Conversation with Richard and Chris yesterday gave rise to a more
[sgt/puzzles] / rect.c
CommitLineData
3870c4d8 1/*
2 * rect.c: Puzzle from nikoli.co.jp. You have a square grid with
3 * numbers in some squares; you must divide the square grid up into
4 * variously sized rectangles, such that every rectangle contains
5 * exactly one numbered square and the area of each rectangle is
6 * equal to the number contained in it.
7 */
8
9/*
10 * TODO:
11 *
738d2f61 12 * - Improve singleton removal.
13 * + It would be nice to limit the size of the generated
14 * rectangles in accordance with existing constraints such as
15 * the maximum rectangle size and the one about not
16 * generating a rectangle the full width or height of the
17 * grid.
18 * + This could be achieved by making a less random choice
19 * about which of the available options to use.
20 * + Alternatively, we could create our rectangle and then
21 * split it up.
3870c4d8 22 */
23
24#include <stdio.h>
25#include <stdlib.h>
26#include <string.h>
27#include <assert.h>
b0e26073 28#include <ctype.h>
3870c4d8 29#include <math.h>
30
31#include "puzzles.h"
32
3870c4d8 33enum {
34 COL_BACKGROUND,
35 COL_CORRECT,
36 COL_LINE,
37 COL_TEXT,
38 COL_GRID,
08dd70c3 39 COL_DRAG,
3870c4d8 40 NCOLOURS
41};
42
43struct game_params {
44 int w, h;
aea3ed9a 45 float expandfactor;
40fde884 46 int unique;
3870c4d8 47};
48
49#define INDEX(state, x, y) (((y) * (state)->w) + (x))
50#define index(state, a, x, y) ((a) [ INDEX(state,x,y) ])
51#define grid(state,x,y) index(state, (state)->grid, x, y)
52#define vedge(state,x,y) index(state, (state)->vedge, x, y)
53#define hedge(state,x,y) index(state, (state)->hedge, x, y)
54
55#define CRANGE(state,x,y,dx,dy) ( (x) >= dx && (x) < (state)->w && \
56 (y) >= dy && (y) < (state)->h )
57#define RANGE(state,x,y) CRANGE(state,x,y,0,0)
58#define HRANGE(state,x,y) CRANGE(state,x,y,0,1)
59#define VRANGE(state,x,y) CRANGE(state,x,y,1,0)
60
1e3e152d 61#define PREFERRED_TILE_SIZE 24
62#define TILE_SIZE (ds->tilesize)
63#define BORDER (TILE_SIZE * 3 / 4)
3870c4d8 64
d4e7900f 65#define CORNER_TOLERANCE 0.15F
66#define CENTRE_TOLERANCE 0.15F
67
ef29354c 68#define FLASH_TIME 0.13F
69
3870c4d8 70#define COORD(x) ( (x) * TILE_SIZE + BORDER )
71#define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
72
73struct game_state {
74 int w, h;
75 int *grid; /* contains the numbers */
76 unsigned char *vedge; /* (w+1) x h */
77 unsigned char *hedge; /* w x (h+1) */
2ac6d24e 78 int completed, cheated;
3870c4d8 79};
80
be8d5aa1 81static game_params *default_params(void)
3870c4d8 82{
83 game_params *ret = snew(game_params);
84
85 ret->w = ret->h = 7;
aea3ed9a 86 ret->expandfactor = 0.0F;
40fde884 87 ret->unique = TRUE;
3870c4d8 88
89 return ret;
90}
91
be8d5aa1 92static int game_fetch_preset(int i, char **name, game_params **params)
3870c4d8 93{
94 game_params *ret;
95 int w, h;
96 char buf[80];
97
98 switch (i) {
99 case 0: w = 7, h = 7; break;
ab53eb64 100 case 1: w = 9, h = 9; break;
101 case 2: w = 11, h = 11; break;
102 case 3: w = 13, h = 13; break;
103 case 4: w = 15, h = 15; break;
104#ifndef SLOW_SYSTEM
105 case 5: w = 17, h = 17; break;
106 case 6: w = 19, h = 19; break;
107#endif
3870c4d8 108 default: return FALSE;
109 }
110
111 sprintf(buf, "%dx%d", w, h);
112 *name = dupstr(buf);
113 *params = ret = snew(game_params);
114 ret->w = w;
115 ret->h = h;
aea3ed9a 116 ret->expandfactor = 0.0F;
40fde884 117 ret->unique = TRUE;
3870c4d8 118 return TRUE;
119}
120
be8d5aa1 121static void free_params(game_params *params)
3870c4d8 122{
123 sfree(params);
124}
125
be8d5aa1 126static game_params *dup_params(game_params *params)
3870c4d8 127{
128 game_params *ret = snew(game_params);
129 *ret = *params; /* structure copy */
130 return ret;
131}
132
1185e3c5 133static void decode_params(game_params *ret, char const *string)
b0e26073 134{
b0e26073 135 ret->w = ret->h = atoi(string);
aea3ed9a 136 while (*string && isdigit((unsigned char)*string)) string++;
b0e26073 137 if (*string == 'x') {
138 string++;
139 ret->h = atoi(string);
aea3ed9a 140 while (*string && isdigit((unsigned char)*string)) string++;
141 }
142 if (*string == 'e') {
143 string++;
144 ret->expandfactor = atof(string);
40fde884 145 while (*string &&
146 (*string == '.' || isdigit((unsigned char)*string))) string++;
147 }
148 if (*string == 'a') {
149 string++;
150 ret->unique = FALSE;
b0e26073 151 }
b0e26073 152}
153
1185e3c5 154static char *encode_params(game_params *params, int full)
b0e26073 155{
156 char data[256];
157
158 sprintf(data, "%dx%d", params->w, params->h);
5472ceb6 159 if (full && params->expandfactor)
1185e3c5 160 sprintf(data + strlen(data), "e%g", params->expandfactor);
40fde884 161 if (full && !params->unique)
162 strcat(data, "a");
b0e26073 163
164 return dupstr(data);
165}
166
be8d5aa1 167static config_item *game_configure(game_params *params)
3870c4d8 168{
169 config_item *ret;
170 char buf[80];
171
172 ret = snewn(5, config_item);
173
174 ret[0].name = "Width";
175 ret[0].type = C_STRING;
176 sprintf(buf, "%d", params->w);
177 ret[0].sval = dupstr(buf);
178 ret[0].ival = 0;
179
180 ret[1].name = "Height";
181 ret[1].type = C_STRING;
182 sprintf(buf, "%d", params->h);
183 ret[1].sval = dupstr(buf);
184 ret[1].ival = 0;
185
aea3ed9a 186 ret[2].name = "Expansion factor";
187 ret[2].type = C_STRING;
188 sprintf(buf, "%g", params->expandfactor);
189 ret[2].sval = dupstr(buf);
3870c4d8 190 ret[2].ival = 0;
191
40fde884 192 ret[3].name = "Ensure unique solution";
193 ret[3].type = C_BOOLEAN;
aea3ed9a 194 ret[3].sval = NULL;
40fde884 195 ret[3].ival = params->unique;
196
197 ret[4].name = NULL;
198 ret[4].type = C_END;
199 ret[4].sval = NULL;
200 ret[4].ival = 0;
aea3ed9a 201
3870c4d8 202 return ret;
203}
204
be8d5aa1 205static game_params *custom_params(config_item *cfg)
3870c4d8 206{
207 game_params *ret = snew(game_params);
208
209 ret->w = atoi(cfg[0].sval);
210 ret->h = atoi(cfg[1].sval);
aea3ed9a 211 ret->expandfactor = atof(cfg[2].sval);
40fde884 212 ret->unique = cfg[3].ival;
3870c4d8 213
214 return ret;
215}
216
be8d5aa1 217static char *validate_params(game_params *params)
3870c4d8 218{
ab53eb64 219 if (params->w <= 0 || params->h <= 0)
3870c4d8 220 return "Width and height must both be greater than zero";
ab53eb64 221 if (params->w*params->h < 2)
d4e7900f 222 return "Grid area must be greater than one";
aea3ed9a 223 if (params->expandfactor < 0.0F)
224 return "Expansion factor may not be negative";
3870c4d8 225 return NULL;
226}
227
26801d29 228struct point {
229 int x, y;
230};
231
3870c4d8 232struct rect {
233 int x, y;
234 int w, h;
235};
236
237struct rectlist {
238 struct rect *rects;
239 int n;
240};
241
26801d29 242struct numberdata {
243 int area;
244 int npoints;
245 struct point *points;
246};
247
248/* ----------------------------------------------------------------------
249 * Solver for Rectangles games.
250 *
251 * This solver is souped up beyond the needs of actually _solving_
252 * a puzzle. It is also designed to cope with uncertainty about
253 * where the numbers have been placed. This is because I run it on
254 * my generated grids _before_ placing the numbers, and have it
255 * tell me where I need to place the numbers to ensure a unique
256 * solution.
257 */
258
259static void remove_rect_placement(int w, int h,
260 struct rectlist *rectpositions,
261 int *overlaps,
262 int rectnum, int placement)
263{
264 int x, y, xx, yy;
265
266#ifdef SOLVER_DIAGNOSTICS
267 printf("ruling out rect %d placement at %d,%d w=%d h=%d\n", rectnum,
268 rectpositions[rectnum].rects[placement].x,
269 rectpositions[rectnum].rects[placement].y,
270 rectpositions[rectnum].rects[placement].w,
271 rectpositions[rectnum].rects[placement].h);
272#endif
273
274 /*
275 * Decrement each entry in the overlaps array to reflect the
276 * removal of this rectangle placement.
277 */
278 for (yy = 0; yy < rectpositions[rectnum].rects[placement].h; yy++) {
279 y = yy + rectpositions[rectnum].rects[placement].y;
280 for (xx = 0; xx < rectpositions[rectnum].rects[placement].w; xx++) {
281 x = xx + rectpositions[rectnum].rects[placement].x;
282
283 assert(overlaps[(rectnum * h + y) * w + x] != 0);
284
285 if (overlaps[(rectnum * h + y) * w + x] > 0)
286 overlaps[(rectnum * h + y) * w + x]--;
287 }
288 }
289
290 /*
291 * Remove the placement from the list of positions for that
292 * rectangle, by interchanging it with the one on the end.
293 */
294 if (placement < rectpositions[rectnum].n - 1) {
295 struct rect t;
296
297 t = rectpositions[rectnum].rects[rectpositions[rectnum].n - 1];
298 rectpositions[rectnum].rects[rectpositions[rectnum].n - 1] =
299 rectpositions[rectnum].rects[placement];
300 rectpositions[rectnum].rects[placement] = t;
301 }
302 rectpositions[rectnum].n--;
303}
304
305static void remove_number_placement(int w, int h, struct numberdata *number,
306 int index, int *rectbyplace)
307{
308 /*
309 * Remove the entry from the rectbyplace array.
310 */
311 rectbyplace[number->points[index].y * w + number->points[index].x] = -1;
312
313 /*
314 * Remove the placement from the list of candidates for that
315 * number, by interchanging it with the one on the end.
316 */
317 if (index < number->npoints - 1) {
318 struct point t;
319
320 t = number->points[number->npoints - 1];
321 number->points[number->npoints - 1] = number->points[index];
322 number->points[index] = t;
323 }
324 number->npoints--;
325}
326
327static int rect_solver(int w, int h, int nrects, struct numberdata *numbers,
1507058f 328 game_state *result, random_state *rs)
26801d29 329{
330 struct rectlist *rectpositions;
331 int *overlaps, *rectbyplace, *workspace;
332 int i, ret;
333
334 /*
335 * Start by setting up a list of candidate positions for each
336 * rectangle.
337 */
338 rectpositions = snewn(nrects, struct rectlist);
339 for (i = 0; i < nrects; i++) {
340 int rw, rh, area = numbers[i].area;
341 int j, minx, miny, maxx, maxy;
342 struct rect *rlist;
343 int rlistn, rlistsize;
344
345 /*
346 * For each rectangle, begin by finding the bounding
347 * rectangle of its candidate number placements.
348 */
349 maxx = maxy = -1;
350 minx = w;
351 miny = h;
352 for (j = 0; j < numbers[i].npoints; j++) {
353 if (minx > numbers[i].points[j].x) minx = numbers[i].points[j].x;
354 if (miny > numbers[i].points[j].y) miny = numbers[i].points[j].y;
355 if (maxx < numbers[i].points[j].x) maxx = numbers[i].points[j].x;
356 if (maxy < numbers[i].points[j].y) maxy = numbers[i].points[j].y;
357 }
358
359 /*
360 * Now loop over all possible rectangle placements
361 * overlapping a point within that bounding rectangle;
362 * ensure each one actually contains a candidate number
363 * placement, and add it to the list.
364 */
365 rlist = NULL;
366 rlistn = rlistsize = 0;
367
368 for (rw = 1; rw <= area && rw <= w; rw++) {
369 int x, y;
370
371 if (area % rw)
372 continue;
373 rh = area / rw;
374 if (rh > h)
375 continue;
376
377 for (y = miny - rh + 1; y <= maxy; y++) {
378 if (y < 0 || y+rh > h)
379 continue;
380
381 for (x = minx - rw + 1; x <= maxx; x++) {
382 if (x < 0 || x+rw > w)
383 continue;
384
385 /*
386 * See if we can find a candidate number
387 * placement within this rectangle.
388 */
389 for (j = 0; j < numbers[i].npoints; j++)
390 if (numbers[i].points[j].x >= x &&
391 numbers[i].points[j].x < x+rw &&
392 numbers[i].points[j].y >= y &&
393 numbers[i].points[j].y < y+rh)
394 break;
395
396 if (j < numbers[i].npoints) {
397 /*
398 * Add this to the list of candidate
399 * placements for this rectangle.
400 */
401 if (rlistn >= rlistsize) {
402 rlistsize = rlistn + 32;
403 rlist = sresize(rlist, rlistsize, struct rect);
404 }
405 rlist[rlistn].x = x;
406 rlist[rlistn].y = y;
407 rlist[rlistn].w = rw;
408 rlist[rlistn].h = rh;
409#ifdef SOLVER_DIAGNOSTICS
410 printf("rect %d [area %d]: candidate position at"
411 " %d,%d w=%d h=%d\n",
412 i, area, x, y, rw, rh);
413#endif
414 rlistn++;
415 }
416 }
417 }
418 }
419
420 rectpositions[i].rects = rlist;
421 rectpositions[i].n = rlistn;
422 }
423
424 /*
425 * Next, construct a multidimensional array tracking how many
426 * candidate positions for each rectangle overlap each square.
427 *
428 * Indexing of this array is by the formula
429 *
430 * overlaps[(rectindex * h + y) * w + x]
431 */
432 overlaps = snewn(nrects * w * h, int);
433 memset(overlaps, 0, nrects * w * h * sizeof(int));
434 for (i = 0; i < nrects; i++) {
435 int j;
436
437 for (j = 0; j < rectpositions[i].n; j++) {
438 int xx, yy;
439
440 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++)
441 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++)
442 overlaps[(i * h + yy+rectpositions[i].rects[j].y) * w +
443 xx+rectpositions[i].rects[j].x]++;
444 }
445 }
446
447 /*
448 * Also we want an array covering the grid once, to make it
449 * easy to figure out which squares are candidate number
450 * placements for which rectangles. (The existence of this
451 * single array assumes that no square starts off as a
452 * candidate number placement for more than one rectangle. This
453 * assumption is justified, because this solver is _either_
454 * used to solve real problems - in which case there is a
455 * single placement for every number - _or_ used to decide on
456 * number placements for a new puzzle, in which case each
457 * number's placements are confined to the intended position of
458 * the rectangle containing that number.)
459 */
460 rectbyplace = snewn(w * h, int);
461 for (i = 0; i < w*h; i++)
462 rectbyplace[i] = -1;
463
464 for (i = 0; i < nrects; i++) {
465 int j;
466
467 for (j = 0; j < numbers[i].npoints; j++) {
468 int x = numbers[i].points[j].x;
469 int y = numbers[i].points[j].y;
470
471 assert(rectbyplace[y * w + x] == -1);
472 rectbyplace[y * w + x] = i;
473 }
474 }
475
476 workspace = snewn(nrects, int);
477
478 /*
479 * Now run the actual deduction loop.
480 */
481 while (1) {
482 int done_something = FALSE;
483
484#ifdef SOLVER_DIAGNOSTICS
485 printf("starting deduction loop\n");
486
487 for (i = 0; i < nrects; i++) {
488 printf("rect %d overlaps:\n", i);
489 {
490 int x, y;
491 for (y = 0; y < h; y++) {
492 for (x = 0; x < w; x++) {
493 printf("%3d", overlaps[(i * h + y) * w + x]);
494 }
495 printf("\n");
496 }
497 }
498 }
499 printf("rectbyplace:\n");
500 {
501 int x, y;
502 for (y = 0; y < h; y++) {
503 for (x = 0; x < w; x++) {
504 printf("%3d", rectbyplace[y * w + x]);
505 }
506 printf("\n");
507 }
508 }
509#endif
510
511 /*
512 * Housekeeping. Look for rectangles whose number has only
513 * one candidate position left, and mark that square as
514 * known if it isn't already.
515 */
516 for (i = 0; i < nrects; i++) {
517 if (numbers[i].npoints == 1) {
518 int x = numbers[i].points[0].x;
519 int y = numbers[i].points[0].y;
520 if (overlaps[(i * h + y) * w + x] >= -1) {
521 int j;
522
523 assert(overlaps[(i * h + y) * w + x] > 0);
524#ifdef SOLVER_DIAGNOSTICS
525 printf("marking %d,%d as known for rect %d"
526 " (sole remaining number position)\n", x, y, i);
527#endif
528
529 for (j = 0; j < nrects; j++)
530 overlaps[(j * h + y) * w + x] = -1;
531
532 overlaps[(i * h + y) * w + x] = -2;
533 }
534 }
535 }
536
537 /*
538 * Now look at the intersection of all possible placements
539 * for each rectangle, and mark all squares in that
540 * intersection as known for that rectangle if they aren't
541 * already.
542 */
543 for (i = 0; i < nrects; i++) {
544 int minx, miny, maxx, maxy, xx, yy, j;
545
546 minx = miny = 0;
547 maxx = w;
548 maxy = h;
549
550 for (j = 0; j < rectpositions[i].n; j++) {
551 int x = rectpositions[i].rects[j].x;
552 int y = rectpositions[i].rects[j].y;
553 int w = rectpositions[i].rects[j].w;
554 int h = rectpositions[i].rects[j].h;
555
556 if (minx < x) minx = x;
557 if (miny < y) miny = y;
558 if (maxx > x+w) maxx = x+w;
559 if (maxy > y+h) maxy = y+h;
560 }
561
562 for (yy = miny; yy < maxy; yy++)
563 for (xx = minx; xx < maxx; xx++)
564 if (overlaps[(i * h + yy) * w + xx] >= -1) {
565 assert(overlaps[(i * h + yy) * w + xx] > 0);
566#ifdef SOLVER_DIAGNOSTICS
567 printf("marking %d,%d as known for rect %d"
568 " (intersection of all placements)\n",
569 xx, yy, i);
570#endif
571
572 for (j = 0; j < nrects; j++)
573 overlaps[(j * h + yy) * w + xx] = -1;
574
575 overlaps[(i * h + yy) * w + xx] = -2;
576 }
577 }
578
579 /*
580 * Rectangle-focused deduction. Look at each rectangle in
581 * turn and try to rule out some of its candidate
582 * placements.
583 */
584 for (i = 0; i < nrects; i++) {
585 int j;
586
587 for (j = 0; j < rectpositions[i].n; j++) {
588 int xx, yy, k;
589 int del = FALSE;
590
591 for (k = 0; k < nrects; k++)
592 workspace[k] = 0;
593
594 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
595 int y = yy + rectpositions[i].rects[j].y;
596 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
597 int x = xx + rectpositions[i].rects[j].x;
598
599 if (overlaps[(i * h + y) * w + x] == -1) {
600 /*
601 * This placement overlaps a square
602 * which is _known_ to be part of
603 * another rectangle. Therefore we must
604 * rule it out.
605 */
606#ifdef SOLVER_DIAGNOSTICS
607 printf("rect %d placement at %d,%d w=%d h=%d "
608 "contains %d,%d which is known-other\n", i,
609 rectpositions[i].rects[j].x,
610 rectpositions[i].rects[j].y,
611 rectpositions[i].rects[j].w,
612 rectpositions[i].rects[j].h,
613 x, y);
614#endif
615 del = TRUE;
616 }
617
618 if (rectbyplace[y * w + x] != -1) {
619 /*
620 * This placement overlaps one of the
621 * candidate number placements for some
622 * rectangle. Count it.
623 */
624 workspace[rectbyplace[y * w + x]]++;
625 }
626 }
627 }
628
629 if (!del) {
630 /*
631 * If we haven't ruled this placement out
632 * already, see if it overlaps _all_ of the
633 * candidate number placements for any
634 * rectangle. If so, we can rule it out.
635 */
636 for (k = 0; k < nrects; k++)
637 if (k != i && workspace[k] == numbers[k].npoints) {
638#ifdef SOLVER_DIAGNOSTICS
639 printf("rect %d placement at %d,%d w=%d h=%d "
640 "contains all number points for rect %d\n",
641 i,
642 rectpositions[i].rects[j].x,
643 rectpositions[i].rects[j].y,
644 rectpositions[i].rects[j].w,
645 rectpositions[i].rects[j].h,
646 k);
647#endif
648 del = TRUE;
649 break;
650 }
651
652 /*
653 * Failing that, see if it overlaps at least
654 * one of the candidate number placements for
655 * itself! (This might not be the case if one
656 * of those number placements has been removed
657 * recently.).
658 */
659 if (!del && workspace[i] == 0) {
660#ifdef SOLVER_DIAGNOSTICS
661 printf("rect %d placement at %d,%d w=%d h=%d "
662 "contains none of its own number points\n",
663 i,
664 rectpositions[i].rects[j].x,
665 rectpositions[i].rects[j].y,
666 rectpositions[i].rects[j].w,
667 rectpositions[i].rects[j].h);
668#endif
669 del = TRUE;
670 }
671 }
672
673 if (del) {
674 remove_rect_placement(w, h, rectpositions, overlaps, i, j);
675
676 j--; /* don't skip over next placement */
677
678 done_something = TRUE;
679 }
680 }
681 }
682
683 /*
684 * Square-focused deduction. Look at each square not marked
685 * as known, and see if there are any which can only be
686 * part of a single rectangle.
687 */
688 {
689 int x, y, n, index;
690 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
691 /* Known squares are marked as <0 everywhere, so we only need
692 * to check the overlaps entry for rect 0. */
693 if (overlaps[y * w + x] < 0)
694 continue; /* known already */
695
696 n = 0;
697 index = -1;
698 for (i = 0; i < nrects; i++)
699 if (overlaps[(i * h + y) * w + x] > 0)
700 n++, index = i;
701
702 if (n == 1) {
703 int j;
704
705 /*
706 * Now we can rule out all placements for
707 * rectangle `index' which _don't_ contain
708 * square x,y.
709 */
710#ifdef SOLVER_DIAGNOSTICS
711 printf("square %d,%d can only be in rectangle %d\n",
712 x, y, index);
713#endif
714 for (j = 0; j < rectpositions[index].n; j++) {
715 struct rect *r = &rectpositions[index].rects[j];
716 if (x >= r->x && x < r->x + r->w &&
717 y >= r->y && y < r->y + r->h)
718 continue; /* this one is OK */
719 remove_rect_placement(w, h, rectpositions, overlaps,
720 index, j);
721 j--; /* don't skip over next placement */
722 done_something = TRUE;
723 }
724 }
725 }
726 }
727
728 /*
729 * If we've managed to deduce anything by normal means,
730 * loop round again and see if there's more to be done.
731 * Only if normal deduction has completely failed us should
732 * we now move on to narrowing down the possible number
733 * placements.
734 */
735 if (done_something)
736 continue;
737
738 /*
739 * Now we have done everything we can with the current set
740 * of number placements. So we need to winnow the number
741 * placements so as to narrow down the possibilities. We do
742 * this by searching for a candidate placement (of _any_
743 * rectangle) which overlaps a candidate placement of the
744 * number for some other rectangle.
745 */
1507058f 746 if (rs) {
26801d29 747 struct rpn {
748 int rect;
749 int placement;
750 int number;
751 } *rpns = NULL;
752 int nrpns = 0, rpnsize = 0;
753 int j;
754
755 for (i = 0; i < nrects; i++) {
756 for (j = 0; j < rectpositions[i].n; j++) {
757 int xx, yy;
758
759 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
760 int y = yy + rectpositions[i].rects[j].y;
761 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
762 int x = xx + rectpositions[i].rects[j].x;
763
764 if (rectbyplace[y * w + x] >= 0 &&
765 rectbyplace[y * w + x] != i) {
766 /*
767 * Add this to the list of
768 * winnowing possibilities.
769 */
770 if (nrpns >= rpnsize) {
771 rpnsize = rpnsize * 3 / 2 + 32;
772 rpns = sresize(rpns, rpnsize, struct rpn);
773 }
774 rpns[nrpns].rect = i;
775 rpns[nrpns].placement = j;
776 rpns[nrpns].number = rectbyplace[y * w + x];
777 nrpns++;
778 }
779 }
780 }
781
782 }
783 }
784
785#ifdef SOLVER_DIAGNOSTICS
786 printf("%d candidate rect placements we could eliminate\n", nrpns);
787#endif
788 if (nrpns > 0) {
789 /*
790 * Now choose one of these unwanted rectangle
791 * placements, and eliminate it.
792 */
793 int index = random_upto(rs, nrpns);
794 int k, m;
795 struct rpn rpn = rpns[index];
796 struct rect r;
797 sfree(rpns);
798
799 i = rpn.rect;
800 j = rpn.placement;
801 k = rpn.number;
802 r = rectpositions[i].rects[j];
803
804 /*
805 * We rule out placement j of rectangle i by means
806 * of removing all of rectangle k's candidate
807 * number placements which do _not_ overlap it.
808 * This will ensure that it is eliminated during
809 * the next pass of rectangle-focused deduction.
810 */
811#ifdef SOLVER_DIAGNOSTICS
812 printf("ensuring number for rect %d is within"
813 " rect %d's placement at %d,%d w=%d h=%d\n",
814 k, i, r.x, r.y, r.w, r.h);
815#endif
816
817 for (m = 0; m < numbers[k].npoints; m++) {
818 int x = numbers[k].points[m].x;
819 int y = numbers[k].points[m].y;
820
821 if (x < r.x || x >= r.x + r.w ||
822 y < r.y || y >= r.y + r.h) {
823#ifdef SOLVER_DIAGNOSTICS
824 printf("eliminating number for rect %d at %d,%d\n",
825 k, x, y);
826#endif
827 remove_number_placement(w, h, &numbers[k],
828 m, rectbyplace);
829 m--; /* don't skip the next one */
830 done_something = TRUE;
831 }
832 }
833 }
834 }
835
836 if (!done_something) {
837#ifdef SOLVER_DIAGNOSTICS
838 printf("terminating deduction loop\n");
839#endif
840 break;
841 }
842 }
843
844 ret = TRUE;
845 for (i = 0; i < nrects; i++) {
846#ifdef SOLVER_DIAGNOSTICS
847 printf("rect %d has %d possible placements\n",
848 i, rectpositions[i].n);
849#endif
850 assert(rectpositions[i].n > 0);
1507058f 851 if (rectpositions[i].n > 1) {
26801d29 852 ret = FALSE;
1507058f 853 } else if (result) {
854 /*
855 * Place the rectangle in its only possible position.
856 */
857 int x, y;
858 struct rect *r = &rectpositions[i].rects[0];
859
860 for (y = 0; y < r->h; y++) {
861 if (r->x > 0)
862 vedge(result, r->x, r->y+y) = 1;
863 if (r->x+r->w < result->w)
864 vedge(result, r->x+r->w, r->y+y) = 1;
865 }
866 for (x = 0; x < r->w; x++) {
867 if (r->y > 0)
868 hedge(result, r->x+x, r->y) = 1;
869 if (r->y+r->h < result->h)
870 hedge(result, r->x+x, r->y+r->h) = 1;
871 }
872 }
26801d29 873 }
874
875 /*
876 * Free up all allocated storage.
877 */
878 sfree(workspace);
879 sfree(rectbyplace);
880 sfree(overlaps);
881 for (i = 0; i < nrects; i++)
882 sfree(rectpositions[i].rects);
883 sfree(rectpositions);
884
885 return ret;
886}
887
888/* ----------------------------------------------------------------------
889 * Grid generation code.
890 */
891
738d2f61 892/*
893 * This function does one of two things. If passed r==NULL, it
894 * counts the number of possible rectangles which cover the given
895 * square, and returns it in *n. If passed r!=NULL then it _reads_
896 * *n to find an index, counts the possible rectangles until it
897 * reaches the nth, and writes it into r.
898 *
899 * `scratch' is expected to point to an array of 2 * params->w
900 * ints, used internally as scratch space (and passed in like this
901 * to avoid re-allocating and re-freeing it every time round a
902 * tight loop).
903 */
904static void enum_rects(game_params *params, int *grid, struct rect *r, int *n,
905 int sx, int sy, int *scratch)
3870c4d8 906{
738d2f61 907 int rw, rh, mw, mh;
908 int x, y, dx, dy;
909 int maxarea, realmaxarea;
910 int index = 0;
911 int *top, *bottom;
3870c4d8 912
913 /*
d4e7900f 914 * Maximum rectangle area is 1/6 of total grid size, unless
915 * this means we can't place any rectangles at all in which
916 * case we set it to 2 at minimum.
3870c4d8 917 */
918 maxarea = params->w * params->h / 6;
d4e7900f 919 if (maxarea < 2)
920 maxarea = 2;
3870c4d8 921
738d2f61 922 /*
923 * Scan the grid to find the limits of the region within which
924 * any rectangle containing this point must fall. This will
925 * save us trawling the inside of every rectangle later on to
926 * see if it contains any used squares.
927 */
928 top = scratch;
929 bottom = scratch + params->w;
930 for (dy = -1; dy <= +1; dy += 2) {
931 int *array = (dy == -1 ? top : bottom);
932 for (dx = -1; dx <= +1; dx += 2) {
933 for (x = sx; x >= 0 && x < params->w; x += dx) {
934 array[x] = -2 * params->h * dy;
935 for (y = sy; y >= 0 && y < params->h; y += dy) {
936 if (index(params, grid, x, y) == -1 &&
937 (x == sx || dy*y <= dy*array[x-dx]))
938 array[x] = y;
939 else
940 break;
941 }
942 }
943 }
944 }
945
946 /*
947 * Now scan again to work out the largest rectangles we can fit
948 * in the grid, so that we can terminate the following loops
949 * early once we get down to not having much space left in the
950 * grid.
951 */
952 realmaxarea = 0;
953 for (x = 0; x < params->w; x++) {
954 int x2;
955
956 rh = bottom[x] - top[x] + 1;
957 if (rh <= 0)
958 continue; /* no rectangles can start here */
959
960 dx = (x > sx ? -1 : +1);
961 for (x2 = x; x2 >= 0 && x2 < params->w; x2 += dx)
962 if (bottom[x2] < bottom[x] || top[x2] > top[x])
963 break;
964
965 rw = abs(x2 - x);
966 if (realmaxarea < rw * rh)
967 realmaxarea = rw * rh;
968 }
969
970 if (realmaxarea > maxarea)
971 realmaxarea = maxarea;
972
973 /*
974 * Rectangles which go right the way across the grid are
975 * boring, although they can't be helped in the case of
976 * extremely small grids. (Also they might be generated later
977 * on by the singleton-removal process; we can't help that.)
978 */
979 mw = params->w - 1;
980 if (mw < 3) mw++;
981 mh = params->h - 1;
982 if (mh < 3) mh++;
983
984 for (rw = 1; rw <= mw; rw++)
985 for (rh = 1; rh <= mh; rh++) {
986 if (rw * rh > realmaxarea)
3870c4d8 987 continue;
988 if (rw * rh == 1)
989 continue;
738d2f61 990 for (x = max(sx - rw + 1, 0); x <= min(sx, params->w - rw); x++)
991 for (y = max(sy - rh + 1, 0); y <= min(sy, params->h - rh);
992 y++) {
993 /*
994 * Check this rectangle against the region we
995 * defined above.
996 */
997 if (top[x] <= y && top[x+rw-1] <= y &&
998 bottom[x] >= y+rh-1 && bottom[x+rw-1] >= y+rh-1) {
999 if (r && index == *n) {
1000 r->x = x;
1001 r->y = y;
1002 r->w = rw;
1003 r->h = rh;
1004 return;
1005 }
1006 index++;
3870c4d8 1007 }
3870c4d8 1008 }
1009 }
1010
738d2f61 1011 assert(!r);
1012 *n = index;
3870c4d8 1013}
1014
1015static void place_rect(game_params *params, int *grid, struct rect r)
1016{
1017 int idx = INDEX(params, r.x, r.y);
1018 int x, y;
1019
1020 for (x = r.x; x < r.x+r.w; x++)
1021 for (y = r.y; y < r.y+r.h; y++) {
1022 index(params, grid, x, y) = idx;
1023 }
1024#ifdef GENERATION_DIAGNOSTICS
1025 printf(" placing rectangle at (%d,%d) size %d x %d\n",
1026 r.x, r.y, r.w, r.h);
1027#endif
1028}
1029
1030static struct rect find_rect(game_params *params, int *grid, int x, int y)
1031{
1032 int idx, w, h;
1033 struct rect r;
1034
1035 /*
1036 * Find the top left of the rectangle.
1037 */
1038 idx = index(params, grid, x, y);
1039
1040 if (idx < 0) {
1041 r.x = x;
1042 r.y = y;
1043 r.w = r.h = 1;
1044 return r; /* 1x1 singleton here */
1045 }
1046
1047 y = idx / params->w;
1048 x = idx % params->w;
1049
1050 /*
1051 * Find the width and height of the rectangle.
1052 */
1053 for (w = 1;
1054 (x+w < params->w && index(params,grid,x+w,y)==idx);
1055 w++);
1056 for (h = 1;
1057 (y+h < params->h && index(params,grid,x,y+h)==idx);
1058 h++);
1059
1060 r.x = x;
1061 r.y = y;
1062 r.w = w;
1063 r.h = h;
1064
1065 return r;
1066}
1067
1068#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 1069static void display_grid(game_params *params, int *grid, int *numbers, int all)
3870c4d8 1070{
1071 unsigned char *egrid = snewn((params->w*2+3) * (params->h*2+3),
1072 unsigned char);
3870c4d8 1073 int x, y;
1074 int r = (params->w*2+3);
1075
aea3ed9a 1076 memset(egrid, 0, (params->w*2+3) * (params->h*2+3));
1077
3870c4d8 1078 for (x = 0; x < params->w; x++)
1079 for (y = 0; y < params->h; y++) {
1080 int i = index(params, grid, x, y);
1081 if (x == 0 || index(params, grid, x-1, y) != i)
1082 egrid[(2*y+2) * r + (2*x+1)] = 1;
1083 if (x == params->w-1 || index(params, grid, x+1, y) != i)
1084 egrid[(2*y+2) * r + (2*x+3)] = 1;
1085 if (y == 0 || index(params, grid, x, y-1) != i)
1086 egrid[(2*y+1) * r + (2*x+2)] = 1;
1087 if (y == params->h-1 || index(params, grid, x, y+1) != i)
1088 egrid[(2*y+3) * r + (2*x+2)] = 1;
1089 }
1090
1091 for (y = 1; y < 2*params->h+2; y++) {
1092 for (x = 1; x < 2*params->w+2; x++) {
1093 if (!((y|x)&1)) {
aea3ed9a 1094 int k = numbers ? index(params, numbers, x/2-1, y/2-1) : 0;
1095 if (k || (all && numbers)) printf("%2d", k); else printf(" ");
3870c4d8 1096 } else if (!((y&x)&1)) {
1097 int v = egrid[y*r+x];
1098 if ((y&1) && v) v = '-';
1099 if ((x&1) && v) v = '|';
1100 if (!v) v = ' ';
1101 putchar(v);
1102 if (!(x&1)) putchar(v);
1103 } else {
1104 int c, d = 0;
1105 if (egrid[y*r+(x+1)]) d |= 1;
1106 if (egrid[(y-1)*r+x]) d |= 2;
1107 if (egrid[y*r+(x-1)]) d |= 4;
1108 if (egrid[(y+1)*r+x]) d |= 8;
1109 c = " ??+?-++?+|+++++"[d];
1110 putchar(c);
1111 if (!(x&1)) putchar(c);
1112 }
1113 }
1114 putchar('\n');
1115 }
1116
1117 sfree(egrid);
1118}
1119#endif
1120
2ac6d24e 1121struct game_aux_info {
1122 int w, h;
1123 unsigned char *vedge; /* (w+1) x h */
1124 unsigned char *hedge; /* w x (h+1) */
1125};
1126
1185e3c5 1127static char *new_game_desc(game_params *params, random_state *rs,
6aa6af4c 1128 game_aux_info **aux, int interactive)
3870c4d8 1129{
26801d29 1130 int *grid, *numbers = NULL;
738d2f61 1131 int x, y, y2, y2last, yx, run, i, nsquares;
1185e3c5 1132 char *desc, *p;
738d2f61 1133 int *enum_rects_scratch;
aea3ed9a 1134 game_params params2real, *params2 = &params2real;
3870c4d8 1135
26801d29 1136 while (1) {
1137 /*
1138 * Set up the smaller width and height which we will use to
1139 * generate the base grid.
1140 */
1141 params2->w = params->w / (1.0F + params->expandfactor);
1142 if (params2->w < 2 && params->w >= 2) params2->w = 2;
1143 params2->h = params->h / (1.0F + params->expandfactor);
1144 if (params2->h < 2 && params->h >= 2) params2->h = 2;
aea3ed9a 1145
26801d29 1146 grid = snewn(params2->w * params2->h, int);
3870c4d8 1147
738d2f61 1148 enum_rects_scratch = snewn(2 * params2->w, int);
1149
1150 nsquares = 0;
26801d29 1151 for (y = 0; y < params2->h; y++)
1152 for (x = 0; x < params2->w; x++) {
1153 index(params2, grid, x, y) = -1;
738d2f61 1154 nsquares++;
26801d29 1155 }
3870c4d8 1156
3870c4d8 1157 /*
738d2f61 1158 * Place rectangles until we can't any more. We do this by
1159 * finding a square we haven't yet covered, and randomly
1160 * choosing a rectangle to cover it.
3870c4d8 1161 */
738d2f61 1162
1163 while (nsquares > 0) {
1164 int square = random_upto(rs, nsquares);
1165 int n;
26801d29 1166 struct rect r;
1167
738d2f61 1168 x = params2->w;
1169 y = params2->h;
1170 for (y = 0; y < params2->h; y++) {
1171 for (x = 0; x < params2->w; x++) {
1172 if (index(params2, grid, x, y) == -1 && square-- == 0)
1173 break;
1174 }
1175 if (x < params2->w)
1176 break;
1177 }
1178 assert(x < params2->w && y < params2->h);
26801d29 1179
1180 /*
738d2f61 1181 * Now see how many rectangles fit around this one.
26801d29 1182 */
738d2f61 1183 enum_rects(params2, grid, NULL, &n, x, y, enum_rects_scratch);
26801d29 1184
738d2f61 1185 if (!n) {
1186 /*
1187 * There are no possible rectangles covering this
1188 * square, meaning it must be a singleton. Mark it
1189 * -2 so we know not to keep trying.
1190 */
1191 index(params2, grid, x, y) = -2;
1192 nsquares--;
1193 } else {
1194 /*
1195 * Pick one at random.
1196 */
1197 n = random_upto(rs, n);
1198 enum_rects(params2, grid, &r, &n, x, y, enum_rects_scratch);
1199
1200 /*
1201 * Place it.
1202 */
1203 place_rect(params2, grid, r);
1204 nsquares -= r.w * r.h;
26801d29 1205 }
26801d29 1206 }
3870c4d8 1207
738d2f61 1208 sfree(enum_rects_scratch);
3870c4d8 1209
1210 /*
26801d29 1211 * Deal with singleton spaces remaining in the grid, one by
1212 * one.
1213 *
1214 * We do this by making a local change to the layout. There are
1215 * several possibilities:
1216 *
1217 * +-----+-----+ Here, we can remove the singleton by
1218 * | | | extending the 1x2 rectangle below it
1219 * +--+--+-----+ into a 1x3.
1220 * | | | |
1221 * | +--+ |
1222 * | | | |
1223 * | | | |
1224 * | | | |
1225 * +--+--+-----+
1226 *
1227 * +--+--+--+ Here, that trick doesn't work: there's no
1228 * | | | 1 x n rectangle with the singleton at one
1229 * | | | end. Instead, we extend a 1 x n rectangle
1230 * | | | _out_ from the singleton, shaving a layer
1231 * +--+--+ | off the end of another rectangle. So if we
1232 * | | | | extended up, we'd make our singleton part
1233 * | +--+--+ of a 1x3 and generate a 1x2 where the 2x2
1234 * | | | used to be; or we could extend right into
1235 * +--+-----+ a 2x1, turning the 1x3 into a 1x2.
1236 *
1237 * +-----+--+ Here, we can't even do _that_, since any
1238 * | | | direction we choose to extend the singleton
1239 * +--+--+ | will produce a new singleton as a result of
1240 * | | | | truncating one of the size-2 rectangles.
1241 * | +--+--+ Fortunately, this case can _only_ occur when
1242 * | | | a singleton is surrounded by four size-2s
1243 * +--+-----+ in this fashion; so instead we can simply
1244 * replace the whole section with a single 3x3.
3870c4d8 1245 */
26801d29 1246 for (x = 0; x < params2->w; x++) {
1247 for (y = 0; y < params2->h; y++) {
1248 if (index(params2, grid, x, y) < 0) {
1249 int dirs[4], ndirs;
3870c4d8 1250
1251#ifdef GENERATION_DIAGNOSTICS
26801d29 1252 display_grid(params2, grid, NULL, FALSE);
1253 printf("singleton at %d,%d\n", x, y);
3870c4d8 1254#endif
1255
26801d29 1256 /*
1257 * Check in which directions we can feasibly extend
1258 * the singleton. We can extend in a particular
1259 * direction iff either:
1260 *
1261 * - the rectangle on that side of the singleton
1262 * is not 2x1, and we are at one end of the edge
1263 * of it we are touching
1264 *
1265 * - it is 2x1 but we are on its short side.
1266 *
1267 * FIXME: we could plausibly choose between these
1268 * based on the sizes of the rectangles they would
1269 * create?
1270 */
1271 ndirs = 0;
1272 if (x < params2->w-1) {
1273 struct rect r = find_rect(params2, grid, x+1, y);
1274 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1275 dirs[ndirs++] = 1; /* right */
1276 }
1277 if (y > 0) {
1278 struct rect r = find_rect(params2, grid, x, y-1);
1279 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1280 dirs[ndirs++] = 2; /* up */
1281 }
1282 if (x > 0) {
1283 struct rect r = find_rect(params2, grid, x-1, y);
1284 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1285 dirs[ndirs++] = 4; /* left */
1286 }
1287 if (y < params2->h-1) {
1288 struct rect r = find_rect(params2, grid, x, y+1);
1289 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1290 dirs[ndirs++] = 8; /* down */
1291 }
3870c4d8 1292
26801d29 1293 if (ndirs > 0) {
1294 int which, dir;
1295 struct rect r1, r2;
3870c4d8 1296
26801d29 1297 which = random_upto(rs, ndirs);
1298 dir = dirs[which];
3870c4d8 1299
26801d29 1300 switch (dir) {
1301 case 1: /* right */
1302 assert(x < params2->w+1);
3870c4d8 1303#ifdef GENERATION_DIAGNOSTICS
26801d29 1304 printf("extending right\n");
3870c4d8 1305#endif
26801d29 1306 r1 = find_rect(params2, grid, x+1, y);
1307 r2.x = x;
1308 r2.y = y;
1309 r2.w = 1 + r1.w;
1310 r2.h = 1;
1311 if (r1.y == y)
1312 r1.y++;
1313 r1.h--;
1314 break;
1315 case 2: /* up */
1316 assert(y > 0);
3870c4d8 1317#ifdef GENERATION_DIAGNOSTICS
26801d29 1318 printf("extending up\n");
3870c4d8 1319#endif
26801d29 1320 r1 = find_rect(params2, grid, x, y-1);
1321 r2.x = x;
1322 r2.y = r1.y;
1323 r2.w = 1;
1324 r2.h = 1 + r1.h;
1325 if (r1.x == x)
1326 r1.x++;
1327 r1.w--;
1328 break;
1329 case 4: /* left */
1330 assert(x > 0);
3870c4d8 1331#ifdef GENERATION_DIAGNOSTICS
26801d29 1332 printf("extending left\n");
3870c4d8 1333#endif
26801d29 1334 r1 = find_rect(params2, grid, x-1, y);
1335 r2.x = r1.x;
1336 r2.y = y;
1337 r2.w = 1 + r1.w;
1338 r2.h = 1;
1339 if (r1.y == y)
1340 r1.y++;
1341 r1.h--;
1342 break;
1343 case 8: /* down */
1344 assert(y < params2->h+1);
3870c4d8 1345#ifdef GENERATION_DIAGNOSTICS
26801d29 1346 printf("extending down\n");
3870c4d8 1347#endif
26801d29 1348 r1 = find_rect(params2, grid, x, y+1);
1349 r2.x = x;
1350 r2.y = y;
1351 r2.w = 1;
1352 r2.h = 1 + r1.h;
1353 if (r1.x == x)
1354 r1.x++;
1355 r1.w--;
1356 break;
1357 }
1358 if (r1.h > 0 && r1.w > 0)
1359 place_rect(params2, grid, r1);
1360 place_rect(params2, grid, r2);
1361 } else {
3870c4d8 1362#ifndef NDEBUG
26801d29 1363 /*
1364 * Sanity-check that there really is a 3x3
1365 * rectangle surrounding this singleton and it
1366 * contains absolutely everything we could
1367 * possibly need.
1368 */
1369 {
1370 int xx, yy;
1371 assert(x > 0 && x < params2->w-1);
1372 assert(y > 0 && y < params2->h-1);
1373
1374 for (xx = x-1; xx <= x+1; xx++)
1375 for (yy = y-1; yy <= y+1; yy++) {
1376 struct rect r = find_rect(params2,grid,xx,yy);
1377 assert(r.x >= x-1);
1378 assert(r.y >= y-1);
1379 assert(r.x+r.w-1 <= x+1);
1380 assert(r.y+r.h-1 <= y+1);
1381 }
1382 }
3870c4d8 1383#endif
26801d29 1384
3870c4d8 1385#ifdef GENERATION_DIAGNOSTICS
26801d29 1386 printf("need the 3x3 trick\n");
3870c4d8 1387#endif
1388
26801d29 1389 /*
1390 * FIXME: If the maximum rectangle area for
1391 * this grid is less than 9, we ought to
1392 * subdivide the 3x3 in some fashion. There are
1393 * five other possibilities:
1394 *
1395 * - a 6 and a 3
1396 * - a 4, a 3 and a 2
1397 * - three 3s
1398 * - a 3 and three 2s (two different arrangements).
1399 */
1400
1401 {
1402 struct rect r;
1403 r.x = x-1;
1404 r.y = y-1;
1405 r.w = r.h = 3;
1406 place_rect(params2, grid, r);
1407 }
3870c4d8 1408 }
1409 }
1410 }
1411 }
3870c4d8 1412
26801d29 1413 /*
1414 * We have now constructed a grid of the size specified in
1415 * params2. Now we extend it into a grid of the size specified
1416 * in params. We do this in two passes: we extend it vertically
1417 * until it's the right height, then we transpose it, then
1418 * extend it vertically again (getting it effectively the right
1419 * width), then finally transpose again.
1420 */
1421 for (i = 0; i < 2; i++) {
1422 int *grid2, *expand, *where;
1423 game_params params3real, *params3 = &params3real;
aea3ed9a 1424
1425#ifdef GENERATION_DIAGNOSTICS
26801d29 1426 printf("before expansion:\n");
1427 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1428#endif
1429
26801d29 1430 /*
1431 * Set up the new grid.
1432 */
1433 grid2 = snewn(params2->w * params->h, int);
1434 expand = snewn(params2->h-1, int);
1435 where = snewn(params2->w, int);
1436 params3->w = params2->w;
1437 params3->h = params->h;
1438
1439 /*
1440 * Decide which horizontal edges are going to get expanded,
1441 * and by how much.
1442 */
1443 for (y = 0; y < params2->h-1; y++)
1444 expand[y] = 0;
1445 for (y = params2->h; y < params->h; y++) {
1446 x = random_upto(rs, params2->h-1);
1447 expand[x]++;
1448 }
aea3ed9a 1449
1450#ifdef GENERATION_DIAGNOSTICS
26801d29 1451 printf("expand[] = {");
1452 for (y = 0; y < params2->h-1; y++)
1453 printf(" %d", expand[y]);
1454 printf(" }\n");
aea3ed9a 1455#endif
1456
26801d29 1457 /*
1458 * Perform the expansion. The way this works is that we
1459 * alternately:
1460 *
1461 * - copy a row from grid into grid2
1462 *
1463 * - invent some number of additional rows in grid2 where
1464 * there was previously only a horizontal line between
1465 * rows in grid, and make random decisions about where
1466 * among these to place each rectangle edge that ran
1467 * along this line.
1468 */
1469 for (y = y2 = y2last = 0; y < params2->h; y++) {
1470 /*
1471 * Copy a single line from row y of grid into row y2 of
1472 * grid2.
1473 */
1474 for (x = 0; x < params2->w; x++) {
1475 int val = index(params2, grid, x, y);
1476 if (val / params2->w == y && /* rect starts on this line */
1477 (y2 == 0 || /* we're at the very top, or... */
1478 index(params3, grid2, x, y2-1) / params3->w < y2last
1479 /* this rect isn't already started */))
1480 index(params3, grid2, x, y2) =
1481 INDEX(params3, val % params2->w, y2);
1482 else
1483 index(params3, grid2, x, y2) =
1484 index(params3, grid2, x, y2-1);
1485 }
1486
1487 /*
1488 * If that was the last line, terminate the loop early.
1489 */
1490 if (++y2 == params3->h)
1491 break;
1492
1493 y2last = y2;
1494
1495 /*
1496 * Invent some number of additional lines. First walk
1497 * along this line working out where to put all the
1498 * edges that coincide with it.
1499 */
1500 yx = -1;
1501 for (x = 0; x < params2->w; x++) {
1502 if (index(params2, grid, x, y) !=
1503 index(params2, grid, x, y+1)) {
1504 /*
1505 * This is a horizontal edge, so it needs
1506 * placing.
1507 */
1508 if (x == 0 ||
1509 (index(params2, grid, x-1, y) !=
1510 index(params2, grid, x, y) &&
1511 index(params2, grid, x-1, y+1) !=
1512 index(params2, grid, x, y+1))) {
1513 /*
1514 * Here we have the chance to make a new
1515 * decision.
1516 */
1517 yx = random_upto(rs, expand[y]+1);
1518 } else {
1519 /*
1520 * Here we just reuse the previous value of
1521 * yx.
1522 */
1523 }
1524 } else
1525 yx = -1;
1526 where[x] = yx;
1527 }
1528
1529 for (yx = 0; yx < expand[y]; yx++) {
1530 /*
1531 * Invent a single row. For each square in the row,
1532 * we copy the grid entry from the square above it,
1533 * unless we're starting the new rectangle here.
1534 */
1535 for (x = 0; x < params2->w; x++) {
1536 if (yx == where[x]) {
1537 int val = index(params2, grid, x, y+1);
1538 val %= params2->w;
1539 val = INDEX(params3, val, y2);
1540 index(params3, grid2, x, y2) = val;
1541 } else
1542 index(params3, grid2, x, y2) =
1543 index(params3, grid2, x, y2-1);
1544 }
1545
1546 y2++;
1547 }
1548 }
1549
1550 sfree(expand);
1551 sfree(where);
aea3ed9a 1552
1553#ifdef GENERATION_DIAGNOSTICS
26801d29 1554 printf("after expansion:\n");
1555 display_grid(params3, grid2, NULL, TRUE);
aea3ed9a 1556#endif
26801d29 1557 /*
1558 * Transpose.
1559 */
1560 params2->w = params3->h;
1561 params2->h = params3->w;
1562 sfree(grid);
1563 grid = snewn(params2->w * params2->h, int);
1564 for (x = 0; x < params2->w; x++)
1565 for (y = 0; y < params2->h; y++) {
1566 int idx1 = INDEX(params2, x, y);
1567 int idx2 = INDEX(params3, y, x);
1568 int tmp;
1569
1570 tmp = grid2[idx2];
1571 tmp = (tmp % params3->w) * params2->w + (tmp / params3->w);
1572 grid[idx1] = tmp;
1573 }
1574
1575 sfree(grid2);
1576
1577 {
1578 int tmp;
1579 tmp = params->w;
1580 params->w = params->h;
1581 params->h = tmp;
1582 }
aea3ed9a 1583
1584#ifdef GENERATION_DIAGNOSTICS
26801d29 1585 printf("after transposition:\n");
1586 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1587#endif
26801d29 1588 }
aea3ed9a 1589
26801d29 1590 /*
1591 * Run the solver to narrow down the possible number
1592 * placements.
1593 */
1594 {
1595 struct numberdata *nd;
1596 int nnumbers, i, ret;
1597
1598 /* Count the rectangles. */
1599 nnumbers = 0;
1600 for (y = 0; y < params->h; y++) {
1601 for (x = 0; x < params->w; x++) {
1602 int idx = INDEX(params, x, y);
1603 if (index(params, grid, x, y) == idx)
1604 nnumbers++;
1605 }
1606 }
2ac6d24e 1607
26801d29 1608 nd = snewn(nnumbers, struct numberdata);
1609
1610 /* Now set up each number's candidate position list. */
1611 i = 0;
1612 for (y = 0; y < params->h; y++) {
1613 for (x = 0; x < params->w; x++) {
1614 int idx = INDEX(params, x, y);
1615 if (index(params, grid, x, y) == idx) {
1616 struct rect r = find_rect(params, grid, x, y);
1617 int j, k, m;
1618
1619 nd[i].area = r.w * r.h;
1620 nd[i].npoints = nd[i].area;
1621 nd[i].points = snewn(nd[i].npoints, struct point);
1622 m = 0;
1623 for (j = 0; j < r.h; j++)
1624 for (k = 0; k < r.w; k++) {
1625 nd[i].points[m].x = k + r.x;
1626 nd[i].points[m].y = j + r.y;
1627 m++;
1628 }
1629 assert(m == nd[i].npoints);
aea3ed9a 1630
26801d29 1631 i++;
1632 }
1633 }
1634 }
aea3ed9a 1635
40fde884 1636 if (params->unique)
1507058f 1637 ret = rect_solver(params->w, params->h, nnumbers, nd,
1638 NULL, rs);
40fde884 1639 else
1640 ret = TRUE; /* allow any number placement at all */
3870c4d8 1641
26801d29 1642 if (ret) {
3870c4d8 1643 /*
26801d29 1644 * Now place the numbers according to the solver's
1645 * recommendations.
3870c4d8 1646 */
26801d29 1647 numbers = snewn(params->w * params->h, int);
1648
1649 for (y = 0; y < params->h; y++)
1650 for (x = 0; x < params->w; x++) {
1651 index(params, numbers, x, y) = 0;
1652 }
1653
1654 for (i = 0; i < nnumbers; i++) {
1655 int idx = random_upto(rs, nd[i].npoints);
1656 int x = nd[i].points[idx].x;
1657 int y = nd[i].points[idx].y;
1658 index(params,numbers,x,y) = nd[i].area;
1659 }
3870c4d8 1660 }
26801d29 1661
1662 /*
1663 * Clean up.
1664 */
1665 for (i = 0; i < nnumbers; i++)
1666 sfree(nd[i].points);
1667 sfree(nd);
1668
1669 /*
1670 * If we've succeeded, then terminate the loop.
1671 */
1672 if (ret)
1673 break;
3870c4d8 1674 }
26801d29 1675
1676 /*
1677 * Give up and go round again.
1678 */
1679 sfree(grid);
1680 }
1681
1682 /*
1683 * Store the rectangle data in the game_aux_info.
1684 */
1685 {
1686 game_aux_info *ai = snew(game_aux_info);
1687
1688 ai->w = params->w;
1689 ai->h = params->h;
1690 ai->vedge = snewn(ai->w * ai->h, unsigned char);
1691 ai->hedge = snewn(ai->w * ai->h, unsigned char);
1692
1693 for (y = 0; y < params->h; y++)
1694 for (x = 1; x < params->w; x++) {
1695 vedge(ai, x, y) =
1696 index(params, grid, x, y) != index(params, grid, x-1, y);
1697 }
1698 for (y = 1; y < params->h; y++)
1699 for (x = 0; x < params->w; x++) {
1700 hedge(ai, x, y) =
1701 index(params, grid, x, y) != index(params, grid, x, y-1);
1702 }
1703
1704 *aux = ai;
3870c4d8 1705 }
1706
1707#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 1708 display_grid(params, grid, numbers, FALSE);
3870c4d8 1709#endif
1710
1185e3c5 1711 desc = snewn(11 * params->w * params->h, char);
1712 p = desc;
3870c4d8 1713 run = 0;
1714 for (i = 0; i <= params->w * params->h; i++) {
1715 int n = (i < params->w * params->h ? numbers[i] : -1);
1716
1717 if (!n)
1718 run++;
1719 else {
1720 if (run) {
1721 while (run > 0) {
1722 int c = 'a' - 1 + run;
1723 if (run > 26)
1724 c = 'z';
1725 *p++ = c;
1726 run -= c - ('a' - 1);
1727 }
1728 } else {
0e87eedc 1729 /*
1730 * If there's a number in the very top left or
1731 * bottom right, there's no point putting an
1732 * unnecessary _ before or after it.
1733 */
1185e3c5 1734 if (p > desc && n > 0)
0e87eedc 1735 *p++ = '_';
3870c4d8 1736 }
1737 if (n > 0)
1738 p += sprintf(p, "%d", n);
1739 run = 0;
1740 }
1741 }
1742 *p = '\0';
1743
1744 sfree(grid);
1745 sfree(numbers);
1746
1185e3c5 1747 return desc;
3870c4d8 1748}
1749
2ac6d24e 1750static void game_free_aux_info(game_aux_info *ai)
6f2d8d7c 1751{
2ac6d24e 1752 sfree(ai->vedge);
1753 sfree(ai->hedge);
1754 sfree(ai);
6f2d8d7c 1755}
1756
1185e3c5 1757static char *validate_desc(game_params *params, char *desc)
3870c4d8 1758{
1759 int area = params->w * params->h;
1760 int squares = 0;
1761
1185e3c5 1762 while (*desc) {
1763 int n = *desc++;
3870c4d8 1764 if (n >= 'a' && n <= 'z') {
1765 squares += n - 'a' + 1;
1766 } else if (n == '_') {
1767 /* do nothing */;
1768 } else if (n > '0' && n <= '9') {
9bb5bf60 1769 squares++;
1185e3c5 1770 while (*desc >= '0' && *desc <= '9')
1771 desc++;
3870c4d8 1772 } else
1185e3c5 1773 return "Invalid character in game description";
3870c4d8 1774 }
1775
1776 if (squares < area)
1777 return "Not enough data to fill grid";
1778
1779 if (squares > area)
1780 return "Too much data to fit in grid";
1781
1782 return NULL;
1783}
1784
c380832d 1785static game_state *new_game(midend_data *me, game_params *params, char *desc)
3870c4d8 1786{
1787 game_state *state = snew(game_state);
1788 int x, y, i, area;
1789
1790 state->w = params->w;
1791 state->h = params->h;
1792
1793 area = state->w * state->h;
1794
1795 state->grid = snewn(area, int);
1796 state->vedge = snewn(area, unsigned char);
1797 state->hedge = snewn(area, unsigned char);
2ac6d24e 1798 state->completed = state->cheated = FALSE;
3870c4d8 1799
1800 i = 0;
1185e3c5 1801 while (*desc) {
1802 int n = *desc++;
3870c4d8 1803 if (n >= 'a' && n <= 'z') {
1804 int run = n - 'a' + 1;
1805 assert(i + run <= area);
1806 while (run-- > 0)
1807 state->grid[i++] = 0;
1808 } else if (n == '_') {
1809 /* do nothing */;
1810 } else if (n > '0' && n <= '9') {
1811 assert(i < area);
1185e3c5 1812 state->grid[i++] = atoi(desc-1);
1813 while (*desc >= '0' && *desc <= '9')
1814 desc++;
3870c4d8 1815 } else {
1816 assert(!"We can't get here");
1817 }
1818 }
1819 assert(i == area);
1820
1821 for (y = 0; y < state->h; y++)
1822 for (x = 0; x < state->w; x++)
1823 vedge(state,x,y) = hedge(state,x,y) = 0;
1824
1825 return state;
1826}
1827
be8d5aa1 1828static game_state *dup_game(game_state *state)
3870c4d8 1829{
1830 game_state *ret = snew(game_state);
1831
1832 ret->w = state->w;
1833 ret->h = state->h;
1834
1835 ret->vedge = snewn(state->w * state->h, unsigned char);
1836 ret->hedge = snewn(state->w * state->h, unsigned char);
1837 ret->grid = snewn(state->w * state->h, int);
1838
ef29354c 1839 ret->completed = state->completed;
2ac6d24e 1840 ret->cheated = state->cheated;
ef29354c 1841
3870c4d8 1842 memcpy(ret->grid, state->grid, state->w * state->h * sizeof(int));
1843 memcpy(ret->vedge, state->vedge, state->w*state->h*sizeof(unsigned char));
1844 memcpy(ret->hedge, state->hedge, state->w*state->h*sizeof(unsigned char));
1845
1846 return ret;
1847}
1848
be8d5aa1 1849static void free_game(game_state *state)
3870c4d8 1850{
1851 sfree(state->grid);
1852 sfree(state->vedge);
1853 sfree(state->hedge);
1854 sfree(state);
1855}
1856
4a29930e 1857static game_state *solve_game(game_state *state, game_state *currstate,
1858 game_aux_info *ai, char **error)
2ac6d24e 1859{
1860 game_state *ret;
1861
1862 if (!ai) {
1507058f 1863 int i, j, n;
1864 struct numberdata *nd;
1865
1866 /*
1867 * Attempt the in-built solver.
1868 */
1869
1870 /* Set up each number's (very short) candidate position list. */
1871 for (i = n = 0; i < state->h * state->w; i++)
1872 if (state->grid[i])
1873 n++;
1874
1875 nd = snewn(n, struct numberdata);
1876
1877 for (i = j = 0; i < state->h * state->w; i++)
1878 if (state->grid[i]) {
1879 nd[j].area = state->grid[i];
1880 nd[j].npoints = 1;
1881 nd[j].points = snewn(1, struct point);
1882 nd[j].points[0].x = i % state->w;
1883 nd[j].points[0].y = i / state->w;
1884 j++;
1885 }
1886
1887 assert(j == n);
1888
1889 ret = dup_game(state);
1890 ret->cheated = TRUE;
1891
1892 rect_solver(state->w, state->h, n, nd, ret, NULL);
1893
1894 /*
1895 * Clean up.
1896 */
1897 for (i = 0; i < n; i++)
1898 sfree(nd[i].points);
1899 sfree(nd);
1900
1901 return ret;
2ac6d24e 1902 }
1903
1904 assert(state->w == ai->w);
1905 assert(state->h == ai->h);
1906
1907 ret = dup_game(state);
1908 memcpy(ret->vedge, ai->vedge, ai->w * ai->h * sizeof(unsigned char));
1909 memcpy(ret->hedge, ai->hedge, ai->w * ai->h * sizeof(unsigned char));
1910 ret->cheated = TRUE;
1911
1912 return ret;
1913}
1914
9b4b03d3 1915static char *game_text_format(game_state *state)
1916{
6ad5ed74 1917 char *ret, *p, buf[80];
1918 int i, x, y, col, maxlen;
1919
1920 /*
1921 * First determine the number of spaces required to display a
1922 * number. We'll use at least two, because one looks a bit
1923 * silly.
1924 */
1925 col = 2;
1926 for (i = 0; i < state->w * state->h; i++) {
1927 x = sprintf(buf, "%d", state->grid[i]);
1928 if (col < x) col = x;
1929 }
1930
1931 /*
1932 * Now we know the exact total size of the grid we're going to
1933 * produce: it's got 2*h+1 rows, each containing w lots of col,
1934 * w+1 boundary characters and a trailing newline.
1935 */
1936 maxlen = (2*state->h+1) * (state->w * (col+1) + 2);
1937
48a10826 1938 ret = snewn(maxlen+1, char);
6ad5ed74 1939 p = ret;
1940
1941 for (y = 0; y <= 2*state->h; y++) {
1942 for (x = 0; x <= 2*state->w; x++) {
1943 if (x & y & 1) {
1944 /*
1945 * Display a number.
1946 */
1947 int v = grid(state, x/2, y/2);
1948 if (v)
1949 sprintf(buf, "%*d", col, v);
1950 else
1951 sprintf(buf, "%*s", col, "");
1952 memcpy(p, buf, col);
1953 p += col;
1954 } else if (x & 1) {
1955 /*
1956 * Display a horizontal edge or nothing.
1957 */
1958 int h = (y==0 || y==2*state->h ? 1 :
1959 HRANGE(state, x/2, y/2) && hedge(state, x/2, y/2));
1960 int i;
1961 if (h)
1962 h = '-';
1963 else
1964 h = ' ';
1965 for (i = 0; i < col; i++)
1966 *p++ = h;
1967 } else if (y & 1) {
1968 /*
1969 * Display a vertical edge or nothing.
1970 */
1971 int v = (x==0 || x==2*state->w ? 1 :
1972 VRANGE(state, x/2, y/2) && vedge(state, x/2, y/2));
1973 if (v)
1974 *p++ = '|';
1975 else
1976 *p++ = ' ';
1977 } else {
1978 /*
1979 * Display a corner, or a vertical edge, or a
1980 * horizontal edge, or nothing.
1981 */
1982 int hl = (y==0 || y==2*state->h ? 1 :
1983 HRANGE(state, (x-1)/2, y/2) && hedge(state, (x-1)/2, y/2));
1984 int hr = (y==0 || y==2*state->h ? 1 :
1985 HRANGE(state, (x+1)/2, y/2) && hedge(state, (x+1)/2, y/2));
1986 int vu = (x==0 || x==2*state->w ? 1 :
1987 VRANGE(state, x/2, (y-1)/2) && vedge(state, x/2, (y-1)/2));
1988 int vd = (x==0 || x==2*state->w ? 1 :
1989 VRANGE(state, x/2, (y+1)/2) && vedge(state, x/2, (y+1)/2));
1990 if (!hl && !hr && !vu && !vd)
1991 *p++ = ' ';
1992 else if (hl && hr && !vu && !vd)
1993 *p++ = '-';
1994 else if (!hl && !hr && vu && vd)
1995 *p++ = '|';
1996 else
1997 *p++ = '+';
1998 }
1999 }
2000 *p++ = '\n';
2001 }
2002
2003 assert(p - ret == maxlen);
2004 *p = '\0';
2005 return ret;
9b4b03d3 2006}
2007
3870c4d8 2008static unsigned char *get_correct(game_state *state)
2009{
2010 unsigned char *ret;
2011 int x, y;
2012
2013 ret = snewn(state->w * state->h, unsigned char);
2014 memset(ret, 0xFF, state->w * state->h);
2015
2016 for (x = 0; x < state->w; x++)
2017 for (y = 0; y < state->h; y++)
2018 if (index(state,ret,x,y) == 0xFF) {
2019 int rw, rh;
2020 int xx, yy;
2021 int num, area, valid;
2022
2023 /*
2024 * Find a rectangle starting at this point.
2025 */
2026 rw = 1;
2027 while (x+rw < state->w && !vedge(state,x+rw,y))
2028 rw++;
2029 rh = 1;
2030 while (y+rh < state->h && !hedge(state,x,y+rh))
2031 rh++;
2032
2033 /*
2034 * We know what the dimensions of the rectangle
2035 * should be if it's there at all. Find out if we
2036 * really have a valid rectangle.
2037 */
2038 valid = TRUE;
2039 /* Check the horizontal edges. */
2040 for (xx = x; xx < x+rw; xx++) {
2041 for (yy = y; yy <= y+rh; yy++) {
2042 int e = !HRANGE(state,xx,yy) || hedge(state,xx,yy);
2043 int ec = (yy == y || yy == y+rh);
2044 if (e != ec)
2045 valid = FALSE;
2046 }
2047 }
2048 /* Check the vertical edges. */
2049 for (yy = y; yy < y+rh; yy++) {
2050 for (xx = x; xx <= x+rw; xx++) {
2051 int e = !VRANGE(state,xx,yy) || vedge(state,xx,yy);
2052 int ec = (xx == x || xx == x+rw);
2053 if (e != ec)
2054 valid = FALSE;
2055 }
2056 }
2057
2058 /*
2059 * If this is not a valid rectangle with no other
2060 * edges inside it, we just mark this square as not
2061 * complete and proceed to the next square.
2062 */
2063 if (!valid) {
2064 index(state, ret, x, y) = 0;
2065 continue;
2066 }
2067
2068 /*
2069 * We have a rectangle. Now see what its area is,
2070 * and how many numbers are in it.
2071 */
2072 num = 0;
2073 area = 0;
2074 for (xx = x; xx < x+rw; xx++) {
2075 for (yy = y; yy < y+rh; yy++) {
2076 area++;
2077 if (grid(state,xx,yy)) {
2078 if (num > 0)
2079 valid = FALSE; /* two numbers */
2080 num = grid(state,xx,yy);
2081 }
2082 }
2083 }
2084 if (num != area)
2085 valid = FALSE;
2086
2087 /*
2088 * Now fill in the whole rectangle based on the
2089 * value of `valid'.
2090 */
2091 for (xx = x; xx < x+rw; xx++) {
2092 for (yy = y; yy < y+rh; yy++) {
2093 index(state, ret, xx, yy) = valid;
2094 }
2095 }
2096 }
2097
2098 return ret;
2099}
2100
08dd70c3 2101struct game_ui {
2102 /*
2103 * These coordinates are 2 times the obvious grid coordinates.
2104 * Hence, the top left of the grid is (0,0), the grid point to
2105 * the right of that is (2,0), the one _below that_ is (2,2)
2106 * and so on. This is so that we can specify a drag start point
2107 * on an edge (one odd coordinate) or in the middle of a square
2108 * (two odd coordinates) rather than always at a corner.
2109 *
2110 * -1,-1 means no drag is in progress.
2111 */
2112 int drag_start_x;
2113 int drag_start_y;
2114 int drag_end_x;
2115 int drag_end_y;
2116 /*
2117 * This flag is set as soon as a dragging action moves the
2118 * mouse pointer away from its starting point, so that even if
2119 * the pointer _returns_ to its starting point the action is
2120 * treated as a small drag rather than a click.
2121 */
2122 int dragged;
375c9b4d 2123 /*
2124 * These are the co-ordinates of the top-left and bottom-right squares
2125 * in the drag box, respectively, or -1 otherwise.
2126 */
2127 int x1;
2128 int y1;
2129 int x2;
2130 int y2;
08dd70c3 2131};
2132
be8d5aa1 2133static game_ui *new_ui(game_state *state)
74a4e547 2134{
08dd70c3 2135 game_ui *ui = snew(game_ui);
2136 ui->drag_start_x = -1;
2137 ui->drag_start_y = -1;
2138 ui->drag_end_x = -1;
2139 ui->drag_end_y = -1;
2140 ui->dragged = FALSE;
375c9b4d 2141 ui->x1 = -1;
2142 ui->y1 = -1;
2143 ui->x2 = -1;
2144 ui->y2 = -1;
08dd70c3 2145 return ui;
74a4e547 2146}
2147
be8d5aa1 2148static void free_ui(game_ui *ui)
74a4e547 2149{
08dd70c3 2150 sfree(ui);
2151}
2152
be8d5aa1 2153static void coord_round(float x, float y, int *xr, int *yr)
08dd70c3 2154{
d4e7900f 2155 float xs, ys, xv, yv, dx, dy, dist;
08dd70c3 2156
2157 /*
d4e7900f 2158 * Find the nearest square-centre.
08dd70c3 2159 */
d4e7900f 2160 xs = (float)floor(x) + 0.5F;
2161 ys = (float)floor(y) + 0.5F;
08dd70c3 2162
2163 /*
d4e7900f 2164 * And find the nearest grid vertex.
08dd70c3 2165 */
d4e7900f 2166 xv = (float)floor(x + 0.5F);
2167 yv = (float)floor(y + 0.5F);
08dd70c3 2168
2169 /*
d4e7900f 2170 * We allocate clicks in parts of the grid square to either
2171 * corners, edges or square centres, as follows:
2172 *
2173 * +--+--------+--+
2174 * | | | |
2175 * +--+ +--+
2176 * | `. ,' |
2177 * | +--+ |
2178 * | | | |
2179 * | +--+ |
2180 * | ,' `. |
2181 * +--+ +--+
2182 * | | | |
2183 * +--+--------+--+
2184 *
2185 * (Not to scale!)
2186 *
2187 * In other words: we measure the square distance (i.e.
2188 * max(dx,dy)) from the click to the nearest corner, and if
2189 * it's within CORNER_TOLERANCE then we return a corner click.
2190 * We measure the square distance from the click to the nearest
2191 * centre, and if that's within CENTRE_TOLERANCE we return a
2192 * centre click. Failing that, we find which of the two edge
2193 * centres is nearer to the click and return that edge.
08dd70c3 2194 */
d4e7900f 2195
2196 /*
2197 * Check for corner click.
2198 */
2199 dx = (float)fabs(x - xv);
2200 dy = (float)fabs(y - yv);
2201 dist = (dx > dy ? dx : dy);
2202 if (dist < CORNER_TOLERANCE) {
2203 *xr = 2 * (int)xv;
2204 *yr = 2 * (int)yv;
2205 } else {
2206 /*
2207 * Check for centre click.
2208 */
2209 dx = (float)fabs(x - xs);
2210 dy = (float)fabs(y - ys);
2211 dist = (dx > dy ? dx : dy);
2212 if (dist < CENTRE_TOLERANCE) {
2213 *xr = 1 + 2 * (int)xs;
2214 *yr = 1 + 2 * (int)ys;
2215 } else {
2216 /*
2217 * Failing both of those, see which edge we're closer to.
2218 * Conveniently, this is simply done by testing the relative
2219 * magnitude of dx and dy (which are currently distances from
2220 * the square centre).
2221 */
2222 if (dx > dy) {
2223 /* Vertical edge: x-coord of corner,
2224 * y-coord of square centre. */
2225 *xr = 2 * (int)xv;
ee03cb5f 2226 *yr = 1 + 2 * (int)floor(ys);
d4e7900f 2227 } else {
2228 /* Horizontal edge: x-coord of square centre,
2229 * y-coord of corner. */
ee03cb5f 2230 *xr = 1 + 2 * (int)floor(xs);
d4e7900f 2231 *yr = 2 * (int)yv;
2232 }
2233 }
2234 }
08dd70c3 2235}
2236
2237static void ui_draw_rect(game_state *state, game_ui *ui,
2238 unsigned char *hedge, unsigned char *vedge, int c)
2239{
375c9b4d 2240 int x, y;
2241 int x1 = ui->x1;
2242 int y1 = ui->y1;
2243 int x2 = ui->x2;
2244 int y2 = ui->y2;
08dd70c3 2245
2246 /*
2247 * Draw horizontal edges of rectangles.
2248 */
2249 for (x = x1; x < x2; x++)
2250 for (y = y1; y <= y2; y++)
2251 if (HRANGE(state,x,y)) {
2252 int val = index(state,hedge,x,y);
2253 if (y == y1 || y == y2)
2254 val = c;
2255 else if (c == 1)
2256 val = 0;
2257 index(state,hedge,x,y) = val;
2258 }
2259
2260 /*
2261 * Draw vertical edges of rectangles.
2262 */
2263 for (y = y1; y < y2; y++)
2264 for (x = x1; x <= x2; x++)
2265 if (VRANGE(state,x,y)) {
2266 int val = index(state,vedge,x,y);
2267 if (x == x1 || x == x2)
2268 val = c;
2269 else if (c == 1)
2270 val = 0;
2271 index(state,vedge,x,y) = val;
2272 }
74a4e547 2273}
2274
07dfb697 2275static void game_changed_state(game_ui *ui, game_state *oldstate,
2276 game_state *newstate)
2277{
2278}
2279
1e3e152d 2280struct game_drawstate {
2281 int started;
2282 int w, h, tilesize;
2283 unsigned long *visible;
2284};
2285
c0361acd 2286static game_state *make_move(game_state *from, game_ui *ui, game_drawstate *ds,
2287 int x, int y, int button) {
08dd70c3 2288 int xc, yc;
2289 int startdrag = FALSE, enddrag = FALSE, active = FALSE;
3870c4d8 2290 game_state *ret;
2291
f0ee053c 2292 button &= ~MOD_MASK;
2293
08dd70c3 2294 if (button == LEFT_BUTTON) {
2295 startdrag = TRUE;
2296 } else if (button == LEFT_RELEASE) {
2297 enddrag = TRUE;
2298 } else if (button != LEFT_DRAG) {
2299 return NULL;
2300 }
2301
d4e7900f 2302 coord_round(FROMCOORD((float)x), FROMCOORD((float)y), &xc, &yc);
08dd70c3 2303
2304 if (startdrag) {
2305 ui->drag_start_x = xc;
2306 ui->drag_start_y = yc;
2307 ui->drag_end_x = xc;
2308 ui->drag_end_y = yc;
2309 ui->dragged = FALSE;
2310 active = TRUE;
2311 }
3870c4d8 2312
08dd70c3 2313 if (xc != ui->drag_end_x || yc != ui->drag_end_y) {
375c9b4d 2314 int t;
2315
08dd70c3 2316 ui->drag_end_x = xc;
2317 ui->drag_end_y = yc;
2318 ui->dragged = TRUE;
2319 active = TRUE;
375c9b4d 2320
ee03cb5f 2321 if (xc >= 0 && xc <= 2*from->w &&
2322 yc >= 0 && yc <= 2*from->h) {
2323 ui->x1 = ui->drag_start_x;
2324 ui->x2 = ui->drag_end_x;
2325 if (ui->x2 < ui->x1) { t = ui->x1; ui->x1 = ui->x2; ui->x2 = t; }
2326
2327 ui->y1 = ui->drag_start_y;
2328 ui->y2 = ui->drag_end_y;
2329 if (ui->y2 < ui->y1) { t = ui->y1; ui->y1 = ui->y2; ui->y2 = t; }
2330
2331 ui->x1 = ui->x1 / 2; /* rounds down */
2332 ui->x2 = (ui->x2+1) / 2; /* rounds up */
2333 ui->y1 = ui->y1 / 2; /* rounds down */
2334 ui->y2 = (ui->y2+1) / 2; /* rounds up */
2335 } else {
2336 ui->x1 = -1;
2337 ui->y1 = -1;
2338 ui->x2 = -1;
2339 ui->y2 = -1;
2340 }
08dd70c3 2341 }
3870c4d8 2342
934797c7 2343 ret = NULL;
2344
2345 if (enddrag) {
2346 if (xc >= 0 && xc <= 2*from->w &&
2347 yc >= 0 && yc <= 2*from->h) {
2348 ret = dup_game(from);
2349
2350 if (ui->dragged) {
2351 ui_draw_rect(ret, ui, ret->hedge, ret->vedge, 1);
2352 } else {
2353 if ((xc & 1) && !(yc & 1) && HRANGE(from,xc/2,yc/2)) {
2354 hedge(ret,xc/2,yc/2) = !hedge(ret,xc/2,yc/2);
2355 }
2356 if ((yc & 1) && !(xc & 1) && VRANGE(from,xc/2,yc/2)) {
2357 vedge(ret,xc/2,yc/2) = !vedge(ret,xc/2,yc/2);
2358 }
2359 }
3870c4d8 2360
934797c7 2361 if (!memcmp(ret->hedge, from->hedge, from->w*from->h) &&
2362 !memcmp(ret->vedge, from->vedge, from->w*from->h)) {
2363 free_game(ret);
2364 ret = NULL;
2365 }
ef29354c 2366
2367 /*
2368 * We've made a real change to the grid. Check to see
2369 * if the game has been completed.
2370 */
d4e7900f 2371 if (ret && !ret->completed) {
ef29354c 2372 int x, y, ok;
2373 unsigned char *correct = get_correct(ret);
2374
2375 ok = TRUE;
2376 for (x = 0; x < ret->w; x++)
2377 for (y = 0; y < ret->h; y++)
2378 if (!index(ret, correct, x, y))
2379 ok = FALSE;
2380
2381 sfree(correct);
2382
2383 if (ok)
2384 ret->completed = TRUE;
2385 }
934797c7 2386 }
2387
2388 ui->drag_start_x = -1;
2389 ui->drag_start_y = -1;
2390 ui->drag_end_x = -1;
2391 ui->drag_end_y = -1;
375c9b4d 2392 ui->x1 = -1;
2393 ui->y1 = -1;
2394 ui->x2 = -1;
2395 ui->y2 = -1;
934797c7 2396 ui->dragged = FALSE;
2397 active = TRUE;
3870c4d8 2398 }
2399
934797c7 2400 if (ret)
2401 return ret; /* a move has been made */
2402 else if (active)
08dd70c3 2403 return from; /* UI activity has occurred */
934797c7 2404 else
2405 return NULL;
3870c4d8 2406}
2407
2408/* ----------------------------------------------------------------------
2409 * Drawing routines.
2410 */
2411
ab53eb64 2412#define CORRECT (1L<<16)
08dd70c3 2413
2414#define COLOUR(k) ( (k)==1 ? COL_LINE : COL_DRAG )
ab53eb64 2415#define MAX4(x,y,z,w) ( max(max(x,y),max(z,w)) )
3870c4d8 2416
1e3e152d 2417static void game_size(game_params *params, game_drawstate *ds,
2418 int *x, int *y, int expand)
3870c4d8 2419{
1e3e152d 2420 int tsx, tsy, ts;
2421 /*
2422 * Each window dimension equals the tile size times 1.5 more
2423 * than the grid dimension (the border is 3/4 the width of the
2424 * tiles).
a65c0e54 2425 *
2426 * We must cast to unsigned before multiplying by two, because
2427 * *x might be INT_MAX.
1e3e152d 2428 */
a65c0e54 2429 tsx = 2 * (unsigned)*x / (2 * params->w + 3);
2430 tsy = 2 * (unsigned)*y / (2 * params->h + 3);
1e3e152d 2431 ts = min(tsx, tsy);
2432 if (expand)
2433 ds->tilesize = ts;
2434 else
2435 ds->tilesize = min(ts, PREFERRED_TILE_SIZE);
2436
3870c4d8 2437 *x = params->w * TILE_SIZE + 2*BORDER + 1;
2438 *y = params->h * TILE_SIZE + 2*BORDER + 1;
2439}
2440
be8d5aa1 2441static float *game_colours(frontend *fe, game_state *state, int *ncolours)
3870c4d8 2442{
2443 float *ret = snewn(3 * NCOLOURS, float);
2444
2445 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2446
2447 ret[COL_GRID * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2448 ret[COL_GRID * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2449 ret[COL_GRID * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2450
08dd70c3 2451 ret[COL_DRAG * 3 + 0] = 1.0F;
2452 ret[COL_DRAG * 3 + 1] = 0.0F;
2453 ret[COL_DRAG * 3 + 2] = 0.0F;
2454
3870c4d8 2455 ret[COL_CORRECT * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2456 ret[COL_CORRECT * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2457 ret[COL_CORRECT * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2458
2459 ret[COL_LINE * 3 + 0] = 0.0F;
2460 ret[COL_LINE * 3 + 1] = 0.0F;
2461 ret[COL_LINE * 3 + 2] = 0.0F;
2462
2463 ret[COL_TEXT * 3 + 0] = 0.0F;
2464 ret[COL_TEXT * 3 + 1] = 0.0F;
2465 ret[COL_TEXT * 3 + 2] = 0.0F;
2466
2467 *ncolours = NCOLOURS;
2468 return ret;
2469}
2470
be8d5aa1 2471static game_drawstate *game_new_drawstate(game_state *state)
3870c4d8 2472{
2473 struct game_drawstate *ds = snew(struct game_drawstate);
08dd70c3 2474 int i;
3870c4d8 2475
2476 ds->started = FALSE;
2477 ds->w = state->w;
2478 ds->h = state->h;
ab53eb64 2479 ds->visible = snewn(ds->w * ds->h, unsigned long);
1e3e152d 2480 ds->tilesize = 0; /* not decided yet */
08dd70c3 2481 for (i = 0; i < ds->w * ds->h; i++)
2482 ds->visible[i] = 0xFFFF;
3870c4d8 2483
2484 return ds;
2485}
2486
be8d5aa1 2487static void game_free_drawstate(game_drawstate *ds)
3870c4d8 2488{
2489 sfree(ds->visible);
2490 sfree(ds);
2491}
2492
1e3e152d 2493static void draw_tile(frontend *fe, game_drawstate *ds, game_state *state,
2494 int x, int y, unsigned char *hedge, unsigned char *vedge,
2495 unsigned char *corners, int correct)
3870c4d8 2496{
2497 int cx = COORD(x), cy = COORD(y);
2498 char str[80];
2499
2500 draw_rect(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1, COL_GRID);
2501 draw_rect(fe, cx+1, cy+1, TILE_SIZE-1, TILE_SIZE-1,
2502 correct ? COL_CORRECT : COL_BACKGROUND);
2503
2504 if (grid(state,x,y)) {
2505 sprintf(str, "%d", grid(state,x,y));
2506 draw_text(fe, cx+TILE_SIZE/2, cy+TILE_SIZE/2, FONT_VARIABLE,
105a00d0 2507 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_TEXT, str);
3870c4d8 2508 }
2509
2510 /*
2511 * Draw edges.
2512 */
08dd70c3 2513 if (!HRANGE(state,x,y) || index(state,hedge,x,y))
2514 draw_rect(fe, cx, cy, TILE_SIZE+1, 2,
2515 HRANGE(state,x,y) ? COLOUR(index(state,hedge,x,y)) :
2516 COL_LINE);
2517 if (!HRANGE(state,x,y+1) || index(state,hedge,x,y+1))
2518 draw_rect(fe, cx, cy+TILE_SIZE-1, TILE_SIZE+1, 2,
2519 HRANGE(state,x,y+1) ? COLOUR(index(state,hedge,x,y+1)) :
2520 COL_LINE);
2521 if (!VRANGE(state,x,y) || index(state,vedge,x,y))
2522 draw_rect(fe, cx, cy, 2, TILE_SIZE+1,
2523 VRANGE(state,x,y) ? COLOUR(index(state,vedge,x,y)) :
2524 COL_LINE);
2525 if (!VRANGE(state,x+1,y) || index(state,vedge,x+1,y))
2526 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, TILE_SIZE+1,
2527 VRANGE(state,x+1,y) ? COLOUR(index(state,vedge,x+1,y)) :
2528 COL_LINE);
3870c4d8 2529
2530 /*
2531 * Draw corners.
2532 */
ec9a0f09 2533 if (index(state,corners,x,y))
08dd70c3 2534 draw_rect(fe, cx, cy, 2, 2,
ec9a0f09 2535 COLOUR(index(state,corners,x,y)));
2536 if (x+1 < state->w && index(state,corners,x+1,y))
08dd70c3 2537 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, 2,
ec9a0f09 2538 COLOUR(index(state,corners,x+1,y)));
2539 if (y+1 < state->h && index(state,corners,x,y+1))
08dd70c3 2540 draw_rect(fe, cx, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2541 COLOUR(index(state,corners,x,y+1)));
2542 if (x+1 < state->w && y+1 < state->h && index(state,corners,x+1,y+1))
08dd70c3 2543 draw_rect(fe, cx+TILE_SIZE-1, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2544 COLOUR(index(state,corners,x+1,y+1)));
3870c4d8 2545
2546 draw_update(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1);
2547}
2548
be8d5aa1 2549static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
c822de4a 2550 game_state *state, int dir, game_ui *ui,
74a4e547 2551 float animtime, float flashtime)
3870c4d8 2552{
2553 int x, y;
2554 unsigned char *correct;
ec9a0f09 2555 unsigned char *hedge, *vedge, *corners;
3870c4d8 2556
2557 correct = get_correct(state);
2558
08dd70c3 2559 if (ui->dragged) {
2560 hedge = snewn(state->w*state->h, unsigned char);
2561 vedge = snewn(state->w*state->h, unsigned char);
2562 memcpy(hedge, state->hedge, state->w*state->h);
2563 memcpy(vedge, state->vedge, state->w*state->h);
2564 ui_draw_rect(state, ui, hedge, vedge, 2);
2565 } else {
2566 hedge = state->hedge;
2567 vedge = state->vedge;
2568 }
2569
ec9a0f09 2570 corners = snewn(state->w * state->h, unsigned char);
2571 memset(corners, 0, state->w * state->h);
2572 for (x = 0; x < state->w; x++)
2573 for (y = 0; y < state->h; y++) {
2574 if (x > 0) {
2575 int e = index(state, vedge, x, y);
2576 if (index(state,corners,x,y) < e)
2577 index(state,corners,x,y) = e;
2578 if (y+1 < state->h &&
2579 index(state,corners,x,y+1) < e)
2580 index(state,corners,x,y+1) = e;
2581 }
2582 if (y > 0) {
2583 int e = index(state, hedge, x, y);
2584 if (index(state,corners,x,y) < e)
2585 index(state,corners,x,y) = e;
2586 if (x+1 < state->w &&
2587 index(state,corners,x+1,y) < e)
2588 index(state,corners,x+1,y) = e;
2589 }
2590 }
2591
3870c4d8 2592 if (!ds->started) {
105a00d0 2593 draw_rect(fe, 0, 0,
2594 state->w * TILE_SIZE + 2*BORDER + 1,
2595 state->h * TILE_SIZE + 2*BORDER + 1, COL_BACKGROUND);
3870c4d8 2596 draw_rect(fe, COORD(0)-1, COORD(0)-1,
2597 ds->w*TILE_SIZE+3, ds->h*TILE_SIZE+3, COL_LINE);
2598 ds->started = TRUE;
863c3945 2599 draw_update(fe, 0, 0,
2600 state->w * TILE_SIZE + 2*BORDER + 1,
2601 state->h * TILE_SIZE + 2*BORDER + 1);
3870c4d8 2602 }
2603
2604 for (x = 0; x < state->w; x++)
2605 for (y = 0; y < state->h; y++) {
ab53eb64 2606 unsigned long c = 0;
08dd70c3 2607
2608 if (HRANGE(state,x,y))
2609 c |= index(state,hedge,x,y);
eddb22e8 2610 if (HRANGE(state,x,y+1))
2611 c |= index(state,hedge,x,y+1) << 2;
08dd70c3 2612 if (VRANGE(state,x,y))
2613 c |= index(state,vedge,x,y) << 4;
eddb22e8 2614 if (VRANGE(state,x+1,y))
2615 c |= index(state,vedge,x+1,y) << 6;
ec9a0f09 2616 c |= index(state,corners,x,y) << 8;
2617 if (x+1 < state->w)
2618 c |= index(state,corners,x+1,y) << 10;
2619 if (y+1 < state->h)
2620 c |= index(state,corners,x,y+1) << 12;
2621 if (x+1 < state->w && y+1 < state->h)
ab53eb64 2622 /* cast to prevent 2<<14 sign-extending on promotion to long */
2623 c |= (unsigned long)index(state,corners,x+1,y+1) << 14;
ef29354c 2624 if (index(state, correct, x, y) && !flashtime)
3870c4d8 2625 c |= CORRECT;
2626
2627 if (index(ds,ds->visible,x,y) != c) {
1e3e152d 2628 draw_tile(fe, ds, state, x, y, hedge, vedge, corners,
ab53eb64 2629 (c & CORRECT) ? 1 : 0);
ec9a0f09 2630 index(ds,ds->visible,x,y) = c;
3870c4d8 2631 }
2632 }
2633
375c9b4d 2634 {
2635 char buf[256];
2636
2637 if (ui->x1 >= 0 && ui->y1 >= 0 &&
2638 ui->x2 >= 0 && ui->y2 >= 0) {
2639 sprintf(buf, "%dx%d ",
2640 ui->x2-ui->x1,
2641 ui->y2-ui->y1);
2642 } else {
2643 buf[0] = '\0';
2644 }
2645
2646 if (state->cheated)
2647 strcat(buf, "Auto-solved.");
2648 else if (state->completed)
2649 strcat(buf, "COMPLETED!");
2650
2651 status_bar(fe, buf);
2652 }
2653
08dd70c3 2654 if (hedge != state->hedge) {
2655 sfree(hedge);
2656 sfree(vedge);
375c9b4d 2657 }
08dd70c3 2658
11c44cf5 2659 sfree(corners);
3870c4d8 2660 sfree(correct);
2661}
2662
be8d5aa1 2663static float game_anim_length(game_state *oldstate,
e3f21163 2664 game_state *newstate, int dir, game_ui *ui)
3870c4d8 2665{
2666 return 0.0F;
2667}
2668
be8d5aa1 2669static float game_flash_length(game_state *oldstate,
e3f21163 2670 game_state *newstate, int dir, game_ui *ui)
3870c4d8 2671{
2ac6d24e 2672 if (!oldstate->completed && newstate->completed &&
2673 !oldstate->cheated && !newstate->cheated)
ef29354c 2674 return FLASH_TIME;
3870c4d8 2675 return 0.0F;
2676}
2677
be8d5aa1 2678static int game_wants_statusbar(void)
3870c4d8 2679{
375c9b4d 2680 return TRUE;
3870c4d8 2681}
be8d5aa1 2682
48dcdd62 2683static int game_timing_state(game_state *state)
2684{
2685 return TRUE;
2686}
2687
be8d5aa1 2688#ifdef COMBINED
2689#define thegame rect
2690#endif
2691
2692const struct game thegame = {
1d228b10 2693 "Rectangles", "games.rectangles",
be8d5aa1 2694 default_params,
2695 game_fetch_preset,
2696 decode_params,
2697 encode_params,
2698 free_params,
2699 dup_params,
1d228b10 2700 TRUE, game_configure, custom_params,
be8d5aa1 2701 validate_params,
1185e3c5 2702 new_game_desc,
6f2d8d7c 2703 game_free_aux_info,
1185e3c5 2704 validate_desc,
be8d5aa1 2705 new_game,
2706 dup_game,
2707 free_game,
2ac6d24e 2708 TRUE, solve_game,
6ad5ed74 2709 TRUE, game_text_format,
be8d5aa1 2710 new_ui,
2711 free_ui,
07dfb697 2712 game_changed_state,
be8d5aa1 2713 make_move,
2714 game_size,
2715 game_colours,
2716 game_new_drawstate,
2717 game_free_drawstate,
2718 game_redraw,
2719 game_anim_length,
2720 game_flash_length,
2721 game_wants_statusbar,
48dcdd62 2722 FALSE, game_timing_state,
93b1da3d 2723 0, /* mouse_priorities */
be8d5aa1 2724};