Stop failing assertions when we encounter an insoluble puzzle.
[sgt/puzzles] / rect.c
CommitLineData
3870c4d8 1/*
2 * rect.c: Puzzle from nikoli.co.jp. You have a square grid with
3 * numbers in some squares; you must divide the square grid up into
4 * variously sized rectangles, such that every rectangle contains
5 * exactly one numbered square and the area of each rectangle is
6 * equal to the number contained in it.
7 */
8
9/*
10 * TODO:
11 *
738d2f61 12 * - Improve singleton removal.
13 * + It would be nice to limit the size of the generated
14 * rectangles in accordance with existing constraints such as
15 * the maximum rectangle size and the one about not
16 * generating a rectangle the full width or height of the
17 * grid.
18 * + This could be achieved by making a less random choice
19 * about which of the available options to use.
20 * + Alternatively, we could create our rectangle and then
21 * split it up.
3870c4d8 22 */
23
24#include <stdio.h>
25#include <stdlib.h>
26#include <string.h>
27#include <assert.h>
b0e26073 28#include <ctype.h>
3870c4d8 29#include <math.h>
30
31#include "puzzles.h"
32
3870c4d8 33enum {
34 COL_BACKGROUND,
35 COL_CORRECT,
36 COL_LINE,
37 COL_TEXT,
38 COL_GRID,
08dd70c3 39 COL_DRAG,
3870c4d8 40 NCOLOURS
41};
42
43struct game_params {
44 int w, h;
aea3ed9a 45 float expandfactor;
40fde884 46 int unique;
3870c4d8 47};
48
49#define INDEX(state, x, y) (((y) * (state)->w) + (x))
50#define index(state, a, x, y) ((a) [ INDEX(state,x,y) ])
51#define grid(state,x,y) index(state, (state)->grid, x, y)
52#define vedge(state,x,y) index(state, (state)->vedge, x, y)
53#define hedge(state,x,y) index(state, (state)->hedge, x, y)
54
55#define CRANGE(state,x,y,dx,dy) ( (x) >= dx && (x) < (state)->w && \
56 (y) >= dy && (y) < (state)->h )
57#define RANGE(state,x,y) CRANGE(state,x,y,0,0)
58#define HRANGE(state,x,y) CRANGE(state,x,y,0,1)
59#define VRANGE(state,x,y) CRANGE(state,x,y,1,0)
60
1e3e152d 61#define PREFERRED_TILE_SIZE 24
62#define TILE_SIZE (ds->tilesize)
cb0c7d4a 63#ifdef SMALL_SCREEN
64#define BORDER (2)
65#else
1e3e152d 66#define BORDER (TILE_SIZE * 3 / 4)
cb0c7d4a 67#endif
3870c4d8 68
d4e7900f 69#define CORNER_TOLERANCE 0.15F
70#define CENTRE_TOLERANCE 0.15F
71
ef29354c 72#define FLASH_TIME 0.13F
73
3870c4d8 74#define COORD(x) ( (x) * TILE_SIZE + BORDER )
75#define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
76
77struct game_state {
78 int w, h;
79 int *grid; /* contains the numbers */
80 unsigned char *vedge; /* (w+1) x h */
81 unsigned char *hedge; /* w x (h+1) */
2ac6d24e 82 int completed, cheated;
9bb4a9a0 83 unsigned char *correct;
3870c4d8 84};
85
be8d5aa1 86static game_params *default_params(void)
3870c4d8 87{
88 game_params *ret = snew(game_params);
89
90 ret->w = ret->h = 7;
aea3ed9a 91 ret->expandfactor = 0.0F;
40fde884 92 ret->unique = TRUE;
3870c4d8 93
94 return ret;
95}
96
be8d5aa1 97static int game_fetch_preset(int i, char **name, game_params **params)
3870c4d8 98{
99 game_params *ret;
100 int w, h;
101 char buf[80];
102
103 switch (i) {
104 case 0: w = 7, h = 7; break;
ab53eb64 105 case 1: w = 9, h = 9; break;
106 case 2: w = 11, h = 11; break;
107 case 3: w = 13, h = 13; break;
108 case 4: w = 15, h = 15; break;
cb0c7d4a 109#ifndef SMALL_SCREEN
ab53eb64 110 case 5: w = 17, h = 17; break;
111 case 6: w = 19, h = 19; break;
cb0c7d4a 112#endif
3870c4d8 113 default: return FALSE;
114 }
115
116 sprintf(buf, "%dx%d", w, h);
117 *name = dupstr(buf);
118 *params = ret = snew(game_params);
119 ret->w = w;
120 ret->h = h;
aea3ed9a 121 ret->expandfactor = 0.0F;
40fde884 122 ret->unique = TRUE;
3870c4d8 123 return TRUE;
124}
125
be8d5aa1 126static void free_params(game_params *params)
3870c4d8 127{
128 sfree(params);
129}
130
be8d5aa1 131static game_params *dup_params(game_params *params)
3870c4d8 132{
133 game_params *ret = snew(game_params);
134 *ret = *params; /* structure copy */
135 return ret;
136}
137
1185e3c5 138static void decode_params(game_params *ret, char const *string)
b0e26073 139{
b0e26073 140 ret->w = ret->h = atoi(string);
aea3ed9a 141 while (*string && isdigit((unsigned char)*string)) string++;
b0e26073 142 if (*string == 'x') {
143 string++;
144 ret->h = atoi(string);
aea3ed9a 145 while (*string && isdigit((unsigned char)*string)) string++;
146 }
147 if (*string == 'e') {
148 string++;
149 ret->expandfactor = atof(string);
40fde884 150 while (*string &&
151 (*string == '.' || isdigit((unsigned char)*string))) string++;
152 }
153 if (*string == 'a') {
154 string++;
155 ret->unique = FALSE;
b0e26073 156 }
b0e26073 157}
158
1185e3c5 159static char *encode_params(game_params *params, int full)
b0e26073 160{
161 char data[256];
162
163 sprintf(data, "%dx%d", params->w, params->h);
5472ceb6 164 if (full && params->expandfactor)
1185e3c5 165 sprintf(data + strlen(data), "e%g", params->expandfactor);
40fde884 166 if (full && !params->unique)
167 strcat(data, "a");
b0e26073 168
169 return dupstr(data);
170}
171
be8d5aa1 172static config_item *game_configure(game_params *params)
3870c4d8 173{
174 config_item *ret;
175 char buf[80];
176
177 ret = snewn(5, config_item);
178
179 ret[0].name = "Width";
180 ret[0].type = C_STRING;
181 sprintf(buf, "%d", params->w);
182 ret[0].sval = dupstr(buf);
183 ret[0].ival = 0;
184
185 ret[1].name = "Height";
186 ret[1].type = C_STRING;
187 sprintf(buf, "%d", params->h);
188 ret[1].sval = dupstr(buf);
189 ret[1].ival = 0;
190
aea3ed9a 191 ret[2].name = "Expansion factor";
192 ret[2].type = C_STRING;
193 sprintf(buf, "%g", params->expandfactor);
194 ret[2].sval = dupstr(buf);
3870c4d8 195 ret[2].ival = 0;
196
40fde884 197 ret[3].name = "Ensure unique solution";
198 ret[3].type = C_BOOLEAN;
aea3ed9a 199 ret[3].sval = NULL;
40fde884 200 ret[3].ival = params->unique;
201
202 ret[4].name = NULL;
203 ret[4].type = C_END;
204 ret[4].sval = NULL;
205 ret[4].ival = 0;
aea3ed9a 206
3870c4d8 207 return ret;
208}
209
be8d5aa1 210static game_params *custom_params(config_item *cfg)
3870c4d8 211{
212 game_params *ret = snew(game_params);
213
214 ret->w = atoi(cfg[0].sval);
215 ret->h = atoi(cfg[1].sval);
aea3ed9a 216 ret->expandfactor = atof(cfg[2].sval);
40fde884 217 ret->unique = cfg[3].ival;
3870c4d8 218
219 return ret;
220}
221
3ff276f2 222static char *validate_params(game_params *params, int full)
3870c4d8 223{
ab53eb64 224 if (params->w <= 0 || params->h <= 0)
3870c4d8 225 return "Width and height must both be greater than zero";
ab53eb64 226 if (params->w*params->h < 2)
d4e7900f 227 return "Grid area must be greater than one";
aea3ed9a 228 if (params->expandfactor < 0.0F)
229 return "Expansion factor may not be negative";
3870c4d8 230 return NULL;
231}
232
26801d29 233struct point {
234 int x, y;
235};
236
3870c4d8 237struct rect {
238 int x, y;
239 int w, h;
240};
241
242struct rectlist {
243 struct rect *rects;
244 int n;
245};
246
26801d29 247struct numberdata {
248 int area;
249 int npoints;
250 struct point *points;
251};
252
253/* ----------------------------------------------------------------------
254 * Solver for Rectangles games.
255 *
256 * This solver is souped up beyond the needs of actually _solving_
257 * a puzzle. It is also designed to cope with uncertainty about
258 * where the numbers have been placed. This is because I run it on
259 * my generated grids _before_ placing the numbers, and have it
260 * tell me where I need to place the numbers to ensure a unique
261 * solution.
262 */
263
264static void remove_rect_placement(int w, int h,
265 struct rectlist *rectpositions,
266 int *overlaps,
267 int rectnum, int placement)
268{
269 int x, y, xx, yy;
270
271#ifdef SOLVER_DIAGNOSTICS
272 printf("ruling out rect %d placement at %d,%d w=%d h=%d\n", rectnum,
273 rectpositions[rectnum].rects[placement].x,
274 rectpositions[rectnum].rects[placement].y,
275 rectpositions[rectnum].rects[placement].w,
276 rectpositions[rectnum].rects[placement].h);
277#endif
278
279 /*
280 * Decrement each entry in the overlaps array to reflect the
281 * removal of this rectangle placement.
282 */
283 for (yy = 0; yy < rectpositions[rectnum].rects[placement].h; yy++) {
284 y = yy + rectpositions[rectnum].rects[placement].y;
285 for (xx = 0; xx < rectpositions[rectnum].rects[placement].w; xx++) {
286 x = xx + rectpositions[rectnum].rects[placement].x;
287
288 assert(overlaps[(rectnum * h + y) * w + x] != 0);
289
290 if (overlaps[(rectnum * h + y) * w + x] > 0)
291 overlaps[(rectnum * h + y) * w + x]--;
292 }
293 }
294
295 /*
296 * Remove the placement from the list of positions for that
297 * rectangle, by interchanging it with the one on the end.
298 */
299 if (placement < rectpositions[rectnum].n - 1) {
300 struct rect t;
301
302 t = rectpositions[rectnum].rects[rectpositions[rectnum].n - 1];
303 rectpositions[rectnum].rects[rectpositions[rectnum].n - 1] =
304 rectpositions[rectnum].rects[placement];
305 rectpositions[rectnum].rects[placement] = t;
306 }
307 rectpositions[rectnum].n--;
308}
309
310static void remove_number_placement(int w, int h, struct numberdata *number,
311 int index, int *rectbyplace)
312{
313 /*
314 * Remove the entry from the rectbyplace array.
315 */
316 rectbyplace[number->points[index].y * w + number->points[index].x] = -1;
317
318 /*
319 * Remove the placement from the list of candidates for that
320 * number, by interchanging it with the one on the end.
321 */
322 if (index < number->npoints - 1) {
323 struct point t;
324
325 t = number->points[number->npoints - 1];
326 number->points[number->npoints - 1] = number->points[index];
327 number->points[index] = t;
328 }
329 number->npoints--;
330}
331
a7be78fc 332/*
333 * Returns 0 for failure to solve due to inconsistency; 1 for
334 * success; 2 for failure to complete a solution due to either
335 * ambiguity or it being too difficult.
336 */
26801d29 337static int rect_solver(int w, int h, int nrects, struct numberdata *numbers,
df11cd4e 338 unsigned char *hedge, unsigned char *vedge,
339 random_state *rs)
26801d29 340{
341 struct rectlist *rectpositions;
342 int *overlaps, *rectbyplace, *workspace;
343 int i, ret;
344
345 /*
346 * Start by setting up a list of candidate positions for each
347 * rectangle.
348 */
349 rectpositions = snewn(nrects, struct rectlist);
350 for (i = 0; i < nrects; i++) {
351 int rw, rh, area = numbers[i].area;
352 int j, minx, miny, maxx, maxy;
353 struct rect *rlist;
354 int rlistn, rlistsize;
355
356 /*
357 * For each rectangle, begin by finding the bounding
358 * rectangle of its candidate number placements.
359 */
360 maxx = maxy = -1;
361 minx = w;
362 miny = h;
363 for (j = 0; j < numbers[i].npoints; j++) {
364 if (minx > numbers[i].points[j].x) minx = numbers[i].points[j].x;
365 if (miny > numbers[i].points[j].y) miny = numbers[i].points[j].y;
366 if (maxx < numbers[i].points[j].x) maxx = numbers[i].points[j].x;
367 if (maxy < numbers[i].points[j].y) maxy = numbers[i].points[j].y;
368 }
369
370 /*
371 * Now loop over all possible rectangle placements
372 * overlapping a point within that bounding rectangle;
373 * ensure each one actually contains a candidate number
374 * placement, and add it to the list.
375 */
376 rlist = NULL;
377 rlistn = rlistsize = 0;
378
379 for (rw = 1; rw <= area && rw <= w; rw++) {
380 int x, y;
381
382 if (area % rw)
383 continue;
384 rh = area / rw;
385 if (rh > h)
386 continue;
387
388 for (y = miny - rh + 1; y <= maxy; y++) {
389 if (y < 0 || y+rh > h)
390 continue;
391
392 for (x = minx - rw + 1; x <= maxx; x++) {
393 if (x < 0 || x+rw > w)
394 continue;
395
396 /*
397 * See if we can find a candidate number
398 * placement within this rectangle.
399 */
400 for (j = 0; j < numbers[i].npoints; j++)
401 if (numbers[i].points[j].x >= x &&
402 numbers[i].points[j].x < x+rw &&
403 numbers[i].points[j].y >= y &&
404 numbers[i].points[j].y < y+rh)
405 break;
406
407 if (j < numbers[i].npoints) {
408 /*
409 * Add this to the list of candidate
410 * placements for this rectangle.
411 */
412 if (rlistn >= rlistsize) {
413 rlistsize = rlistn + 32;
414 rlist = sresize(rlist, rlistsize, struct rect);
415 }
416 rlist[rlistn].x = x;
417 rlist[rlistn].y = y;
418 rlist[rlistn].w = rw;
419 rlist[rlistn].h = rh;
420#ifdef SOLVER_DIAGNOSTICS
421 printf("rect %d [area %d]: candidate position at"
422 " %d,%d w=%d h=%d\n",
423 i, area, x, y, rw, rh);
424#endif
425 rlistn++;
426 }
427 }
428 }
429 }
430
431 rectpositions[i].rects = rlist;
432 rectpositions[i].n = rlistn;
433 }
434
435 /*
436 * Next, construct a multidimensional array tracking how many
437 * candidate positions for each rectangle overlap each square.
438 *
439 * Indexing of this array is by the formula
440 *
441 * overlaps[(rectindex * h + y) * w + x]
a7be78fc 442 *
443 * A positive or zero value indicates what it sounds as if it
444 * should; -1 indicates that this square _cannot_ be part of
445 * this rectangle; and -2 indicates that it _definitely_ is
446 * (which is distinct from 1, because one might very well know
447 * that _if_ square S is part of rectangle R then it must be
448 * because R is placed in a certain position without knowing
449 * that it definitely _is_).
26801d29 450 */
451 overlaps = snewn(nrects * w * h, int);
452 memset(overlaps, 0, nrects * w * h * sizeof(int));
453 for (i = 0; i < nrects; i++) {
454 int j;
455
456 for (j = 0; j < rectpositions[i].n; j++) {
457 int xx, yy;
458
459 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++)
460 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++)
461 overlaps[(i * h + yy+rectpositions[i].rects[j].y) * w +
462 xx+rectpositions[i].rects[j].x]++;
463 }
464 }
465
466 /*
467 * Also we want an array covering the grid once, to make it
468 * easy to figure out which squares are candidate number
469 * placements for which rectangles. (The existence of this
470 * single array assumes that no square starts off as a
471 * candidate number placement for more than one rectangle. This
472 * assumption is justified, because this solver is _either_
473 * used to solve real problems - in which case there is a
474 * single placement for every number - _or_ used to decide on
475 * number placements for a new puzzle, in which case each
476 * number's placements are confined to the intended position of
477 * the rectangle containing that number.)
478 */
479 rectbyplace = snewn(w * h, int);
480 for (i = 0; i < w*h; i++)
481 rectbyplace[i] = -1;
482
483 for (i = 0; i < nrects; i++) {
484 int j;
485
486 for (j = 0; j < numbers[i].npoints; j++) {
487 int x = numbers[i].points[j].x;
488 int y = numbers[i].points[j].y;
489
490 assert(rectbyplace[y * w + x] == -1);
491 rectbyplace[y * w + x] = i;
492 }
493 }
494
495 workspace = snewn(nrects, int);
496
497 /*
498 * Now run the actual deduction loop.
499 */
500 while (1) {
501 int done_something = FALSE;
502
503#ifdef SOLVER_DIAGNOSTICS
504 printf("starting deduction loop\n");
505
506 for (i = 0; i < nrects; i++) {
507 printf("rect %d overlaps:\n", i);
508 {
509 int x, y;
510 for (y = 0; y < h; y++) {
511 for (x = 0; x < w; x++) {
512 printf("%3d", overlaps[(i * h + y) * w + x]);
513 }
514 printf("\n");
515 }
516 }
517 }
518 printf("rectbyplace:\n");
519 {
520 int x, y;
521 for (y = 0; y < h; y++) {
522 for (x = 0; x < w; x++) {
523 printf("%3d", rectbyplace[y * w + x]);
524 }
525 printf("\n");
526 }
527 }
528#endif
529
530 /*
531 * Housekeeping. Look for rectangles whose number has only
532 * one candidate position left, and mark that square as
533 * known if it isn't already.
534 */
535 for (i = 0; i < nrects; i++) {
536 if (numbers[i].npoints == 1) {
537 int x = numbers[i].points[0].x;
538 int y = numbers[i].points[0].y;
539 if (overlaps[(i * h + y) * w + x] >= -1) {
540 int j;
541
a7be78fc 542 if (overlaps[(i * h + y) * w + x] <= 0) {
543 ret = 0; /* inconsistency */
544 goto cleanup;
545 }
26801d29 546#ifdef SOLVER_DIAGNOSTICS
547 printf("marking %d,%d as known for rect %d"
548 " (sole remaining number position)\n", x, y, i);
549#endif
550
551 for (j = 0; j < nrects; j++)
552 overlaps[(j * h + y) * w + x] = -1;
553
554 overlaps[(i * h + y) * w + x] = -2;
555 }
556 }
557 }
558
559 /*
560 * Now look at the intersection of all possible placements
561 * for each rectangle, and mark all squares in that
562 * intersection as known for that rectangle if they aren't
563 * already.
564 */
565 for (i = 0; i < nrects; i++) {
566 int minx, miny, maxx, maxy, xx, yy, j;
567
568 minx = miny = 0;
569 maxx = w;
570 maxy = h;
571
572 for (j = 0; j < rectpositions[i].n; j++) {
573 int x = rectpositions[i].rects[j].x;
574 int y = rectpositions[i].rects[j].y;
575 int w = rectpositions[i].rects[j].w;
576 int h = rectpositions[i].rects[j].h;
577
578 if (minx < x) minx = x;
579 if (miny < y) miny = y;
580 if (maxx > x+w) maxx = x+w;
581 if (maxy > y+h) maxy = y+h;
582 }
583
584 for (yy = miny; yy < maxy; yy++)
585 for (xx = minx; xx < maxx; xx++)
586 if (overlaps[(i * h + yy) * w + xx] >= -1) {
a7be78fc 587 if (overlaps[(i * h + yy) * w + xx] <= 0) {
588 ret = 0; /* inconsistency */
589 goto cleanup;
590 }
26801d29 591#ifdef SOLVER_DIAGNOSTICS
592 printf("marking %d,%d as known for rect %d"
593 " (intersection of all placements)\n",
594 xx, yy, i);
595#endif
596
597 for (j = 0; j < nrects; j++)
598 overlaps[(j * h + yy) * w + xx] = -1;
599
600 overlaps[(i * h + yy) * w + xx] = -2;
601 }
602 }
603
604 /*
605 * Rectangle-focused deduction. Look at each rectangle in
606 * turn and try to rule out some of its candidate
607 * placements.
608 */
609 for (i = 0; i < nrects; i++) {
610 int j;
611
612 for (j = 0; j < rectpositions[i].n; j++) {
613 int xx, yy, k;
614 int del = FALSE;
615
616 for (k = 0; k < nrects; k++)
617 workspace[k] = 0;
618
619 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
620 int y = yy + rectpositions[i].rects[j].y;
621 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
622 int x = xx + rectpositions[i].rects[j].x;
623
624 if (overlaps[(i * h + y) * w + x] == -1) {
625 /*
626 * This placement overlaps a square
627 * which is _known_ to be part of
628 * another rectangle. Therefore we must
629 * rule it out.
630 */
631#ifdef SOLVER_DIAGNOSTICS
632 printf("rect %d placement at %d,%d w=%d h=%d "
633 "contains %d,%d which is known-other\n", i,
634 rectpositions[i].rects[j].x,
635 rectpositions[i].rects[j].y,
636 rectpositions[i].rects[j].w,
637 rectpositions[i].rects[j].h,
638 x, y);
639#endif
640 del = TRUE;
641 }
642
643 if (rectbyplace[y * w + x] != -1) {
644 /*
645 * This placement overlaps one of the
646 * candidate number placements for some
647 * rectangle. Count it.
648 */
649 workspace[rectbyplace[y * w + x]]++;
650 }
651 }
652 }
653
654 if (!del) {
655 /*
656 * If we haven't ruled this placement out
657 * already, see if it overlaps _all_ of the
658 * candidate number placements for any
659 * rectangle. If so, we can rule it out.
660 */
661 for (k = 0; k < nrects; k++)
662 if (k != i && workspace[k] == numbers[k].npoints) {
663#ifdef SOLVER_DIAGNOSTICS
664 printf("rect %d placement at %d,%d w=%d h=%d "
665 "contains all number points for rect %d\n",
666 i,
667 rectpositions[i].rects[j].x,
668 rectpositions[i].rects[j].y,
669 rectpositions[i].rects[j].w,
670 rectpositions[i].rects[j].h,
671 k);
672#endif
673 del = TRUE;
674 break;
675 }
676
677 /*
678 * Failing that, see if it overlaps at least
679 * one of the candidate number placements for
680 * itself! (This might not be the case if one
681 * of those number placements has been removed
682 * recently.).
683 */
684 if (!del && workspace[i] == 0) {
685#ifdef SOLVER_DIAGNOSTICS
686 printf("rect %d placement at %d,%d w=%d h=%d "
687 "contains none of its own number points\n",
688 i,
689 rectpositions[i].rects[j].x,
690 rectpositions[i].rects[j].y,
691 rectpositions[i].rects[j].w,
692 rectpositions[i].rects[j].h);
693#endif
694 del = TRUE;
695 }
696 }
697
698 if (del) {
699 remove_rect_placement(w, h, rectpositions, overlaps, i, j);
700
701 j--; /* don't skip over next placement */
702
703 done_something = TRUE;
704 }
705 }
706 }
707
708 /*
709 * Square-focused deduction. Look at each square not marked
710 * as known, and see if there are any which can only be
711 * part of a single rectangle.
712 */
713 {
714 int x, y, n, index;
715 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
716 /* Known squares are marked as <0 everywhere, so we only need
717 * to check the overlaps entry for rect 0. */
718 if (overlaps[y * w + x] < 0)
719 continue; /* known already */
720
721 n = 0;
722 index = -1;
723 for (i = 0; i < nrects; i++)
724 if (overlaps[(i * h + y) * w + x] > 0)
725 n++, index = i;
726
727 if (n == 1) {
728 int j;
729
730 /*
731 * Now we can rule out all placements for
732 * rectangle `index' which _don't_ contain
733 * square x,y.
734 */
735#ifdef SOLVER_DIAGNOSTICS
736 printf("square %d,%d can only be in rectangle %d\n",
737 x, y, index);
738#endif
739 for (j = 0; j < rectpositions[index].n; j++) {
740 struct rect *r = &rectpositions[index].rects[j];
741 if (x >= r->x && x < r->x + r->w &&
742 y >= r->y && y < r->y + r->h)
743 continue; /* this one is OK */
744 remove_rect_placement(w, h, rectpositions, overlaps,
745 index, j);
746 j--; /* don't skip over next placement */
747 done_something = TRUE;
748 }
749 }
750 }
751 }
752
753 /*
754 * If we've managed to deduce anything by normal means,
755 * loop round again and see if there's more to be done.
756 * Only if normal deduction has completely failed us should
757 * we now move on to narrowing down the possible number
758 * placements.
759 */
760 if (done_something)
761 continue;
762
763 /*
764 * Now we have done everything we can with the current set
765 * of number placements. So we need to winnow the number
766 * placements so as to narrow down the possibilities. We do
767 * this by searching for a candidate placement (of _any_
768 * rectangle) which overlaps a candidate placement of the
769 * number for some other rectangle.
770 */
1507058f 771 if (rs) {
26801d29 772 struct rpn {
773 int rect;
774 int placement;
775 int number;
776 } *rpns = NULL;
64aec339 777 size_t nrpns = 0, rpnsize = 0;
26801d29 778 int j;
779
780 for (i = 0; i < nrects; i++) {
781 for (j = 0; j < rectpositions[i].n; j++) {
782 int xx, yy;
783
784 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
785 int y = yy + rectpositions[i].rects[j].y;
786 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
787 int x = xx + rectpositions[i].rects[j].x;
788
789 if (rectbyplace[y * w + x] >= 0 &&
790 rectbyplace[y * w + x] != i) {
791 /*
792 * Add this to the list of
793 * winnowing possibilities.
794 */
795 if (nrpns >= rpnsize) {
796 rpnsize = rpnsize * 3 / 2 + 32;
797 rpns = sresize(rpns, rpnsize, struct rpn);
798 }
799 rpns[nrpns].rect = i;
800 rpns[nrpns].placement = j;
801 rpns[nrpns].number = rectbyplace[y * w + x];
802 nrpns++;
803 }
804 }
805 }
806
807 }
808 }
809
810#ifdef SOLVER_DIAGNOSTICS
811 printf("%d candidate rect placements we could eliminate\n", nrpns);
812#endif
813 if (nrpns > 0) {
814 /*
815 * Now choose one of these unwanted rectangle
816 * placements, and eliminate it.
817 */
818 int index = random_upto(rs, nrpns);
819 int k, m;
820 struct rpn rpn = rpns[index];
821 struct rect r;
822 sfree(rpns);
823
824 i = rpn.rect;
825 j = rpn.placement;
826 k = rpn.number;
827 r = rectpositions[i].rects[j];
828
829 /*
830 * We rule out placement j of rectangle i by means
831 * of removing all of rectangle k's candidate
832 * number placements which do _not_ overlap it.
833 * This will ensure that it is eliminated during
834 * the next pass of rectangle-focused deduction.
835 */
836#ifdef SOLVER_DIAGNOSTICS
837 printf("ensuring number for rect %d is within"
838 " rect %d's placement at %d,%d w=%d h=%d\n",
839 k, i, r.x, r.y, r.w, r.h);
840#endif
841
842 for (m = 0; m < numbers[k].npoints; m++) {
843 int x = numbers[k].points[m].x;
844 int y = numbers[k].points[m].y;
845
846 if (x < r.x || x >= r.x + r.w ||
847 y < r.y || y >= r.y + r.h) {
848#ifdef SOLVER_DIAGNOSTICS
849 printf("eliminating number for rect %d at %d,%d\n",
850 k, x, y);
851#endif
852 remove_number_placement(w, h, &numbers[k],
853 m, rectbyplace);
854 m--; /* don't skip the next one */
855 done_something = TRUE;
856 }
857 }
858 }
859 }
860
861 if (!done_something) {
862#ifdef SOLVER_DIAGNOSTICS
863 printf("terminating deduction loop\n");
864#endif
865 break;
866 }
867 }
868
a7be78fc 869 cleanup:
870 ret = 1;
26801d29 871 for (i = 0; i < nrects; i++) {
872#ifdef SOLVER_DIAGNOSTICS
873 printf("rect %d has %d possible placements\n",
874 i, rectpositions[i].n);
875#endif
a7be78fc 876 if (rectpositions[i].n <= 0) {
877 ret = 0; /* inconsistency */
878 } else if (rectpositions[i].n > 1) {
879 ret = 2; /* remaining uncertainty */
df11cd4e 880 } else if (hedge && vedge) {
881 /*
882 * Place the rectangle in its only possible position.
883 */
884 int x, y;
885 struct rect *r = &rectpositions[i].rects[0];
886
887 for (y = 0; y < r->h; y++) {
888 if (r->x > 0)
889 vedge[(r->y+y) * w + r->x] = 1;
890 if (r->x+r->w < w)
891 vedge[(r->y+y) * w + r->x+r->w] = 1;
892 }
893 for (x = 0; x < r->w; x++) {
894 if (r->y > 0)
895 hedge[r->y * w + r->x+x] = 1;
896 if (r->y+r->h < h)
897 hedge[(r->y+r->h) * w + r->x+x] = 1;
898 }
1507058f 899 }
26801d29 900 }
901
902 /*
903 * Free up all allocated storage.
904 */
905 sfree(workspace);
906 sfree(rectbyplace);
907 sfree(overlaps);
908 for (i = 0; i < nrects; i++)
909 sfree(rectpositions[i].rects);
910 sfree(rectpositions);
911
912 return ret;
913}
914
915/* ----------------------------------------------------------------------
916 * Grid generation code.
917 */
918
738d2f61 919/*
920 * This function does one of two things. If passed r==NULL, it
921 * counts the number of possible rectangles which cover the given
922 * square, and returns it in *n. If passed r!=NULL then it _reads_
923 * *n to find an index, counts the possible rectangles until it
924 * reaches the nth, and writes it into r.
925 *
926 * `scratch' is expected to point to an array of 2 * params->w
927 * ints, used internally as scratch space (and passed in like this
928 * to avoid re-allocating and re-freeing it every time round a
929 * tight loop).
930 */
931static void enum_rects(game_params *params, int *grid, struct rect *r, int *n,
932 int sx, int sy, int *scratch)
3870c4d8 933{
738d2f61 934 int rw, rh, mw, mh;
935 int x, y, dx, dy;
936 int maxarea, realmaxarea;
937 int index = 0;
938 int *top, *bottom;
3870c4d8 939
940 /*
d4e7900f 941 * Maximum rectangle area is 1/6 of total grid size, unless
942 * this means we can't place any rectangles at all in which
943 * case we set it to 2 at minimum.
3870c4d8 944 */
945 maxarea = params->w * params->h / 6;
d4e7900f 946 if (maxarea < 2)
947 maxarea = 2;
3870c4d8 948
738d2f61 949 /*
950 * Scan the grid to find the limits of the region within which
951 * any rectangle containing this point must fall. This will
952 * save us trawling the inside of every rectangle later on to
953 * see if it contains any used squares.
954 */
955 top = scratch;
956 bottom = scratch + params->w;
957 for (dy = -1; dy <= +1; dy += 2) {
958 int *array = (dy == -1 ? top : bottom);
959 for (dx = -1; dx <= +1; dx += 2) {
960 for (x = sx; x >= 0 && x < params->w; x += dx) {
961 array[x] = -2 * params->h * dy;
962 for (y = sy; y >= 0 && y < params->h; y += dy) {
963 if (index(params, grid, x, y) == -1 &&
964 (x == sx || dy*y <= dy*array[x-dx]))
965 array[x] = y;
966 else
967 break;
968 }
969 }
970 }
971 }
972
973 /*
974 * Now scan again to work out the largest rectangles we can fit
975 * in the grid, so that we can terminate the following loops
976 * early once we get down to not having much space left in the
977 * grid.
978 */
979 realmaxarea = 0;
980 for (x = 0; x < params->w; x++) {
981 int x2;
982
983 rh = bottom[x] - top[x] + 1;
984 if (rh <= 0)
985 continue; /* no rectangles can start here */
986
987 dx = (x > sx ? -1 : +1);
988 for (x2 = x; x2 >= 0 && x2 < params->w; x2 += dx)
989 if (bottom[x2] < bottom[x] || top[x2] > top[x])
990 break;
991
992 rw = abs(x2 - x);
993 if (realmaxarea < rw * rh)
994 realmaxarea = rw * rh;
995 }
996
997 if (realmaxarea > maxarea)
998 realmaxarea = maxarea;
999
1000 /*
1001 * Rectangles which go right the way across the grid are
1002 * boring, although they can't be helped in the case of
1003 * extremely small grids. (Also they might be generated later
1004 * on by the singleton-removal process; we can't help that.)
1005 */
1006 mw = params->w - 1;
1007 if (mw < 3) mw++;
1008 mh = params->h - 1;
1009 if (mh < 3) mh++;
1010
1011 for (rw = 1; rw <= mw; rw++)
1012 for (rh = 1; rh <= mh; rh++) {
1013 if (rw * rh > realmaxarea)
3870c4d8 1014 continue;
1015 if (rw * rh == 1)
1016 continue;
738d2f61 1017 for (x = max(sx - rw + 1, 0); x <= min(sx, params->w - rw); x++)
1018 for (y = max(sy - rh + 1, 0); y <= min(sy, params->h - rh);
1019 y++) {
1020 /*
1021 * Check this rectangle against the region we
1022 * defined above.
1023 */
1024 if (top[x] <= y && top[x+rw-1] <= y &&
1025 bottom[x] >= y+rh-1 && bottom[x+rw-1] >= y+rh-1) {
1026 if (r && index == *n) {
1027 r->x = x;
1028 r->y = y;
1029 r->w = rw;
1030 r->h = rh;
1031 return;
1032 }
1033 index++;
3870c4d8 1034 }
3870c4d8 1035 }
1036 }
1037
738d2f61 1038 assert(!r);
1039 *n = index;
3870c4d8 1040}
1041
1042static void place_rect(game_params *params, int *grid, struct rect r)
1043{
1044 int idx = INDEX(params, r.x, r.y);
1045 int x, y;
1046
1047 for (x = r.x; x < r.x+r.w; x++)
1048 for (y = r.y; y < r.y+r.h; y++) {
1049 index(params, grid, x, y) = idx;
1050 }
1051#ifdef GENERATION_DIAGNOSTICS
1052 printf(" placing rectangle at (%d,%d) size %d x %d\n",
1053 r.x, r.y, r.w, r.h);
1054#endif
1055}
1056
1057static struct rect find_rect(game_params *params, int *grid, int x, int y)
1058{
1059 int idx, w, h;
1060 struct rect r;
1061
1062 /*
1063 * Find the top left of the rectangle.
1064 */
1065 idx = index(params, grid, x, y);
1066
1067 if (idx < 0) {
1068 r.x = x;
1069 r.y = y;
1070 r.w = r.h = 1;
1071 return r; /* 1x1 singleton here */
1072 }
1073
1074 y = idx / params->w;
1075 x = idx % params->w;
1076
1077 /*
1078 * Find the width and height of the rectangle.
1079 */
1080 for (w = 1;
1081 (x+w < params->w && index(params,grid,x+w,y)==idx);
1082 w++);
1083 for (h = 1;
1084 (y+h < params->h && index(params,grid,x,y+h)==idx);
1085 h++);
1086
1087 r.x = x;
1088 r.y = y;
1089 r.w = w;
1090 r.h = h;
1091
1092 return r;
1093}
1094
1095#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 1096static void display_grid(game_params *params, int *grid, int *numbers, int all)
3870c4d8 1097{
1098 unsigned char *egrid = snewn((params->w*2+3) * (params->h*2+3),
1099 unsigned char);
3870c4d8 1100 int x, y;
1101 int r = (params->w*2+3);
1102
aea3ed9a 1103 memset(egrid, 0, (params->w*2+3) * (params->h*2+3));
1104
3870c4d8 1105 for (x = 0; x < params->w; x++)
1106 for (y = 0; y < params->h; y++) {
1107 int i = index(params, grid, x, y);
1108 if (x == 0 || index(params, grid, x-1, y) != i)
1109 egrid[(2*y+2) * r + (2*x+1)] = 1;
1110 if (x == params->w-1 || index(params, grid, x+1, y) != i)
1111 egrid[(2*y+2) * r + (2*x+3)] = 1;
1112 if (y == 0 || index(params, grid, x, y-1) != i)
1113 egrid[(2*y+1) * r + (2*x+2)] = 1;
1114 if (y == params->h-1 || index(params, grid, x, y+1) != i)
1115 egrid[(2*y+3) * r + (2*x+2)] = 1;
1116 }
1117
1118 for (y = 1; y < 2*params->h+2; y++) {
1119 for (x = 1; x < 2*params->w+2; x++) {
1120 if (!((y|x)&1)) {
aea3ed9a 1121 int k = numbers ? index(params, numbers, x/2-1, y/2-1) : 0;
1122 if (k || (all && numbers)) printf("%2d", k); else printf(" ");
3870c4d8 1123 } else if (!((y&x)&1)) {
1124 int v = egrid[y*r+x];
1125 if ((y&1) && v) v = '-';
1126 if ((x&1) && v) v = '|';
1127 if (!v) v = ' ';
1128 putchar(v);
1129 if (!(x&1)) putchar(v);
1130 } else {
1131 int c, d = 0;
1132 if (egrid[y*r+(x+1)]) d |= 1;
1133 if (egrid[(y-1)*r+x]) d |= 2;
1134 if (egrid[y*r+(x-1)]) d |= 4;
1135 if (egrid[(y+1)*r+x]) d |= 8;
1136 c = " ??+?-++?+|+++++"[d];
1137 putchar(c);
1138 if (!(x&1)) putchar(c);
1139 }
1140 }
1141 putchar('\n');
1142 }
1143
1144 sfree(egrid);
1145}
1146#endif
1147
1185e3c5 1148static char *new_game_desc(game_params *params, random_state *rs,
c566778e 1149 char **aux, int interactive)
3870c4d8 1150{
26801d29 1151 int *grid, *numbers = NULL;
738d2f61 1152 int x, y, y2, y2last, yx, run, i, nsquares;
1185e3c5 1153 char *desc, *p;
738d2f61 1154 int *enum_rects_scratch;
aea3ed9a 1155 game_params params2real, *params2 = &params2real;
3870c4d8 1156
26801d29 1157 while (1) {
1158 /*
1159 * Set up the smaller width and height which we will use to
1160 * generate the base grid.
1161 */
1162 params2->w = params->w / (1.0F + params->expandfactor);
1163 if (params2->w < 2 && params->w >= 2) params2->w = 2;
1164 params2->h = params->h / (1.0F + params->expandfactor);
1165 if (params2->h < 2 && params->h >= 2) params2->h = 2;
aea3ed9a 1166
26801d29 1167 grid = snewn(params2->w * params2->h, int);
3870c4d8 1168
738d2f61 1169 enum_rects_scratch = snewn(2 * params2->w, int);
1170
1171 nsquares = 0;
26801d29 1172 for (y = 0; y < params2->h; y++)
1173 for (x = 0; x < params2->w; x++) {
1174 index(params2, grid, x, y) = -1;
738d2f61 1175 nsquares++;
26801d29 1176 }
3870c4d8 1177
3870c4d8 1178 /*
738d2f61 1179 * Place rectangles until we can't any more. We do this by
1180 * finding a square we haven't yet covered, and randomly
1181 * choosing a rectangle to cover it.
3870c4d8 1182 */
738d2f61 1183
1184 while (nsquares > 0) {
1185 int square = random_upto(rs, nsquares);
1186 int n;
26801d29 1187 struct rect r;
1188
738d2f61 1189 x = params2->w;
1190 y = params2->h;
1191 for (y = 0; y < params2->h; y++) {
1192 for (x = 0; x < params2->w; x++) {
1193 if (index(params2, grid, x, y) == -1 && square-- == 0)
1194 break;
1195 }
1196 if (x < params2->w)
1197 break;
1198 }
1199 assert(x < params2->w && y < params2->h);
26801d29 1200
1201 /*
738d2f61 1202 * Now see how many rectangles fit around this one.
26801d29 1203 */
738d2f61 1204 enum_rects(params2, grid, NULL, &n, x, y, enum_rects_scratch);
26801d29 1205
738d2f61 1206 if (!n) {
1207 /*
1208 * There are no possible rectangles covering this
1209 * square, meaning it must be a singleton. Mark it
1210 * -2 so we know not to keep trying.
1211 */
1212 index(params2, grid, x, y) = -2;
1213 nsquares--;
1214 } else {
1215 /*
1216 * Pick one at random.
1217 */
1218 n = random_upto(rs, n);
1219 enum_rects(params2, grid, &r, &n, x, y, enum_rects_scratch);
1220
1221 /*
1222 * Place it.
1223 */
1224 place_rect(params2, grid, r);
1225 nsquares -= r.w * r.h;
26801d29 1226 }
26801d29 1227 }
3870c4d8 1228
738d2f61 1229 sfree(enum_rects_scratch);
3870c4d8 1230
1231 /*
26801d29 1232 * Deal with singleton spaces remaining in the grid, one by
1233 * one.
1234 *
1235 * We do this by making a local change to the layout. There are
1236 * several possibilities:
1237 *
1238 * +-----+-----+ Here, we can remove the singleton by
1239 * | | | extending the 1x2 rectangle below it
1240 * +--+--+-----+ into a 1x3.
1241 * | | | |
1242 * | +--+ |
1243 * | | | |
1244 * | | | |
1245 * | | | |
1246 * +--+--+-----+
1247 *
1248 * +--+--+--+ Here, that trick doesn't work: there's no
1249 * | | | 1 x n rectangle with the singleton at one
1250 * | | | end. Instead, we extend a 1 x n rectangle
1251 * | | | _out_ from the singleton, shaving a layer
1252 * +--+--+ | off the end of another rectangle. So if we
1253 * | | | | extended up, we'd make our singleton part
1254 * | +--+--+ of a 1x3 and generate a 1x2 where the 2x2
1255 * | | | used to be; or we could extend right into
1256 * +--+-----+ a 2x1, turning the 1x3 into a 1x2.
1257 *
1258 * +-----+--+ Here, we can't even do _that_, since any
1259 * | | | direction we choose to extend the singleton
1260 * +--+--+ | will produce a new singleton as a result of
1261 * | | | | truncating one of the size-2 rectangles.
1262 * | +--+--+ Fortunately, this case can _only_ occur when
1263 * | | | a singleton is surrounded by four size-2s
1264 * +--+-----+ in this fashion; so instead we can simply
1265 * replace the whole section with a single 3x3.
3870c4d8 1266 */
26801d29 1267 for (x = 0; x < params2->w; x++) {
1268 for (y = 0; y < params2->h; y++) {
1269 if (index(params2, grid, x, y) < 0) {
1270 int dirs[4], ndirs;
3870c4d8 1271
1272#ifdef GENERATION_DIAGNOSTICS
26801d29 1273 display_grid(params2, grid, NULL, FALSE);
1274 printf("singleton at %d,%d\n", x, y);
3870c4d8 1275#endif
1276
26801d29 1277 /*
1278 * Check in which directions we can feasibly extend
1279 * the singleton. We can extend in a particular
1280 * direction iff either:
1281 *
1282 * - the rectangle on that side of the singleton
1283 * is not 2x1, and we are at one end of the edge
1284 * of it we are touching
1285 *
1286 * - it is 2x1 but we are on its short side.
1287 *
1288 * FIXME: we could plausibly choose between these
1289 * based on the sizes of the rectangles they would
1290 * create?
1291 */
1292 ndirs = 0;
1293 if (x < params2->w-1) {
1294 struct rect r = find_rect(params2, grid, x+1, y);
1295 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1296 dirs[ndirs++] = 1; /* right */
1297 }
1298 if (y > 0) {
1299 struct rect r = find_rect(params2, grid, x, y-1);
1300 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1301 dirs[ndirs++] = 2; /* up */
1302 }
1303 if (x > 0) {
1304 struct rect r = find_rect(params2, grid, x-1, y);
1305 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1306 dirs[ndirs++] = 4; /* left */
1307 }
1308 if (y < params2->h-1) {
1309 struct rect r = find_rect(params2, grid, x, y+1);
1310 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1311 dirs[ndirs++] = 8; /* down */
1312 }
3870c4d8 1313
26801d29 1314 if (ndirs > 0) {
1315 int which, dir;
1316 struct rect r1, r2;
3870c4d8 1317
26801d29 1318 which = random_upto(rs, ndirs);
1319 dir = dirs[which];
3870c4d8 1320
26801d29 1321 switch (dir) {
1322 case 1: /* right */
1323 assert(x < params2->w+1);
3870c4d8 1324#ifdef GENERATION_DIAGNOSTICS
26801d29 1325 printf("extending right\n");
3870c4d8 1326#endif
26801d29 1327 r1 = find_rect(params2, grid, x+1, y);
1328 r2.x = x;
1329 r2.y = y;
1330 r2.w = 1 + r1.w;
1331 r2.h = 1;
1332 if (r1.y == y)
1333 r1.y++;
1334 r1.h--;
1335 break;
1336 case 2: /* up */
1337 assert(y > 0);
3870c4d8 1338#ifdef GENERATION_DIAGNOSTICS
26801d29 1339 printf("extending up\n");
3870c4d8 1340#endif
26801d29 1341 r1 = find_rect(params2, grid, x, y-1);
1342 r2.x = x;
1343 r2.y = r1.y;
1344 r2.w = 1;
1345 r2.h = 1 + r1.h;
1346 if (r1.x == x)
1347 r1.x++;
1348 r1.w--;
1349 break;
1350 case 4: /* left */
1351 assert(x > 0);
3870c4d8 1352#ifdef GENERATION_DIAGNOSTICS
26801d29 1353 printf("extending left\n");
3870c4d8 1354#endif
26801d29 1355 r1 = find_rect(params2, grid, x-1, y);
1356 r2.x = r1.x;
1357 r2.y = y;
1358 r2.w = 1 + r1.w;
1359 r2.h = 1;
1360 if (r1.y == y)
1361 r1.y++;
1362 r1.h--;
1363 break;
1364 case 8: /* down */
1365 assert(y < params2->h+1);
3870c4d8 1366#ifdef GENERATION_DIAGNOSTICS
26801d29 1367 printf("extending down\n");
3870c4d8 1368#endif
26801d29 1369 r1 = find_rect(params2, grid, x, y+1);
1370 r2.x = x;
1371 r2.y = y;
1372 r2.w = 1;
1373 r2.h = 1 + r1.h;
1374 if (r1.x == x)
1375 r1.x++;
1376 r1.w--;
1377 break;
91cb8434 1378 default: /* should never happen */
1379 assert(!"invalid direction");
26801d29 1380 }
1381 if (r1.h > 0 && r1.w > 0)
1382 place_rect(params2, grid, r1);
1383 place_rect(params2, grid, r2);
1384 } else {
3870c4d8 1385#ifndef NDEBUG
26801d29 1386 /*
1387 * Sanity-check that there really is a 3x3
1388 * rectangle surrounding this singleton and it
1389 * contains absolutely everything we could
1390 * possibly need.
1391 */
1392 {
1393 int xx, yy;
1394 assert(x > 0 && x < params2->w-1);
1395 assert(y > 0 && y < params2->h-1);
1396
1397 for (xx = x-1; xx <= x+1; xx++)
1398 for (yy = y-1; yy <= y+1; yy++) {
1399 struct rect r = find_rect(params2,grid,xx,yy);
1400 assert(r.x >= x-1);
1401 assert(r.y >= y-1);
1402 assert(r.x+r.w-1 <= x+1);
1403 assert(r.y+r.h-1 <= y+1);
1404 }
1405 }
3870c4d8 1406#endif
26801d29 1407
3870c4d8 1408#ifdef GENERATION_DIAGNOSTICS
26801d29 1409 printf("need the 3x3 trick\n");
3870c4d8 1410#endif
1411
26801d29 1412 /*
1413 * FIXME: If the maximum rectangle area for
1414 * this grid is less than 9, we ought to
1415 * subdivide the 3x3 in some fashion. There are
1416 * five other possibilities:
1417 *
1418 * - a 6 and a 3
1419 * - a 4, a 3 and a 2
1420 * - three 3s
1421 * - a 3 and three 2s (two different arrangements).
1422 */
1423
1424 {
1425 struct rect r;
1426 r.x = x-1;
1427 r.y = y-1;
1428 r.w = r.h = 3;
1429 place_rect(params2, grid, r);
1430 }
3870c4d8 1431 }
1432 }
1433 }
1434 }
3870c4d8 1435
26801d29 1436 /*
1437 * We have now constructed a grid of the size specified in
1438 * params2. Now we extend it into a grid of the size specified
1439 * in params. We do this in two passes: we extend it vertically
1440 * until it's the right height, then we transpose it, then
1441 * extend it vertically again (getting it effectively the right
1442 * width), then finally transpose again.
1443 */
1444 for (i = 0; i < 2; i++) {
1445 int *grid2, *expand, *where;
1446 game_params params3real, *params3 = &params3real;
aea3ed9a 1447
1448#ifdef GENERATION_DIAGNOSTICS
26801d29 1449 printf("before expansion:\n");
1450 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1451#endif
1452
26801d29 1453 /*
1454 * Set up the new grid.
1455 */
1456 grid2 = snewn(params2->w * params->h, int);
1457 expand = snewn(params2->h-1, int);
1458 where = snewn(params2->w, int);
1459 params3->w = params2->w;
1460 params3->h = params->h;
1461
1462 /*
1463 * Decide which horizontal edges are going to get expanded,
1464 * and by how much.
1465 */
1466 for (y = 0; y < params2->h-1; y++)
1467 expand[y] = 0;
1468 for (y = params2->h; y < params->h; y++) {
1469 x = random_upto(rs, params2->h-1);
1470 expand[x]++;
1471 }
aea3ed9a 1472
1473#ifdef GENERATION_DIAGNOSTICS
26801d29 1474 printf("expand[] = {");
1475 for (y = 0; y < params2->h-1; y++)
1476 printf(" %d", expand[y]);
1477 printf(" }\n");
aea3ed9a 1478#endif
1479
26801d29 1480 /*
1481 * Perform the expansion. The way this works is that we
1482 * alternately:
1483 *
1484 * - copy a row from grid into grid2
1485 *
1486 * - invent some number of additional rows in grid2 where
1487 * there was previously only a horizontal line between
1488 * rows in grid, and make random decisions about where
1489 * among these to place each rectangle edge that ran
1490 * along this line.
1491 */
1492 for (y = y2 = y2last = 0; y < params2->h; y++) {
1493 /*
1494 * Copy a single line from row y of grid into row y2 of
1495 * grid2.
1496 */
1497 for (x = 0; x < params2->w; x++) {
1498 int val = index(params2, grid, x, y);
1499 if (val / params2->w == y && /* rect starts on this line */
1500 (y2 == 0 || /* we're at the very top, or... */
1501 index(params3, grid2, x, y2-1) / params3->w < y2last
1502 /* this rect isn't already started */))
1503 index(params3, grid2, x, y2) =
1504 INDEX(params3, val % params2->w, y2);
1505 else
1506 index(params3, grid2, x, y2) =
1507 index(params3, grid2, x, y2-1);
1508 }
1509
1510 /*
1511 * If that was the last line, terminate the loop early.
1512 */
1513 if (++y2 == params3->h)
1514 break;
1515
1516 y2last = y2;
1517
1518 /*
1519 * Invent some number of additional lines. First walk
1520 * along this line working out where to put all the
1521 * edges that coincide with it.
1522 */
1523 yx = -1;
1524 for (x = 0; x < params2->w; x++) {
1525 if (index(params2, grid, x, y) !=
1526 index(params2, grid, x, y+1)) {
1527 /*
1528 * This is a horizontal edge, so it needs
1529 * placing.
1530 */
1531 if (x == 0 ||
1532 (index(params2, grid, x-1, y) !=
1533 index(params2, grid, x, y) &&
1534 index(params2, grid, x-1, y+1) !=
1535 index(params2, grid, x, y+1))) {
1536 /*
1537 * Here we have the chance to make a new
1538 * decision.
1539 */
1540 yx = random_upto(rs, expand[y]+1);
1541 } else {
1542 /*
1543 * Here we just reuse the previous value of
1544 * yx.
1545 */
1546 }
1547 } else
1548 yx = -1;
1549 where[x] = yx;
1550 }
1551
1552 for (yx = 0; yx < expand[y]; yx++) {
1553 /*
1554 * Invent a single row. For each square in the row,
1555 * we copy the grid entry from the square above it,
1556 * unless we're starting the new rectangle here.
1557 */
1558 for (x = 0; x < params2->w; x++) {
1559 if (yx == where[x]) {
1560 int val = index(params2, grid, x, y+1);
1561 val %= params2->w;
1562 val = INDEX(params3, val, y2);
1563 index(params3, grid2, x, y2) = val;
1564 } else
1565 index(params3, grid2, x, y2) =
1566 index(params3, grid2, x, y2-1);
1567 }
1568
1569 y2++;
1570 }
1571 }
1572
1573 sfree(expand);
1574 sfree(where);
aea3ed9a 1575
1576#ifdef GENERATION_DIAGNOSTICS
26801d29 1577 printf("after expansion:\n");
1578 display_grid(params3, grid2, NULL, TRUE);
aea3ed9a 1579#endif
26801d29 1580 /*
1581 * Transpose.
1582 */
1583 params2->w = params3->h;
1584 params2->h = params3->w;
1585 sfree(grid);
1586 grid = snewn(params2->w * params2->h, int);
1587 for (x = 0; x < params2->w; x++)
1588 for (y = 0; y < params2->h; y++) {
1589 int idx1 = INDEX(params2, x, y);
1590 int idx2 = INDEX(params3, y, x);
1591 int tmp;
1592
1593 tmp = grid2[idx2];
1594 tmp = (tmp % params3->w) * params2->w + (tmp / params3->w);
1595 grid[idx1] = tmp;
1596 }
1597
1598 sfree(grid2);
1599
1600 {
1601 int tmp;
1602 tmp = params->w;
1603 params->w = params->h;
1604 params->h = tmp;
1605 }
aea3ed9a 1606
1607#ifdef GENERATION_DIAGNOSTICS
26801d29 1608 printf("after transposition:\n");
1609 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1610#endif
26801d29 1611 }
aea3ed9a 1612
26801d29 1613 /*
1614 * Run the solver to narrow down the possible number
1615 * placements.
1616 */
1617 {
1618 struct numberdata *nd;
1619 int nnumbers, i, ret;
1620
1621 /* Count the rectangles. */
1622 nnumbers = 0;
1623 for (y = 0; y < params->h; y++) {
1624 for (x = 0; x < params->w; x++) {
1625 int idx = INDEX(params, x, y);
1626 if (index(params, grid, x, y) == idx)
1627 nnumbers++;
1628 }
1629 }
2ac6d24e 1630
26801d29 1631 nd = snewn(nnumbers, struct numberdata);
1632
1633 /* Now set up each number's candidate position list. */
1634 i = 0;
1635 for (y = 0; y < params->h; y++) {
1636 for (x = 0; x < params->w; x++) {
1637 int idx = INDEX(params, x, y);
1638 if (index(params, grid, x, y) == idx) {
1639 struct rect r = find_rect(params, grid, x, y);
1640 int j, k, m;
1641
1642 nd[i].area = r.w * r.h;
1643 nd[i].npoints = nd[i].area;
1644 nd[i].points = snewn(nd[i].npoints, struct point);
1645 m = 0;
1646 for (j = 0; j < r.h; j++)
1647 for (k = 0; k < r.w; k++) {
1648 nd[i].points[m].x = k + r.x;
1649 nd[i].points[m].y = j + r.y;
1650 m++;
1651 }
1652 assert(m == nd[i].npoints);
aea3ed9a 1653
26801d29 1654 i++;
1655 }
1656 }
1657 }
aea3ed9a 1658
40fde884 1659 if (params->unique)
1507058f 1660 ret = rect_solver(params->w, params->h, nnumbers, nd,
df11cd4e 1661 NULL, NULL, rs);
40fde884 1662 else
a7be78fc 1663 ret = 1; /* allow any number placement at all */
3870c4d8 1664
a7be78fc 1665 if (ret == 1) {
3870c4d8 1666 /*
26801d29 1667 * Now place the numbers according to the solver's
1668 * recommendations.
3870c4d8 1669 */
26801d29 1670 numbers = snewn(params->w * params->h, int);
1671
1672 for (y = 0; y < params->h; y++)
1673 for (x = 0; x < params->w; x++) {
1674 index(params, numbers, x, y) = 0;
1675 }
1676
1677 for (i = 0; i < nnumbers; i++) {
1678 int idx = random_upto(rs, nd[i].npoints);
1679 int x = nd[i].points[idx].x;
1680 int y = nd[i].points[idx].y;
1681 index(params,numbers,x,y) = nd[i].area;
1682 }
3870c4d8 1683 }
26801d29 1684
1685 /*
1686 * Clean up.
1687 */
1688 for (i = 0; i < nnumbers; i++)
1689 sfree(nd[i].points);
1690 sfree(nd);
1691
1692 /*
1693 * If we've succeeded, then terminate the loop.
1694 */
1695 if (ret)
1696 break;
3870c4d8 1697 }
26801d29 1698
1699 /*
1700 * Give up and go round again.
1701 */
1702 sfree(grid);
1703 }
1704
1705 /*
c566778e 1706 * Store the solution in aux.
26801d29 1707 */
1708 {
c566778e 1709 char *ai;
1710 int len;
1711
1712 len = 2 + (params->w-1)*params->h + (params->h-1)*params->w;
1713 ai = snewn(len, char);
1714
1715 ai[0] = 'S';
26801d29 1716
c566778e 1717 p = ai+1;
26801d29 1718
1719 for (y = 0; y < params->h; y++)
c566778e 1720 for (x = 1; x < params->w; x++)
1721 *p++ = (index(params, grid, x, y) !=
1722 index(params, grid, x-1, y) ? '1' : '0');
1723
26801d29 1724 for (y = 1; y < params->h; y++)
c566778e 1725 for (x = 0; x < params->w; x++)
1726 *p++ = (index(params, grid, x, y) !=
1727 index(params, grid, x, y-1) ? '1' : '0');
1728
1729 assert(p - ai == len-1);
1730 *p = '\0';
26801d29 1731
1732 *aux = ai;
3870c4d8 1733 }
1734
1735#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 1736 display_grid(params, grid, numbers, FALSE);
3870c4d8 1737#endif
1738
1185e3c5 1739 desc = snewn(11 * params->w * params->h, char);
1740 p = desc;
3870c4d8 1741 run = 0;
1742 for (i = 0; i <= params->w * params->h; i++) {
1743 int n = (i < params->w * params->h ? numbers[i] : -1);
1744
1745 if (!n)
1746 run++;
1747 else {
1748 if (run) {
1749 while (run > 0) {
1750 int c = 'a' - 1 + run;
1751 if (run > 26)
1752 c = 'z';
1753 *p++ = c;
1754 run -= c - ('a' - 1);
1755 }
1756 } else {
0e87eedc 1757 /*
1758 * If there's a number in the very top left or
1759 * bottom right, there's no point putting an
1760 * unnecessary _ before or after it.
1761 */
1185e3c5 1762 if (p > desc && n > 0)
0e87eedc 1763 *p++ = '_';
3870c4d8 1764 }
1765 if (n > 0)
1766 p += sprintf(p, "%d", n);
1767 run = 0;
1768 }
1769 }
1770 *p = '\0';
1771
1772 sfree(grid);
1773 sfree(numbers);
1774
1185e3c5 1775 return desc;
3870c4d8 1776}
1777
1185e3c5 1778static char *validate_desc(game_params *params, char *desc)
3870c4d8 1779{
1780 int area = params->w * params->h;
1781 int squares = 0;
1782
1185e3c5 1783 while (*desc) {
1784 int n = *desc++;
3870c4d8 1785 if (n >= 'a' && n <= 'z') {
1786 squares += n - 'a' + 1;
1787 } else if (n == '_') {
1788 /* do nothing */;
1789 } else if (n > '0' && n <= '9') {
9bb5bf60 1790 squares++;
1185e3c5 1791 while (*desc >= '0' && *desc <= '9')
1792 desc++;
3870c4d8 1793 } else
1185e3c5 1794 return "Invalid character in game description";
3870c4d8 1795 }
1796
1797 if (squares < area)
1798 return "Not enough data to fill grid";
1799
1800 if (squares > area)
1801 return "Too much data to fit in grid";
1802
1803 return NULL;
1804}
1805
9bb4a9a0 1806static unsigned char *get_correct(game_state *state)
1807{
1808 unsigned char *ret;
1809 int x, y;
1810
1811 ret = snewn(state->w * state->h, unsigned char);
1812 memset(ret, 0xFF, state->w * state->h);
1813
1814 for (x = 0; x < state->w; x++)
1815 for (y = 0; y < state->h; y++)
1816 if (index(state,ret,x,y) == 0xFF) {
1817 int rw, rh;
1818 int xx, yy;
1819 int num, area, valid;
1820
1821 /*
1822 * Find a rectangle starting at this point.
1823 */
1824 rw = 1;
1825 while (x+rw < state->w && !vedge(state,x+rw,y))
1826 rw++;
1827 rh = 1;
1828 while (y+rh < state->h && !hedge(state,x,y+rh))
1829 rh++;
1830
1831 /*
1832 * We know what the dimensions of the rectangle
1833 * should be if it's there at all. Find out if we
1834 * really have a valid rectangle.
1835 */
1836 valid = TRUE;
1837 /* Check the horizontal edges. */
1838 for (xx = x; xx < x+rw; xx++) {
1839 for (yy = y; yy <= y+rh; yy++) {
1840 int e = !HRANGE(state,xx,yy) || hedge(state,xx,yy);
1841 int ec = (yy == y || yy == y+rh);
1842 if (e != ec)
1843 valid = FALSE;
1844 }
1845 }
1846 /* Check the vertical edges. */
1847 for (yy = y; yy < y+rh; yy++) {
1848 for (xx = x; xx <= x+rw; xx++) {
1849 int e = !VRANGE(state,xx,yy) || vedge(state,xx,yy);
1850 int ec = (xx == x || xx == x+rw);
1851 if (e != ec)
1852 valid = FALSE;
1853 }
1854 }
1855
1856 /*
1857 * If this is not a valid rectangle with no other
1858 * edges inside it, we just mark this square as not
1859 * complete and proceed to the next square.
1860 */
1861 if (!valid) {
1862 index(state, ret, x, y) = 0;
1863 continue;
1864 }
1865
1866 /*
1867 * We have a rectangle. Now see what its area is,
1868 * and how many numbers are in it.
1869 */
1870 num = 0;
1871 area = 0;
1872 for (xx = x; xx < x+rw; xx++) {
1873 for (yy = y; yy < y+rh; yy++) {
1874 area++;
1875 if (grid(state,xx,yy)) {
1876 if (num > 0)
1877 valid = FALSE; /* two numbers */
1878 num = grid(state,xx,yy);
1879 }
1880 }
1881 }
1882 if (num != area)
1883 valid = FALSE;
1884
1885 /*
1886 * Now fill in the whole rectangle based on the
1887 * value of `valid'.
1888 */
1889 for (xx = x; xx < x+rw; xx++) {
1890 for (yy = y; yy < y+rh; yy++) {
1891 index(state, ret, xx, yy) = valid;
1892 }
1893 }
1894 }
1895
1896 return ret;
1897}
1898
dafd6cf6 1899static game_state *new_game(midend *me, game_params *params, char *desc)
3870c4d8 1900{
1901 game_state *state = snew(game_state);
1902 int x, y, i, area;
1903
1904 state->w = params->w;
1905 state->h = params->h;
1906
1907 area = state->w * state->h;
1908
1909 state->grid = snewn(area, int);
1910 state->vedge = snewn(area, unsigned char);
1911 state->hedge = snewn(area, unsigned char);
2ac6d24e 1912 state->completed = state->cheated = FALSE;
3870c4d8 1913
1914 i = 0;
1185e3c5 1915 while (*desc) {
1916 int n = *desc++;
3870c4d8 1917 if (n >= 'a' && n <= 'z') {
1918 int run = n - 'a' + 1;
1919 assert(i + run <= area);
1920 while (run-- > 0)
1921 state->grid[i++] = 0;
1922 } else if (n == '_') {
1923 /* do nothing */;
1924 } else if (n > '0' && n <= '9') {
1925 assert(i < area);
1185e3c5 1926 state->grid[i++] = atoi(desc-1);
1927 while (*desc >= '0' && *desc <= '9')
1928 desc++;
3870c4d8 1929 } else {
1930 assert(!"We can't get here");
1931 }
1932 }
1933 assert(i == area);
1934
1935 for (y = 0; y < state->h; y++)
1936 for (x = 0; x < state->w; x++)
1937 vedge(state,x,y) = hedge(state,x,y) = 0;
1938
9bb4a9a0 1939 state->correct = get_correct(state);
1940
3870c4d8 1941 return state;
1942}
1943
be8d5aa1 1944static game_state *dup_game(game_state *state)
3870c4d8 1945{
1946 game_state *ret = snew(game_state);
1947
1948 ret->w = state->w;
1949 ret->h = state->h;
1950
1951 ret->vedge = snewn(state->w * state->h, unsigned char);
1952 ret->hedge = snewn(state->w * state->h, unsigned char);
1953 ret->grid = snewn(state->w * state->h, int);
9bb4a9a0 1954 ret->correct = snewn(ret->w * ret->h, unsigned char);
3870c4d8 1955
ef29354c 1956 ret->completed = state->completed;
2ac6d24e 1957 ret->cheated = state->cheated;
ef29354c 1958
3870c4d8 1959 memcpy(ret->grid, state->grid, state->w * state->h * sizeof(int));
1960 memcpy(ret->vedge, state->vedge, state->w*state->h*sizeof(unsigned char));
1961 memcpy(ret->hedge, state->hedge, state->w*state->h*sizeof(unsigned char));
1962
9bb4a9a0 1963 memcpy(ret->correct, state->correct, state->w*state->h*sizeof(unsigned char));
1964
3870c4d8 1965 return ret;
1966}
1967
be8d5aa1 1968static void free_game(game_state *state)
3870c4d8 1969{
1970 sfree(state->grid);
1971 sfree(state->vedge);
1972 sfree(state->hedge);
9bb4a9a0 1973 sfree(state->correct);
3870c4d8 1974 sfree(state);
1975}
1976
df11cd4e 1977static char *solve_game(game_state *state, game_state *currstate,
c566778e 1978 char *ai, char **error)
2ac6d24e 1979{
df11cd4e 1980 unsigned char *vedge, *hedge;
df11cd4e 1981 int x, y, len;
1982 char *ret, *p;
c566778e 1983 int i, j, n;
1984 struct numberdata *nd;
2ac6d24e 1985
c566778e 1986 if (ai)
1987 return dupstr(ai);
1507058f 1988
c566778e 1989 /*
1990 * Attempt the in-built solver.
1991 */
1507058f 1992
c566778e 1993 /* Set up each number's (very short) candidate position list. */
1994 for (i = n = 0; i < state->h * state->w; i++)
1995 if (state->grid[i])
1996 n++;
1997
1998 nd = snewn(n, struct numberdata);
1999
2000 for (i = j = 0; i < state->h * state->w; i++)
2001 if (state->grid[i]) {
2002 nd[j].area = state->grid[i];
2003 nd[j].npoints = 1;
2004 nd[j].points = snewn(1, struct point);
2005 nd[j].points[0].x = i % state->w;
2006 nd[j].points[0].y = i / state->w;
2007 j++;
2008 }
1507058f 2009
c566778e 2010 assert(j == n);
1507058f 2011
c566778e 2012 vedge = snewn(state->w * state->h, unsigned char);
2013 hedge = snewn(state->w * state->h, unsigned char);
2014 memset(vedge, 0, state->w * state->h);
2015 memset(hedge, 0, state->w * state->h);
2016
2017 rect_solver(state->w, state->h, n, nd, hedge, vedge, NULL);
2018
2019 /*
2020 * Clean up.
2021 */
2022 for (i = 0; i < n; i++)
2023 sfree(nd[i].points);
2024 sfree(nd);
2ac6d24e 2025
df11cd4e 2026 len = 2 + (state->w-1)*state->h + (state->h-1)*state->w;
2027 ret = snewn(len, char);
2028
2029 p = ret;
2030 *p++ = 'S';
2031 for (y = 0; y < state->h; y++)
c566778e 2032 for (x = 1; x < state->w; x++)
2033 *p++ = vedge[y*state->w+x] ? '1' : '0';
df11cd4e 2034 for (y = 1; y < state->h; y++)
2035 for (x = 0; x < state->w; x++)
2036 *p++ = hedge[y*state->w+x] ? '1' : '0';
2037 *p++ = '\0';
2038 assert(p - ret == len);
2ac6d24e 2039
c566778e 2040 sfree(vedge);
2041 sfree(hedge);
2ac6d24e 2042
2043 return ret;
2044}
2045
9b4b03d3 2046static char *game_text_format(game_state *state)
2047{
6ad5ed74 2048 char *ret, *p, buf[80];
2049 int i, x, y, col, maxlen;
2050
2051 /*
2052 * First determine the number of spaces required to display a
2053 * number. We'll use at least two, because one looks a bit
2054 * silly.
2055 */
2056 col = 2;
2057 for (i = 0; i < state->w * state->h; i++) {
2058 x = sprintf(buf, "%d", state->grid[i]);
2059 if (col < x) col = x;
2060 }
2061
2062 /*
2063 * Now we know the exact total size of the grid we're going to
2064 * produce: it's got 2*h+1 rows, each containing w lots of col,
2065 * w+1 boundary characters and a trailing newline.
2066 */
2067 maxlen = (2*state->h+1) * (state->w * (col+1) + 2);
2068
48a10826 2069 ret = snewn(maxlen+1, char);
6ad5ed74 2070 p = ret;
2071
2072 for (y = 0; y <= 2*state->h; y++) {
2073 for (x = 0; x <= 2*state->w; x++) {
2074 if (x & y & 1) {
2075 /*
2076 * Display a number.
2077 */
2078 int v = grid(state, x/2, y/2);
2079 if (v)
2080 sprintf(buf, "%*d", col, v);
2081 else
2082 sprintf(buf, "%*s", col, "");
2083 memcpy(p, buf, col);
2084 p += col;
2085 } else if (x & 1) {
2086 /*
2087 * Display a horizontal edge or nothing.
2088 */
2089 int h = (y==0 || y==2*state->h ? 1 :
2090 HRANGE(state, x/2, y/2) && hedge(state, x/2, y/2));
2091 int i;
2092 if (h)
2093 h = '-';
2094 else
2095 h = ' ';
2096 for (i = 0; i < col; i++)
2097 *p++ = h;
2098 } else if (y & 1) {
2099 /*
2100 * Display a vertical edge or nothing.
2101 */
2102 int v = (x==0 || x==2*state->w ? 1 :
2103 VRANGE(state, x/2, y/2) && vedge(state, x/2, y/2));
2104 if (v)
2105 *p++ = '|';
2106 else
2107 *p++ = ' ';
2108 } else {
2109 /*
2110 * Display a corner, or a vertical edge, or a
2111 * horizontal edge, or nothing.
2112 */
2113 int hl = (y==0 || y==2*state->h ? 1 :
2114 HRANGE(state, (x-1)/2, y/2) && hedge(state, (x-1)/2, y/2));
2115 int hr = (y==0 || y==2*state->h ? 1 :
2116 HRANGE(state, (x+1)/2, y/2) && hedge(state, (x+1)/2, y/2));
2117 int vu = (x==0 || x==2*state->w ? 1 :
2118 VRANGE(state, x/2, (y-1)/2) && vedge(state, x/2, (y-1)/2));
2119 int vd = (x==0 || x==2*state->w ? 1 :
2120 VRANGE(state, x/2, (y+1)/2) && vedge(state, x/2, (y+1)/2));
2121 if (!hl && !hr && !vu && !vd)
2122 *p++ = ' ';
2123 else if (hl && hr && !vu && !vd)
2124 *p++ = '-';
2125 else if (!hl && !hr && vu && vd)
2126 *p++ = '|';
2127 else
2128 *p++ = '+';
2129 }
2130 }
2131 *p++ = '\n';
2132 }
2133
2134 assert(p - ret == maxlen);
2135 *p = '\0';
2136 return ret;
9b4b03d3 2137}
2138
08dd70c3 2139struct game_ui {
2140 /*
2141 * These coordinates are 2 times the obvious grid coordinates.
2142 * Hence, the top left of the grid is (0,0), the grid point to
2143 * the right of that is (2,0), the one _below that_ is (2,2)
2144 * and so on. This is so that we can specify a drag start point
2145 * on an edge (one odd coordinate) or in the middle of a square
2146 * (two odd coordinates) rather than always at a corner.
2147 *
2148 * -1,-1 means no drag is in progress.
2149 */
2150 int drag_start_x;
2151 int drag_start_y;
2152 int drag_end_x;
2153 int drag_end_y;
2154 /*
2155 * This flag is set as soon as a dragging action moves the
2156 * mouse pointer away from its starting point, so that even if
2157 * the pointer _returns_ to its starting point the action is
2158 * treated as a small drag rather than a click.
2159 */
2160 int dragged;
375c9b4d 2161 /*
2162 * These are the co-ordinates of the top-left and bottom-right squares
2163 * in the drag box, respectively, or -1 otherwise.
2164 */
2165 int x1;
2166 int y1;
2167 int x2;
2168 int y2;
08dd70c3 2169};
2170
be8d5aa1 2171static game_ui *new_ui(game_state *state)
74a4e547 2172{
08dd70c3 2173 game_ui *ui = snew(game_ui);
2174 ui->drag_start_x = -1;
2175 ui->drag_start_y = -1;
2176 ui->drag_end_x = -1;
2177 ui->drag_end_y = -1;
2178 ui->dragged = FALSE;
375c9b4d 2179 ui->x1 = -1;
2180 ui->y1 = -1;
2181 ui->x2 = -1;
2182 ui->y2 = -1;
08dd70c3 2183 return ui;
74a4e547 2184}
2185
be8d5aa1 2186static void free_ui(game_ui *ui)
74a4e547 2187{
08dd70c3 2188 sfree(ui);
2189}
2190
844f605f 2191static char *encode_ui(game_ui *ui)
ae8290c6 2192{
2193 return NULL;
2194}
2195
844f605f 2196static void decode_ui(game_ui *ui, char *encoding)
ae8290c6 2197{
2198}
2199
be8d5aa1 2200static void coord_round(float x, float y, int *xr, int *yr)
08dd70c3 2201{
d4e7900f 2202 float xs, ys, xv, yv, dx, dy, dist;
08dd70c3 2203
2204 /*
d4e7900f 2205 * Find the nearest square-centre.
08dd70c3 2206 */
d4e7900f 2207 xs = (float)floor(x) + 0.5F;
2208 ys = (float)floor(y) + 0.5F;
08dd70c3 2209
2210 /*
d4e7900f 2211 * And find the nearest grid vertex.
08dd70c3 2212 */
d4e7900f 2213 xv = (float)floor(x + 0.5F);
2214 yv = (float)floor(y + 0.5F);
08dd70c3 2215
2216 /*
d4e7900f 2217 * We allocate clicks in parts of the grid square to either
2218 * corners, edges or square centres, as follows:
2219 *
2220 * +--+--------+--+
2221 * | | | |
2222 * +--+ +--+
2223 * | `. ,' |
2224 * | +--+ |
2225 * | | | |
2226 * | +--+ |
2227 * | ,' `. |
2228 * +--+ +--+
2229 * | | | |
2230 * +--+--------+--+
2231 *
2232 * (Not to scale!)
2233 *
2234 * In other words: we measure the square distance (i.e.
2235 * max(dx,dy)) from the click to the nearest corner, and if
2236 * it's within CORNER_TOLERANCE then we return a corner click.
2237 * We measure the square distance from the click to the nearest
2238 * centre, and if that's within CENTRE_TOLERANCE we return a
2239 * centre click. Failing that, we find which of the two edge
2240 * centres is nearer to the click and return that edge.
08dd70c3 2241 */
d4e7900f 2242
2243 /*
2244 * Check for corner click.
2245 */
2246 dx = (float)fabs(x - xv);
2247 dy = (float)fabs(y - yv);
2248 dist = (dx > dy ? dx : dy);
2249 if (dist < CORNER_TOLERANCE) {
2250 *xr = 2 * (int)xv;
2251 *yr = 2 * (int)yv;
2252 } else {
2253 /*
2254 * Check for centre click.
2255 */
2256 dx = (float)fabs(x - xs);
2257 dy = (float)fabs(y - ys);
2258 dist = (dx > dy ? dx : dy);
2259 if (dist < CENTRE_TOLERANCE) {
2260 *xr = 1 + 2 * (int)xs;
2261 *yr = 1 + 2 * (int)ys;
2262 } else {
2263 /*
2264 * Failing both of those, see which edge we're closer to.
2265 * Conveniently, this is simply done by testing the relative
2266 * magnitude of dx and dy (which are currently distances from
2267 * the square centre).
2268 */
2269 if (dx > dy) {
2270 /* Vertical edge: x-coord of corner,
2271 * y-coord of square centre. */
2272 *xr = 2 * (int)xv;
ee03cb5f 2273 *yr = 1 + 2 * (int)floor(ys);
d4e7900f 2274 } else {
2275 /* Horizontal edge: x-coord of square centre,
2276 * y-coord of corner. */
ee03cb5f 2277 *xr = 1 + 2 * (int)floor(xs);
d4e7900f 2278 *yr = 2 * (int)yv;
2279 }
2280 }
2281 }
08dd70c3 2282}
2283
df11cd4e 2284/*
2285 * Returns TRUE if it has made any change to the grid.
2286 */
2287static int grid_draw_rect(game_state *state,
2288 unsigned char *hedge, unsigned char *vedge,
2289 int c, int really,
2290 int x1, int y1, int x2, int y2)
08dd70c3 2291{
375c9b4d 2292 int x, y;
df11cd4e 2293 int changed = FALSE;
08dd70c3 2294
2295 /*
2296 * Draw horizontal edges of rectangles.
2297 */
2298 for (x = x1; x < x2; x++)
2299 for (y = y1; y <= y2; y++)
2300 if (HRANGE(state,x,y)) {
2301 int val = index(state,hedge,x,y);
2302 if (y == y1 || y == y2)
2303 val = c;
2304 else if (c == 1)
2305 val = 0;
df11cd4e 2306 changed = changed || (index(state,hedge,x,y) != val);
2307 if (really)
2308 index(state,hedge,x,y) = val;
08dd70c3 2309 }
2310
2311 /*
2312 * Draw vertical edges of rectangles.
2313 */
2314 for (y = y1; y < y2; y++)
2315 for (x = x1; x <= x2; x++)
2316 if (VRANGE(state,x,y)) {
2317 int val = index(state,vedge,x,y);
2318 if (x == x1 || x == x2)
2319 val = c;
2320 else if (c == 1)
2321 val = 0;
df11cd4e 2322 changed = changed || (index(state,vedge,x,y) != val);
2323 if (really)
2324 index(state,vedge,x,y) = val;
08dd70c3 2325 }
df11cd4e 2326
2327 return changed;
2328}
2329
2330static int ui_draw_rect(game_state *state, game_ui *ui,
2331 unsigned char *hedge, unsigned char *vedge, int c,
2332 int really)
2333{
2334 return grid_draw_rect(state, hedge, vedge, c, really,
2335 ui->x1, ui->y1, ui->x2, ui->y2);
74a4e547 2336}
2337
07dfb697 2338static void game_changed_state(game_ui *ui, game_state *oldstate,
2339 game_state *newstate)
2340{
2341}
2342
1e3e152d 2343struct game_drawstate {
2344 int started;
2345 int w, h, tilesize;
2346 unsigned long *visible;
2347};
2348
df11cd4e 2349static char *interpret_move(game_state *from, game_ui *ui, game_drawstate *ds,
2350 int x, int y, int button)
2351{
08dd70c3 2352 int xc, yc;
2353 int startdrag = FALSE, enddrag = FALSE, active = FALSE;
df11cd4e 2354 char buf[80], *ret;
3870c4d8 2355
f0ee053c 2356 button &= ~MOD_MASK;
2357
08dd70c3 2358 if (button == LEFT_BUTTON) {
2359 startdrag = TRUE;
2360 } else if (button == LEFT_RELEASE) {
2361 enddrag = TRUE;
2362 } else if (button != LEFT_DRAG) {
2363 return NULL;
2364 }
2365
d4e7900f 2366 coord_round(FROMCOORD((float)x), FROMCOORD((float)y), &xc, &yc);
08dd70c3 2367
e35b546f 2368 if (startdrag &&
2369 xc >= 0 && xc <= 2*from->w &&
2370 yc >= 0 && yc <= 2*from->h) {
2371
08dd70c3 2372 ui->drag_start_x = xc;
2373 ui->drag_start_y = yc;
2374 ui->drag_end_x = xc;
2375 ui->drag_end_y = yc;
2376 ui->dragged = FALSE;
2377 active = TRUE;
2378 }
3870c4d8 2379
e35b546f 2380 if (ui->drag_start_x >= 0 &&
2381 (xc != ui->drag_end_x || yc != ui->drag_end_y)) {
375c9b4d 2382 int t;
2383
08dd70c3 2384 ui->drag_end_x = xc;
2385 ui->drag_end_y = yc;
2386 ui->dragged = TRUE;
2387 active = TRUE;
375c9b4d 2388
ee03cb5f 2389 if (xc >= 0 && xc <= 2*from->w &&
2390 yc >= 0 && yc <= 2*from->h) {
2391 ui->x1 = ui->drag_start_x;
2392 ui->x2 = ui->drag_end_x;
2393 if (ui->x2 < ui->x1) { t = ui->x1; ui->x1 = ui->x2; ui->x2 = t; }
2394
2395 ui->y1 = ui->drag_start_y;
2396 ui->y2 = ui->drag_end_y;
2397 if (ui->y2 < ui->y1) { t = ui->y1; ui->y1 = ui->y2; ui->y2 = t; }
2398
2399 ui->x1 = ui->x1 / 2; /* rounds down */
2400 ui->x2 = (ui->x2+1) / 2; /* rounds up */
2401 ui->y1 = ui->y1 / 2; /* rounds down */
2402 ui->y2 = (ui->y2+1) / 2; /* rounds up */
2403 } else {
2404 ui->x1 = -1;
2405 ui->y1 = -1;
2406 ui->x2 = -1;
2407 ui->y2 = -1;
2408 }
08dd70c3 2409 }
3870c4d8 2410
934797c7 2411 ret = NULL;
2412
e35b546f 2413 if (enddrag && (ui->drag_start_x >= 0)) {
934797c7 2414 if (xc >= 0 && xc <= 2*from->w &&
2415 yc >= 0 && yc <= 2*from->h) {
934797c7 2416
2417 if (ui->dragged) {
df11cd4e 2418 if (ui_draw_rect(from, ui, from->hedge,
2419 from->vedge, 1, FALSE)) {
2420 sprintf(buf, "R%d,%d,%d,%d",
2421 ui->x1, ui->y1, ui->x2 - ui->x1, ui->y2 - ui->y1);
2422 ret = dupstr(buf);
2423 }
934797c7 2424 } else {
2425 if ((xc & 1) && !(yc & 1) && HRANGE(from,xc/2,yc/2)) {
df11cd4e 2426 sprintf(buf, "H%d,%d", xc/2, yc/2);
2427 ret = dupstr(buf);
934797c7 2428 }
2429 if ((yc & 1) && !(xc & 1) && VRANGE(from,xc/2,yc/2)) {
df11cd4e 2430 sprintf(buf, "V%d,%d", xc/2, yc/2);
2431 ret = dupstr(buf);
934797c7 2432 }
2433 }
934797c7 2434 }
2435
2436 ui->drag_start_x = -1;
2437 ui->drag_start_y = -1;
2438 ui->drag_end_x = -1;
2439 ui->drag_end_y = -1;
375c9b4d 2440 ui->x1 = -1;
2441 ui->y1 = -1;
2442 ui->x2 = -1;
2443 ui->y2 = -1;
934797c7 2444 ui->dragged = FALSE;
2445 active = TRUE;
3870c4d8 2446 }
2447
934797c7 2448 if (ret)
2449 return ret; /* a move has been made */
2450 else if (active)
df11cd4e 2451 return ""; /* UI activity has occurred */
934797c7 2452 else
2453 return NULL;
3870c4d8 2454}
2455
df11cd4e 2456static game_state *execute_move(game_state *from, char *move)
2457{
2458 game_state *ret;
2459 int x1, y1, x2, y2, mode;
2460
2461 if (move[0] == 'S') {
2462 char *p = move+1;
2463 int x, y;
2464
2465 ret = dup_game(from);
2466 ret->cheated = TRUE;
2467
2468 for (y = 0; y < ret->h; y++)
2469 for (x = 1; x < ret->w; x++) {
2470 vedge(ret, x, y) = (*p == '1');
2471 if (*p) p++;
2472 }
2473 for (y = 1; y < ret->h; y++)
2474 for (x = 0; x < ret->w; x++) {
2475 hedge(ret, x, y) = (*p == '1');
2476 if (*p) p++;
2477 }
2478
9bb4a9a0 2479 sfree(ret->correct);
2480 ret->correct = get_correct(ret);
2481
df11cd4e 2482 return ret;
2483
2484 } else if (move[0] == 'R' &&
2485 sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 &&
2486 x1 >= 0 && x2 >= 0 && x1+x2 <= from->w &&
2487 y1 >= 0 && y2 >= 0 && y1+y2 <= from->h) {
2488 x2 += x1;
2489 y2 += y1;
2490 mode = move[0];
2491 } else if ((move[0] == 'H' || move[0] == 'V') &&
2492 sscanf(move+1, "%d,%d", &x1, &y1) == 2 &&
2493 (move[0] == 'H' ? HRANGE(from, x1, y1) :
2494 VRANGE(from, x1, y1))) {
2495 mode = move[0];
2496 } else
2497 return NULL; /* can't parse move string */
2498
2499 ret = dup_game(from);
2500
2501 if (mode == 'R') {
2502 grid_draw_rect(ret, ret->hedge, ret->vedge, 1, TRUE, x1, y1, x2, y2);
2503 } else if (mode == 'H') {
2504 hedge(ret,x1,y1) = !hedge(ret,x1,y1);
2505 } else if (mode == 'V') {
2506 vedge(ret,x1,y1) = !vedge(ret,x1,y1);
2507 }
2508
b3408c3d 2509 sfree(ret->correct);
2510 ret->correct = get_correct(ret);
2511
df11cd4e 2512 /*
2513 * We've made a real change to the grid. Check to see
2514 * if the game has been completed.
2515 */
2516 if (!ret->completed) {
2517 int x, y, ok;
df11cd4e 2518
2519 ok = TRUE;
2520 for (x = 0; x < ret->w; x++)
2521 for (y = 0; y < ret->h; y++)
9bb4a9a0 2522 if (!index(ret, ret->correct, x, y))
df11cd4e 2523 ok = FALSE;
2524
df11cd4e 2525 if (ok)
2526 ret->completed = TRUE;
2527 }
2528
2529 return ret;
2530}
2531
3870c4d8 2532/* ----------------------------------------------------------------------
2533 * Drawing routines.
2534 */
2535
ab53eb64 2536#define CORRECT (1L<<16)
08dd70c3 2537
2538#define COLOUR(k) ( (k)==1 ? COL_LINE : COL_DRAG )
ab53eb64 2539#define MAX4(x,y,z,w) ( max(max(x,y),max(z,w)) )
3870c4d8 2540
1f3ee4ee 2541static void game_compute_size(game_params *params, int tilesize,
2542 int *x, int *y)
3870c4d8 2543{
1f3ee4ee 2544 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2545 struct { int tilesize; } ads, *ds = &ads;
2546 ads.tilesize = tilesize;
1e3e152d 2547
3870c4d8 2548 *x = params->w * TILE_SIZE + 2*BORDER + 1;
2549 *y = params->h * TILE_SIZE + 2*BORDER + 1;
2550}
2551
dafd6cf6 2552static void game_set_size(drawing *dr, game_drawstate *ds,
2553 game_params *params, int tilesize)
1f3ee4ee 2554{
2555 ds->tilesize = tilesize;
2556}
2557
8266f3fc 2558static float *game_colours(frontend *fe, int *ncolours)
3870c4d8 2559{
2560 float *ret = snewn(3 * NCOLOURS, float);
2561
2562 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2563
2564 ret[COL_GRID * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2565 ret[COL_GRID * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2566 ret[COL_GRID * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2567
08dd70c3 2568 ret[COL_DRAG * 3 + 0] = 1.0F;
2569 ret[COL_DRAG * 3 + 1] = 0.0F;
2570 ret[COL_DRAG * 3 + 2] = 0.0F;
2571
3870c4d8 2572 ret[COL_CORRECT * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2573 ret[COL_CORRECT * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2574 ret[COL_CORRECT * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2575
2576 ret[COL_LINE * 3 + 0] = 0.0F;
2577 ret[COL_LINE * 3 + 1] = 0.0F;
2578 ret[COL_LINE * 3 + 2] = 0.0F;
2579
2580 ret[COL_TEXT * 3 + 0] = 0.0F;
2581 ret[COL_TEXT * 3 + 1] = 0.0F;
2582 ret[COL_TEXT * 3 + 2] = 0.0F;
2583
2584 *ncolours = NCOLOURS;
2585 return ret;
2586}
2587
dafd6cf6 2588static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
3870c4d8 2589{
2590 struct game_drawstate *ds = snew(struct game_drawstate);
08dd70c3 2591 int i;
3870c4d8 2592
2593 ds->started = FALSE;
2594 ds->w = state->w;
2595 ds->h = state->h;
ab53eb64 2596 ds->visible = snewn(ds->w * ds->h, unsigned long);
1e3e152d 2597 ds->tilesize = 0; /* not decided yet */
08dd70c3 2598 for (i = 0; i < ds->w * ds->h; i++)
2599 ds->visible[i] = 0xFFFF;
3870c4d8 2600
2601 return ds;
2602}
2603
dafd6cf6 2604static void game_free_drawstate(drawing *dr, game_drawstate *ds)
3870c4d8 2605{
2606 sfree(ds->visible);
2607 sfree(ds);
2608}
2609
dafd6cf6 2610static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
1e3e152d 2611 int x, int y, unsigned char *hedge, unsigned char *vedge,
2612 unsigned char *corners, int correct)
3870c4d8 2613{
2614 int cx = COORD(x), cy = COORD(y);
2615 char str[80];
2616
dafd6cf6 2617 draw_rect(dr, cx, cy, TILE_SIZE+1, TILE_SIZE+1, COL_GRID);
2618 draw_rect(dr, cx+1, cy+1, TILE_SIZE-1, TILE_SIZE-1,
3870c4d8 2619 correct ? COL_CORRECT : COL_BACKGROUND);
2620
2621 if (grid(state,x,y)) {
2622 sprintf(str, "%d", grid(state,x,y));
dafd6cf6 2623 draw_text(dr, cx+TILE_SIZE/2, cy+TILE_SIZE/2, FONT_VARIABLE,
105a00d0 2624 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_TEXT, str);
3870c4d8 2625 }
2626
2627 /*
2628 * Draw edges.
2629 */
08dd70c3 2630 if (!HRANGE(state,x,y) || index(state,hedge,x,y))
dafd6cf6 2631 draw_rect(dr, cx, cy, TILE_SIZE+1, 2,
08dd70c3 2632 HRANGE(state,x,y) ? COLOUR(index(state,hedge,x,y)) :
2633 COL_LINE);
2634 if (!HRANGE(state,x,y+1) || index(state,hedge,x,y+1))
dafd6cf6 2635 draw_rect(dr, cx, cy+TILE_SIZE-1, TILE_SIZE+1, 2,
08dd70c3 2636 HRANGE(state,x,y+1) ? COLOUR(index(state,hedge,x,y+1)) :
2637 COL_LINE);
2638 if (!VRANGE(state,x,y) || index(state,vedge,x,y))
dafd6cf6 2639 draw_rect(dr, cx, cy, 2, TILE_SIZE+1,
08dd70c3 2640 VRANGE(state,x,y) ? COLOUR(index(state,vedge,x,y)) :
2641 COL_LINE);
2642 if (!VRANGE(state,x+1,y) || index(state,vedge,x+1,y))
dafd6cf6 2643 draw_rect(dr, cx+TILE_SIZE-1, cy, 2, TILE_SIZE+1,
08dd70c3 2644 VRANGE(state,x+1,y) ? COLOUR(index(state,vedge,x+1,y)) :
2645 COL_LINE);
3870c4d8 2646
2647 /*
2648 * Draw corners.
2649 */
ec9a0f09 2650 if (index(state,corners,x,y))
dafd6cf6 2651 draw_rect(dr, cx, cy, 2, 2,
ec9a0f09 2652 COLOUR(index(state,corners,x,y)));
2653 if (x+1 < state->w && index(state,corners,x+1,y))
dafd6cf6 2654 draw_rect(dr, cx+TILE_SIZE-1, cy, 2, 2,
ec9a0f09 2655 COLOUR(index(state,corners,x+1,y)));
2656 if (y+1 < state->h && index(state,corners,x,y+1))
dafd6cf6 2657 draw_rect(dr, cx, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2658 COLOUR(index(state,corners,x,y+1)));
2659 if (x+1 < state->w && y+1 < state->h && index(state,corners,x+1,y+1))
dafd6cf6 2660 draw_rect(dr, cx+TILE_SIZE-1, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2661 COLOUR(index(state,corners,x+1,y+1)));
3870c4d8 2662
dafd6cf6 2663 draw_update(dr, cx, cy, TILE_SIZE+1, TILE_SIZE+1);
3870c4d8 2664}
2665
dafd6cf6 2666static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
c822de4a 2667 game_state *state, int dir, game_ui *ui,
74a4e547 2668 float animtime, float flashtime)
3870c4d8 2669{
2670 int x, y;
ec9a0f09 2671 unsigned char *hedge, *vedge, *corners;
3870c4d8 2672
08dd70c3 2673 if (ui->dragged) {
2674 hedge = snewn(state->w*state->h, unsigned char);
2675 vedge = snewn(state->w*state->h, unsigned char);
2676 memcpy(hedge, state->hedge, state->w*state->h);
2677 memcpy(vedge, state->vedge, state->w*state->h);
df11cd4e 2678 ui_draw_rect(state, ui, hedge, vedge, 2, TRUE);
08dd70c3 2679 } else {
2680 hedge = state->hedge;
2681 vedge = state->vedge;
2682 }
2683
ec9a0f09 2684 corners = snewn(state->w * state->h, unsigned char);
2685 memset(corners, 0, state->w * state->h);
2686 for (x = 0; x < state->w; x++)
2687 for (y = 0; y < state->h; y++) {
2688 if (x > 0) {
2689 int e = index(state, vedge, x, y);
2690 if (index(state,corners,x,y) < e)
2691 index(state,corners,x,y) = e;
2692 if (y+1 < state->h &&
2693 index(state,corners,x,y+1) < e)
2694 index(state,corners,x,y+1) = e;
2695 }
2696 if (y > 0) {
2697 int e = index(state, hedge, x, y);
2698 if (index(state,corners,x,y) < e)
2699 index(state,corners,x,y) = e;
2700 if (x+1 < state->w &&
2701 index(state,corners,x+1,y) < e)
2702 index(state,corners,x+1,y) = e;
2703 }
2704 }
2705
3870c4d8 2706 if (!ds->started) {
dafd6cf6 2707 draw_rect(dr, 0, 0,
105a00d0 2708 state->w * TILE_SIZE + 2*BORDER + 1,
2709 state->h * TILE_SIZE + 2*BORDER + 1, COL_BACKGROUND);
dafd6cf6 2710 draw_rect(dr, COORD(0)-1, COORD(0)-1,
3870c4d8 2711 ds->w*TILE_SIZE+3, ds->h*TILE_SIZE+3, COL_LINE);
2712 ds->started = TRUE;
dafd6cf6 2713 draw_update(dr, 0, 0,
863c3945 2714 state->w * TILE_SIZE + 2*BORDER + 1,
2715 state->h * TILE_SIZE + 2*BORDER + 1);
3870c4d8 2716 }
2717
2718 for (x = 0; x < state->w; x++)
2719 for (y = 0; y < state->h; y++) {
ab53eb64 2720 unsigned long c = 0;
08dd70c3 2721
2722 if (HRANGE(state,x,y))
2723 c |= index(state,hedge,x,y);
eddb22e8 2724 if (HRANGE(state,x,y+1))
2725 c |= index(state,hedge,x,y+1) << 2;
08dd70c3 2726 if (VRANGE(state,x,y))
2727 c |= index(state,vedge,x,y) << 4;
eddb22e8 2728 if (VRANGE(state,x+1,y))
2729 c |= index(state,vedge,x+1,y) << 6;
ec9a0f09 2730 c |= index(state,corners,x,y) << 8;
2731 if (x+1 < state->w)
2732 c |= index(state,corners,x+1,y) << 10;
2733 if (y+1 < state->h)
2734 c |= index(state,corners,x,y+1) << 12;
2735 if (x+1 < state->w && y+1 < state->h)
ab53eb64 2736 /* cast to prevent 2<<14 sign-extending on promotion to long */
2737 c |= (unsigned long)index(state,corners,x+1,y+1) << 14;
9bb4a9a0 2738 if (index(state, state->correct, x, y) && !flashtime)
3870c4d8 2739 c |= CORRECT;
2740
2741 if (index(ds,ds->visible,x,y) != c) {
dafd6cf6 2742 draw_tile(dr, ds, state, x, y, hedge, vedge, corners,
ab53eb64 2743 (c & CORRECT) ? 1 : 0);
ec9a0f09 2744 index(ds,ds->visible,x,y) = c;
3870c4d8 2745 }
2746 }
2747
375c9b4d 2748 {
2749 char buf[256];
2750
2751 if (ui->x1 >= 0 && ui->y1 >= 0 &&
2752 ui->x2 >= 0 && ui->y2 >= 0) {
2753 sprintf(buf, "%dx%d ",
2754 ui->x2-ui->x1,
2755 ui->y2-ui->y1);
2756 } else {
2757 buf[0] = '\0';
2758 }
2759
2760 if (state->cheated)
2761 strcat(buf, "Auto-solved.");
2762 else if (state->completed)
2763 strcat(buf, "COMPLETED!");
2764
dafd6cf6 2765 status_bar(dr, buf);
375c9b4d 2766 }
2767
08dd70c3 2768 if (hedge != state->hedge) {
2769 sfree(hedge);
2770 sfree(vedge);
375c9b4d 2771 }
08dd70c3 2772
11c44cf5 2773 sfree(corners);
3870c4d8 2774}
2775
be8d5aa1 2776static float game_anim_length(game_state *oldstate,
e3f21163 2777 game_state *newstate, int dir, game_ui *ui)
3870c4d8 2778{
2779 return 0.0F;
2780}
2781
be8d5aa1 2782static float game_flash_length(game_state *oldstate,
e3f21163 2783 game_state *newstate, int dir, game_ui *ui)
3870c4d8 2784{
2ac6d24e 2785 if (!oldstate->completed && newstate->completed &&
2786 !oldstate->cheated && !newstate->cheated)
ef29354c 2787 return FLASH_TIME;
3870c4d8 2788 return 0.0F;
2789}
2790
4d08de49 2791static int game_timing_state(game_state *state, game_ui *ui)
48dcdd62 2792{
2793 return TRUE;
2794}
2795
dafd6cf6 2796static void game_print_size(game_params *params, float *x, float *y)
2797{
2798 int pw, ph;
2799
2800 /*
2801 * I'll use 5mm squares by default.
2802 */
2803 game_compute_size(params, 500, &pw, &ph);
2804 *x = pw / 100.0;
2805 *y = ph / 100.0;
2806}
2807
2808static void game_print(drawing *dr, game_state *state, int tilesize)
2809{
2810 int w = state->w, h = state->h;
2811 int ink = print_mono_colour(dr, 0);
2812 int x, y;
2813
2814 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2815 game_drawstate ads, *ds = &ads;
4413ef0f 2816 game_set_size(dr, ds, NULL, tilesize);
dafd6cf6 2817
2818 /*
2819 * Border.
2820 */
2821 print_line_width(dr, TILE_SIZE / 10);
2822 draw_rect_outline(dr, COORD(0), COORD(0), w*TILE_SIZE, h*TILE_SIZE, ink);
2823
2824 /*
2825 * Grid. We have to make the grid lines particularly thin,
2826 * because users will be drawing lines _along_ them and we want
2827 * those lines to be visible.
2828 */
2829 print_line_width(dr, TILE_SIZE / 256);
2830 for (x = 1; x < w; x++)
2831 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), ink);
2832 for (y = 1; y < h; y++)
2833 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), ink);
2834
2835 /*
2836 * Solution.
2837 */
2838 print_line_width(dr, TILE_SIZE / 10);
2839 for (y = 0; y <= h; y++)
2840 for (x = 0; x <= w; x++) {
2841 if (HRANGE(state,x,y) && hedge(state,x,y))
2842 draw_line(dr, COORD(x), COORD(y), COORD(x+1), COORD(y), ink);
2843 if (VRANGE(state,x,y) && vedge(state,x,y))
2844 draw_line(dr, COORD(x), COORD(y), COORD(x), COORD(y+1), ink);
2845 }
2846
2847 /*
2848 * Clues.
2849 */
2850 for (y = 0; y < h; y++)
2851 for (x = 0; x < w; x++)
2852 if (grid(state,x,y)) {
2853 char str[80];
2854 sprintf(str, "%d", grid(state,x,y));
2855 draw_text(dr, COORD(x)+TILE_SIZE/2, COORD(y)+TILE_SIZE/2,
2856 FONT_VARIABLE, TILE_SIZE/2,
2857 ALIGN_HCENTRE | ALIGN_VCENTRE, ink, str);
2858 }
2859}
2860
be8d5aa1 2861#ifdef COMBINED
2862#define thegame rect
2863#endif
2864
2865const struct game thegame = {
750037d7 2866 "Rectangles", "games.rectangles", "rectangles",
be8d5aa1 2867 default_params,
2868 game_fetch_preset,
2869 decode_params,
2870 encode_params,
2871 free_params,
2872 dup_params,
1d228b10 2873 TRUE, game_configure, custom_params,
be8d5aa1 2874 validate_params,
1185e3c5 2875 new_game_desc,
1185e3c5 2876 validate_desc,
be8d5aa1 2877 new_game,
2878 dup_game,
2879 free_game,
2ac6d24e 2880 TRUE, solve_game,
6ad5ed74 2881 TRUE, game_text_format,
be8d5aa1 2882 new_ui,
2883 free_ui,
ae8290c6 2884 encode_ui,
2885 decode_ui,
07dfb697 2886 game_changed_state,
df11cd4e 2887 interpret_move,
2888 execute_move,
1f3ee4ee 2889 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
be8d5aa1 2890 game_colours,
2891 game_new_drawstate,
2892 game_free_drawstate,
2893 game_redraw,
2894 game_anim_length,
2895 game_flash_length,
dafd6cf6 2896 TRUE, FALSE, game_print_size, game_print,
ac9f41c4 2897 TRUE, /* wants_statusbar */
48dcdd62 2898 FALSE, game_timing_state,
2705d374 2899 0, /* flags */
be8d5aa1 2900};