[COL_WIRE * 3 + 2] = 0.0F;
2ef96bd6 797
798 /*
799 * Powered wires and powered endpoints are cyan.
800 */
03f856c4 801 ret[COL_POWERED * 3 + 0] = 0.0F;
802 ret[COL_POWERED * 3 + 1] = 1.0F;
803 ret[COL_POWERED * 3 + 2] = 1.0F;
2ef96bd6 804
805 /*
806 * Barriers are red.
807 */
03f856c4 808 ret[COL_BARRIER * 3 + 0] = 1.0F;
809 ret[COL_BARRIER * 3 + 1] = 0.0F;
810 ret[COL_BARRIER * 3 + 2] = 0.0F;
2ef96bd6 811
812 /*
813 * Unpowered endpoints are blue.
814 */
03f856c4 815 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
816 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
817 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
2ef96bd6 818
819 /*
820 * Tile borders are a darker grey than the background.
821 */
03f856c4 822 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
823 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
824 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2ef96bd6 825
826 /*
827 * Locked tiles are a grey in between those two.
828 */
03f856c4 829 ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
830 ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
831 ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2ef96bd6 832
833 return ret;
834}
835
836static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
837 int colour)
720a8fb7 838{
2ef96bd6 839 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
840 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
841 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
842 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
843 draw_line(fe, x1, y1, x2, y2, colour);
844}
720a8fb7 845
2ef96bd6 846static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
847 int colour)
848{
849 int mx = (x1 < x2 ? x1 : x2);
850 int my = (y1 < y2 ? y1 : y2);
851 int dx = (x2 + x1 - 2*mx + 1);
852 int dy = (y2 + y1 - 2*my + 1);
720a8fb7 853
2ef96bd6 854 draw_rect(fe, mx, my, dx, dy, colour);
855}
720a8fb7 856
2ef96bd6 857static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
858{
859 int bx = WINDOW_OFFSET + TILE_SIZE * x;
860 int by = WINDOW_OFFSET + TILE_SIZE * y;
861 int x1, y1, dx, dy, dir2;
862
863 dir >>= 4;
864
865 dir2 = A(dir);
866 dx = X(dir) + X(dir2);
867 dy = Y(dir) + Y(dir2);
868 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
869 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
870
871 if (phase == 0) {
872 draw_rect_coords(fe, bx+x1, by+y1,
873 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
874 COL_WIRE);
875 draw_rect_coords(fe, bx+x1, by+y1,
876 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
877 COL_WIRE);
878 } else {
879 draw_rect_coords(fe, bx+x1, by+y1,
880 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
881 COL_BARRIER);
720a8fb7 882 }
2ef96bd6 883}
884
885static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
886{
887 int bx = WINDOW_OFFSET + TILE_SIZE * x;
888 int by = WINDOW_OFFSET + TILE_SIZE * y;
889 int x1, y1, w, h;
890
891 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
892 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
893 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
894 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
895
896 if (phase == 0) {
897 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
898 } else {
899 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
900 }
901}
720a8fb7 902
2ef96bd6 903static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
904 float angle)
905{
906 int bx = WINDOW_OFFSET + TILE_SIZE * x;
907 int by = WINDOW_OFFSET + TILE_SIZE * y;
908 float matrix[4];
909 float cx, cy, ex, ey, tx, ty;
910 int dir, col, phase;
720a8fb7 911
2ef96bd6 912 /*
913 * When we draw a single tile, we must draw everything up to
914 * and including the borders around the tile. This means that
915 * if the neighbouring tiles have connections to those borders,
916 * we must draw those connections on the borders themselves.
917 *
918 * This would be terribly fiddly if we ever had to draw a tile
919 * while its neighbour was in mid-rotate, because we'd have to
920 * arrange to _know_ that the neighbour was being rotated and
921 * hence had an anomalous effect on the redraw of this tile.
922 * Fortunately, the drawing algorithm avoids ever calling us in
923 * this circumstance: we're either drawing lots of straight
924 * tiles at game start or after a move is complete, or we're
925 * repeatedly drawing only the rotating tile. So no problem.
926 */
927
928 /*
929 * So. First blank the tile out completely: draw a big
930 * rectangle in border colour, and a smaller rectangle in
931 * background colour to fill it in.
932 */
933 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
934 COL_BORDER);
935 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
936 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
937 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
938
939 /*
940 * Set up the rotation matrix.
941 */
03f856c4 942 matrix[0] = (float)cos(angle * PI / 180.0);
943 matrix[1] = (float)-sin(angle * PI / 180.0);
944 matrix[2] = (float)sin(angle * PI / 180.0);
945 matrix[3] = (float)cos(angle * PI / 180.0);
2ef96bd6 946
947 /*
948 * Draw the wires.
949 */
03f856c4 950 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
2ef96bd6 951 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
952 for (dir = 1; dir < 0x10; dir <<= 1) {
953 if (tile & dir) {
03f856c4 954 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
955 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2ef96bd6 956 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 957 draw_thick_line(fe, bx+(int)cx, by+(int)cy,
958 bx+(int)(cx+tx), by+(int)(cy+ty),
2ef96bd6 959 COL_WIRE);
960 }
961 }
962 for (dir = 1; dir < 0x10; dir <<= 1) {
963 if (tile & dir) {
03f856c4 964 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
965 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2ef96bd6 966 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 967 draw_line(fe, bx+(int)cx, by+(int)cy,
968 bx+(int)(cx+tx), by+(int)(cy+ty), col);
2ef96bd6 969 }
970 }
971
972 /*
973 * Draw the box in the middle. We do this in blue if the tile
974 * is an unpowered endpoint, in cyan if the tile is a powered
975 * endpoint, in black if the tile is the centrepiece, and
976 * otherwise not at all.
977 */
978 col = -1;
979 if (x == state->cx && y == state->cy)
980 col = COL_WIRE;
981 else if (COUNT(tile) == 1) {
982 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
983 }
984 if (col >= 0) {
985 int i, points[8];
986
987 points[0] = +1; points[1] = +1;
988 points[2] = +1; points[3] = -1;
989 points[4] = -1; points[5] = -1;
990 points[6] = -1; points[7] = +1;
991
992 for (i = 0; i < 8; i += 2) {
03f856c4 993 ex = (TILE_SIZE * 0.24F) * points[i];
994 ey = (TILE_SIZE * 0.24F) * points[i+1];
2ef96bd6 995 MATMUL(tx, ty, matrix, ex, ey);
03f856c4 996 points[i] = bx+(int)(cx+tx);
997 points[i+1] = by+(int)(cy+ty);
2ef96bd6 998 }
999
1000 draw_polygon(fe, points, 4, TRUE, col);
1001 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
1002 }
1003
1004 /*
1005 * Draw the points on the border if other tiles are connected
1006 * to us.
1007 */
1008 for (dir = 1; dir < 0x10; dir <<= 1) {
1009 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
1010
1011 dx = X(dir);
1012 dy = Y(dir);
1013
1014 ox = x + dx;
1015 oy = y + dy;
1016
1017 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
1018 continue;
1019
1020 if (!(tile(state, ox, oy) & F(dir)))
1021 continue;
1022
03f856c4 1023 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
1024 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
2ef96bd6 1025 lx = dx * (TILE_BORDER-1);
1026 ly = dy * (TILE_BORDER-1);
1027 vx = (dy ? 1 : 0);
1028 vy = (dx ? 1 : 0);
1029
1030 if (angle == 0.0 && (tile & dir)) {
1031 /*
1032 * If we are fully connected to the other tile, we must
1033 * draw right across the tile border. (We can use our
1034 * own ACTIVE state to determine what colour to do this
1035 * in: if we are fully connected to the other tile then
1036 * the two ACTIVE states will be the same.)
1037 */
1038 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
1039 draw_rect_coords(fe, px, py, px+lx, py+ly,
1040 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
1041 } else {
1042 /*
1043 * The other tile extends into our border, but isn't
1044 * actually connected to us. Just draw a single black
1045 * dot.
1046 */
1047 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
1048 }
1049 }
1050
1051 /*
1052 * Draw barrier corners, and then barriers.
1053 */
1054 for (phase = 0; phase < 2; phase++) {
1055 for (dir = 1; dir < 0x10; dir <<= 1)
1056 if (barrier(state, x, y) & (dir << 4))
1057 draw_barrier_corner(fe, x, y, dir << 4, phase);
1058 for (dir = 1; dir < 0x10; dir <<= 1)
1059 if (barrier(state, x, y) & dir)
1060 draw_barrier(fe, x, y, dir, phase);
1061 }
1062
1063 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
720a8fb7 1064}
1065
2ef96bd6 1066void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
87ed82be 1067 game_state *state, float t, float ft)
2ef96bd6 1068{
1069 int x, y, tx, ty, frame;
1070 unsigned char *active;
1071 float angle = 0.0;
1072
1073 /*
1074 * Clear the screen and draw the exterior barrier lines if this
1075 * is our first call.
1076 */
1077 if (!ds->started) {
1078 int phase;
1079
1080 ds->started = TRUE;
1081
1082 draw_rect(fe, 0, 0,
1083 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1084 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1085 COL_BACKGROUND);
1086 draw_update(fe, 0, 0,
1087 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1088 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1089
1090 for (phase = 0; phase < 2; phase++) {
1091
1092 for (x = 0; x < ds->width; x++) {
1093 if (barrier(state, x, 0) & UL)
1094 draw_barrier_corner(fe, x, -1, LD, phase);
1095 if (barrier(state, x, 0) & RU)
1096 draw_barrier_corner(fe, x, -1, DR, phase);
1097 if (barrier(state, x, 0) & U)
1098 draw_barrier(fe, x, -1, D, phase);
1099 if (barrier(state, x, ds->height-1) & DR)
1100 draw_barrier_corner(fe, x, ds->height, RU, phase);
1101 if (barrier(state, x, ds->height-1) & LD)
1102 draw_barrier_corner(fe, x, ds->height, UL, phase);
1103 if (barrier(state, x, ds->height-1) & D)
1104 draw_barrier(fe, x, ds->height, U, phase);
1105 }
1106
1107 for (y = 0; y < ds->height; y++) {
1108 if (barrier(state, 0, y) & UL)
1109 draw_barrier_corner(fe, -1, y, RU, phase);
1110 if (barrier(state, 0, y) & LD)
1111 draw_barrier_corner(fe, -1, y, DR, phase);
1112 if (barrier(state, 0, y) & L)
1113 draw_barrier(fe, -1, y, R, phase);
1114 if (barrier(state, ds->width-1, y) & RU)
1115 draw_barrier_corner(fe, ds->width, y, UL, phase);
1116 if (barrier(state, ds->width-1, y) & DR)
1117 draw_barrier_corner(fe, ds->width, y, LD, phase);
1118 if (barrier(state, ds->width-1, y) & R)
1119 draw_barrier(fe, ds->width, y, L, phase);
1120 }
1121 }
1122 }
1123
1124 tx = ty = -1;
2ef96bd6 1125 if (oldstate && (t < ROTATE_TIME)) {
1126 /*
1127 * We're animating a tile rotation. Find the turning tile,
1128 * if any.
1129 */
1130 for (x = 0; x < oldstate->width; x++)
1131 for (y = 0; y < oldstate->height; y++)
1132 if ((tile(oldstate, x, y) ^ tile(state, x, y)) & 0xF) {
1133 tx = x, ty = y;
1134 goto break_label; /* leave both loops at once */
1135 }
1136 break_label:
1137
1138 if (tx >= 0) {
1139 if (tile(state, tx, ty) == ROT(tile(oldstate, tx, ty),
1140 state->last_rotate_dir))
03f856c4 1141 angle = state->last_rotate_dir * 90.0F * (t / ROTATE_TIME);
2ef96bd6 1142 else
03f856c4 1143 angle = state->last_rotate_dir * -90.0F * (t / ROTATE_TIME);
2ef96bd6 1144 state = oldstate;
1145 }
87ed82be 1146 }
1147
1148 frame = -1;
1149 if (ft > 0) {
2ef96bd6 1150 /*
1151 * We're animating a completion flash. Find which frame
1152 * we're at.
1153 */
87ed82be 1154 frame = (int)(ft / FLASH_FRAME);
2ef96bd6 1155 }
1156
1157 /*
1158 * Draw any tile which differs from the way it was last drawn.
1159 */
1160 active = compute_active(state);
1161
1162 for (x = 0; x < ds->width; x++)
1163 for (y = 0; y < ds->height; y++) {
1164 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1165
1166 /*
1167 * In a completion flash, we adjust the LOCKED bit
1168 * depending on our distance from the centre point and
1169 * the frame number.
1170 */
1171 if (frame >= 0) {
1172 int xdist, ydist, dist;
1173 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1174 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1175 dist = (xdist > ydist ? xdist : ydist);
1176
1177 if (frame >= dist && frame < dist+4) {
1178 int lock = (frame - dist) & 1;
1179 lock = lock ? LOCKED : 0;
1180 c = (c &~ LOCKED) | lock;
1181 }
1182 }
1183
1184 if (index(state, ds->visible, x, y) != c ||
1185 index(state, ds->visible, x, y) == 0xFF ||
1186 (x == tx && y == ty)) {
1187 draw_tile(fe, state, x, y, c,
03f856c4 1188 (x == tx && y == ty ? angle : 0.0F));
2ef96bd6 1189 if (x == tx && y == ty)
1190 index(state, ds->visible, x, y) = 0xFF;
1191 else
1192 index(state, ds->visible, x, y) = c;
1193 }
1194 }
1195
fd1a1a2b 1196 /*
1197 * Update the status bar.
1198 */
1199 {
1200 char statusbuf[256];
1201 int i, n, a;
1202
1203 n = state->width * state->height;
1204 for (i = a = 0; i < n; i++)
1205 if (active[i])
1206 a++;
1207
1208 sprintf(statusbuf, "%sActive: %d/%d",
1209 (state->completed ? "COMPLETED! " : ""), a, n);
1210
1211 status_bar(fe, statusbuf);
1212 }
1213
2ef96bd6 1214 sfree(active);
1215}
1216
1217float game_anim_length(game_state *oldstate, game_state *newstate)
1218{
2ef96bd6 1219 int x, y;
1220
1221 /*
1222 * If there's a tile which has been rotated, allow time to
1223 * animate its rotation.
1224 */
1225 for (x = 0; x < oldstate->width; x++)
1226 for (y = 0; y < oldstate->height; y++)
1227 if ((tile(oldstate, x, y) ^ tile(newstate, x, y)) & 0xF) {
87ed82be 1228 return ROTATE_TIME;
2ef96bd6 1229 }
2ef96bd6 1230
87ed82be 1231 return 0.0F;
1232}
1233
1234float game_flash_length(game_state *oldstate, game_state *newstate)
1235{
2ef96bd6 1236 /*
87ed82be 1237 * If the game has just been completed, we display a completion
1238 * flash.
2ef96bd6 1239 */
1240 if (!oldstate->completed && newstate->completed) {
1241 int size;
1242 size = 0;
1243 if (size < newstate->cx+1)
1244 size = newstate->cx+1;
1245 if (size < newstate->cy+1)
1246 size = newstate->cy+1;
1247 if (size < newstate->width - newstate->cx)
1248 size = newstate->width - newstate->cx;
1249 if (size < newstate->height - newstate->cy)
1250 size = newstate->height - newstate->cy;
87ed82be 1251 return FLASH_FRAME * (size+4);
2ef96bd6 1252 }
1253
87ed82be 1254 return 0.0F;
2ef96bd6 1255}
fd1a1a2b 1256
1257int game_wants_statusbar(void)
1258{
1259 return TRUE;
1260}