Change of policy on game_changed_state(). Originally, it was called
[sgt/puzzles] / rect.c
CommitLineData
3870c4d8 1/*
2 * rect.c: Puzzle from nikoli.co.jp. You have a square grid with
3 * numbers in some squares; you must divide the square grid up into
4 * variously sized rectangles, such that every rectangle contains
5 * exactly one numbered square and the area of each rectangle is
6 * equal to the number contained in it.
7 */
8
9/*
10 * TODO:
11 *
738d2f61 12 * - Improve singleton removal.
13 * + It would be nice to limit the size of the generated
14 * rectangles in accordance with existing constraints such as
15 * the maximum rectangle size and the one about not
16 * generating a rectangle the full width or height of the
17 * grid.
18 * + This could be achieved by making a less random choice
19 * about which of the available options to use.
20 * + Alternatively, we could create our rectangle and then
21 * split it up.
3870c4d8 22 */
23
24#include <stdio.h>
25#include <stdlib.h>
26#include <string.h>
27#include <assert.h>
b0e26073 28#include <ctype.h>
3870c4d8 29#include <math.h>
30
31#include "puzzles.h"
32
3870c4d8 33enum {
34 COL_BACKGROUND,
35 COL_CORRECT,
36 COL_LINE,
37 COL_TEXT,
38 COL_GRID,
08dd70c3 39 COL_DRAG,
3870c4d8 40 NCOLOURS
41};
42
43struct game_params {
44 int w, h;
aea3ed9a 45 float expandfactor;
40fde884 46 int unique;
3870c4d8 47};
48
49#define INDEX(state, x, y) (((y) * (state)->w) + (x))
50#define index(state, a, x, y) ((a) [ INDEX(state,x,y) ])
51#define grid(state,x,y) index(state, (state)->grid, x, y)
52#define vedge(state,x,y) index(state, (state)->vedge, x, y)
53#define hedge(state,x,y) index(state, (state)->hedge, x, y)
54
55#define CRANGE(state,x,y,dx,dy) ( (x) >= dx && (x) < (state)->w && \
56 (y) >= dy && (y) < (state)->h )
57#define RANGE(state,x,y) CRANGE(state,x,y,0,0)
58#define HRANGE(state,x,y) CRANGE(state,x,y,0,1)
59#define VRANGE(state,x,y) CRANGE(state,x,y,1,0)
60
1e3e152d 61#define PREFERRED_TILE_SIZE 24
62#define TILE_SIZE (ds->tilesize)
63#define BORDER (TILE_SIZE * 3 / 4)
3870c4d8 64
d4e7900f 65#define CORNER_TOLERANCE 0.15F
66#define CENTRE_TOLERANCE 0.15F
67
ef29354c 68#define FLASH_TIME 0.13F
69
3870c4d8 70#define COORD(x) ( (x) * TILE_SIZE + BORDER )
71#define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
72
73struct game_state {
74 int w, h;
75 int *grid; /* contains the numbers */
76 unsigned char *vedge; /* (w+1) x h */
77 unsigned char *hedge; /* w x (h+1) */
2ac6d24e 78 int completed, cheated;
3870c4d8 79};
80
be8d5aa1 81static game_params *default_params(void)
3870c4d8 82{
83 game_params *ret = snew(game_params);
84
85 ret->w = ret->h = 7;
aea3ed9a 86 ret->expandfactor = 0.0F;
40fde884 87 ret->unique = TRUE;
3870c4d8 88
89 return ret;
90}
91
be8d5aa1 92static int game_fetch_preset(int i, char **name, game_params **params)
3870c4d8 93{
94 game_params *ret;
95 int w, h;
96 char buf[80];
97
98 switch (i) {
99 case 0: w = 7, h = 7; break;
ab53eb64 100 case 1: w = 9, h = 9; break;
101 case 2: w = 11, h = 11; break;
102 case 3: w = 13, h = 13; break;
103 case 4: w = 15, h = 15; break;
ab53eb64 104 case 5: w = 17, h = 17; break;
105 case 6: w = 19, h = 19; break;
3870c4d8 106 default: return FALSE;
107 }
108
109 sprintf(buf, "%dx%d", w, h);
110 *name = dupstr(buf);
111 *params = ret = snew(game_params);
112 ret->w = w;
113 ret->h = h;
aea3ed9a 114 ret->expandfactor = 0.0F;
40fde884 115 ret->unique = TRUE;
3870c4d8 116 return TRUE;
117}
118
be8d5aa1 119static void free_params(game_params *params)
3870c4d8 120{
121 sfree(params);
122}
123
be8d5aa1 124static game_params *dup_params(game_params *params)
3870c4d8 125{
126 game_params *ret = snew(game_params);
127 *ret = *params; /* structure copy */
128 return ret;
129}
130
1185e3c5 131static void decode_params(game_params *ret, char const *string)
b0e26073 132{
b0e26073 133 ret->w = ret->h = atoi(string);
aea3ed9a 134 while (*string && isdigit((unsigned char)*string)) string++;
b0e26073 135 if (*string == 'x') {
136 string++;
137 ret->h = atoi(string);
aea3ed9a 138 while (*string && isdigit((unsigned char)*string)) string++;
139 }
140 if (*string == 'e') {
141 string++;
142 ret->expandfactor = atof(string);
40fde884 143 while (*string &&
144 (*string == '.' || isdigit((unsigned char)*string))) string++;
145 }
146 if (*string == 'a') {
147 string++;
148 ret->unique = FALSE;
b0e26073 149 }
b0e26073 150}
151
1185e3c5 152static char *encode_params(game_params *params, int full)
b0e26073 153{
154 char data[256];
155
156 sprintf(data, "%dx%d", params->w, params->h);
5472ceb6 157 if (full && params->expandfactor)
1185e3c5 158 sprintf(data + strlen(data), "e%g", params->expandfactor);
40fde884 159 if (full && !params->unique)
160 strcat(data, "a");
b0e26073 161
162 return dupstr(data);
163}
164
be8d5aa1 165static config_item *game_configure(game_params *params)
3870c4d8 166{
167 config_item *ret;
168 char buf[80];
169
170 ret = snewn(5, config_item);
171
172 ret[0].name = "Width";
173 ret[0].type = C_STRING;
174 sprintf(buf, "%d", params->w);
175 ret[0].sval = dupstr(buf);
176 ret[0].ival = 0;
177
178 ret[1].name = "Height";
179 ret[1].type = C_STRING;
180 sprintf(buf, "%d", params->h);
181 ret[1].sval = dupstr(buf);
182 ret[1].ival = 0;
183
aea3ed9a 184 ret[2].name = "Expansion factor";
185 ret[2].type = C_STRING;
186 sprintf(buf, "%g", params->expandfactor);
187 ret[2].sval = dupstr(buf);
3870c4d8 188 ret[2].ival = 0;
189
40fde884 190 ret[3].name = "Ensure unique solution";
191 ret[3].type = C_BOOLEAN;
aea3ed9a 192 ret[3].sval = NULL;
40fde884 193 ret[3].ival = params->unique;
194
195 ret[4].name = NULL;
196 ret[4].type = C_END;
197 ret[4].sval = NULL;
198 ret[4].ival = 0;
aea3ed9a 199
3870c4d8 200 return ret;
201}
202
be8d5aa1 203static game_params *custom_params(config_item *cfg)
3870c4d8 204{
205 game_params *ret = snew(game_params);
206
207 ret->w = atoi(cfg[0].sval);
208 ret->h = atoi(cfg[1].sval);
aea3ed9a 209 ret->expandfactor = atof(cfg[2].sval);
40fde884 210 ret->unique = cfg[3].ival;
3870c4d8 211
212 return ret;
213}
214
3ff276f2 215static char *validate_params(game_params *params, int full)
3870c4d8 216{
ab53eb64 217 if (params->w <= 0 || params->h <= 0)
3870c4d8 218 return "Width and height must both be greater than zero";
ab53eb64 219 if (params->w*params->h < 2)
d4e7900f 220 return "Grid area must be greater than one";
aea3ed9a 221 if (params->expandfactor < 0.0F)
222 return "Expansion factor may not be negative";
3870c4d8 223 return NULL;
224}
225
26801d29 226struct point {
227 int x, y;
228};
229
3870c4d8 230struct rect {
231 int x, y;
232 int w, h;
233};
234
235struct rectlist {
236 struct rect *rects;
237 int n;
238};
239
26801d29 240struct numberdata {
241 int area;
242 int npoints;
243 struct point *points;
244};
245
246/* ----------------------------------------------------------------------
247 * Solver for Rectangles games.
248 *
249 * This solver is souped up beyond the needs of actually _solving_
250 * a puzzle. It is also designed to cope with uncertainty about
251 * where the numbers have been placed. This is because I run it on
252 * my generated grids _before_ placing the numbers, and have it
253 * tell me where I need to place the numbers to ensure a unique
254 * solution.
255 */
256
257static void remove_rect_placement(int w, int h,
258 struct rectlist *rectpositions,
259 int *overlaps,
260 int rectnum, int placement)
261{
262 int x, y, xx, yy;
263
264#ifdef SOLVER_DIAGNOSTICS
265 printf("ruling out rect %d placement at %d,%d w=%d h=%d\n", rectnum,
266 rectpositions[rectnum].rects[placement].x,
267 rectpositions[rectnum].rects[placement].y,
268 rectpositions[rectnum].rects[placement].w,
269 rectpositions[rectnum].rects[placement].h);
270#endif
271
272 /*
273 * Decrement each entry in the overlaps array to reflect the
274 * removal of this rectangle placement.
275 */
276 for (yy = 0; yy < rectpositions[rectnum].rects[placement].h; yy++) {
277 y = yy + rectpositions[rectnum].rects[placement].y;
278 for (xx = 0; xx < rectpositions[rectnum].rects[placement].w; xx++) {
279 x = xx + rectpositions[rectnum].rects[placement].x;
280
281 assert(overlaps[(rectnum * h + y) * w + x] != 0);
282
283 if (overlaps[(rectnum * h + y) * w + x] > 0)
284 overlaps[(rectnum * h + y) * w + x]--;
285 }
286 }
287
288 /*
289 * Remove the placement from the list of positions for that
290 * rectangle, by interchanging it with the one on the end.
291 */
292 if (placement < rectpositions[rectnum].n - 1) {
293 struct rect t;
294
295 t = rectpositions[rectnum].rects[rectpositions[rectnum].n - 1];
296 rectpositions[rectnum].rects[rectpositions[rectnum].n - 1] =
297 rectpositions[rectnum].rects[placement];
298 rectpositions[rectnum].rects[placement] = t;
299 }
300 rectpositions[rectnum].n--;
301}
302
303static void remove_number_placement(int w, int h, struct numberdata *number,
304 int index, int *rectbyplace)
305{
306 /*
307 * Remove the entry from the rectbyplace array.
308 */
309 rectbyplace[number->points[index].y * w + number->points[index].x] = -1;
310
311 /*
312 * Remove the placement from the list of candidates for that
313 * number, by interchanging it with the one on the end.
314 */
315 if (index < number->npoints - 1) {
316 struct point t;
317
318 t = number->points[number->npoints - 1];
319 number->points[number->npoints - 1] = number->points[index];
320 number->points[index] = t;
321 }
322 number->npoints--;
323}
324
325static int rect_solver(int w, int h, int nrects, struct numberdata *numbers,
df11cd4e 326 unsigned char *hedge, unsigned char *vedge,
327 random_state *rs)
26801d29 328{
329 struct rectlist *rectpositions;
330 int *overlaps, *rectbyplace, *workspace;
331 int i, ret;
332
333 /*
334 * Start by setting up a list of candidate positions for each
335 * rectangle.
336 */
337 rectpositions = snewn(nrects, struct rectlist);
338 for (i = 0; i < nrects; i++) {
339 int rw, rh, area = numbers[i].area;
340 int j, minx, miny, maxx, maxy;
341 struct rect *rlist;
342 int rlistn, rlistsize;
343
344 /*
345 * For each rectangle, begin by finding the bounding
346 * rectangle of its candidate number placements.
347 */
348 maxx = maxy = -1;
349 minx = w;
350 miny = h;
351 for (j = 0; j < numbers[i].npoints; j++) {
352 if (minx > numbers[i].points[j].x) minx = numbers[i].points[j].x;
353 if (miny > numbers[i].points[j].y) miny = numbers[i].points[j].y;
354 if (maxx < numbers[i].points[j].x) maxx = numbers[i].points[j].x;
355 if (maxy < numbers[i].points[j].y) maxy = numbers[i].points[j].y;
356 }
357
358 /*
359 * Now loop over all possible rectangle placements
360 * overlapping a point within that bounding rectangle;
361 * ensure each one actually contains a candidate number
362 * placement, and add it to the list.
363 */
364 rlist = NULL;
365 rlistn = rlistsize = 0;
366
367 for (rw = 1; rw <= area && rw <= w; rw++) {
368 int x, y;
369
370 if (area % rw)
371 continue;
372 rh = area / rw;
373 if (rh > h)
374 continue;
375
376 for (y = miny - rh + 1; y <= maxy; y++) {
377 if (y < 0 || y+rh > h)
378 continue;
379
380 for (x = minx - rw + 1; x <= maxx; x++) {
381 if (x < 0 || x+rw > w)
382 continue;
383
384 /*
385 * See if we can find a candidate number
386 * placement within this rectangle.
387 */
388 for (j = 0; j < numbers[i].npoints; j++)
389 if (numbers[i].points[j].x >= x &&
390 numbers[i].points[j].x < x+rw &&
391 numbers[i].points[j].y >= y &&
392 numbers[i].points[j].y < y+rh)
393 break;
394
395 if (j < numbers[i].npoints) {
396 /*
397 * Add this to the list of candidate
398 * placements for this rectangle.
399 */
400 if (rlistn >= rlistsize) {
401 rlistsize = rlistn + 32;
402 rlist = sresize(rlist, rlistsize, struct rect);
403 }
404 rlist[rlistn].x = x;
405 rlist[rlistn].y = y;
406 rlist[rlistn].w = rw;
407 rlist[rlistn].h = rh;
408#ifdef SOLVER_DIAGNOSTICS
409 printf("rect %d [area %d]: candidate position at"
410 " %d,%d w=%d h=%d\n",
411 i, area, x, y, rw, rh);
412#endif
413 rlistn++;
414 }
415 }
416 }
417 }
418
419 rectpositions[i].rects = rlist;
420 rectpositions[i].n = rlistn;
421 }
422
423 /*
424 * Next, construct a multidimensional array tracking how many
425 * candidate positions for each rectangle overlap each square.
426 *
427 * Indexing of this array is by the formula
428 *
429 * overlaps[(rectindex * h + y) * w + x]
430 */
431 overlaps = snewn(nrects * w * h, int);
432 memset(overlaps, 0, nrects * w * h * sizeof(int));
433 for (i = 0; i < nrects; i++) {
434 int j;
435
436 for (j = 0; j < rectpositions[i].n; j++) {
437 int xx, yy;
438
439 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++)
440 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++)
441 overlaps[(i * h + yy+rectpositions[i].rects[j].y) * w +
442 xx+rectpositions[i].rects[j].x]++;
443 }
444 }
445
446 /*
447 * Also we want an array covering the grid once, to make it
448 * easy to figure out which squares are candidate number
449 * placements for which rectangles. (The existence of this
450 * single array assumes that no square starts off as a
451 * candidate number placement for more than one rectangle. This
452 * assumption is justified, because this solver is _either_
453 * used to solve real problems - in which case there is a
454 * single placement for every number - _or_ used to decide on
455 * number placements for a new puzzle, in which case each
456 * number's placements are confined to the intended position of
457 * the rectangle containing that number.)
458 */
459 rectbyplace = snewn(w * h, int);
460 for (i = 0; i < w*h; i++)
461 rectbyplace[i] = -1;
462
463 for (i = 0; i < nrects; i++) {
464 int j;
465
466 for (j = 0; j < numbers[i].npoints; j++) {
467 int x = numbers[i].points[j].x;
468 int y = numbers[i].points[j].y;
469
470 assert(rectbyplace[y * w + x] == -1);
471 rectbyplace[y * w + x] = i;
472 }
473 }
474
475 workspace = snewn(nrects, int);
476
477 /*
478 * Now run the actual deduction loop.
479 */
480 while (1) {
481 int done_something = FALSE;
482
483#ifdef SOLVER_DIAGNOSTICS
484 printf("starting deduction loop\n");
485
486 for (i = 0; i < nrects; i++) {
487 printf("rect %d overlaps:\n", i);
488 {
489 int x, y;
490 for (y = 0; y < h; y++) {
491 for (x = 0; x < w; x++) {
492 printf("%3d", overlaps[(i * h + y) * w + x]);
493 }
494 printf("\n");
495 }
496 }
497 }
498 printf("rectbyplace:\n");
499 {
500 int x, y;
501 for (y = 0; y < h; y++) {
502 for (x = 0; x < w; x++) {
503 printf("%3d", rectbyplace[y * w + x]);
504 }
505 printf("\n");
506 }
507 }
508#endif
509
510 /*
511 * Housekeeping. Look for rectangles whose number has only
512 * one candidate position left, and mark that square as
513 * known if it isn't already.
514 */
515 for (i = 0; i < nrects; i++) {
516 if (numbers[i].npoints == 1) {
517 int x = numbers[i].points[0].x;
518 int y = numbers[i].points[0].y;
519 if (overlaps[(i * h + y) * w + x] >= -1) {
520 int j;
521
522 assert(overlaps[(i * h + y) * w + x] > 0);
523#ifdef SOLVER_DIAGNOSTICS
524 printf("marking %d,%d as known for rect %d"
525 " (sole remaining number position)\n", x, y, i);
526#endif
527
528 for (j = 0; j < nrects; j++)
529 overlaps[(j * h + y) * w + x] = -1;
530
531 overlaps[(i * h + y) * w + x] = -2;
532 }
533 }
534 }
535
536 /*
537 * Now look at the intersection of all possible placements
538 * for each rectangle, and mark all squares in that
539 * intersection as known for that rectangle if they aren't
540 * already.
541 */
542 for (i = 0; i < nrects; i++) {
543 int minx, miny, maxx, maxy, xx, yy, j;
544
545 minx = miny = 0;
546 maxx = w;
547 maxy = h;
548
549 for (j = 0; j < rectpositions[i].n; j++) {
550 int x = rectpositions[i].rects[j].x;
551 int y = rectpositions[i].rects[j].y;
552 int w = rectpositions[i].rects[j].w;
553 int h = rectpositions[i].rects[j].h;
554
555 if (minx < x) minx = x;
556 if (miny < y) miny = y;
557 if (maxx > x+w) maxx = x+w;
558 if (maxy > y+h) maxy = y+h;
559 }
560
561 for (yy = miny; yy < maxy; yy++)
562 for (xx = minx; xx < maxx; xx++)
563 if (overlaps[(i * h + yy) * w + xx] >= -1) {
564 assert(overlaps[(i * h + yy) * w + xx] > 0);
565#ifdef SOLVER_DIAGNOSTICS
566 printf("marking %d,%d as known for rect %d"
567 " (intersection of all placements)\n",
568 xx, yy, i);
569#endif
570
571 for (j = 0; j < nrects; j++)
572 overlaps[(j * h + yy) * w + xx] = -1;
573
574 overlaps[(i * h + yy) * w + xx] = -2;
575 }
576 }
577
578 /*
579 * Rectangle-focused deduction. Look at each rectangle in
580 * turn and try to rule out some of its candidate
581 * placements.
582 */
583 for (i = 0; i < nrects; i++) {
584 int j;
585
586 for (j = 0; j < rectpositions[i].n; j++) {
587 int xx, yy, k;
588 int del = FALSE;
589
590 for (k = 0; k < nrects; k++)
591 workspace[k] = 0;
592
593 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
594 int y = yy + rectpositions[i].rects[j].y;
595 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
596 int x = xx + rectpositions[i].rects[j].x;
597
598 if (overlaps[(i * h + y) * w + x] == -1) {
599 /*
600 * This placement overlaps a square
601 * which is _known_ to be part of
602 * another rectangle. Therefore we must
603 * rule it out.
604 */
605#ifdef SOLVER_DIAGNOSTICS
606 printf("rect %d placement at %d,%d w=%d h=%d "
607 "contains %d,%d which is known-other\n", i,
608 rectpositions[i].rects[j].x,
609 rectpositions[i].rects[j].y,
610 rectpositions[i].rects[j].w,
611 rectpositions[i].rects[j].h,
612 x, y);
613#endif
614 del = TRUE;
615 }
616
617 if (rectbyplace[y * w + x] != -1) {
618 /*
619 * This placement overlaps one of the
620 * candidate number placements for some
621 * rectangle. Count it.
622 */
623 workspace[rectbyplace[y * w + x]]++;
624 }
625 }
626 }
627
628 if (!del) {
629 /*
630 * If we haven't ruled this placement out
631 * already, see if it overlaps _all_ of the
632 * candidate number placements for any
633 * rectangle. If so, we can rule it out.
634 */
635 for (k = 0; k < nrects; k++)
636 if (k != i && workspace[k] == numbers[k].npoints) {
637#ifdef SOLVER_DIAGNOSTICS
638 printf("rect %d placement at %d,%d w=%d h=%d "
639 "contains all number points for rect %d\n",
640 i,
641 rectpositions[i].rects[j].x,
642 rectpositions[i].rects[j].y,
643 rectpositions[i].rects[j].w,
644 rectpositions[i].rects[j].h,
645 k);
646#endif
647 del = TRUE;
648 break;
649 }
650
651 /*
652 * Failing that, see if it overlaps at least
653 * one of the candidate number placements for
654 * itself! (This might not be the case if one
655 * of those number placements has been removed
656 * recently.).
657 */
658 if (!del && workspace[i] == 0) {
659#ifdef SOLVER_DIAGNOSTICS
660 printf("rect %d placement at %d,%d w=%d h=%d "
661 "contains none of its own number points\n",
662 i,
663 rectpositions[i].rects[j].x,
664 rectpositions[i].rects[j].y,
665 rectpositions[i].rects[j].w,
666 rectpositions[i].rects[j].h);
667#endif
668 del = TRUE;
669 }
670 }
671
672 if (del) {
673 remove_rect_placement(w, h, rectpositions, overlaps, i, j);
674
675 j--; /* don't skip over next placement */
676
677 done_something = TRUE;
678 }
679 }
680 }
681
682 /*
683 * Square-focused deduction. Look at each square not marked
684 * as known, and see if there are any which can only be
685 * part of a single rectangle.
686 */
687 {
688 int x, y, n, index;
689 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
690 /* Known squares are marked as <0 everywhere, so we only need
691 * to check the overlaps entry for rect 0. */
692 if (overlaps[y * w + x] < 0)
693 continue; /* known already */
694
695 n = 0;
696 index = -1;
697 for (i = 0; i < nrects; i++)
698 if (overlaps[(i * h + y) * w + x] > 0)
699 n++, index = i;
700
701 if (n == 1) {
702 int j;
703
704 /*
705 * Now we can rule out all placements for
706 * rectangle `index' which _don't_ contain
707 * square x,y.
708 */
709#ifdef SOLVER_DIAGNOSTICS
710 printf("square %d,%d can only be in rectangle %d\n",
711 x, y, index);
712#endif
713 for (j = 0; j < rectpositions[index].n; j++) {
714 struct rect *r = &rectpositions[index].rects[j];
715 if (x >= r->x && x < r->x + r->w &&
716 y >= r->y && y < r->y + r->h)
717 continue; /* this one is OK */
718 remove_rect_placement(w, h, rectpositions, overlaps,
719 index, j);
720 j--; /* don't skip over next placement */
721 done_something = TRUE;
722 }
723 }
724 }
725 }
726
727 /*
728 * If we've managed to deduce anything by normal means,
729 * loop round again and see if there's more to be done.
730 * Only if normal deduction has completely failed us should
731 * we now move on to narrowing down the possible number
732 * placements.
733 */
734 if (done_something)
735 continue;
736
737 /*
738 * Now we have done everything we can with the current set
739 * of number placements. So we need to winnow the number
740 * placements so as to narrow down the possibilities. We do
741 * this by searching for a candidate placement (of _any_
742 * rectangle) which overlaps a candidate placement of the
743 * number for some other rectangle.
744 */
1507058f 745 if (rs) {
26801d29 746 struct rpn {
747 int rect;
748 int placement;
749 int number;
750 } *rpns = NULL;
64aec339 751 size_t nrpns = 0, rpnsize = 0;
26801d29 752 int j;
753
754 for (i = 0; i < nrects; i++) {
755 for (j = 0; j < rectpositions[i].n; j++) {
756 int xx, yy;
757
758 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
759 int y = yy + rectpositions[i].rects[j].y;
760 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
761 int x = xx + rectpositions[i].rects[j].x;
762
763 if (rectbyplace[y * w + x] >= 0 &&
764 rectbyplace[y * w + x] != i) {
765 /*
766 * Add this to the list of
767 * winnowing possibilities.
768 */
769 if (nrpns >= rpnsize) {
770 rpnsize = rpnsize * 3 / 2 + 32;
771 rpns = sresize(rpns, rpnsize, struct rpn);
772 }
773 rpns[nrpns].rect = i;
774 rpns[nrpns].placement = j;
775 rpns[nrpns].number = rectbyplace[y * w + x];
776 nrpns++;
777 }
778 }
779 }
780
781 }
782 }
783
784#ifdef SOLVER_DIAGNOSTICS
785 printf("%d candidate rect placements we could eliminate\n", nrpns);
786#endif
787 if (nrpns > 0) {
788 /*
789 * Now choose one of these unwanted rectangle
790 * placements, and eliminate it.
791 */
792 int index = random_upto(rs, nrpns);
793 int k, m;
794 struct rpn rpn = rpns[index];
795 struct rect r;
796 sfree(rpns);
797
798 i = rpn.rect;
799 j = rpn.placement;
800 k = rpn.number;
801 r = rectpositions[i].rects[j];
802
803 /*
804 * We rule out placement j of rectangle i by means
805 * of removing all of rectangle k's candidate
806 * number placements which do _not_ overlap it.
807 * This will ensure that it is eliminated during
808 * the next pass of rectangle-focused deduction.
809 */
810#ifdef SOLVER_DIAGNOSTICS
811 printf("ensuring number for rect %d is within"
812 " rect %d's placement at %d,%d w=%d h=%d\n",
813 k, i, r.x, r.y, r.w, r.h);
814#endif
815
816 for (m = 0; m < numbers[k].npoints; m++) {
817 int x = numbers[k].points[m].x;
818 int y = numbers[k].points[m].y;
819
820 if (x < r.x || x >= r.x + r.w ||
821 y < r.y || y >= r.y + r.h) {
822#ifdef SOLVER_DIAGNOSTICS
823 printf("eliminating number for rect %d at %d,%d\n",
824 k, x, y);
825#endif
826 remove_number_placement(w, h, &numbers[k],
827 m, rectbyplace);
828 m--; /* don't skip the next one */
829 done_something = TRUE;
830 }
831 }
832 }
833 }
834
835 if (!done_something) {
836#ifdef SOLVER_DIAGNOSTICS
837 printf("terminating deduction loop\n");
838#endif
839 break;
840 }
841 }
842
843 ret = TRUE;
844 for (i = 0; i < nrects; i++) {
845#ifdef SOLVER_DIAGNOSTICS
846 printf("rect %d has %d possible placements\n",
847 i, rectpositions[i].n);
848#endif
849 assert(rectpositions[i].n > 0);
1507058f 850 if (rectpositions[i].n > 1) {
26801d29 851 ret = FALSE;
df11cd4e 852 } else if (hedge && vedge) {
853 /*
854 * Place the rectangle in its only possible position.
855 */
856 int x, y;
857 struct rect *r = &rectpositions[i].rects[0];
858
859 for (y = 0; y < r->h; y++) {
860 if (r->x > 0)
861 vedge[(r->y+y) * w + r->x] = 1;
862 if (r->x+r->w < w)
863 vedge[(r->y+y) * w + r->x+r->w] = 1;
864 }
865 for (x = 0; x < r->w; x++) {
866 if (r->y > 0)
867 hedge[r->y * w + r->x+x] = 1;
868 if (r->y+r->h < h)
869 hedge[(r->y+r->h) * w + r->x+x] = 1;
870 }
1507058f 871 }
26801d29 872 }
873
874 /*
875 * Free up all allocated storage.
876 */
877 sfree(workspace);
878 sfree(rectbyplace);
879 sfree(overlaps);
880 for (i = 0; i < nrects; i++)
881 sfree(rectpositions[i].rects);
882 sfree(rectpositions);
883
884 return ret;
885}
886
887/* ----------------------------------------------------------------------
888 * Grid generation code.
889 */
890
738d2f61 891/*
892 * This function does one of two things. If passed r==NULL, it
893 * counts the number of possible rectangles which cover the given
894 * square, and returns it in *n. If passed r!=NULL then it _reads_
895 * *n to find an index, counts the possible rectangles until it
896 * reaches the nth, and writes it into r.
897 *
898 * `scratch' is expected to point to an array of 2 * params->w
899 * ints, used internally as scratch space (and passed in like this
900 * to avoid re-allocating and re-freeing it every time round a
901 * tight loop).
902 */
903static void enum_rects(game_params *params, int *grid, struct rect *r, int *n,
904 int sx, int sy, int *scratch)
3870c4d8 905{
738d2f61 906 int rw, rh, mw, mh;
907 int x, y, dx, dy;
908 int maxarea, realmaxarea;
909 int index = 0;
910 int *top, *bottom;
3870c4d8 911
912 /*
d4e7900f 913 * Maximum rectangle area is 1/6 of total grid size, unless
914 * this means we can't place any rectangles at all in which
915 * case we set it to 2 at minimum.
3870c4d8 916 */
917 maxarea = params->w * params->h / 6;
d4e7900f 918 if (maxarea < 2)
919 maxarea = 2;
3870c4d8 920
738d2f61 921 /*
922 * Scan the grid to find the limits of the region within which
923 * any rectangle containing this point must fall. This will
924 * save us trawling the inside of every rectangle later on to
925 * see if it contains any used squares.
926 */
927 top = scratch;
928 bottom = scratch + params->w;
929 for (dy = -1; dy <= +1; dy += 2) {
930 int *array = (dy == -1 ? top : bottom);
931 for (dx = -1; dx <= +1; dx += 2) {
932 for (x = sx; x >= 0 && x < params->w; x += dx) {
933 array[x] = -2 * params->h * dy;
934 for (y = sy; y >= 0 && y < params->h; y += dy) {
935 if (index(params, grid, x, y) == -1 &&
936 (x == sx || dy*y <= dy*array[x-dx]))
937 array[x] = y;
938 else
939 break;
940 }
941 }
942 }
943 }
944
945 /*
946 * Now scan again to work out the largest rectangles we can fit
947 * in the grid, so that we can terminate the following loops
948 * early once we get down to not having much space left in the
949 * grid.
950 */
951 realmaxarea = 0;
952 for (x = 0; x < params->w; x++) {
953 int x2;
954
955 rh = bottom[x] - top[x] + 1;
956 if (rh <= 0)
957 continue; /* no rectangles can start here */
958
959 dx = (x > sx ? -1 : +1);
960 for (x2 = x; x2 >= 0 && x2 < params->w; x2 += dx)
961 if (bottom[x2] < bottom[x] || top[x2] > top[x])
962 break;
963
964 rw = abs(x2 - x);
965 if (realmaxarea < rw * rh)
966 realmaxarea = rw * rh;
967 }
968
969 if (realmaxarea > maxarea)
970 realmaxarea = maxarea;
971
972 /*
973 * Rectangles which go right the way across the grid are
974 * boring, although they can't be helped in the case of
975 * extremely small grids. (Also they might be generated later
976 * on by the singleton-removal process; we can't help that.)
977 */
978 mw = params->w - 1;
979 if (mw < 3) mw++;
980 mh = params->h - 1;
981 if (mh < 3) mh++;
982
983 for (rw = 1; rw <= mw; rw++)
984 for (rh = 1; rh <= mh; rh++) {
985 if (rw * rh > realmaxarea)
3870c4d8 986 continue;
987 if (rw * rh == 1)
988 continue;
738d2f61 989 for (x = max(sx - rw + 1, 0); x <= min(sx, params->w - rw); x++)
990 for (y = max(sy - rh + 1, 0); y <= min(sy, params->h - rh);
991 y++) {
992 /*
993 * Check this rectangle against the region we
994 * defined above.
995 */
996 if (top[x] <= y && top[x+rw-1] <= y &&
997 bottom[x] >= y+rh-1 && bottom[x+rw-1] >= y+rh-1) {
998 if (r && index == *n) {
999 r->x = x;
1000 r->y = y;
1001 r->w = rw;
1002 r->h = rh;
1003 return;
1004 }
1005 index++;
3870c4d8 1006 }
3870c4d8 1007 }
1008 }
1009
738d2f61 1010 assert(!r);
1011 *n = index;
3870c4d8 1012}
1013
1014static void place_rect(game_params *params, int *grid, struct rect r)
1015{
1016 int idx = INDEX(params, r.x, r.y);
1017 int x, y;
1018
1019 for (x = r.x; x < r.x+r.w; x++)
1020 for (y = r.y; y < r.y+r.h; y++) {
1021 index(params, grid, x, y) = idx;
1022 }
1023#ifdef GENERATION_DIAGNOSTICS
1024 printf(" placing rectangle at (%d,%d) size %d x %d\n",
1025 r.x, r.y, r.w, r.h);
1026#endif
1027}
1028
1029static struct rect find_rect(game_params *params, int *grid, int x, int y)
1030{
1031 int idx, w, h;
1032 struct rect r;
1033
1034 /*
1035 * Find the top left of the rectangle.
1036 */
1037 idx = index(params, grid, x, y);
1038
1039 if (idx < 0) {
1040 r.x = x;
1041 r.y = y;
1042 r.w = r.h = 1;
1043 return r; /* 1x1 singleton here */
1044 }
1045
1046 y = idx / params->w;
1047 x = idx % params->w;
1048
1049 /*
1050 * Find the width and height of the rectangle.
1051 */
1052 for (w = 1;
1053 (x+w < params->w && index(params,grid,x+w,y)==idx);
1054 w++);
1055 for (h = 1;
1056 (y+h < params->h && index(params,grid,x,y+h)==idx);
1057 h++);
1058
1059 r.x = x;
1060 r.y = y;
1061 r.w = w;
1062 r.h = h;
1063
1064 return r;
1065}
1066
1067#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 1068static void display_grid(game_params *params, int *grid, int *numbers, int all)
3870c4d8 1069{
1070 unsigned char *egrid = snewn((params->w*2+3) * (params->h*2+3),
1071 unsigned char);
3870c4d8 1072 int x, y;
1073 int r = (params->w*2+3);
1074
aea3ed9a 1075 memset(egrid, 0, (params->w*2+3) * (params->h*2+3));
1076
3870c4d8 1077 for (x = 0; x < params->w; x++)
1078 for (y = 0; y < params->h; y++) {
1079 int i = index(params, grid, x, y);
1080 if (x == 0 || index(params, grid, x-1, y) != i)
1081 egrid[(2*y+2) * r + (2*x+1)] = 1;
1082 if (x == params->w-1 || index(params, grid, x+1, y) != i)
1083 egrid[(2*y+2) * r + (2*x+3)] = 1;
1084 if (y == 0 || index(params, grid, x, y-1) != i)
1085 egrid[(2*y+1) * r + (2*x+2)] = 1;
1086 if (y == params->h-1 || index(params, grid, x, y+1) != i)
1087 egrid[(2*y+3) * r + (2*x+2)] = 1;
1088 }
1089
1090 for (y = 1; y < 2*params->h+2; y++) {
1091 for (x = 1; x < 2*params->w+2; x++) {
1092 if (!((y|x)&1)) {
aea3ed9a 1093 int k = numbers ? index(params, numbers, x/2-1, y/2-1) : 0;
1094 if (k || (all && numbers)) printf("%2d", k); else printf(" ");
3870c4d8 1095 } else if (!((y&x)&1)) {
1096 int v = egrid[y*r+x];
1097 if ((y&1) && v) v = '-';
1098 if ((x&1) && v) v = '|';
1099 if (!v) v = ' ';
1100 putchar(v);
1101 if (!(x&1)) putchar(v);
1102 } else {
1103 int c, d = 0;
1104 if (egrid[y*r+(x+1)]) d |= 1;
1105 if (egrid[(y-1)*r+x]) d |= 2;
1106 if (egrid[y*r+(x-1)]) d |= 4;
1107 if (egrid[(y+1)*r+x]) d |= 8;
1108 c = " ??+?-++?+|+++++"[d];
1109 putchar(c);
1110 if (!(x&1)) putchar(c);
1111 }
1112 }
1113 putchar('\n');
1114 }
1115
1116 sfree(egrid);
1117}
1118#endif
1119
1185e3c5 1120static char *new_game_desc(game_params *params, random_state *rs,
c566778e 1121 char **aux, int interactive)
3870c4d8 1122{
26801d29 1123 int *grid, *numbers = NULL;
738d2f61 1124 int x, y, y2, y2last, yx, run, i, nsquares;
1185e3c5 1125 char *desc, *p;
738d2f61 1126 int *enum_rects_scratch;
aea3ed9a 1127 game_params params2real, *params2 = &params2real;
3870c4d8 1128
26801d29 1129 while (1) {
1130 /*
1131 * Set up the smaller width and height which we will use to
1132 * generate the base grid.
1133 */
1134 params2->w = params->w / (1.0F + params->expandfactor);
1135 if (params2->w < 2 && params->w >= 2) params2->w = 2;
1136 params2->h = params->h / (1.0F + params->expandfactor);
1137 if (params2->h < 2 && params->h >= 2) params2->h = 2;
aea3ed9a 1138
26801d29 1139 grid = snewn(params2->w * params2->h, int);
3870c4d8 1140
738d2f61 1141 enum_rects_scratch = snewn(2 * params2->w, int);
1142
1143 nsquares = 0;
26801d29 1144 for (y = 0; y < params2->h; y++)
1145 for (x = 0; x < params2->w; x++) {
1146 index(params2, grid, x, y) = -1;
738d2f61 1147 nsquares++;
26801d29 1148 }
3870c4d8 1149
3870c4d8 1150 /*
738d2f61 1151 * Place rectangles until we can't any more. We do this by
1152 * finding a square we haven't yet covered, and randomly
1153 * choosing a rectangle to cover it.
3870c4d8 1154 */
738d2f61 1155
1156 while (nsquares > 0) {
1157 int square = random_upto(rs, nsquares);
1158 int n;
26801d29 1159 struct rect r;
1160
738d2f61 1161 x = params2->w;
1162 y = params2->h;
1163 for (y = 0; y < params2->h; y++) {
1164 for (x = 0; x < params2->w; x++) {
1165 if (index(params2, grid, x, y) == -1 && square-- == 0)
1166 break;
1167 }
1168 if (x < params2->w)
1169 break;
1170 }
1171 assert(x < params2->w && y < params2->h);
26801d29 1172
1173 /*
738d2f61 1174 * Now see how many rectangles fit around this one.
26801d29 1175 */
738d2f61 1176 enum_rects(params2, grid, NULL, &n, x, y, enum_rects_scratch);
26801d29 1177
738d2f61 1178 if (!n) {
1179 /*
1180 * There are no possible rectangles covering this
1181 * square, meaning it must be a singleton. Mark it
1182 * -2 so we know not to keep trying.
1183 */
1184 index(params2, grid, x, y) = -2;
1185 nsquares--;
1186 } else {
1187 /*
1188 * Pick one at random.
1189 */
1190 n = random_upto(rs, n);
1191 enum_rects(params2, grid, &r, &n, x, y, enum_rects_scratch);
1192
1193 /*
1194 * Place it.
1195 */
1196 place_rect(params2, grid, r);
1197 nsquares -= r.w * r.h;
26801d29 1198 }
26801d29 1199 }
3870c4d8 1200
738d2f61 1201 sfree(enum_rects_scratch);
3870c4d8 1202
1203 /*
26801d29 1204 * Deal with singleton spaces remaining in the grid, one by
1205 * one.
1206 *
1207 * We do this by making a local change to the layout. There are
1208 * several possibilities:
1209 *
1210 * +-----+-----+ Here, we can remove the singleton by
1211 * | | | extending the 1x2 rectangle below it
1212 * +--+--+-----+ into a 1x3.
1213 * | | | |
1214 * | +--+ |
1215 * | | | |
1216 * | | | |
1217 * | | | |
1218 * +--+--+-----+
1219 *
1220 * +--+--+--+ Here, that trick doesn't work: there's no
1221 * | | | 1 x n rectangle with the singleton at one
1222 * | | | end. Instead, we extend a 1 x n rectangle
1223 * | | | _out_ from the singleton, shaving a layer
1224 * +--+--+ | off the end of another rectangle. So if we
1225 * | | | | extended up, we'd make our singleton part
1226 * | +--+--+ of a 1x3 and generate a 1x2 where the 2x2
1227 * | | | used to be; or we could extend right into
1228 * +--+-----+ a 2x1, turning the 1x3 into a 1x2.
1229 *
1230 * +-----+--+ Here, we can't even do _that_, since any
1231 * | | | direction we choose to extend the singleton
1232 * +--+--+ | will produce a new singleton as a result of
1233 * | | | | truncating one of the size-2 rectangles.
1234 * | +--+--+ Fortunately, this case can _only_ occur when
1235 * | | | a singleton is surrounded by four size-2s
1236 * +--+-----+ in this fashion; so instead we can simply
1237 * replace the whole section with a single 3x3.
3870c4d8 1238 */
26801d29 1239 for (x = 0; x < params2->w; x++) {
1240 for (y = 0; y < params2->h; y++) {
1241 if (index(params2, grid, x, y) < 0) {
1242 int dirs[4], ndirs;
3870c4d8 1243
1244#ifdef GENERATION_DIAGNOSTICS
26801d29 1245 display_grid(params2, grid, NULL, FALSE);
1246 printf("singleton at %d,%d\n", x, y);
3870c4d8 1247#endif
1248
26801d29 1249 /*
1250 * Check in which directions we can feasibly extend
1251 * the singleton. We can extend in a particular
1252 * direction iff either:
1253 *
1254 * - the rectangle on that side of the singleton
1255 * is not 2x1, and we are at one end of the edge
1256 * of it we are touching
1257 *
1258 * - it is 2x1 but we are on its short side.
1259 *
1260 * FIXME: we could plausibly choose between these
1261 * based on the sizes of the rectangles they would
1262 * create?
1263 */
1264 ndirs = 0;
1265 if (x < params2->w-1) {
1266 struct rect r = find_rect(params2, grid, x+1, y);
1267 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1268 dirs[ndirs++] = 1; /* right */
1269 }
1270 if (y > 0) {
1271 struct rect r = find_rect(params2, grid, x, y-1);
1272 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1273 dirs[ndirs++] = 2; /* up */
1274 }
1275 if (x > 0) {
1276 struct rect r = find_rect(params2, grid, x-1, y);
1277 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1278 dirs[ndirs++] = 4; /* left */
1279 }
1280 if (y < params2->h-1) {
1281 struct rect r = find_rect(params2, grid, x, y+1);
1282 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1283 dirs[ndirs++] = 8; /* down */
1284 }
3870c4d8 1285
26801d29 1286 if (ndirs > 0) {
1287 int which, dir;
1288 struct rect r1, r2;
3870c4d8 1289
26801d29 1290 which = random_upto(rs, ndirs);
1291 dir = dirs[which];
3870c4d8 1292
26801d29 1293 switch (dir) {
1294 case 1: /* right */
1295 assert(x < params2->w+1);
3870c4d8 1296#ifdef GENERATION_DIAGNOSTICS
26801d29 1297 printf("extending right\n");
3870c4d8 1298#endif
26801d29 1299 r1 = find_rect(params2, grid, x+1, y);
1300 r2.x = x;
1301 r2.y = y;
1302 r2.w = 1 + r1.w;
1303 r2.h = 1;
1304 if (r1.y == y)
1305 r1.y++;
1306 r1.h--;
1307 break;
1308 case 2: /* up */
1309 assert(y > 0);
3870c4d8 1310#ifdef GENERATION_DIAGNOSTICS
26801d29 1311 printf("extending up\n");
3870c4d8 1312#endif
26801d29 1313 r1 = find_rect(params2, grid, x, y-1);
1314 r2.x = x;
1315 r2.y = r1.y;
1316 r2.w = 1;
1317 r2.h = 1 + r1.h;
1318 if (r1.x == x)
1319 r1.x++;
1320 r1.w--;
1321 break;
1322 case 4: /* left */
1323 assert(x > 0);
3870c4d8 1324#ifdef GENERATION_DIAGNOSTICS
26801d29 1325 printf("extending left\n");
3870c4d8 1326#endif
26801d29 1327 r1 = find_rect(params2, grid, x-1, y);
1328 r2.x = r1.x;
1329 r2.y = y;
1330 r2.w = 1 + r1.w;
1331 r2.h = 1;
1332 if (r1.y == y)
1333 r1.y++;
1334 r1.h--;
1335 break;
1336 case 8: /* down */
1337 assert(y < params2->h+1);
3870c4d8 1338#ifdef GENERATION_DIAGNOSTICS
26801d29 1339 printf("extending down\n");
3870c4d8 1340#endif
26801d29 1341 r1 = find_rect(params2, grid, x, y+1);
1342 r2.x = x;
1343 r2.y = y;
1344 r2.w = 1;
1345 r2.h = 1 + r1.h;
1346 if (r1.x == x)
1347 r1.x++;
1348 r1.w--;
1349 break;
1350 }
1351 if (r1.h > 0 && r1.w > 0)
1352 place_rect(params2, grid, r1);
1353 place_rect(params2, grid, r2);
1354 } else {
3870c4d8 1355#ifndef NDEBUG
26801d29 1356 /*
1357 * Sanity-check that there really is a 3x3
1358 * rectangle surrounding this singleton and it
1359 * contains absolutely everything we could
1360 * possibly need.
1361 */
1362 {
1363 int xx, yy;
1364 assert(x > 0 && x < params2->w-1);
1365 assert(y > 0 && y < params2->h-1);
1366
1367 for (xx = x-1; xx <= x+1; xx++)
1368 for (yy = y-1; yy <= y+1; yy++) {
1369 struct rect r = find_rect(params2,grid,xx,yy);
1370 assert(r.x >= x-1);
1371 assert(r.y >= y-1);
1372 assert(r.x+r.w-1 <= x+1);
1373 assert(r.y+r.h-1 <= y+1);
1374 }
1375 }
3870c4d8 1376#endif
26801d29 1377
3870c4d8 1378#ifdef GENERATION_DIAGNOSTICS
26801d29 1379 printf("need the 3x3 trick\n");
3870c4d8 1380#endif
1381
26801d29 1382 /*
1383 * FIXME: If the maximum rectangle area for
1384 * this grid is less than 9, we ought to
1385 * subdivide the 3x3 in some fashion. There are
1386 * five other possibilities:
1387 *
1388 * - a 6 and a 3
1389 * - a 4, a 3 and a 2
1390 * - three 3s
1391 * - a 3 and three 2s (two different arrangements).
1392 */
1393
1394 {
1395 struct rect r;
1396 r.x = x-1;
1397 r.y = y-1;
1398 r.w = r.h = 3;
1399 place_rect(params2, grid, r);
1400 }
3870c4d8 1401 }
1402 }
1403 }
1404 }
3870c4d8 1405
26801d29 1406 /*
1407 * We have now constructed a grid of the size specified in
1408 * params2. Now we extend it into a grid of the size specified
1409 * in params. We do this in two passes: we extend it vertically
1410 * until it's the right height, then we transpose it, then
1411 * extend it vertically again (getting it effectively the right
1412 * width), then finally transpose again.
1413 */
1414 for (i = 0; i < 2; i++) {
1415 int *grid2, *expand, *where;
1416 game_params params3real, *params3 = &params3real;
aea3ed9a 1417
1418#ifdef GENERATION_DIAGNOSTICS
26801d29 1419 printf("before expansion:\n");
1420 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1421#endif
1422
26801d29 1423 /*
1424 * Set up the new grid.
1425 */
1426 grid2 = snewn(params2->w * params->h, int);
1427 expand = snewn(params2->h-1, int);
1428 where = snewn(params2->w, int);
1429 params3->w = params2->w;
1430 params3->h = params->h;
1431
1432 /*
1433 * Decide which horizontal edges are going to get expanded,
1434 * and by how much.
1435 */
1436 for (y = 0; y < params2->h-1; y++)
1437 expand[y] = 0;
1438 for (y = params2->h; y < params->h; y++) {
1439 x = random_upto(rs, params2->h-1);
1440 expand[x]++;
1441 }
aea3ed9a 1442
1443#ifdef GENERATION_DIAGNOSTICS
26801d29 1444 printf("expand[] = {");
1445 for (y = 0; y < params2->h-1; y++)
1446 printf(" %d", expand[y]);
1447 printf(" }\n");
aea3ed9a 1448#endif
1449
26801d29 1450 /*
1451 * Perform the expansion. The way this works is that we
1452 * alternately:
1453 *
1454 * - copy a row from grid into grid2
1455 *
1456 * - invent some number of additional rows in grid2 where
1457 * there was previously only a horizontal line between
1458 * rows in grid, and make random decisions about where
1459 * among these to place each rectangle edge that ran
1460 * along this line.
1461 */
1462 for (y = y2 = y2last = 0; y < params2->h; y++) {
1463 /*
1464 * Copy a single line from row y of grid into row y2 of
1465 * grid2.
1466 */
1467 for (x = 0; x < params2->w; x++) {
1468 int val = index(params2, grid, x, y);
1469 if (val / params2->w == y && /* rect starts on this line */
1470 (y2 == 0 || /* we're at the very top, or... */
1471 index(params3, grid2, x, y2-1) / params3->w < y2last
1472 /* this rect isn't already started */))
1473 index(params3, grid2, x, y2) =
1474 INDEX(params3, val % params2->w, y2);
1475 else
1476 index(params3, grid2, x, y2) =
1477 index(params3, grid2, x, y2-1);
1478 }
1479
1480 /*
1481 * If that was the last line, terminate the loop early.
1482 */
1483 if (++y2 == params3->h)
1484 break;
1485
1486 y2last = y2;
1487
1488 /*
1489 * Invent some number of additional lines. First walk
1490 * along this line working out where to put all the
1491 * edges that coincide with it.
1492 */
1493 yx = -1;
1494 for (x = 0; x < params2->w; x++) {
1495 if (index(params2, grid, x, y) !=
1496 index(params2, grid, x, y+1)) {
1497 /*
1498 * This is a horizontal edge, so it needs
1499 * placing.
1500 */
1501 if (x == 0 ||
1502 (index(params2, grid, x-1, y) !=
1503 index(params2, grid, x, y) &&
1504 index(params2, grid, x-1, y+1) !=
1505 index(params2, grid, x, y+1))) {
1506 /*
1507 * Here we have the chance to make a new
1508 * decision.
1509 */
1510 yx = random_upto(rs, expand[y]+1);
1511 } else {
1512 /*
1513 * Here we just reuse the previous value of
1514 * yx.
1515 */
1516 }
1517 } else
1518 yx = -1;
1519 where[x] = yx;
1520 }
1521
1522 for (yx = 0; yx < expand[y]; yx++) {
1523 /*
1524 * Invent a single row. For each square in the row,
1525 * we copy the grid entry from the square above it,
1526 * unless we're starting the new rectangle here.
1527 */
1528 for (x = 0; x < params2->w; x++) {
1529 if (yx == where[x]) {
1530 int val = index(params2, grid, x, y+1);
1531 val %= params2->w;
1532 val = INDEX(params3, val, y2);
1533 index(params3, grid2, x, y2) = val;
1534 } else
1535 index(params3, grid2, x, y2) =
1536 index(params3, grid2, x, y2-1);
1537 }
1538
1539 y2++;
1540 }
1541 }
1542
1543 sfree(expand);
1544 sfree(where);
aea3ed9a 1545
1546#ifdef GENERATION_DIAGNOSTICS
26801d29 1547 printf("after expansion:\n");
1548 display_grid(params3, grid2, NULL, TRUE);
aea3ed9a 1549#endif
26801d29 1550 /*
1551 * Transpose.
1552 */
1553 params2->w = params3->h;
1554 params2->h = params3->w;
1555 sfree(grid);
1556 grid = snewn(params2->w * params2->h, int);
1557 for (x = 0; x < params2->w; x++)
1558 for (y = 0; y < params2->h; y++) {
1559 int idx1 = INDEX(params2, x, y);
1560 int idx2 = INDEX(params3, y, x);
1561 int tmp;
1562
1563 tmp = grid2[idx2];
1564 tmp = (tmp % params3->w) * params2->w + (tmp / params3->w);
1565 grid[idx1] = tmp;
1566 }
1567
1568 sfree(grid2);
1569
1570 {
1571 int tmp;
1572 tmp = params->w;
1573 params->w = params->h;
1574 params->h = tmp;
1575 }
aea3ed9a 1576
1577#ifdef GENERATION_DIAGNOSTICS
26801d29 1578 printf("after transposition:\n");
1579 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1580#endif
26801d29 1581 }
aea3ed9a 1582
26801d29 1583 /*
1584 * Run the solver to narrow down the possible number
1585 * placements.
1586 */
1587 {
1588 struct numberdata *nd;
1589 int nnumbers, i, ret;
1590
1591 /* Count the rectangles. */
1592 nnumbers = 0;
1593 for (y = 0; y < params->h; y++) {
1594 for (x = 0; x < params->w; x++) {
1595 int idx = INDEX(params, x, y);
1596 if (index(params, grid, x, y) == idx)
1597 nnumbers++;
1598 }
1599 }
2ac6d24e 1600
26801d29 1601 nd = snewn(nnumbers, struct numberdata);
1602
1603 /* Now set up each number's candidate position list. */
1604 i = 0;
1605 for (y = 0; y < params->h; y++) {
1606 for (x = 0; x < params->w; x++) {
1607 int idx = INDEX(params, x, y);
1608 if (index(params, grid, x, y) == idx) {
1609 struct rect r = find_rect(params, grid, x, y);
1610 int j, k, m;
1611
1612 nd[i].area = r.w * r.h;
1613 nd[i].npoints = nd[i].area;
1614 nd[i].points = snewn(nd[i].npoints, struct point);
1615 m = 0;
1616 for (j = 0; j < r.h; j++)
1617 for (k = 0; k < r.w; k++) {
1618 nd[i].points[m].x = k + r.x;
1619 nd[i].points[m].y = j + r.y;
1620 m++;
1621 }
1622 assert(m == nd[i].npoints);
aea3ed9a 1623
26801d29 1624 i++;
1625 }
1626 }
1627 }
aea3ed9a 1628
40fde884 1629 if (params->unique)
1507058f 1630 ret = rect_solver(params->w, params->h, nnumbers, nd,
df11cd4e 1631 NULL, NULL, rs);
40fde884 1632 else
1633 ret = TRUE; /* allow any number placement at all */
3870c4d8 1634
26801d29 1635 if (ret) {
3870c4d8 1636 /*
26801d29 1637 * Now place the numbers according to the solver's
1638 * recommendations.
3870c4d8 1639 */
26801d29 1640 numbers = snewn(params->w * params->h, int);
1641
1642 for (y = 0; y < params->h; y++)
1643 for (x = 0; x < params->w; x++) {
1644 index(params, numbers, x, y) = 0;
1645 }
1646
1647 for (i = 0; i < nnumbers; i++) {
1648 int idx = random_upto(rs, nd[i].npoints);
1649 int x = nd[i].points[idx].x;
1650 int y = nd[i].points[idx].y;
1651 index(params,numbers,x,y) = nd[i].area;
1652 }
3870c4d8 1653 }
26801d29 1654
1655 /*
1656 * Clean up.
1657 */
1658 for (i = 0; i < nnumbers; i++)
1659 sfree(nd[i].points);
1660 sfree(nd);
1661
1662 /*
1663 * If we've succeeded, then terminate the loop.
1664 */
1665 if (ret)
1666 break;
3870c4d8 1667 }
26801d29 1668
1669 /*
1670 * Give up and go round again.
1671 */
1672 sfree(grid);
1673 }
1674
1675 /*
c566778e 1676 * Store the solution in aux.
26801d29 1677 */
1678 {
c566778e 1679 char *ai;
1680 int len;
1681
1682 len = 2 + (params->w-1)*params->h + (params->h-1)*params->w;
1683 ai = snewn(len, char);
1684
1685 ai[0] = 'S';
26801d29 1686
c566778e 1687 p = ai+1;
26801d29 1688
1689 for (y = 0; y < params->h; y++)
c566778e 1690 for (x = 1; x < params->w; x++)
1691 *p++ = (index(params, grid, x, y) !=
1692 index(params, grid, x-1, y) ? '1' : '0');
1693
26801d29 1694 for (y = 1; y < params->h; y++)
c566778e 1695 for (x = 0; x < params->w; x++)
1696 *p++ = (index(params, grid, x, y) !=
1697 index(params, grid, x, y-1) ? '1' : '0');
1698
1699 assert(p - ai == len-1);
1700 *p = '\0';
26801d29 1701
1702 *aux = ai;
3870c4d8 1703 }
1704
1705#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 1706 display_grid(params, grid, numbers, FALSE);
3870c4d8 1707#endif
1708
1185e3c5 1709 desc = snewn(11 * params->w * params->h, char);
1710 p = desc;
3870c4d8 1711 run = 0;
1712 for (i = 0; i <= params->w * params->h; i++) {
1713 int n = (i < params->w * params->h ? numbers[i] : -1);
1714
1715 if (!n)
1716 run++;
1717 else {
1718 if (run) {
1719 while (run > 0) {
1720 int c = 'a' - 1 + run;
1721 if (run > 26)
1722 c = 'z';
1723 *p++ = c;
1724 run -= c - ('a' - 1);
1725 }
1726 } else {
0e87eedc 1727 /*
1728 * If there's a number in the very top left or
1729 * bottom right, there's no point putting an
1730 * unnecessary _ before or after it.
1731 */
1185e3c5 1732 if (p > desc && n > 0)
0e87eedc 1733 *p++ = '_';
3870c4d8 1734 }
1735 if (n > 0)
1736 p += sprintf(p, "%d", n);
1737 run = 0;
1738 }
1739 }
1740 *p = '\0';
1741
1742 sfree(grid);
1743 sfree(numbers);
1744
1185e3c5 1745 return desc;
3870c4d8 1746}
1747
1185e3c5 1748static char *validate_desc(game_params *params, char *desc)
3870c4d8 1749{
1750 int area = params->w * params->h;
1751 int squares = 0;
1752
1185e3c5 1753 while (*desc) {
1754 int n = *desc++;
3870c4d8 1755 if (n >= 'a' && n <= 'z') {
1756 squares += n - 'a' + 1;
1757 } else if (n == '_') {
1758 /* do nothing */;
1759 } else if (n > '0' && n <= '9') {
9bb5bf60 1760 squares++;
1185e3c5 1761 while (*desc >= '0' && *desc <= '9')
1762 desc++;
3870c4d8 1763 } else
1185e3c5 1764 return "Invalid character in game description";
3870c4d8 1765 }
1766
1767 if (squares < area)
1768 return "Not enough data to fill grid";
1769
1770 if (squares > area)
1771 return "Too much data to fit in grid";
1772
1773 return NULL;
1774}
1775
c380832d 1776static game_state *new_game(midend_data *me, game_params *params, char *desc)
3870c4d8 1777{
1778 game_state *state = snew(game_state);
1779 int x, y, i, area;
1780
1781 state->w = params->w;
1782 state->h = params->h;
1783
1784 area = state->w * state->h;
1785
1786 state->grid = snewn(area, int);
1787 state->vedge = snewn(area, unsigned char);
1788 state->hedge = snewn(area, unsigned char);
2ac6d24e 1789 state->completed = state->cheated = FALSE;
3870c4d8 1790
1791 i = 0;
1185e3c5 1792 while (*desc) {
1793 int n = *desc++;
3870c4d8 1794 if (n >= 'a' && n <= 'z') {
1795 int run = n - 'a' + 1;
1796 assert(i + run <= area);
1797 while (run-- > 0)
1798 state->grid[i++] = 0;
1799 } else if (n == '_') {
1800 /* do nothing */;
1801 } else if (n > '0' && n <= '9') {
1802 assert(i < area);
1185e3c5 1803 state->grid[i++] = atoi(desc-1);
1804 while (*desc >= '0' && *desc <= '9')
1805 desc++;
3870c4d8 1806 } else {
1807 assert(!"We can't get here");
1808 }
1809 }
1810 assert(i == area);
1811
1812 for (y = 0; y < state->h; y++)
1813 for (x = 0; x < state->w; x++)
1814 vedge(state,x,y) = hedge(state,x,y) = 0;
1815
1816 return state;
1817}
1818
be8d5aa1 1819static game_state *dup_game(game_state *state)
3870c4d8 1820{
1821 game_state *ret = snew(game_state);
1822
1823 ret->w = state->w;
1824 ret->h = state->h;
1825
1826 ret->vedge = snewn(state->w * state->h, unsigned char);
1827 ret->hedge = snewn(state->w * state->h, unsigned char);
1828 ret->grid = snewn(state->w * state->h, int);
1829
ef29354c 1830 ret->completed = state->completed;
2ac6d24e 1831 ret->cheated = state->cheated;
ef29354c 1832
3870c4d8 1833 memcpy(ret->grid, state->grid, state->w * state->h * sizeof(int));
1834 memcpy(ret->vedge, state->vedge, state->w*state->h*sizeof(unsigned char));
1835 memcpy(ret->hedge, state->hedge, state->w*state->h*sizeof(unsigned char));
1836
1837 return ret;
1838}
1839
be8d5aa1 1840static void free_game(game_state *state)
3870c4d8 1841{
1842 sfree(state->grid);
1843 sfree(state->vedge);
1844 sfree(state->hedge);
1845 sfree(state);
1846}
1847
df11cd4e 1848static char *solve_game(game_state *state, game_state *currstate,
c566778e 1849 char *ai, char **error)
2ac6d24e 1850{
df11cd4e 1851 unsigned char *vedge, *hedge;
df11cd4e 1852 int x, y, len;
1853 char *ret, *p;
c566778e 1854 int i, j, n;
1855 struct numberdata *nd;
2ac6d24e 1856
c566778e 1857 if (ai)
1858 return dupstr(ai);
1507058f 1859
c566778e 1860 /*
1861 * Attempt the in-built solver.
1862 */
1507058f 1863
c566778e 1864 /* Set up each number's (very short) candidate position list. */
1865 for (i = n = 0; i < state->h * state->w; i++)
1866 if (state->grid[i])
1867 n++;
1868
1869 nd = snewn(n, struct numberdata);
1870
1871 for (i = j = 0; i < state->h * state->w; i++)
1872 if (state->grid[i]) {
1873 nd[j].area = state->grid[i];
1874 nd[j].npoints = 1;
1875 nd[j].points = snewn(1, struct point);
1876 nd[j].points[0].x = i % state->w;
1877 nd[j].points[0].y = i / state->w;
1878 j++;
1879 }
1507058f 1880
c566778e 1881 assert(j == n);
1507058f 1882
c566778e 1883 vedge = snewn(state->w * state->h, unsigned char);
1884 hedge = snewn(state->w * state->h, unsigned char);
1885 memset(vedge, 0, state->w * state->h);
1886 memset(hedge, 0, state->w * state->h);
1887
1888 rect_solver(state->w, state->h, n, nd, hedge, vedge, NULL);
1889
1890 /*
1891 * Clean up.
1892 */
1893 for (i = 0; i < n; i++)
1894 sfree(nd[i].points);
1895 sfree(nd);
2ac6d24e 1896
df11cd4e 1897 len = 2 + (state->w-1)*state->h + (state->h-1)*state->w;
1898 ret = snewn(len, char);
1899
1900 p = ret;
1901 *p++ = 'S';
1902 for (y = 0; y < state->h; y++)
c566778e 1903 for (x = 1; x < state->w; x++)
1904 *p++ = vedge[y*state->w+x] ? '1' : '0';
df11cd4e 1905 for (y = 1; y < state->h; y++)
1906 for (x = 0; x < state->w; x++)
1907 *p++ = hedge[y*state->w+x] ? '1' : '0';
1908 *p++ = '\0';
1909 assert(p - ret == len);
2ac6d24e 1910
c566778e 1911 sfree(vedge);
1912 sfree(hedge);
2ac6d24e 1913
1914 return ret;
1915}
1916
9b4b03d3 1917static char *game_text_format(game_state *state)
1918{
6ad5ed74 1919 char *ret, *p, buf[80];
1920 int i, x, y, col, maxlen;
1921
1922 /*
1923 * First determine the number of spaces required to display a
1924 * number. We'll use at least two, because one looks a bit
1925 * silly.
1926 */
1927 col = 2;
1928 for (i = 0; i < state->w * state->h; i++) {
1929 x = sprintf(buf, "%d", state->grid[i]);
1930 if (col < x) col = x;
1931 }
1932
1933 /*
1934 * Now we know the exact total size of the grid we're going to
1935 * produce: it's got 2*h+1 rows, each containing w lots of col,
1936 * w+1 boundary characters and a trailing newline.
1937 */
1938 maxlen = (2*state->h+1) * (state->w * (col+1) + 2);
1939
48a10826 1940 ret = snewn(maxlen+1, char);
6ad5ed74 1941 p = ret;
1942
1943 for (y = 0; y <= 2*state->h; y++) {
1944 for (x = 0; x <= 2*state->w; x++) {
1945 if (x & y & 1) {
1946 /*
1947 * Display a number.
1948 */
1949 int v = grid(state, x/2, y/2);
1950 if (v)
1951 sprintf(buf, "%*d", col, v);
1952 else
1953 sprintf(buf, "%*s", col, "");
1954 memcpy(p, buf, col);
1955 p += col;
1956 } else if (x & 1) {
1957 /*
1958 * Display a horizontal edge or nothing.
1959 */
1960 int h = (y==0 || y==2*state->h ? 1 :
1961 HRANGE(state, x/2, y/2) && hedge(state, x/2, y/2));
1962 int i;
1963 if (h)
1964 h = '-';
1965 else
1966 h = ' ';
1967 for (i = 0; i < col; i++)
1968 *p++ = h;
1969 } else if (y & 1) {
1970 /*
1971 * Display a vertical edge or nothing.
1972 */
1973 int v = (x==0 || x==2*state->w ? 1 :
1974 VRANGE(state, x/2, y/2) && vedge(state, x/2, y/2));
1975 if (v)
1976 *p++ = '|';
1977 else
1978 *p++ = ' ';
1979 } else {
1980 /*
1981 * Display a corner, or a vertical edge, or a
1982 * horizontal edge, or nothing.
1983 */
1984 int hl = (y==0 || y==2*state->h ? 1 :
1985 HRANGE(state, (x-1)/2, y/2) && hedge(state, (x-1)/2, y/2));
1986 int hr = (y==0 || y==2*state->h ? 1 :
1987 HRANGE(state, (x+1)/2, y/2) && hedge(state, (x+1)/2, y/2));
1988 int vu = (x==0 || x==2*state->w ? 1 :
1989 VRANGE(state, x/2, (y-1)/2) && vedge(state, x/2, (y-1)/2));
1990 int vd = (x==0 || x==2*state->w ? 1 :
1991 VRANGE(state, x/2, (y+1)/2) && vedge(state, x/2, (y+1)/2));
1992 if (!hl && !hr && !vu && !vd)
1993 *p++ = ' ';
1994 else if (hl && hr && !vu && !vd)
1995 *p++ = '-';
1996 else if (!hl && !hr && vu && vd)
1997 *p++ = '|';
1998 else
1999 *p++ = '+';
2000 }
2001 }
2002 *p++ = '\n';
2003 }
2004
2005 assert(p - ret == maxlen);
2006 *p = '\0';
2007 return ret;
9b4b03d3 2008}
2009
3870c4d8 2010static unsigned char *get_correct(game_state *state)
2011{
2012 unsigned char *ret;
2013 int x, y;
2014
2015 ret = snewn(state->w * state->h, unsigned char);
2016 memset(ret, 0xFF, state->w * state->h);
2017
2018 for (x = 0; x < state->w; x++)
2019 for (y = 0; y < state->h; y++)
2020 if (index(state,ret,x,y) == 0xFF) {
2021 int rw, rh;
2022 int xx, yy;
2023 int num, area, valid;
2024
2025 /*
2026 * Find a rectangle starting at this point.
2027 */
2028 rw = 1;
2029 while (x+rw < state->w && !vedge(state,x+rw,y))
2030 rw++;
2031 rh = 1;
2032 while (y+rh < state->h && !hedge(state,x,y+rh))
2033 rh++;
2034
2035 /*
2036 * We know what the dimensions of the rectangle
2037 * should be if it's there at all. Find out if we
2038 * really have a valid rectangle.
2039 */
2040 valid = TRUE;
2041 /* Check the horizontal edges. */
2042 for (xx = x; xx < x+rw; xx++) {
2043 for (yy = y; yy <= y+rh; yy++) {
2044 int e = !HRANGE(state,xx,yy) || hedge(state,xx,yy);
2045 int ec = (yy == y || yy == y+rh);
2046 if (e != ec)
2047 valid = FALSE;
2048 }
2049 }
2050 /* Check the vertical edges. */
2051 for (yy = y; yy < y+rh; yy++) {
2052 for (xx = x; xx <= x+rw; xx++) {
2053 int e = !VRANGE(state,xx,yy) || vedge(state,xx,yy);
2054 int ec = (xx == x || xx == x+rw);
2055 if (e != ec)
2056 valid = FALSE;
2057 }
2058 }
2059
2060 /*
2061 * If this is not a valid rectangle with no other
2062 * edges inside it, we just mark this square as not
2063 * complete and proceed to the next square.
2064 */
2065 if (!valid) {
2066 index(state, ret, x, y) = 0;
2067 continue;
2068 }
2069
2070 /*
2071 * We have a rectangle. Now see what its area is,
2072 * and how many numbers are in it.
2073 */
2074 num = 0;
2075 area = 0;
2076 for (xx = x; xx < x+rw; xx++) {
2077 for (yy = y; yy < y+rh; yy++) {
2078 area++;
2079 if (grid(state,xx,yy)) {
2080 if (num > 0)
2081 valid = FALSE; /* two numbers */
2082 num = grid(state,xx,yy);
2083 }
2084 }
2085 }
2086 if (num != area)
2087 valid = FALSE;
2088
2089 /*
2090 * Now fill in the whole rectangle based on the
2091 * value of `valid'.
2092 */
2093 for (xx = x; xx < x+rw; xx++) {
2094 for (yy = y; yy < y+rh; yy++) {
2095 index(state, ret, xx, yy) = valid;
2096 }
2097 }
2098 }
2099
2100 return ret;
2101}
2102
08dd70c3 2103struct game_ui {
2104 /*
2105 * These coordinates are 2 times the obvious grid coordinates.
2106 * Hence, the top left of the grid is (0,0), the grid point to
2107 * the right of that is (2,0), the one _below that_ is (2,2)
2108 * and so on. This is so that we can specify a drag start point
2109 * on an edge (one odd coordinate) or in the middle of a square
2110 * (two odd coordinates) rather than always at a corner.
2111 *
2112 * -1,-1 means no drag is in progress.
2113 */
2114 int drag_start_x;
2115 int drag_start_y;
2116 int drag_end_x;
2117 int drag_end_y;
2118 /*
2119 * This flag is set as soon as a dragging action moves the
2120 * mouse pointer away from its starting point, so that even if
2121 * the pointer _returns_ to its starting point the action is
2122 * treated as a small drag rather than a click.
2123 */
2124 int dragged;
375c9b4d 2125 /*
2126 * These are the co-ordinates of the top-left and bottom-right squares
2127 * in the drag box, respectively, or -1 otherwise.
2128 */
2129 int x1;
2130 int y1;
2131 int x2;
2132 int y2;
08dd70c3 2133};
2134
be8d5aa1 2135static game_ui *new_ui(game_state *state)
74a4e547 2136{
08dd70c3 2137 game_ui *ui = snew(game_ui);
2138 ui->drag_start_x = -1;
2139 ui->drag_start_y = -1;
2140 ui->drag_end_x = -1;
2141 ui->drag_end_y = -1;
2142 ui->dragged = FALSE;
375c9b4d 2143 ui->x1 = -1;
2144 ui->y1 = -1;
2145 ui->x2 = -1;
2146 ui->y2 = -1;
08dd70c3 2147 return ui;
74a4e547 2148}
2149
be8d5aa1 2150static void free_ui(game_ui *ui)
74a4e547 2151{
08dd70c3 2152 sfree(ui);
2153}
2154
844f605f 2155static char *encode_ui(game_ui *ui)
ae8290c6 2156{
2157 return NULL;
2158}
2159
844f605f 2160static void decode_ui(game_ui *ui, char *encoding)
ae8290c6 2161{
2162}
2163
be8d5aa1 2164static void coord_round(float x, float y, int *xr, int *yr)
08dd70c3 2165{
d4e7900f 2166 float xs, ys, xv, yv, dx, dy, dist;
08dd70c3 2167
2168 /*
d4e7900f 2169 * Find the nearest square-centre.
08dd70c3 2170 */
d4e7900f 2171 xs = (float)floor(x) + 0.5F;
2172 ys = (float)floor(y) + 0.5F;
08dd70c3 2173
2174 /*
d4e7900f 2175 * And find the nearest grid vertex.
08dd70c3 2176 */
d4e7900f 2177 xv = (float)floor(x + 0.5F);
2178 yv = (float)floor(y + 0.5F);
08dd70c3 2179
2180 /*
d4e7900f 2181 * We allocate clicks in parts of the grid square to either
2182 * corners, edges or square centres, as follows:
2183 *
2184 * +--+--------+--+
2185 * | | | |
2186 * +--+ +--+
2187 * | `. ,' |
2188 * | +--+ |
2189 * | | | |
2190 * | +--+ |
2191 * | ,' `. |
2192 * +--+ +--+
2193 * | | | |
2194 * +--+--------+--+
2195 *
2196 * (Not to scale!)
2197 *
2198 * In other words: we measure the square distance (i.e.
2199 * max(dx,dy)) from the click to the nearest corner, and if
2200 * it's within CORNER_TOLERANCE then we return a corner click.
2201 * We measure the square distance from the click to the nearest
2202 * centre, and if that's within CENTRE_TOLERANCE we return a
2203 * centre click. Failing that, we find which of the two edge
2204 * centres is nearer to the click and return that edge.
08dd70c3 2205 */
d4e7900f 2206
2207 /*
2208 * Check for corner click.
2209 */
2210 dx = (float)fabs(x - xv);
2211 dy = (float)fabs(y - yv);
2212 dist = (dx > dy ? dx : dy);
2213 if (dist < CORNER_TOLERANCE) {
2214 *xr = 2 * (int)xv;
2215 *yr = 2 * (int)yv;
2216 } else {
2217 /*
2218 * Check for centre click.
2219 */
2220 dx = (float)fabs(x - xs);
2221 dy = (float)fabs(y - ys);
2222 dist = (dx > dy ? dx : dy);
2223 if (dist < CENTRE_TOLERANCE) {
2224 *xr = 1 + 2 * (int)xs;
2225 *yr = 1 + 2 * (int)ys;
2226 } else {
2227 /*
2228 * Failing both of those, see which edge we're closer to.
2229 * Conveniently, this is simply done by testing the relative
2230 * magnitude of dx and dy (which are currently distances from
2231 * the square centre).
2232 */
2233 if (dx > dy) {
2234 /* Vertical edge: x-coord of corner,
2235 * y-coord of square centre. */
2236 *xr = 2 * (int)xv;
ee03cb5f 2237 *yr = 1 + 2 * (int)floor(ys);
d4e7900f 2238 } else {
2239 /* Horizontal edge: x-coord of square centre,
2240 * y-coord of corner. */
ee03cb5f 2241 *xr = 1 + 2 * (int)floor(xs);
d4e7900f 2242 *yr = 2 * (int)yv;
2243 }
2244 }
2245 }
08dd70c3 2246}
2247
df11cd4e 2248/*
2249 * Returns TRUE if it has made any change to the grid.
2250 */
2251static int grid_draw_rect(game_state *state,
2252 unsigned char *hedge, unsigned char *vedge,
2253 int c, int really,
2254 int x1, int y1, int x2, int y2)
08dd70c3 2255{
375c9b4d 2256 int x, y;
df11cd4e 2257 int changed = FALSE;
08dd70c3 2258
2259 /*
2260 * Draw horizontal edges of rectangles.
2261 */
2262 for (x = x1; x < x2; x++)
2263 for (y = y1; y <= y2; y++)
2264 if (HRANGE(state,x,y)) {
2265 int val = index(state,hedge,x,y);
2266 if (y == y1 || y == y2)
2267 val = c;
2268 else if (c == 1)
2269 val = 0;
df11cd4e 2270 changed = changed || (index(state,hedge,x,y) != val);
2271 if (really)
2272 index(state,hedge,x,y) = val;
08dd70c3 2273 }
2274
2275 /*
2276 * Draw vertical edges of rectangles.
2277 */
2278 for (y = y1; y < y2; y++)
2279 for (x = x1; x <= x2; x++)
2280 if (VRANGE(state,x,y)) {
2281 int val = index(state,vedge,x,y);
2282 if (x == x1 || x == x2)
2283 val = c;
2284 else if (c == 1)
2285 val = 0;
df11cd4e 2286 changed = changed || (index(state,vedge,x,y) != val);
2287 if (really)
2288 index(state,vedge,x,y) = val;
08dd70c3 2289 }
df11cd4e 2290
2291 return changed;
2292}
2293
2294static int ui_draw_rect(game_state *state, game_ui *ui,
2295 unsigned char *hedge, unsigned char *vedge, int c,
2296 int really)
2297{
2298 return grid_draw_rect(state, hedge, vedge, c, really,
2299 ui->x1, ui->y1, ui->x2, ui->y2);
74a4e547 2300}
2301
07dfb697 2302static void game_changed_state(game_ui *ui, game_state *oldstate,
2303 game_state *newstate)
2304{
2305}
2306
1e3e152d 2307struct game_drawstate {
2308 int started;
2309 int w, h, tilesize;
2310 unsigned long *visible;
2311};
2312
df11cd4e 2313static char *interpret_move(game_state *from, game_ui *ui, game_drawstate *ds,
2314 int x, int y, int button)
2315{
08dd70c3 2316 int xc, yc;
2317 int startdrag = FALSE, enddrag = FALSE, active = FALSE;
df11cd4e 2318 char buf[80], *ret;
3870c4d8 2319
f0ee053c 2320 button &= ~MOD_MASK;
2321
08dd70c3 2322 if (button == LEFT_BUTTON) {
2323 startdrag = TRUE;
2324 } else if (button == LEFT_RELEASE) {
2325 enddrag = TRUE;
2326 } else if (button != LEFT_DRAG) {
2327 return NULL;
2328 }
2329
d4e7900f 2330 coord_round(FROMCOORD((float)x), FROMCOORD((float)y), &xc, &yc);
08dd70c3 2331
e35b546f 2332 if (startdrag &&
2333 xc >= 0 && xc <= 2*from->w &&
2334 yc >= 0 && yc <= 2*from->h) {
2335
08dd70c3 2336 ui->drag_start_x = xc;
2337 ui->drag_start_y = yc;
2338 ui->drag_end_x = xc;
2339 ui->drag_end_y = yc;
2340 ui->dragged = FALSE;
2341 active = TRUE;
2342 }
3870c4d8 2343
e35b546f 2344 if (ui->drag_start_x >= 0 &&
2345 (xc != ui->drag_end_x || yc != ui->drag_end_y)) {
375c9b4d 2346 int t;
2347
08dd70c3 2348 ui->drag_end_x = xc;
2349 ui->drag_end_y = yc;
2350 ui->dragged = TRUE;
2351 active = TRUE;
375c9b4d 2352
ee03cb5f 2353 if (xc >= 0 && xc <= 2*from->w &&
2354 yc >= 0 && yc <= 2*from->h) {
2355 ui->x1 = ui->drag_start_x;
2356 ui->x2 = ui->drag_end_x;
2357 if (ui->x2 < ui->x1) { t = ui->x1; ui->x1 = ui->x2; ui->x2 = t; }
2358
2359 ui->y1 = ui->drag_start_y;
2360 ui->y2 = ui->drag_end_y;
2361 if (ui->y2 < ui->y1) { t = ui->y1; ui->y1 = ui->y2; ui->y2 = t; }
2362
2363 ui->x1 = ui->x1 / 2; /* rounds down */
2364 ui->x2 = (ui->x2+1) / 2; /* rounds up */
2365 ui->y1 = ui->y1 / 2; /* rounds down */
2366 ui->y2 = (ui->y2+1) / 2; /* rounds up */
2367 } else {
2368 ui->x1 = -1;
2369 ui->y1 = -1;
2370 ui->x2 = -1;
2371 ui->y2 = -1;
2372 }
08dd70c3 2373 }
3870c4d8 2374
934797c7 2375 ret = NULL;
2376
e35b546f 2377 if (enddrag && (ui->drag_start_x >= 0)) {
934797c7 2378 if (xc >= 0 && xc <= 2*from->w &&
2379 yc >= 0 && yc <= 2*from->h) {
934797c7 2380
2381 if (ui->dragged) {
df11cd4e 2382 if (ui_draw_rect(from, ui, from->hedge,
2383 from->vedge, 1, FALSE)) {
2384 sprintf(buf, "R%d,%d,%d,%d",
2385 ui->x1, ui->y1, ui->x2 - ui->x1, ui->y2 - ui->y1);
2386 ret = dupstr(buf);
2387 }
934797c7 2388 } else {
2389 if ((xc & 1) && !(yc & 1) && HRANGE(from,xc/2,yc/2)) {
df11cd4e 2390 sprintf(buf, "H%d,%d", xc/2, yc/2);
2391 ret = dupstr(buf);
934797c7 2392 }
2393 if ((yc & 1) && !(xc & 1) && VRANGE(from,xc/2,yc/2)) {
df11cd4e 2394 sprintf(buf, "V%d,%d", xc/2, yc/2);
2395 ret = dupstr(buf);
934797c7 2396 }
2397 }
934797c7 2398 }
2399
2400 ui->drag_start_x = -1;
2401 ui->drag_start_y = -1;
2402 ui->drag_end_x = -1;
2403 ui->drag_end_y = -1;
375c9b4d 2404 ui->x1 = -1;
2405 ui->y1 = -1;
2406 ui->x2 = -1;
2407 ui->y2 = -1;
934797c7 2408 ui->dragged = FALSE;
2409 active = TRUE;
3870c4d8 2410 }
2411
934797c7 2412 if (ret)
2413 return ret; /* a move has been made */
2414 else if (active)
df11cd4e 2415 return ""; /* UI activity has occurred */
934797c7 2416 else
2417 return NULL;
3870c4d8 2418}
2419
df11cd4e 2420static game_state *execute_move(game_state *from, char *move)
2421{
2422 game_state *ret;
2423 int x1, y1, x2, y2, mode;
2424
2425 if (move[0] == 'S') {
2426 char *p = move+1;
2427 int x, y;
2428
2429 ret = dup_game(from);
2430 ret->cheated = TRUE;
2431
2432 for (y = 0; y < ret->h; y++)
2433 for (x = 1; x < ret->w; x++) {
2434 vedge(ret, x, y) = (*p == '1');
2435 if (*p) p++;
2436 }
2437 for (y = 1; y < ret->h; y++)
2438 for (x = 0; x < ret->w; x++) {
2439 hedge(ret, x, y) = (*p == '1');
2440 if (*p) p++;
2441 }
2442
2443 return ret;
2444
2445 } else if (move[0] == 'R' &&
2446 sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 &&
2447 x1 >= 0 && x2 >= 0 && x1+x2 <= from->w &&
2448 y1 >= 0 && y2 >= 0 && y1+y2 <= from->h) {
2449 x2 += x1;
2450 y2 += y1;
2451 mode = move[0];
2452 } else if ((move[0] == 'H' || move[0] == 'V') &&
2453 sscanf(move+1, "%d,%d", &x1, &y1) == 2 &&
2454 (move[0] == 'H' ? HRANGE(from, x1, y1) :
2455 VRANGE(from, x1, y1))) {
2456 mode = move[0];
2457 } else
2458 return NULL; /* can't parse move string */
2459
2460 ret = dup_game(from);
2461
2462 if (mode == 'R') {
2463 grid_draw_rect(ret, ret->hedge, ret->vedge, 1, TRUE, x1, y1, x2, y2);
2464 } else if (mode == 'H') {
2465 hedge(ret,x1,y1) = !hedge(ret,x1,y1);
2466 } else if (mode == 'V') {
2467 vedge(ret,x1,y1) = !vedge(ret,x1,y1);
2468 }
2469
2470 /*
2471 * We've made a real change to the grid. Check to see
2472 * if the game has been completed.
2473 */
2474 if (!ret->completed) {
2475 int x, y, ok;
2476 unsigned char *correct = get_correct(ret);
2477
2478 ok = TRUE;
2479 for (x = 0; x < ret->w; x++)
2480 for (y = 0; y < ret->h; y++)
2481 if (!index(ret, correct, x, y))
2482 ok = FALSE;
2483
2484 sfree(correct);
2485
2486 if (ok)
2487 ret->completed = TRUE;
2488 }
2489
2490 return ret;
2491}
2492
3870c4d8 2493/* ----------------------------------------------------------------------
2494 * Drawing routines.
2495 */
2496
ab53eb64 2497#define CORRECT (1L<<16)
08dd70c3 2498
2499#define COLOUR(k) ( (k)==1 ? COL_LINE : COL_DRAG )
ab53eb64 2500#define MAX4(x,y,z,w) ( max(max(x,y),max(z,w)) )
3870c4d8 2501
1f3ee4ee 2502static void game_compute_size(game_params *params, int tilesize,
2503 int *x, int *y)
3870c4d8 2504{
1f3ee4ee 2505 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2506 struct { int tilesize; } ads, *ds = &ads;
2507 ads.tilesize = tilesize;
1e3e152d 2508
3870c4d8 2509 *x = params->w * TILE_SIZE + 2*BORDER + 1;
2510 *y = params->h * TILE_SIZE + 2*BORDER + 1;
2511}
2512
1f3ee4ee 2513static void game_set_size(game_drawstate *ds, game_params *params,
2514 int tilesize)
2515{
2516 ds->tilesize = tilesize;
2517}
2518
be8d5aa1 2519static float *game_colours(frontend *fe, game_state *state, int *ncolours)
3870c4d8 2520{
2521 float *ret = snewn(3 * NCOLOURS, float);
2522
2523 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2524
2525 ret[COL_GRID * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2526 ret[COL_GRID * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2527 ret[COL_GRID * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2528
08dd70c3 2529 ret[COL_DRAG * 3 + 0] = 1.0F;
2530 ret[COL_DRAG * 3 + 1] = 0.0F;
2531 ret[COL_DRAG * 3 + 2] = 0.0F;
2532
3870c4d8 2533 ret[COL_CORRECT * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2534 ret[COL_CORRECT * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2535 ret[COL_CORRECT * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2536
2537 ret[COL_LINE * 3 + 0] = 0.0F;
2538 ret[COL_LINE * 3 + 1] = 0.0F;
2539 ret[COL_LINE * 3 + 2] = 0.0F;
2540
2541 ret[COL_TEXT * 3 + 0] = 0.0F;
2542 ret[COL_TEXT * 3 + 1] = 0.0F;
2543 ret[COL_TEXT * 3 + 2] = 0.0F;
2544
2545 *ncolours = NCOLOURS;
2546 return ret;
2547}
2548
be8d5aa1 2549static game_drawstate *game_new_drawstate(game_state *state)
3870c4d8 2550{
2551 struct game_drawstate *ds = snew(struct game_drawstate);
08dd70c3 2552 int i;
3870c4d8 2553
2554 ds->started = FALSE;
2555 ds->w = state->w;
2556 ds->h = state->h;
ab53eb64 2557 ds->visible = snewn(ds->w * ds->h, unsigned long);
1e3e152d 2558 ds->tilesize = 0; /* not decided yet */
08dd70c3 2559 for (i = 0; i < ds->w * ds->h; i++)
2560 ds->visible[i] = 0xFFFF;
3870c4d8 2561
2562 return ds;
2563}
2564
be8d5aa1 2565static void game_free_drawstate(game_drawstate *ds)
3870c4d8 2566{
2567 sfree(ds->visible);
2568 sfree(ds);
2569}
2570
1e3e152d 2571static void draw_tile(frontend *fe, game_drawstate *ds, game_state *state,
2572 int x, int y, unsigned char *hedge, unsigned char *vedge,
2573 unsigned char *corners, int correct)
3870c4d8 2574{
2575 int cx = COORD(x), cy = COORD(y);
2576 char str[80];
2577
2578 draw_rect(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1, COL_GRID);
2579 draw_rect(fe, cx+1, cy+1, TILE_SIZE-1, TILE_SIZE-1,
2580 correct ? COL_CORRECT : COL_BACKGROUND);
2581
2582 if (grid(state,x,y)) {
2583 sprintf(str, "%d", grid(state,x,y));
2584 draw_text(fe, cx+TILE_SIZE/2, cy+TILE_SIZE/2, FONT_VARIABLE,
105a00d0 2585 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_TEXT, str);
3870c4d8 2586 }
2587
2588 /*
2589 * Draw edges.
2590 */
08dd70c3 2591 if (!HRANGE(state,x,y) || index(state,hedge,x,y))
2592 draw_rect(fe, cx, cy, TILE_SIZE+1, 2,
2593 HRANGE(state,x,y) ? COLOUR(index(state,hedge,x,y)) :
2594 COL_LINE);
2595 if (!HRANGE(state,x,y+1) || index(state,hedge,x,y+1))
2596 draw_rect(fe, cx, cy+TILE_SIZE-1, TILE_SIZE+1, 2,
2597 HRANGE(state,x,y+1) ? COLOUR(index(state,hedge,x,y+1)) :
2598 COL_LINE);
2599 if (!VRANGE(state,x,y) || index(state,vedge,x,y))
2600 draw_rect(fe, cx, cy, 2, TILE_SIZE+1,
2601 VRANGE(state,x,y) ? COLOUR(index(state,vedge,x,y)) :
2602 COL_LINE);
2603 if (!VRANGE(state,x+1,y) || index(state,vedge,x+1,y))
2604 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, TILE_SIZE+1,
2605 VRANGE(state,x+1,y) ? COLOUR(index(state,vedge,x+1,y)) :
2606 COL_LINE);
3870c4d8 2607
2608 /*
2609 * Draw corners.
2610 */
ec9a0f09 2611 if (index(state,corners,x,y))
08dd70c3 2612 draw_rect(fe, cx, cy, 2, 2,
ec9a0f09 2613 COLOUR(index(state,corners,x,y)));
2614 if (x+1 < state->w && index(state,corners,x+1,y))
08dd70c3 2615 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, 2,
ec9a0f09 2616 COLOUR(index(state,corners,x+1,y)));
2617 if (y+1 < state->h && index(state,corners,x,y+1))
08dd70c3 2618 draw_rect(fe, cx, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2619 COLOUR(index(state,corners,x,y+1)));
2620 if (x+1 < state->w && y+1 < state->h && index(state,corners,x+1,y+1))
08dd70c3 2621 draw_rect(fe, cx+TILE_SIZE-1, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2622 COLOUR(index(state,corners,x+1,y+1)));
3870c4d8 2623
2624 draw_update(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1);
2625}
2626
be8d5aa1 2627static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
c822de4a 2628 game_state *state, int dir, game_ui *ui,
74a4e547 2629 float animtime, float flashtime)
3870c4d8 2630{
2631 int x, y;
2632 unsigned char *correct;
ec9a0f09 2633 unsigned char *hedge, *vedge, *corners;
3870c4d8 2634
2635 correct = get_correct(state);
2636
08dd70c3 2637 if (ui->dragged) {
2638 hedge = snewn(state->w*state->h, unsigned char);
2639 vedge = snewn(state->w*state->h, unsigned char);
2640 memcpy(hedge, state->hedge, state->w*state->h);
2641 memcpy(vedge, state->vedge, state->w*state->h);
df11cd4e 2642 ui_draw_rect(state, ui, hedge, vedge, 2, TRUE);
08dd70c3 2643 } else {
2644 hedge = state->hedge;
2645 vedge = state->vedge;
2646 }
2647
ec9a0f09 2648 corners = snewn(state->w * state->h, unsigned char);
2649 memset(corners, 0, state->w * state->h);
2650 for (x = 0; x < state->w; x++)
2651 for (y = 0; y < state->h; y++) {
2652 if (x > 0) {
2653 int e = index(state, vedge, x, y);
2654 if (index(state,corners,x,y) < e)
2655 index(state,corners,x,y) = e;
2656 if (y+1 < state->h &&
2657 index(state,corners,x,y+1) < e)
2658 index(state,corners,x,y+1) = e;
2659 }
2660 if (y > 0) {
2661 int e = index(state, hedge, x, y);
2662 if (index(state,corners,x,y) < e)
2663 index(state,corners,x,y) = e;
2664 if (x+1 < state->w &&
2665 index(state,corners,x+1,y) < e)
2666 index(state,corners,x+1,y) = e;
2667 }
2668 }
2669
3870c4d8 2670 if (!ds->started) {
105a00d0 2671 draw_rect(fe, 0, 0,
2672 state->w * TILE_SIZE + 2*BORDER + 1,
2673 state->h * TILE_SIZE + 2*BORDER + 1, COL_BACKGROUND);
3870c4d8 2674 draw_rect(fe, COORD(0)-1, COORD(0)-1,
2675 ds->w*TILE_SIZE+3, ds->h*TILE_SIZE+3, COL_LINE);
2676 ds->started = TRUE;
863c3945 2677 draw_update(fe, 0, 0,
2678 state->w * TILE_SIZE + 2*BORDER + 1,
2679 state->h * TILE_SIZE + 2*BORDER + 1);
3870c4d8 2680 }
2681
2682 for (x = 0; x < state->w; x++)
2683 for (y = 0; y < state->h; y++) {
ab53eb64 2684 unsigned long c = 0;
08dd70c3 2685
2686 if (HRANGE(state,x,y))
2687 c |= index(state,hedge,x,y);
eddb22e8 2688 if (HRANGE(state,x,y+1))
2689 c |= index(state,hedge,x,y+1) << 2;
08dd70c3 2690 if (VRANGE(state,x,y))
2691 c |= index(state,vedge,x,y) << 4;
eddb22e8 2692 if (VRANGE(state,x+1,y))
2693 c |= index(state,vedge,x+1,y) << 6;
ec9a0f09 2694 c |= index(state,corners,x,y) << 8;
2695 if (x+1 < state->w)
2696 c |= index(state,corners,x+1,y) << 10;
2697 if (y+1 < state->h)
2698 c |= index(state,corners,x,y+1) << 12;
2699 if (x+1 < state->w && y+1 < state->h)
ab53eb64 2700 /* cast to prevent 2<<14 sign-extending on promotion to long */
2701 c |= (unsigned long)index(state,corners,x+1,y+1) << 14;
ef29354c 2702 if (index(state, correct, x, y) && !flashtime)
3870c4d8 2703 c |= CORRECT;
2704
2705 if (index(ds,ds->visible,x,y) != c) {
1e3e152d 2706 draw_tile(fe, ds, state, x, y, hedge, vedge, corners,
ab53eb64 2707 (c & CORRECT) ? 1 : 0);
ec9a0f09 2708 index(ds,ds->visible,x,y) = c;
3870c4d8 2709 }
2710 }
2711
375c9b4d 2712 {
2713 char buf[256];
2714
2715 if (ui->x1 >= 0 && ui->y1 >= 0 &&
2716 ui->x2 >= 0 && ui->y2 >= 0) {
2717 sprintf(buf, "%dx%d ",
2718 ui->x2-ui->x1,
2719 ui->y2-ui->y1);
2720 } else {
2721 buf[0] = '\0';
2722 }
2723
2724 if (state->cheated)
2725 strcat(buf, "Auto-solved.");
2726 else if (state->completed)
2727 strcat(buf, "COMPLETED!");
2728
2729 status_bar(fe, buf);
2730 }
2731
08dd70c3 2732 if (hedge != state->hedge) {
2733 sfree(hedge);
2734 sfree(vedge);
375c9b4d 2735 }
08dd70c3 2736
11c44cf5 2737 sfree(corners);
3870c4d8 2738 sfree(correct);
2739}
2740
be8d5aa1 2741static float game_anim_length(game_state *oldstate,
e3f21163 2742 game_state *newstate, int dir, game_ui *ui)
3870c4d8 2743{
2744 return 0.0F;
2745}
2746
be8d5aa1 2747static float game_flash_length(game_state *oldstate,
e3f21163 2748 game_state *newstate, int dir, game_ui *ui)
3870c4d8 2749{
2ac6d24e 2750 if (!oldstate->completed && newstate->completed &&
2751 !oldstate->cheated && !newstate->cheated)
ef29354c 2752 return FLASH_TIME;
3870c4d8 2753 return 0.0F;
2754}
2755
be8d5aa1 2756static int game_wants_statusbar(void)
3870c4d8 2757{
375c9b4d 2758 return TRUE;
3870c4d8 2759}
be8d5aa1 2760
48dcdd62 2761static int game_timing_state(game_state *state)
2762{
2763 return TRUE;
2764}
2765
be8d5aa1 2766#ifdef COMBINED
2767#define thegame rect
2768#endif
2769
2770const struct game thegame = {
1d228b10 2771 "Rectangles", "games.rectangles",
be8d5aa1 2772 default_params,
2773 game_fetch_preset,
2774 decode_params,
2775 encode_params,
2776 free_params,
2777 dup_params,
1d228b10 2778 TRUE, game_configure, custom_params,
be8d5aa1 2779 validate_params,
1185e3c5 2780 new_game_desc,
1185e3c5 2781 validate_desc,
be8d5aa1 2782 new_game,
2783 dup_game,
2784 free_game,
2ac6d24e 2785 TRUE, solve_game,
6ad5ed74 2786 TRUE, game_text_format,
be8d5aa1 2787 new_ui,
2788 free_ui,
ae8290c6 2789 encode_ui,
2790 decode_ui,
07dfb697 2791 game_changed_state,
df11cd4e 2792 interpret_move,
2793 execute_move,
1f3ee4ee 2794 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
be8d5aa1 2795 game_colours,
2796 game_new_drawstate,
2797 game_free_drawstate,
2798 game_redraw,
2799 game_anim_length,
2800 game_flash_length,
2801 game_wants_statusbar,
48dcdd62 2802 FALSE, game_timing_state,
93b1da3d 2803 0, /* mouse_priorities */
be8d5aa1 2804};