Support for `pencil marks' in Solo, by right-clicking and typing a
[sgt/puzzles] / rect.c
CommitLineData
3870c4d8 1/*
2 * rect.c: Puzzle from nikoli.co.jp. You have a square grid with
3 * numbers in some squares; you must divide the square grid up into
4 * variously sized rectangles, such that every rectangle contains
5 * exactly one numbered square and the area of each rectangle is
6 * equal to the number contained in it.
7 */
8
9/*
10 * TODO:
11 *
12 * - Improve on singleton removal by making an aesthetic choice
13 * about which of the options to take.
14 *
15 * - When doing the 3x3 trick in singleton removal, limit the size
16 * of the generated rectangles in accordance with the max
17 * rectangle size.
18 *
3870c4d8 19 * - If we start by sorting the rectlist in descending order
20 * of area, we might be able to bias our random number
21 * selection to produce a few large rectangles more often
22 * than oodles of small ones? Unsure, but might be worth a
23 * try.
24 */
25
26#include <stdio.h>
27#include <stdlib.h>
28#include <string.h>
29#include <assert.h>
b0e26073 30#include <ctype.h>
3870c4d8 31#include <math.h>
32
33#include "puzzles.h"
34
3870c4d8 35enum {
36 COL_BACKGROUND,
37 COL_CORRECT,
38 COL_LINE,
39 COL_TEXT,
40 COL_GRID,
08dd70c3 41 COL_DRAG,
3870c4d8 42 NCOLOURS
43};
44
45struct game_params {
46 int w, h;
aea3ed9a 47 float expandfactor;
40fde884 48 int unique;
3870c4d8 49};
50
51#define INDEX(state, x, y) (((y) * (state)->w) + (x))
52#define index(state, a, x, y) ((a) [ INDEX(state,x,y) ])
53#define grid(state,x,y) index(state, (state)->grid, x, y)
54#define vedge(state,x,y) index(state, (state)->vedge, x, y)
55#define hedge(state,x,y) index(state, (state)->hedge, x, y)
56
57#define CRANGE(state,x,y,dx,dy) ( (x) >= dx && (x) < (state)->w && \
58 (y) >= dy && (y) < (state)->h )
59#define RANGE(state,x,y) CRANGE(state,x,y,0,0)
60#define HRANGE(state,x,y) CRANGE(state,x,y,0,1)
61#define VRANGE(state,x,y) CRANGE(state,x,y,1,0)
62
63#define TILE_SIZE 24
64#define BORDER 18
65
d4e7900f 66#define CORNER_TOLERANCE 0.15F
67#define CENTRE_TOLERANCE 0.15F
68
ef29354c 69#define FLASH_TIME 0.13F
70
3870c4d8 71#define COORD(x) ( (x) * TILE_SIZE + BORDER )
72#define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
73
74struct game_state {
75 int w, h;
76 int *grid; /* contains the numbers */
77 unsigned char *vedge; /* (w+1) x h */
78 unsigned char *hedge; /* w x (h+1) */
2ac6d24e 79 int completed, cheated;
3870c4d8 80};
81
be8d5aa1 82static game_params *default_params(void)
3870c4d8 83{
84 game_params *ret = snew(game_params);
85
86 ret->w = ret->h = 7;
aea3ed9a 87 ret->expandfactor = 0.0F;
40fde884 88 ret->unique = TRUE;
3870c4d8 89
90 return ret;
91}
92
be8d5aa1 93static int game_fetch_preset(int i, char **name, game_params **params)
3870c4d8 94{
95 game_params *ret;
96 int w, h;
97 char buf[80];
98
99 switch (i) {
100 case 0: w = 7, h = 7; break;
101 case 1: w = 11, h = 11; break;
102 case 2: w = 15, h = 15; break;
103 case 3: w = 19, h = 19; break;
104 default: return FALSE;
105 }
106
107 sprintf(buf, "%dx%d", w, h);
108 *name = dupstr(buf);
109 *params = ret = snew(game_params);
110 ret->w = w;
111 ret->h = h;
aea3ed9a 112 ret->expandfactor = 0.0F;
40fde884 113 ret->unique = TRUE;
3870c4d8 114 return TRUE;
115}
116
be8d5aa1 117static void free_params(game_params *params)
3870c4d8 118{
119 sfree(params);
120}
121
be8d5aa1 122static game_params *dup_params(game_params *params)
3870c4d8 123{
124 game_params *ret = snew(game_params);
125 *ret = *params; /* structure copy */
126 return ret;
127}
128
1185e3c5 129static void decode_params(game_params *ret, char const *string)
b0e26073 130{
b0e26073 131 ret->w = ret->h = atoi(string);
aea3ed9a 132 while (*string && isdigit((unsigned char)*string)) string++;
b0e26073 133 if (*string == 'x') {
134 string++;
135 ret->h = atoi(string);
aea3ed9a 136 while (*string && isdigit((unsigned char)*string)) string++;
137 }
138 if (*string == 'e') {
139 string++;
140 ret->expandfactor = atof(string);
40fde884 141 while (*string &&
142 (*string == '.' || isdigit((unsigned char)*string))) string++;
143 }
144 if (*string == 'a') {
145 string++;
146 ret->unique = FALSE;
b0e26073 147 }
b0e26073 148}
149
1185e3c5 150static char *encode_params(game_params *params, int full)
b0e26073 151{
152 char data[256];
153
154 sprintf(data, "%dx%d", params->w, params->h);
5472ceb6 155 if (full && params->expandfactor)
1185e3c5 156 sprintf(data + strlen(data), "e%g", params->expandfactor);
40fde884 157 if (full && !params->unique)
158 strcat(data, "a");
b0e26073 159
160 return dupstr(data);
161}
162
be8d5aa1 163static config_item *game_configure(game_params *params)
3870c4d8 164{
165 config_item *ret;
166 char buf[80];
167
168 ret = snewn(5, config_item);
169
170 ret[0].name = "Width";
171 ret[0].type = C_STRING;
172 sprintf(buf, "%d", params->w);
173 ret[0].sval = dupstr(buf);
174 ret[0].ival = 0;
175
176 ret[1].name = "Height";
177 ret[1].type = C_STRING;
178 sprintf(buf, "%d", params->h);
179 ret[1].sval = dupstr(buf);
180 ret[1].ival = 0;
181
aea3ed9a 182 ret[2].name = "Expansion factor";
183 ret[2].type = C_STRING;
184 sprintf(buf, "%g", params->expandfactor);
185 ret[2].sval = dupstr(buf);
3870c4d8 186 ret[2].ival = 0;
187
40fde884 188 ret[3].name = "Ensure unique solution";
189 ret[3].type = C_BOOLEAN;
aea3ed9a 190 ret[3].sval = NULL;
40fde884 191 ret[3].ival = params->unique;
192
193 ret[4].name = NULL;
194 ret[4].type = C_END;
195 ret[4].sval = NULL;
196 ret[4].ival = 0;
aea3ed9a 197
3870c4d8 198 return ret;
199}
200
be8d5aa1 201static game_params *custom_params(config_item *cfg)
3870c4d8 202{
203 game_params *ret = snew(game_params);
204
205 ret->w = atoi(cfg[0].sval);
206 ret->h = atoi(cfg[1].sval);
aea3ed9a 207 ret->expandfactor = atof(cfg[2].sval);
40fde884 208 ret->unique = cfg[3].ival;
3870c4d8 209
210 return ret;
211}
212
be8d5aa1 213static char *validate_params(game_params *params)
3870c4d8 214{
215 if (params->w <= 0 && params->h <= 0)
216 return "Width and height must both be greater than zero";
d4e7900f 217 if (params->w < 2 && params->h < 2)
218 return "Grid area must be greater than one";
aea3ed9a 219 if (params->expandfactor < 0.0F)
220 return "Expansion factor may not be negative";
3870c4d8 221 return NULL;
222}
223
26801d29 224struct point {
225 int x, y;
226};
227
3870c4d8 228struct rect {
229 int x, y;
230 int w, h;
231};
232
233struct rectlist {
234 struct rect *rects;
235 int n;
236};
237
26801d29 238struct numberdata {
239 int area;
240 int npoints;
241 struct point *points;
242};
243
244/* ----------------------------------------------------------------------
245 * Solver for Rectangles games.
246 *
247 * This solver is souped up beyond the needs of actually _solving_
248 * a puzzle. It is also designed to cope with uncertainty about
249 * where the numbers have been placed. This is because I run it on
250 * my generated grids _before_ placing the numbers, and have it
251 * tell me where I need to place the numbers to ensure a unique
252 * solution.
253 */
254
255static void remove_rect_placement(int w, int h,
256 struct rectlist *rectpositions,
257 int *overlaps,
258 int rectnum, int placement)
259{
260 int x, y, xx, yy;
261
262#ifdef SOLVER_DIAGNOSTICS
263 printf("ruling out rect %d placement at %d,%d w=%d h=%d\n", rectnum,
264 rectpositions[rectnum].rects[placement].x,
265 rectpositions[rectnum].rects[placement].y,
266 rectpositions[rectnum].rects[placement].w,
267 rectpositions[rectnum].rects[placement].h);
268#endif
269
270 /*
271 * Decrement each entry in the overlaps array to reflect the
272 * removal of this rectangle placement.
273 */
274 for (yy = 0; yy < rectpositions[rectnum].rects[placement].h; yy++) {
275 y = yy + rectpositions[rectnum].rects[placement].y;
276 for (xx = 0; xx < rectpositions[rectnum].rects[placement].w; xx++) {
277 x = xx + rectpositions[rectnum].rects[placement].x;
278
279 assert(overlaps[(rectnum * h + y) * w + x] != 0);
280
281 if (overlaps[(rectnum * h + y) * w + x] > 0)
282 overlaps[(rectnum * h + y) * w + x]--;
283 }
284 }
285
286 /*
287 * Remove the placement from the list of positions for that
288 * rectangle, by interchanging it with the one on the end.
289 */
290 if (placement < rectpositions[rectnum].n - 1) {
291 struct rect t;
292
293 t = rectpositions[rectnum].rects[rectpositions[rectnum].n - 1];
294 rectpositions[rectnum].rects[rectpositions[rectnum].n - 1] =
295 rectpositions[rectnum].rects[placement];
296 rectpositions[rectnum].rects[placement] = t;
297 }
298 rectpositions[rectnum].n--;
299}
300
301static void remove_number_placement(int w, int h, struct numberdata *number,
302 int index, int *rectbyplace)
303{
304 /*
305 * Remove the entry from the rectbyplace array.
306 */
307 rectbyplace[number->points[index].y * w + number->points[index].x] = -1;
308
309 /*
310 * Remove the placement from the list of candidates for that
311 * number, by interchanging it with the one on the end.
312 */
313 if (index < number->npoints - 1) {
314 struct point t;
315
316 t = number->points[number->npoints - 1];
317 number->points[number->npoints - 1] = number->points[index];
318 number->points[index] = t;
319 }
320 number->npoints--;
321}
322
323static int rect_solver(int w, int h, int nrects, struct numberdata *numbers,
324 random_state *rs)
325{
326 struct rectlist *rectpositions;
327 int *overlaps, *rectbyplace, *workspace;
328 int i, ret;
329
330 /*
331 * Start by setting up a list of candidate positions for each
332 * rectangle.
333 */
334 rectpositions = snewn(nrects, struct rectlist);
335 for (i = 0; i < nrects; i++) {
336 int rw, rh, area = numbers[i].area;
337 int j, minx, miny, maxx, maxy;
338 struct rect *rlist;
339 int rlistn, rlistsize;
340
341 /*
342 * For each rectangle, begin by finding the bounding
343 * rectangle of its candidate number placements.
344 */
345 maxx = maxy = -1;
346 minx = w;
347 miny = h;
348 for (j = 0; j < numbers[i].npoints; j++) {
349 if (minx > numbers[i].points[j].x) minx = numbers[i].points[j].x;
350 if (miny > numbers[i].points[j].y) miny = numbers[i].points[j].y;
351 if (maxx < numbers[i].points[j].x) maxx = numbers[i].points[j].x;
352 if (maxy < numbers[i].points[j].y) maxy = numbers[i].points[j].y;
353 }
354
355 /*
356 * Now loop over all possible rectangle placements
357 * overlapping a point within that bounding rectangle;
358 * ensure each one actually contains a candidate number
359 * placement, and add it to the list.
360 */
361 rlist = NULL;
362 rlistn = rlistsize = 0;
363
364 for (rw = 1; rw <= area && rw <= w; rw++) {
365 int x, y;
366
367 if (area % rw)
368 continue;
369 rh = area / rw;
370 if (rh > h)
371 continue;
372
373 for (y = miny - rh + 1; y <= maxy; y++) {
374 if (y < 0 || y+rh > h)
375 continue;
376
377 for (x = minx - rw + 1; x <= maxx; x++) {
378 if (x < 0 || x+rw > w)
379 continue;
380
381 /*
382 * See if we can find a candidate number
383 * placement within this rectangle.
384 */
385 for (j = 0; j < numbers[i].npoints; j++)
386 if (numbers[i].points[j].x >= x &&
387 numbers[i].points[j].x < x+rw &&
388 numbers[i].points[j].y >= y &&
389 numbers[i].points[j].y < y+rh)
390 break;
391
392 if (j < numbers[i].npoints) {
393 /*
394 * Add this to the list of candidate
395 * placements for this rectangle.
396 */
397 if (rlistn >= rlistsize) {
398 rlistsize = rlistn + 32;
399 rlist = sresize(rlist, rlistsize, struct rect);
400 }
401 rlist[rlistn].x = x;
402 rlist[rlistn].y = y;
403 rlist[rlistn].w = rw;
404 rlist[rlistn].h = rh;
405#ifdef SOLVER_DIAGNOSTICS
406 printf("rect %d [area %d]: candidate position at"
407 " %d,%d w=%d h=%d\n",
408 i, area, x, y, rw, rh);
409#endif
410 rlistn++;
411 }
412 }
413 }
414 }
415
416 rectpositions[i].rects = rlist;
417 rectpositions[i].n = rlistn;
418 }
419
420 /*
421 * Next, construct a multidimensional array tracking how many
422 * candidate positions for each rectangle overlap each square.
423 *
424 * Indexing of this array is by the formula
425 *
426 * overlaps[(rectindex * h + y) * w + x]
427 */
428 overlaps = snewn(nrects * w * h, int);
429 memset(overlaps, 0, nrects * w * h * sizeof(int));
430 for (i = 0; i < nrects; i++) {
431 int j;
432
433 for (j = 0; j < rectpositions[i].n; j++) {
434 int xx, yy;
435
436 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++)
437 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++)
438 overlaps[(i * h + yy+rectpositions[i].rects[j].y) * w +
439 xx+rectpositions[i].rects[j].x]++;
440 }
441 }
442
443 /*
444 * Also we want an array covering the grid once, to make it
445 * easy to figure out which squares are candidate number
446 * placements for which rectangles. (The existence of this
447 * single array assumes that no square starts off as a
448 * candidate number placement for more than one rectangle. This
449 * assumption is justified, because this solver is _either_
450 * used to solve real problems - in which case there is a
451 * single placement for every number - _or_ used to decide on
452 * number placements for a new puzzle, in which case each
453 * number's placements are confined to the intended position of
454 * the rectangle containing that number.)
455 */
456 rectbyplace = snewn(w * h, int);
457 for (i = 0; i < w*h; i++)
458 rectbyplace[i] = -1;
459
460 for (i = 0; i < nrects; i++) {
461 int j;
462
463 for (j = 0; j < numbers[i].npoints; j++) {
464 int x = numbers[i].points[j].x;
465 int y = numbers[i].points[j].y;
466
467 assert(rectbyplace[y * w + x] == -1);
468 rectbyplace[y * w + x] = i;
469 }
470 }
471
472 workspace = snewn(nrects, int);
473
474 /*
475 * Now run the actual deduction loop.
476 */
477 while (1) {
478 int done_something = FALSE;
479
480#ifdef SOLVER_DIAGNOSTICS
481 printf("starting deduction loop\n");
482
483 for (i = 0; i < nrects; i++) {
484 printf("rect %d overlaps:\n", i);
485 {
486 int x, y;
487 for (y = 0; y < h; y++) {
488 for (x = 0; x < w; x++) {
489 printf("%3d", overlaps[(i * h + y) * w + x]);
490 }
491 printf("\n");
492 }
493 }
494 }
495 printf("rectbyplace:\n");
496 {
497 int x, y;
498 for (y = 0; y < h; y++) {
499 for (x = 0; x < w; x++) {
500 printf("%3d", rectbyplace[y * w + x]);
501 }
502 printf("\n");
503 }
504 }
505#endif
506
507 /*
508 * Housekeeping. Look for rectangles whose number has only
509 * one candidate position left, and mark that square as
510 * known if it isn't already.
511 */
512 for (i = 0; i < nrects; i++) {
513 if (numbers[i].npoints == 1) {
514 int x = numbers[i].points[0].x;
515 int y = numbers[i].points[0].y;
516 if (overlaps[(i * h + y) * w + x] >= -1) {
517 int j;
518
519 assert(overlaps[(i * h + y) * w + x] > 0);
520#ifdef SOLVER_DIAGNOSTICS
521 printf("marking %d,%d as known for rect %d"
522 " (sole remaining number position)\n", x, y, i);
523#endif
524
525 for (j = 0; j < nrects; j++)
526 overlaps[(j * h + y) * w + x] = -1;
527
528 overlaps[(i * h + y) * w + x] = -2;
529 }
530 }
531 }
532
533 /*
534 * Now look at the intersection of all possible placements
535 * for each rectangle, and mark all squares in that
536 * intersection as known for that rectangle if they aren't
537 * already.
538 */
539 for (i = 0; i < nrects; i++) {
540 int minx, miny, maxx, maxy, xx, yy, j;
541
542 minx = miny = 0;
543 maxx = w;
544 maxy = h;
545
546 for (j = 0; j < rectpositions[i].n; j++) {
547 int x = rectpositions[i].rects[j].x;
548 int y = rectpositions[i].rects[j].y;
549 int w = rectpositions[i].rects[j].w;
550 int h = rectpositions[i].rects[j].h;
551
552 if (minx < x) minx = x;
553 if (miny < y) miny = y;
554 if (maxx > x+w) maxx = x+w;
555 if (maxy > y+h) maxy = y+h;
556 }
557
558 for (yy = miny; yy < maxy; yy++)
559 for (xx = minx; xx < maxx; xx++)
560 if (overlaps[(i * h + yy) * w + xx] >= -1) {
561 assert(overlaps[(i * h + yy) * w + xx] > 0);
562#ifdef SOLVER_DIAGNOSTICS
563 printf("marking %d,%d as known for rect %d"
564 " (intersection of all placements)\n",
565 xx, yy, i);
566#endif
567
568 for (j = 0; j < nrects; j++)
569 overlaps[(j * h + yy) * w + xx] = -1;
570
571 overlaps[(i * h + yy) * w + xx] = -2;
572 }
573 }
574
575 /*
576 * Rectangle-focused deduction. Look at each rectangle in
577 * turn and try to rule out some of its candidate
578 * placements.
579 */
580 for (i = 0; i < nrects; i++) {
581 int j;
582
583 for (j = 0; j < rectpositions[i].n; j++) {
584 int xx, yy, k;
585 int del = FALSE;
586
587 for (k = 0; k < nrects; k++)
588 workspace[k] = 0;
589
590 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
591 int y = yy + rectpositions[i].rects[j].y;
592 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
593 int x = xx + rectpositions[i].rects[j].x;
594
595 if (overlaps[(i * h + y) * w + x] == -1) {
596 /*
597 * This placement overlaps a square
598 * which is _known_ to be part of
599 * another rectangle. Therefore we must
600 * rule it out.
601 */
602#ifdef SOLVER_DIAGNOSTICS
603 printf("rect %d placement at %d,%d w=%d h=%d "
604 "contains %d,%d which is known-other\n", i,
605 rectpositions[i].rects[j].x,
606 rectpositions[i].rects[j].y,
607 rectpositions[i].rects[j].w,
608 rectpositions[i].rects[j].h,
609 x, y);
610#endif
611 del = TRUE;
612 }
613
614 if (rectbyplace[y * w + x] != -1) {
615 /*
616 * This placement overlaps one of the
617 * candidate number placements for some
618 * rectangle. Count it.
619 */
620 workspace[rectbyplace[y * w + x]]++;
621 }
622 }
623 }
624
625 if (!del) {
626 /*
627 * If we haven't ruled this placement out
628 * already, see if it overlaps _all_ of the
629 * candidate number placements for any
630 * rectangle. If so, we can rule it out.
631 */
632 for (k = 0; k < nrects; k++)
633 if (k != i && workspace[k] == numbers[k].npoints) {
634#ifdef SOLVER_DIAGNOSTICS
635 printf("rect %d placement at %d,%d w=%d h=%d "
636 "contains all number points for rect %d\n",
637 i,
638 rectpositions[i].rects[j].x,
639 rectpositions[i].rects[j].y,
640 rectpositions[i].rects[j].w,
641 rectpositions[i].rects[j].h,
642 k);
643#endif
644 del = TRUE;
645 break;
646 }
647
648 /*
649 * Failing that, see if it overlaps at least
650 * one of the candidate number placements for
651 * itself! (This might not be the case if one
652 * of those number placements has been removed
653 * recently.).
654 */
655 if (!del && workspace[i] == 0) {
656#ifdef SOLVER_DIAGNOSTICS
657 printf("rect %d placement at %d,%d w=%d h=%d "
658 "contains none of its own number points\n",
659 i,
660 rectpositions[i].rects[j].x,
661 rectpositions[i].rects[j].y,
662 rectpositions[i].rects[j].w,
663 rectpositions[i].rects[j].h);
664#endif
665 del = TRUE;
666 }
667 }
668
669 if (del) {
670 remove_rect_placement(w, h, rectpositions, overlaps, i, j);
671
672 j--; /* don't skip over next placement */
673
674 done_something = TRUE;
675 }
676 }
677 }
678
679 /*
680 * Square-focused deduction. Look at each square not marked
681 * as known, and see if there are any which can only be
682 * part of a single rectangle.
683 */
684 {
685 int x, y, n, index;
686 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
687 /* Known squares are marked as <0 everywhere, so we only need
688 * to check the overlaps entry for rect 0. */
689 if (overlaps[y * w + x] < 0)
690 continue; /* known already */
691
692 n = 0;
693 index = -1;
694 for (i = 0; i < nrects; i++)
695 if (overlaps[(i * h + y) * w + x] > 0)
696 n++, index = i;
697
698 if (n == 1) {
699 int j;
700
701 /*
702 * Now we can rule out all placements for
703 * rectangle `index' which _don't_ contain
704 * square x,y.
705 */
706#ifdef SOLVER_DIAGNOSTICS
707 printf("square %d,%d can only be in rectangle %d\n",
708 x, y, index);
709#endif
710 for (j = 0; j < rectpositions[index].n; j++) {
711 struct rect *r = &rectpositions[index].rects[j];
712 if (x >= r->x && x < r->x + r->w &&
713 y >= r->y && y < r->y + r->h)
714 continue; /* this one is OK */
715 remove_rect_placement(w, h, rectpositions, overlaps,
716 index, j);
717 j--; /* don't skip over next placement */
718 done_something = TRUE;
719 }
720 }
721 }
722 }
723
724 /*
725 * If we've managed to deduce anything by normal means,
726 * loop round again and see if there's more to be done.
727 * Only if normal deduction has completely failed us should
728 * we now move on to narrowing down the possible number
729 * placements.
730 */
731 if (done_something)
732 continue;
733
734 /*
735 * Now we have done everything we can with the current set
736 * of number placements. So we need to winnow the number
737 * placements so as to narrow down the possibilities. We do
738 * this by searching for a candidate placement (of _any_
739 * rectangle) which overlaps a candidate placement of the
740 * number for some other rectangle.
741 */
742 {
743 struct rpn {
744 int rect;
745 int placement;
746 int number;
747 } *rpns = NULL;
748 int nrpns = 0, rpnsize = 0;
749 int j;
750
751 for (i = 0; i < nrects; i++) {
752 for (j = 0; j < rectpositions[i].n; j++) {
753 int xx, yy;
754
755 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
756 int y = yy + rectpositions[i].rects[j].y;
757 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
758 int x = xx + rectpositions[i].rects[j].x;
759
760 if (rectbyplace[y * w + x] >= 0 &&
761 rectbyplace[y * w + x] != i) {
762 /*
763 * Add this to the list of
764 * winnowing possibilities.
765 */
766 if (nrpns >= rpnsize) {
767 rpnsize = rpnsize * 3 / 2 + 32;
768 rpns = sresize(rpns, rpnsize, struct rpn);
769 }
770 rpns[nrpns].rect = i;
771 rpns[nrpns].placement = j;
772 rpns[nrpns].number = rectbyplace[y * w + x];
773 nrpns++;
774 }
775 }
776 }
777
778 }
779 }
780
781#ifdef SOLVER_DIAGNOSTICS
782 printf("%d candidate rect placements we could eliminate\n", nrpns);
783#endif
784 if (nrpns > 0) {
785 /*
786 * Now choose one of these unwanted rectangle
787 * placements, and eliminate it.
788 */
789 int index = random_upto(rs, nrpns);
790 int k, m;
791 struct rpn rpn = rpns[index];
792 struct rect r;
793 sfree(rpns);
794
795 i = rpn.rect;
796 j = rpn.placement;
797 k = rpn.number;
798 r = rectpositions[i].rects[j];
799
800 /*
801 * We rule out placement j of rectangle i by means
802 * of removing all of rectangle k's candidate
803 * number placements which do _not_ overlap it.
804 * This will ensure that it is eliminated during
805 * the next pass of rectangle-focused deduction.
806 */
807#ifdef SOLVER_DIAGNOSTICS
808 printf("ensuring number for rect %d is within"
809 " rect %d's placement at %d,%d w=%d h=%d\n",
810 k, i, r.x, r.y, r.w, r.h);
811#endif
812
813 for (m = 0; m < numbers[k].npoints; m++) {
814 int x = numbers[k].points[m].x;
815 int y = numbers[k].points[m].y;
816
817 if (x < r.x || x >= r.x + r.w ||
818 y < r.y || y >= r.y + r.h) {
819#ifdef SOLVER_DIAGNOSTICS
820 printf("eliminating number for rect %d at %d,%d\n",
821 k, x, y);
822#endif
823 remove_number_placement(w, h, &numbers[k],
824 m, rectbyplace);
825 m--; /* don't skip the next one */
826 done_something = TRUE;
827 }
828 }
829 }
830 }
831
832 if (!done_something) {
833#ifdef SOLVER_DIAGNOSTICS
834 printf("terminating deduction loop\n");
835#endif
836 break;
837 }
838 }
839
840 ret = TRUE;
841 for (i = 0; i < nrects; i++) {
842#ifdef SOLVER_DIAGNOSTICS
843 printf("rect %d has %d possible placements\n",
844 i, rectpositions[i].n);
845#endif
846 assert(rectpositions[i].n > 0);
847 if (rectpositions[i].n > 1)
848 ret = FALSE;
849 }
850
851 /*
852 * Free up all allocated storage.
853 */
854 sfree(workspace);
855 sfree(rectbyplace);
856 sfree(overlaps);
857 for (i = 0; i < nrects; i++)
858 sfree(rectpositions[i].rects);
859 sfree(rectpositions);
860
861 return ret;
862}
863
864/* ----------------------------------------------------------------------
865 * Grid generation code.
866 */
867
3870c4d8 868static struct rectlist *get_rectlist(game_params *params, int *grid)
869{
870 int rw, rh;
871 int x, y;
872 int maxarea;
873 struct rect *rects = NULL;
874 int nrects = 0, rectsize = 0;
875
876 /*
d4e7900f 877 * Maximum rectangle area is 1/6 of total grid size, unless
878 * this means we can't place any rectangles at all in which
879 * case we set it to 2 at minimum.
3870c4d8 880 */
881 maxarea = params->w * params->h / 6;
d4e7900f 882 if (maxarea < 2)
883 maxarea = 2;
3870c4d8 884
885 for (rw = 1; rw <= params->w; rw++)
886 for (rh = 1; rh <= params->h; rh++) {
887 if (rw * rh > maxarea)
888 continue;
889 if (rw * rh == 1)
890 continue;
891 for (x = 0; x <= params->w - rw; x++)
892 for (y = 0; y <= params->h - rh; y++) {
3870c4d8 893 if (nrects >= rectsize) {
894 rectsize = nrects + 256;
895 rects = sresize(rects, rectsize, struct rect);
896 }
897
898 rects[nrects].x = x;
899 rects[nrects].y = y;
900 rects[nrects].w = rw;
901 rects[nrects].h = rh;
902 nrects++;
903 }
904 }
905
906 if (nrects > 0) {
907 struct rectlist *ret;
908 ret = snew(struct rectlist);
909 ret->rects = rects;
910 ret->n = nrects;
911 return ret;
912 } else {
913 assert(rects == NULL); /* hence no need to free */
914 return NULL;
915 }
916}
917
918static void free_rectlist(struct rectlist *list)
919{
920 sfree(list->rects);
921 sfree(list);
922}
923
924static void place_rect(game_params *params, int *grid, struct rect r)
925{
926 int idx = INDEX(params, r.x, r.y);
927 int x, y;
928
929 for (x = r.x; x < r.x+r.w; x++)
930 for (y = r.y; y < r.y+r.h; y++) {
931 index(params, grid, x, y) = idx;
932 }
933#ifdef GENERATION_DIAGNOSTICS
934 printf(" placing rectangle at (%d,%d) size %d x %d\n",
935 r.x, r.y, r.w, r.h);
936#endif
937}
938
939static struct rect find_rect(game_params *params, int *grid, int x, int y)
940{
941 int idx, w, h;
942 struct rect r;
943
944 /*
945 * Find the top left of the rectangle.
946 */
947 idx = index(params, grid, x, y);
948
949 if (idx < 0) {
950 r.x = x;
951 r.y = y;
952 r.w = r.h = 1;
953 return r; /* 1x1 singleton here */
954 }
955
956 y = idx / params->w;
957 x = idx % params->w;
958
959 /*
960 * Find the width and height of the rectangle.
961 */
962 for (w = 1;
963 (x+w < params->w && index(params,grid,x+w,y)==idx);
964 w++);
965 for (h = 1;
966 (y+h < params->h && index(params,grid,x,y+h)==idx);
967 h++);
968
969 r.x = x;
970 r.y = y;
971 r.w = w;
972 r.h = h;
973
974 return r;
975}
976
977#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 978static void display_grid(game_params *params, int *grid, int *numbers, int all)
3870c4d8 979{
980 unsigned char *egrid = snewn((params->w*2+3) * (params->h*2+3),
981 unsigned char);
3870c4d8 982 int x, y;
983 int r = (params->w*2+3);
984
aea3ed9a 985 memset(egrid, 0, (params->w*2+3) * (params->h*2+3));
986
3870c4d8 987 for (x = 0; x < params->w; x++)
988 for (y = 0; y < params->h; y++) {
989 int i = index(params, grid, x, y);
990 if (x == 0 || index(params, grid, x-1, y) != i)
991 egrid[(2*y+2) * r + (2*x+1)] = 1;
992 if (x == params->w-1 || index(params, grid, x+1, y) != i)
993 egrid[(2*y+2) * r + (2*x+3)] = 1;
994 if (y == 0 || index(params, grid, x, y-1) != i)
995 egrid[(2*y+1) * r + (2*x+2)] = 1;
996 if (y == params->h-1 || index(params, grid, x, y+1) != i)
997 egrid[(2*y+3) * r + (2*x+2)] = 1;
998 }
999
1000 for (y = 1; y < 2*params->h+2; y++) {
1001 for (x = 1; x < 2*params->w+2; x++) {
1002 if (!((y|x)&1)) {
aea3ed9a 1003 int k = numbers ? index(params, numbers, x/2-1, y/2-1) : 0;
1004 if (k || (all && numbers)) printf("%2d", k); else printf(" ");
3870c4d8 1005 } else if (!((y&x)&1)) {
1006 int v = egrid[y*r+x];
1007 if ((y&1) && v) v = '-';
1008 if ((x&1) && v) v = '|';
1009 if (!v) v = ' ';
1010 putchar(v);
1011 if (!(x&1)) putchar(v);
1012 } else {
1013 int c, d = 0;
1014 if (egrid[y*r+(x+1)]) d |= 1;
1015 if (egrid[(y-1)*r+x]) d |= 2;
1016 if (egrid[y*r+(x-1)]) d |= 4;
1017 if (egrid[(y+1)*r+x]) d |= 8;
1018 c = " ??+?-++?+|+++++"[d];
1019 putchar(c);
1020 if (!(x&1)) putchar(c);
1021 }
1022 }
1023 putchar('\n');
1024 }
1025
1026 sfree(egrid);
1027}
1028#endif
1029
2ac6d24e 1030struct game_aux_info {
1031 int w, h;
1032 unsigned char *vedge; /* (w+1) x h */
1033 unsigned char *hedge; /* w x (h+1) */
1034};
1035
1185e3c5 1036static char *new_game_desc(game_params *params, random_state *rs,
6f2d8d7c 1037 game_aux_info **aux)
3870c4d8 1038{
26801d29 1039 int *grid, *numbers = NULL;
3870c4d8 1040 struct rectlist *list;
aea3ed9a 1041 int x, y, y2, y2last, yx, run, i;
1185e3c5 1042 char *desc, *p;
aea3ed9a 1043 game_params params2real, *params2 = &params2real;
3870c4d8 1044
26801d29 1045 while (1) {
1046 /*
1047 * Set up the smaller width and height which we will use to
1048 * generate the base grid.
1049 */
1050 params2->w = params->w / (1.0F + params->expandfactor);
1051 if (params2->w < 2 && params->w >= 2) params2->w = 2;
1052 params2->h = params->h / (1.0F + params->expandfactor);
1053 if (params2->h < 2 && params->h >= 2) params2->h = 2;
aea3ed9a 1054
26801d29 1055 grid = snewn(params2->w * params2->h, int);
3870c4d8 1056
26801d29 1057 for (y = 0; y < params2->h; y++)
1058 for (x = 0; x < params2->w; x++) {
1059 index(params2, grid, x, y) = -1;
1060 }
3870c4d8 1061
26801d29 1062 list = get_rectlist(params2, grid);
1063 assert(list != NULL);
3870c4d8 1064
1065 /*
26801d29 1066 * Place rectangles until we can't any more.
3870c4d8 1067 */
26801d29 1068 while (list->n > 0) {
1069 int i, m;
1070 struct rect r;
1071
1072 /*
1073 * Pick a random rectangle.
1074 */
1075 i = random_upto(rs, list->n);
1076 r = list->rects[i];
1077
1078 /*
1079 * Place it.
1080 */
1081 place_rect(params2, grid, r);
1082
1083 /*
1084 * Winnow the list by removing any rectangles which
1085 * overlap this one.
1086 */
1087 m = 0;
1088 for (i = 0; i < list->n; i++) {
1089 struct rect s = list->rects[i];
1090 if (s.x+s.w <= r.x || r.x+r.w <= s.x ||
1091 s.y+s.h <= r.y || r.y+r.h <= s.y)
1092 list->rects[m++] = s;
1093 }
1094 list->n = m;
1095 }
3870c4d8 1096
26801d29 1097 free_rectlist(list);
3870c4d8 1098
1099 /*
26801d29 1100 * Deal with singleton spaces remaining in the grid, one by
1101 * one.
1102 *
1103 * We do this by making a local change to the layout. There are
1104 * several possibilities:
1105 *
1106 * +-----+-----+ Here, we can remove the singleton by
1107 * | | | extending the 1x2 rectangle below it
1108 * +--+--+-----+ into a 1x3.
1109 * | | | |
1110 * | +--+ |
1111 * | | | |
1112 * | | | |
1113 * | | | |
1114 * +--+--+-----+
1115 *
1116 * +--+--+--+ Here, that trick doesn't work: there's no
1117 * | | | 1 x n rectangle with the singleton at one
1118 * | | | end. Instead, we extend a 1 x n rectangle
1119 * | | | _out_ from the singleton, shaving a layer
1120 * +--+--+ | off the end of another rectangle. So if we
1121 * | | | | extended up, we'd make our singleton part
1122 * | +--+--+ of a 1x3 and generate a 1x2 where the 2x2
1123 * | | | used to be; or we could extend right into
1124 * +--+-----+ a 2x1, turning the 1x3 into a 1x2.
1125 *
1126 * +-----+--+ Here, we can't even do _that_, since any
1127 * | | | direction we choose to extend the singleton
1128 * +--+--+ | will produce a new singleton as a result of
1129 * | | | | truncating one of the size-2 rectangles.
1130 * | +--+--+ Fortunately, this case can _only_ occur when
1131 * | | | a singleton is surrounded by four size-2s
1132 * +--+-----+ in this fashion; so instead we can simply
1133 * replace the whole section with a single 3x3.
3870c4d8 1134 */
26801d29 1135 for (x = 0; x < params2->w; x++) {
1136 for (y = 0; y < params2->h; y++) {
1137 if (index(params2, grid, x, y) < 0) {
1138 int dirs[4], ndirs;
3870c4d8 1139
1140#ifdef GENERATION_DIAGNOSTICS
26801d29 1141 display_grid(params2, grid, NULL, FALSE);
1142 printf("singleton at %d,%d\n", x, y);
3870c4d8 1143#endif
1144
26801d29 1145 /*
1146 * Check in which directions we can feasibly extend
1147 * the singleton. We can extend in a particular
1148 * direction iff either:
1149 *
1150 * - the rectangle on that side of the singleton
1151 * is not 2x1, and we are at one end of the edge
1152 * of it we are touching
1153 *
1154 * - it is 2x1 but we are on its short side.
1155 *
1156 * FIXME: we could plausibly choose between these
1157 * based on the sizes of the rectangles they would
1158 * create?
1159 */
1160 ndirs = 0;
1161 if (x < params2->w-1) {
1162 struct rect r = find_rect(params2, grid, x+1, y);
1163 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1164 dirs[ndirs++] = 1; /* right */
1165 }
1166 if (y > 0) {
1167 struct rect r = find_rect(params2, grid, x, y-1);
1168 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1169 dirs[ndirs++] = 2; /* up */
1170 }
1171 if (x > 0) {
1172 struct rect r = find_rect(params2, grid, x-1, y);
1173 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1174 dirs[ndirs++] = 4; /* left */
1175 }
1176 if (y < params2->h-1) {
1177 struct rect r = find_rect(params2, grid, x, y+1);
1178 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1179 dirs[ndirs++] = 8; /* down */
1180 }
3870c4d8 1181
26801d29 1182 if (ndirs > 0) {
1183 int which, dir;
1184 struct rect r1, r2;
3870c4d8 1185
26801d29 1186 which = random_upto(rs, ndirs);
1187 dir = dirs[which];
3870c4d8 1188
26801d29 1189 switch (dir) {
1190 case 1: /* right */
1191 assert(x < params2->w+1);
3870c4d8 1192#ifdef GENERATION_DIAGNOSTICS
26801d29 1193 printf("extending right\n");
3870c4d8 1194#endif
26801d29 1195 r1 = find_rect(params2, grid, x+1, y);
1196 r2.x = x;
1197 r2.y = y;
1198 r2.w = 1 + r1.w;
1199 r2.h = 1;
1200 if (r1.y == y)
1201 r1.y++;
1202 r1.h--;
1203 break;
1204 case 2: /* up */
1205 assert(y > 0);
3870c4d8 1206#ifdef GENERATION_DIAGNOSTICS
26801d29 1207 printf("extending up\n");
3870c4d8 1208#endif
26801d29 1209 r1 = find_rect(params2, grid, x, y-1);
1210 r2.x = x;
1211 r2.y = r1.y;
1212 r2.w = 1;
1213 r2.h = 1 + r1.h;
1214 if (r1.x == x)
1215 r1.x++;
1216 r1.w--;
1217 break;
1218 case 4: /* left */
1219 assert(x > 0);
3870c4d8 1220#ifdef GENERATION_DIAGNOSTICS
26801d29 1221 printf("extending left\n");
3870c4d8 1222#endif
26801d29 1223 r1 = find_rect(params2, grid, x-1, y);
1224 r2.x = r1.x;
1225 r2.y = y;
1226 r2.w = 1 + r1.w;
1227 r2.h = 1;
1228 if (r1.y == y)
1229 r1.y++;
1230 r1.h--;
1231 break;
1232 case 8: /* down */
1233 assert(y < params2->h+1);
3870c4d8 1234#ifdef GENERATION_DIAGNOSTICS
26801d29 1235 printf("extending down\n");
3870c4d8 1236#endif
26801d29 1237 r1 = find_rect(params2, grid, x, y+1);
1238 r2.x = x;
1239 r2.y = y;
1240 r2.w = 1;
1241 r2.h = 1 + r1.h;
1242 if (r1.x == x)
1243 r1.x++;
1244 r1.w--;
1245 break;
1246 }
1247 if (r1.h > 0 && r1.w > 0)
1248 place_rect(params2, grid, r1);
1249 place_rect(params2, grid, r2);
1250 } else {
3870c4d8 1251#ifndef NDEBUG
26801d29 1252 /*
1253 * Sanity-check that there really is a 3x3
1254 * rectangle surrounding this singleton and it
1255 * contains absolutely everything we could
1256 * possibly need.
1257 */
1258 {
1259 int xx, yy;
1260 assert(x > 0 && x < params2->w-1);
1261 assert(y > 0 && y < params2->h-1);
1262
1263 for (xx = x-1; xx <= x+1; xx++)
1264 for (yy = y-1; yy <= y+1; yy++) {
1265 struct rect r = find_rect(params2,grid,xx,yy);
1266 assert(r.x >= x-1);
1267 assert(r.y >= y-1);
1268 assert(r.x+r.w-1 <= x+1);
1269 assert(r.y+r.h-1 <= y+1);
1270 }
1271 }
3870c4d8 1272#endif
26801d29 1273
3870c4d8 1274#ifdef GENERATION_DIAGNOSTICS
26801d29 1275 printf("need the 3x3 trick\n");
3870c4d8 1276#endif
1277
26801d29 1278 /*
1279 * FIXME: If the maximum rectangle area for
1280 * this grid is less than 9, we ought to
1281 * subdivide the 3x3 in some fashion. There are
1282 * five other possibilities:
1283 *
1284 * - a 6 and a 3
1285 * - a 4, a 3 and a 2
1286 * - three 3s
1287 * - a 3 and three 2s (two different arrangements).
1288 */
1289
1290 {
1291 struct rect r;
1292 r.x = x-1;
1293 r.y = y-1;
1294 r.w = r.h = 3;
1295 place_rect(params2, grid, r);
1296 }
3870c4d8 1297 }
1298 }
1299 }
1300 }
3870c4d8 1301
26801d29 1302 /*
1303 * We have now constructed a grid of the size specified in
1304 * params2. Now we extend it into a grid of the size specified
1305 * in params. We do this in two passes: we extend it vertically
1306 * until it's the right height, then we transpose it, then
1307 * extend it vertically again (getting it effectively the right
1308 * width), then finally transpose again.
1309 */
1310 for (i = 0; i < 2; i++) {
1311 int *grid2, *expand, *where;
1312 game_params params3real, *params3 = &params3real;
aea3ed9a 1313
1314#ifdef GENERATION_DIAGNOSTICS
26801d29 1315 printf("before expansion:\n");
1316 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1317#endif
1318
26801d29 1319 /*
1320 * Set up the new grid.
1321 */
1322 grid2 = snewn(params2->w * params->h, int);
1323 expand = snewn(params2->h-1, int);
1324 where = snewn(params2->w, int);
1325 params3->w = params2->w;
1326 params3->h = params->h;
1327
1328 /*
1329 * Decide which horizontal edges are going to get expanded,
1330 * and by how much.
1331 */
1332 for (y = 0; y < params2->h-1; y++)
1333 expand[y] = 0;
1334 for (y = params2->h; y < params->h; y++) {
1335 x = random_upto(rs, params2->h-1);
1336 expand[x]++;
1337 }
aea3ed9a 1338
1339#ifdef GENERATION_DIAGNOSTICS
26801d29 1340 printf("expand[] = {");
1341 for (y = 0; y < params2->h-1; y++)
1342 printf(" %d", expand[y]);
1343 printf(" }\n");
aea3ed9a 1344#endif
1345
26801d29 1346 /*
1347 * Perform the expansion. The way this works is that we
1348 * alternately:
1349 *
1350 * - copy a row from grid into grid2
1351 *
1352 * - invent some number of additional rows in grid2 where
1353 * there was previously only a horizontal line between
1354 * rows in grid, and make random decisions about where
1355 * among these to place each rectangle edge that ran
1356 * along this line.
1357 */
1358 for (y = y2 = y2last = 0; y < params2->h; y++) {
1359 /*
1360 * Copy a single line from row y of grid into row y2 of
1361 * grid2.
1362 */
1363 for (x = 0; x < params2->w; x++) {
1364 int val = index(params2, grid, x, y);
1365 if (val / params2->w == y && /* rect starts on this line */
1366 (y2 == 0 || /* we're at the very top, or... */
1367 index(params3, grid2, x, y2-1) / params3->w < y2last
1368 /* this rect isn't already started */))
1369 index(params3, grid2, x, y2) =
1370 INDEX(params3, val % params2->w, y2);
1371 else
1372 index(params3, grid2, x, y2) =
1373 index(params3, grid2, x, y2-1);
1374 }
1375
1376 /*
1377 * If that was the last line, terminate the loop early.
1378 */
1379 if (++y2 == params3->h)
1380 break;
1381
1382 y2last = y2;
1383
1384 /*
1385 * Invent some number of additional lines. First walk
1386 * along this line working out where to put all the
1387 * edges that coincide with it.
1388 */
1389 yx = -1;
1390 for (x = 0; x < params2->w; x++) {
1391 if (index(params2, grid, x, y) !=
1392 index(params2, grid, x, y+1)) {
1393 /*
1394 * This is a horizontal edge, so it needs
1395 * placing.
1396 */
1397 if (x == 0 ||
1398 (index(params2, grid, x-1, y) !=
1399 index(params2, grid, x, y) &&
1400 index(params2, grid, x-1, y+1) !=
1401 index(params2, grid, x, y+1))) {
1402 /*
1403 * Here we have the chance to make a new
1404 * decision.
1405 */
1406 yx = random_upto(rs, expand[y]+1);
1407 } else {
1408 /*
1409 * Here we just reuse the previous value of
1410 * yx.
1411 */
1412 }
1413 } else
1414 yx = -1;
1415 where[x] = yx;
1416 }
1417
1418 for (yx = 0; yx < expand[y]; yx++) {
1419 /*
1420 * Invent a single row. For each square in the row,
1421 * we copy the grid entry from the square above it,
1422 * unless we're starting the new rectangle here.
1423 */
1424 for (x = 0; x < params2->w; x++) {
1425 if (yx == where[x]) {
1426 int val = index(params2, grid, x, y+1);
1427 val %= params2->w;
1428 val = INDEX(params3, val, y2);
1429 index(params3, grid2, x, y2) = val;
1430 } else
1431 index(params3, grid2, x, y2) =
1432 index(params3, grid2, x, y2-1);
1433 }
1434
1435 y2++;
1436 }
1437 }
1438
1439 sfree(expand);
1440 sfree(where);
aea3ed9a 1441
1442#ifdef GENERATION_DIAGNOSTICS
26801d29 1443 printf("after expansion:\n");
1444 display_grid(params3, grid2, NULL, TRUE);
aea3ed9a 1445#endif
26801d29 1446 /*
1447 * Transpose.
1448 */
1449 params2->w = params3->h;
1450 params2->h = params3->w;
1451 sfree(grid);
1452 grid = snewn(params2->w * params2->h, int);
1453 for (x = 0; x < params2->w; x++)
1454 for (y = 0; y < params2->h; y++) {
1455 int idx1 = INDEX(params2, x, y);
1456 int idx2 = INDEX(params3, y, x);
1457 int tmp;
1458
1459 tmp = grid2[idx2];
1460 tmp = (tmp % params3->w) * params2->w + (tmp / params3->w);
1461 grid[idx1] = tmp;
1462 }
1463
1464 sfree(grid2);
1465
1466 {
1467 int tmp;
1468 tmp = params->w;
1469 params->w = params->h;
1470 params->h = tmp;
1471 }
aea3ed9a 1472
1473#ifdef GENERATION_DIAGNOSTICS
26801d29 1474 printf("after transposition:\n");
1475 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1476#endif
26801d29 1477 }
aea3ed9a 1478
26801d29 1479 /*
1480 * Run the solver to narrow down the possible number
1481 * placements.
1482 */
1483 {
1484 struct numberdata *nd;
1485 int nnumbers, i, ret;
1486
1487 /* Count the rectangles. */
1488 nnumbers = 0;
1489 for (y = 0; y < params->h; y++) {
1490 for (x = 0; x < params->w; x++) {
1491 int idx = INDEX(params, x, y);
1492 if (index(params, grid, x, y) == idx)
1493 nnumbers++;
1494 }
1495 }
2ac6d24e 1496
26801d29 1497 nd = snewn(nnumbers, struct numberdata);
1498
1499 /* Now set up each number's candidate position list. */
1500 i = 0;
1501 for (y = 0; y < params->h; y++) {
1502 for (x = 0; x < params->w; x++) {
1503 int idx = INDEX(params, x, y);
1504 if (index(params, grid, x, y) == idx) {
1505 struct rect r = find_rect(params, grid, x, y);
1506 int j, k, m;
1507
1508 nd[i].area = r.w * r.h;
1509 nd[i].npoints = nd[i].area;
1510 nd[i].points = snewn(nd[i].npoints, struct point);
1511 m = 0;
1512 for (j = 0; j < r.h; j++)
1513 for (k = 0; k < r.w; k++) {
1514 nd[i].points[m].x = k + r.x;
1515 nd[i].points[m].y = j + r.y;
1516 m++;
1517 }
1518 assert(m == nd[i].npoints);
aea3ed9a 1519
26801d29 1520 i++;
1521 }
1522 }
1523 }
aea3ed9a 1524
40fde884 1525 if (params->unique)
1526 ret = rect_solver(params->w, params->h, nnumbers, nd, rs);
1527 else
1528 ret = TRUE; /* allow any number placement at all */
3870c4d8 1529
26801d29 1530 if (ret) {
3870c4d8 1531 /*
26801d29 1532 * Now place the numbers according to the solver's
1533 * recommendations.
3870c4d8 1534 */
26801d29 1535 numbers = snewn(params->w * params->h, int);
1536
1537 for (y = 0; y < params->h; y++)
1538 for (x = 0; x < params->w; x++) {
1539 index(params, numbers, x, y) = 0;
1540 }
1541
1542 for (i = 0; i < nnumbers; i++) {
1543 int idx = random_upto(rs, nd[i].npoints);
1544 int x = nd[i].points[idx].x;
1545 int y = nd[i].points[idx].y;
1546 index(params,numbers,x,y) = nd[i].area;
1547 }
3870c4d8 1548 }
26801d29 1549
1550 /*
1551 * Clean up.
1552 */
1553 for (i = 0; i < nnumbers; i++)
1554 sfree(nd[i].points);
1555 sfree(nd);
1556
1557 /*
1558 * If we've succeeded, then terminate the loop.
1559 */
1560 if (ret)
1561 break;
3870c4d8 1562 }
26801d29 1563
1564 /*
1565 * Give up and go round again.
1566 */
1567 sfree(grid);
1568 }
1569
1570 /*
1571 * Store the rectangle data in the game_aux_info.
1572 */
1573 {
1574 game_aux_info *ai = snew(game_aux_info);
1575
1576 ai->w = params->w;
1577 ai->h = params->h;
1578 ai->vedge = snewn(ai->w * ai->h, unsigned char);
1579 ai->hedge = snewn(ai->w * ai->h, unsigned char);
1580
1581 for (y = 0; y < params->h; y++)
1582 for (x = 1; x < params->w; x++) {
1583 vedge(ai, x, y) =
1584 index(params, grid, x, y) != index(params, grid, x-1, y);
1585 }
1586 for (y = 1; y < params->h; y++)
1587 for (x = 0; x < params->w; x++) {
1588 hedge(ai, x, y) =
1589 index(params, grid, x, y) != index(params, grid, x, y-1);
1590 }
1591
1592 *aux = ai;
3870c4d8 1593 }
1594
1595#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 1596 display_grid(params, grid, numbers, FALSE);
3870c4d8 1597#endif
1598
1185e3c5 1599 desc = snewn(11 * params->w * params->h, char);
1600 p = desc;
3870c4d8 1601 run = 0;
1602 for (i = 0; i <= params->w * params->h; i++) {
1603 int n = (i < params->w * params->h ? numbers[i] : -1);
1604
1605 if (!n)
1606 run++;
1607 else {
1608 if (run) {
1609 while (run > 0) {
1610 int c = 'a' - 1 + run;
1611 if (run > 26)
1612 c = 'z';
1613 *p++ = c;
1614 run -= c - ('a' - 1);
1615 }
1616 } else {
0e87eedc 1617 /*
1618 * If there's a number in the very top left or
1619 * bottom right, there's no point putting an
1620 * unnecessary _ before or after it.
1621 */
1185e3c5 1622 if (p > desc && n > 0)
0e87eedc 1623 *p++ = '_';
3870c4d8 1624 }
1625 if (n > 0)
1626 p += sprintf(p, "%d", n);
1627 run = 0;
1628 }
1629 }
1630 *p = '\0';
1631
1632 sfree(grid);
1633 sfree(numbers);
1634
1185e3c5 1635 return desc;
3870c4d8 1636}
1637
2ac6d24e 1638static void game_free_aux_info(game_aux_info *ai)
6f2d8d7c 1639{
2ac6d24e 1640 sfree(ai->vedge);
1641 sfree(ai->hedge);
1642 sfree(ai);
6f2d8d7c 1643}
1644
1185e3c5 1645static char *validate_desc(game_params *params, char *desc)
3870c4d8 1646{
1647 int area = params->w * params->h;
1648 int squares = 0;
1649
1185e3c5 1650 while (*desc) {
1651 int n = *desc++;
3870c4d8 1652 if (n >= 'a' && n <= 'z') {
1653 squares += n - 'a' + 1;
1654 } else if (n == '_') {
1655 /* do nothing */;
1656 } else if (n > '0' && n <= '9') {
9bb5bf60 1657 squares++;
1185e3c5 1658 while (*desc >= '0' && *desc <= '9')
1659 desc++;
3870c4d8 1660 } else
1185e3c5 1661 return "Invalid character in game description";
3870c4d8 1662 }
1663
1664 if (squares < area)
1665 return "Not enough data to fill grid";
1666
1667 if (squares > area)
1668 return "Too much data to fit in grid";
1669
1670 return NULL;
1671}
1672
1185e3c5 1673static game_state *new_game(game_params *params, char *desc)
3870c4d8 1674{
1675 game_state *state = snew(game_state);
1676 int x, y, i, area;
1677
1678 state->w = params->w;
1679 state->h = params->h;
1680
1681 area = state->w * state->h;
1682
1683 state->grid = snewn(area, int);
1684 state->vedge = snewn(area, unsigned char);
1685 state->hedge = snewn(area, unsigned char);
2ac6d24e 1686 state->completed = state->cheated = FALSE;
3870c4d8 1687
1688 i = 0;
1185e3c5 1689 while (*desc) {
1690 int n = *desc++;
3870c4d8 1691 if (n >= 'a' && n <= 'z') {
1692 int run = n - 'a' + 1;
1693 assert(i + run <= area);
1694 while (run-- > 0)
1695 state->grid[i++] = 0;
1696 } else if (n == '_') {
1697 /* do nothing */;
1698 } else if (n > '0' && n <= '9') {
1699 assert(i < area);
1185e3c5 1700 state->grid[i++] = atoi(desc-1);
1701 while (*desc >= '0' && *desc <= '9')
1702 desc++;
3870c4d8 1703 } else {
1704 assert(!"We can't get here");
1705 }
1706 }
1707 assert(i == area);
1708
1709 for (y = 0; y < state->h; y++)
1710 for (x = 0; x < state->w; x++)
1711 vedge(state,x,y) = hedge(state,x,y) = 0;
1712
1713 return state;
1714}
1715
be8d5aa1 1716static game_state *dup_game(game_state *state)
3870c4d8 1717{
1718 game_state *ret = snew(game_state);
1719
1720 ret->w = state->w;
1721 ret->h = state->h;
1722
1723 ret->vedge = snewn(state->w * state->h, unsigned char);
1724 ret->hedge = snewn(state->w * state->h, unsigned char);
1725 ret->grid = snewn(state->w * state->h, int);
1726
ef29354c 1727 ret->completed = state->completed;
2ac6d24e 1728 ret->cheated = state->cheated;
ef29354c 1729
3870c4d8 1730 memcpy(ret->grid, state->grid, state->w * state->h * sizeof(int));
1731 memcpy(ret->vedge, state->vedge, state->w*state->h*sizeof(unsigned char));
1732 memcpy(ret->hedge, state->hedge, state->w*state->h*sizeof(unsigned char));
1733
1734 return ret;
1735}
1736
be8d5aa1 1737static void free_game(game_state *state)
3870c4d8 1738{
1739 sfree(state->grid);
1740 sfree(state->vedge);
1741 sfree(state->hedge);
1742 sfree(state);
1743}
1744
2ac6d24e 1745static game_state *solve_game(game_state *state, game_aux_info *ai,
1746 char **error)
1747{
1748 game_state *ret;
1749
1750 if (!ai) {
1751 *error = "Solution not known for this puzzle";
1752 return NULL;
1753 }
1754
1755 assert(state->w == ai->w);
1756 assert(state->h == ai->h);
1757
1758 ret = dup_game(state);
1759 memcpy(ret->vedge, ai->vedge, ai->w * ai->h * sizeof(unsigned char));
1760 memcpy(ret->hedge, ai->hedge, ai->w * ai->h * sizeof(unsigned char));
1761 ret->cheated = TRUE;
1762
1763 return ret;
1764}
1765
9b4b03d3 1766static char *game_text_format(game_state *state)
1767{
6ad5ed74 1768 char *ret, *p, buf[80];
1769 int i, x, y, col, maxlen;
1770
1771 /*
1772 * First determine the number of spaces required to display a
1773 * number. We'll use at least two, because one looks a bit
1774 * silly.
1775 */
1776 col = 2;
1777 for (i = 0; i < state->w * state->h; i++) {
1778 x = sprintf(buf, "%d", state->grid[i]);
1779 if (col < x) col = x;
1780 }
1781
1782 /*
1783 * Now we know the exact total size of the grid we're going to
1784 * produce: it's got 2*h+1 rows, each containing w lots of col,
1785 * w+1 boundary characters and a trailing newline.
1786 */
1787 maxlen = (2*state->h+1) * (state->w * (col+1) + 2);
1788
48a10826 1789 ret = snewn(maxlen+1, char);
6ad5ed74 1790 p = ret;
1791
1792 for (y = 0; y <= 2*state->h; y++) {
1793 for (x = 0; x <= 2*state->w; x++) {
1794 if (x & y & 1) {
1795 /*
1796 * Display a number.
1797 */
1798 int v = grid(state, x/2, y/2);
1799 if (v)
1800 sprintf(buf, "%*d", col, v);
1801 else
1802 sprintf(buf, "%*s", col, "");
1803 memcpy(p, buf, col);
1804 p += col;
1805 } else if (x & 1) {
1806 /*
1807 * Display a horizontal edge or nothing.
1808 */
1809 int h = (y==0 || y==2*state->h ? 1 :
1810 HRANGE(state, x/2, y/2) && hedge(state, x/2, y/2));
1811 int i;
1812 if (h)
1813 h = '-';
1814 else
1815 h = ' ';
1816 for (i = 0; i < col; i++)
1817 *p++ = h;
1818 } else if (y & 1) {
1819 /*
1820 * Display a vertical edge or nothing.
1821 */
1822 int v = (x==0 || x==2*state->w ? 1 :
1823 VRANGE(state, x/2, y/2) && vedge(state, x/2, y/2));
1824 if (v)
1825 *p++ = '|';
1826 else
1827 *p++ = ' ';
1828 } else {
1829 /*
1830 * Display a corner, or a vertical edge, or a
1831 * horizontal edge, or nothing.
1832 */
1833 int hl = (y==0 || y==2*state->h ? 1 :
1834 HRANGE(state, (x-1)/2, y/2) && hedge(state, (x-1)/2, y/2));
1835 int hr = (y==0 || y==2*state->h ? 1 :
1836 HRANGE(state, (x+1)/2, y/2) && hedge(state, (x+1)/2, y/2));
1837 int vu = (x==0 || x==2*state->w ? 1 :
1838 VRANGE(state, x/2, (y-1)/2) && vedge(state, x/2, (y-1)/2));
1839 int vd = (x==0 || x==2*state->w ? 1 :
1840 VRANGE(state, x/2, (y+1)/2) && vedge(state, x/2, (y+1)/2));
1841 if (!hl && !hr && !vu && !vd)
1842 *p++ = ' ';
1843 else if (hl && hr && !vu && !vd)
1844 *p++ = '-';
1845 else if (!hl && !hr && vu && vd)
1846 *p++ = '|';
1847 else
1848 *p++ = '+';
1849 }
1850 }
1851 *p++ = '\n';
1852 }
1853
1854 assert(p - ret == maxlen);
1855 *p = '\0';
1856 return ret;
9b4b03d3 1857}
1858
3870c4d8 1859static unsigned char *get_correct(game_state *state)
1860{
1861 unsigned char *ret;
1862 int x, y;
1863
1864 ret = snewn(state->w * state->h, unsigned char);
1865 memset(ret, 0xFF, state->w * state->h);
1866
1867 for (x = 0; x < state->w; x++)
1868 for (y = 0; y < state->h; y++)
1869 if (index(state,ret,x,y) == 0xFF) {
1870 int rw, rh;
1871 int xx, yy;
1872 int num, area, valid;
1873
1874 /*
1875 * Find a rectangle starting at this point.
1876 */
1877 rw = 1;
1878 while (x+rw < state->w && !vedge(state,x+rw,y))
1879 rw++;
1880 rh = 1;
1881 while (y+rh < state->h && !hedge(state,x,y+rh))
1882 rh++;
1883
1884 /*
1885 * We know what the dimensions of the rectangle
1886 * should be if it's there at all. Find out if we
1887 * really have a valid rectangle.
1888 */
1889 valid = TRUE;
1890 /* Check the horizontal edges. */
1891 for (xx = x; xx < x+rw; xx++) {
1892 for (yy = y; yy <= y+rh; yy++) {
1893 int e = !HRANGE(state,xx,yy) || hedge(state,xx,yy);
1894 int ec = (yy == y || yy == y+rh);
1895 if (e != ec)
1896 valid = FALSE;
1897 }
1898 }
1899 /* Check the vertical edges. */
1900 for (yy = y; yy < y+rh; yy++) {
1901 for (xx = x; xx <= x+rw; xx++) {
1902 int e = !VRANGE(state,xx,yy) || vedge(state,xx,yy);
1903 int ec = (xx == x || xx == x+rw);
1904 if (e != ec)
1905 valid = FALSE;
1906 }
1907 }
1908
1909 /*
1910 * If this is not a valid rectangle with no other
1911 * edges inside it, we just mark this square as not
1912 * complete and proceed to the next square.
1913 */
1914 if (!valid) {
1915 index(state, ret, x, y) = 0;
1916 continue;
1917 }
1918
1919 /*
1920 * We have a rectangle. Now see what its area is,
1921 * and how many numbers are in it.
1922 */
1923 num = 0;
1924 area = 0;
1925 for (xx = x; xx < x+rw; xx++) {
1926 for (yy = y; yy < y+rh; yy++) {
1927 area++;
1928 if (grid(state,xx,yy)) {
1929 if (num > 0)
1930 valid = FALSE; /* two numbers */
1931 num = grid(state,xx,yy);
1932 }
1933 }
1934 }
1935 if (num != area)
1936 valid = FALSE;
1937
1938 /*
1939 * Now fill in the whole rectangle based on the
1940 * value of `valid'.
1941 */
1942 for (xx = x; xx < x+rw; xx++) {
1943 for (yy = y; yy < y+rh; yy++) {
1944 index(state, ret, xx, yy) = valid;
1945 }
1946 }
1947 }
1948
1949 return ret;
1950}
1951
08dd70c3 1952struct game_ui {
1953 /*
1954 * These coordinates are 2 times the obvious grid coordinates.
1955 * Hence, the top left of the grid is (0,0), the grid point to
1956 * the right of that is (2,0), the one _below that_ is (2,2)
1957 * and so on. This is so that we can specify a drag start point
1958 * on an edge (one odd coordinate) or in the middle of a square
1959 * (two odd coordinates) rather than always at a corner.
1960 *
1961 * -1,-1 means no drag is in progress.
1962 */
1963 int drag_start_x;
1964 int drag_start_y;
1965 int drag_end_x;
1966 int drag_end_y;
1967 /*
1968 * This flag is set as soon as a dragging action moves the
1969 * mouse pointer away from its starting point, so that even if
1970 * the pointer _returns_ to its starting point the action is
1971 * treated as a small drag rather than a click.
1972 */
1973 int dragged;
1974};
1975
be8d5aa1 1976static game_ui *new_ui(game_state *state)
74a4e547 1977{
08dd70c3 1978 game_ui *ui = snew(game_ui);
1979 ui->drag_start_x = -1;
1980 ui->drag_start_y = -1;
1981 ui->drag_end_x = -1;
1982 ui->drag_end_y = -1;
1983 ui->dragged = FALSE;
1984 return ui;
74a4e547 1985}
1986
be8d5aa1 1987static void free_ui(game_ui *ui)
74a4e547 1988{
08dd70c3 1989 sfree(ui);
1990}
1991
be8d5aa1 1992static void coord_round(float x, float y, int *xr, int *yr)
08dd70c3 1993{
d4e7900f 1994 float xs, ys, xv, yv, dx, dy, dist;
08dd70c3 1995
1996 /*
d4e7900f 1997 * Find the nearest square-centre.
08dd70c3 1998 */
d4e7900f 1999 xs = (float)floor(x) + 0.5F;
2000 ys = (float)floor(y) + 0.5F;
08dd70c3 2001
2002 /*
d4e7900f 2003 * And find the nearest grid vertex.
08dd70c3 2004 */
d4e7900f 2005 xv = (float)floor(x + 0.5F);
2006 yv = (float)floor(y + 0.5F);
08dd70c3 2007
2008 /*
d4e7900f 2009 * We allocate clicks in parts of the grid square to either
2010 * corners, edges or square centres, as follows:
2011 *
2012 * +--+--------+--+
2013 * | | | |
2014 * +--+ +--+
2015 * | `. ,' |
2016 * | +--+ |
2017 * | | | |
2018 * | +--+ |
2019 * | ,' `. |
2020 * +--+ +--+
2021 * | | | |
2022 * +--+--------+--+
2023 *
2024 * (Not to scale!)
2025 *
2026 * In other words: we measure the square distance (i.e.
2027 * max(dx,dy)) from the click to the nearest corner, and if
2028 * it's within CORNER_TOLERANCE then we return a corner click.
2029 * We measure the square distance from the click to the nearest
2030 * centre, and if that's within CENTRE_TOLERANCE we return a
2031 * centre click. Failing that, we find which of the two edge
2032 * centres is nearer to the click and return that edge.
08dd70c3 2033 */
d4e7900f 2034
2035 /*
2036 * Check for corner click.
2037 */
2038 dx = (float)fabs(x - xv);
2039 dy = (float)fabs(y - yv);
2040 dist = (dx > dy ? dx : dy);
2041 if (dist < CORNER_TOLERANCE) {
2042 *xr = 2 * (int)xv;
2043 *yr = 2 * (int)yv;
2044 } else {
2045 /*
2046 * Check for centre click.
2047 */
2048 dx = (float)fabs(x - xs);
2049 dy = (float)fabs(y - ys);
2050 dist = (dx > dy ? dx : dy);
2051 if (dist < CENTRE_TOLERANCE) {
2052 *xr = 1 + 2 * (int)xs;
2053 *yr = 1 + 2 * (int)ys;
2054 } else {
2055 /*
2056 * Failing both of those, see which edge we're closer to.
2057 * Conveniently, this is simply done by testing the relative
2058 * magnitude of dx and dy (which are currently distances from
2059 * the square centre).
2060 */
2061 if (dx > dy) {
2062 /* Vertical edge: x-coord of corner,
2063 * y-coord of square centre. */
2064 *xr = 2 * (int)xv;
2065 *yr = 1 + 2 * (int)ys;
2066 } else {
2067 /* Horizontal edge: x-coord of square centre,
2068 * y-coord of corner. */
2069 *xr = 1 + 2 * (int)xs;
2070 *yr = 2 * (int)yv;
2071 }
2072 }
2073 }
08dd70c3 2074}
2075
2076static void ui_draw_rect(game_state *state, game_ui *ui,
2077 unsigned char *hedge, unsigned char *vedge, int c)
2078{
2079 int x1, x2, y1, y2, x, y, t;
2080
2081 x1 = ui->drag_start_x;
2082 x2 = ui->drag_end_x;
2083 if (x2 < x1) { t = x1; x1 = x2; x2 = t; }
2084
2085 y1 = ui->drag_start_y;
2086 y2 = ui->drag_end_y;
2087 if (y2 < y1) { t = y1; y1 = y2; y2 = t; }
2088
2089 x1 = x1 / 2; /* rounds down */
2090 x2 = (x2+1) / 2; /* rounds up */
2091 y1 = y1 / 2; /* rounds down */
2092 y2 = (y2+1) / 2; /* rounds up */
2093
2094 /*
2095 * Draw horizontal edges of rectangles.
2096 */
2097 for (x = x1; x < x2; x++)
2098 for (y = y1; y <= y2; y++)
2099 if (HRANGE(state,x,y)) {
2100 int val = index(state,hedge,x,y);
2101 if (y == y1 || y == y2)
2102 val = c;
2103 else if (c == 1)
2104 val = 0;
2105 index(state,hedge,x,y) = val;
2106 }
2107
2108 /*
2109 * Draw vertical edges of rectangles.
2110 */
2111 for (y = y1; y < y2; y++)
2112 for (x = x1; x <= x2; x++)
2113 if (VRANGE(state,x,y)) {
2114 int val = index(state,vedge,x,y);
2115 if (x == x1 || x == x2)
2116 val = c;
2117 else if (c == 1)
2118 val = 0;
2119 index(state,vedge,x,y) = val;
2120 }
74a4e547 2121}
2122
be8d5aa1 2123static game_state *make_move(game_state *from, game_ui *ui,
2124 int x, int y, int button)
3870c4d8 2125{
08dd70c3 2126 int xc, yc;
2127 int startdrag = FALSE, enddrag = FALSE, active = FALSE;
3870c4d8 2128 game_state *ret;
2129
08dd70c3 2130 if (button == LEFT_BUTTON) {
2131 startdrag = TRUE;
2132 } else if (button == LEFT_RELEASE) {
2133 enddrag = TRUE;
2134 } else if (button != LEFT_DRAG) {
2135 return NULL;
2136 }
2137
d4e7900f 2138 coord_round(FROMCOORD((float)x), FROMCOORD((float)y), &xc, &yc);
08dd70c3 2139
2140 if (startdrag) {
2141 ui->drag_start_x = xc;
2142 ui->drag_start_y = yc;
2143 ui->drag_end_x = xc;
2144 ui->drag_end_y = yc;
2145 ui->dragged = FALSE;
2146 active = TRUE;
2147 }
3870c4d8 2148
08dd70c3 2149 if (xc != ui->drag_end_x || yc != ui->drag_end_y) {
2150 ui->drag_end_x = xc;
2151 ui->drag_end_y = yc;
2152 ui->dragged = TRUE;
2153 active = TRUE;
2154 }
3870c4d8 2155
934797c7 2156 ret = NULL;
2157
2158 if (enddrag) {
2159 if (xc >= 0 && xc <= 2*from->w &&
2160 yc >= 0 && yc <= 2*from->h) {
2161 ret = dup_game(from);
2162
2163 if (ui->dragged) {
2164 ui_draw_rect(ret, ui, ret->hedge, ret->vedge, 1);
2165 } else {
2166 if ((xc & 1) && !(yc & 1) && HRANGE(from,xc/2,yc/2)) {
2167 hedge(ret,xc/2,yc/2) = !hedge(ret,xc/2,yc/2);
2168 }
2169 if ((yc & 1) && !(xc & 1) && VRANGE(from,xc/2,yc/2)) {
2170 vedge(ret,xc/2,yc/2) = !vedge(ret,xc/2,yc/2);
2171 }
2172 }
3870c4d8 2173
934797c7 2174 if (!memcmp(ret->hedge, from->hedge, from->w*from->h) &&
2175 !memcmp(ret->vedge, from->vedge, from->w*from->h)) {
2176 free_game(ret);
2177 ret = NULL;
2178 }
ef29354c 2179
2180 /*
2181 * We've made a real change to the grid. Check to see
2182 * if the game has been completed.
2183 */
d4e7900f 2184 if (ret && !ret->completed) {
ef29354c 2185 int x, y, ok;
2186 unsigned char *correct = get_correct(ret);
2187
2188 ok = TRUE;
2189 for (x = 0; x < ret->w; x++)
2190 for (y = 0; y < ret->h; y++)
2191 if (!index(ret, correct, x, y))
2192 ok = FALSE;
2193
2194 sfree(correct);
2195
2196 if (ok)
2197 ret->completed = TRUE;
2198 }
934797c7 2199 }
2200
2201 ui->drag_start_x = -1;
2202 ui->drag_start_y = -1;
2203 ui->drag_end_x = -1;
2204 ui->drag_end_y = -1;
2205 ui->dragged = FALSE;
2206 active = TRUE;
3870c4d8 2207 }
2208
934797c7 2209 if (ret)
2210 return ret; /* a move has been made */
2211 else if (active)
08dd70c3 2212 return from; /* UI activity has occurred */
934797c7 2213 else
2214 return NULL;
3870c4d8 2215}
2216
2217/* ----------------------------------------------------------------------
2218 * Drawing routines.
2219 */
2220
ec9a0f09 2221#define CORRECT 65536
08dd70c3 2222
2223#define COLOUR(k) ( (k)==1 ? COL_LINE : COL_DRAG )
2224#define MAX(x,y) ( (x)>(y) ? (x) : (y) )
2225#define MAX4(x,y,z,w) ( MAX(MAX(x,y),MAX(z,w)) )
3870c4d8 2226
2227struct game_drawstate {
2228 int started;
2229 int w, h;
ec9a0f09 2230 unsigned int *visible;
3870c4d8 2231};
2232
be8d5aa1 2233static void game_size(game_params *params, int *x, int *y)
3870c4d8 2234{
2235 *x = params->w * TILE_SIZE + 2*BORDER + 1;
2236 *y = params->h * TILE_SIZE + 2*BORDER + 1;
2237}
2238
be8d5aa1 2239static float *game_colours(frontend *fe, game_state *state, int *ncolours)
3870c4d8 2240{
2241 float *ret = snewn(3 * NCOLOURS, float);
2242
2243 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2244
2245 ret[COL_GRID * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2246 ret[COL_GRID * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2247 ret[COL_GRID * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2248
08dd70c3 2249 ret[COL_DRAG * 3 + 0] = 1.0F;
2250 ret[COL_DRAG * 3 + 1] = 0.0F;
2251 ret[COL_DRAG * 3 + 2] = 0.0F;
2252
3870c4d8 2253 ret[COL_CORRECT * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2254 ret[COL_CORRECT * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2255 ret[COL_CORRECT * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2256
2257 ret[COL_LINE * 3 + 0] = 0.0F;
2258 ret[COL_LINE * 3 + 1] = 0.0F;
2259 ret[COL_LINE * 3 + 2] = 0.0F;
2260
2261 ret[COL_TEXT * 3 + 0] = 0.0F;
2262 ret[COL_TEXT * 3 + 1] = 0.0F;
2263 ret[COL_TEXT * 3 + 2] = 0.0F;
2264
2265 *ncolours = NCOLOURS;
2266 return ret;
2267}
2268
be8d5aa1 2269static game_drawstate *game_new_drawstate(game_state *state)
3870c4d8 2270{
2271 struct game_drawstate *ds = snew(struct game_drawstate);
08dd70c3 2272 int i;
3870c4d8 2273
2274 ds->started = FALSE;
2275 ds->w = state->w;
2276 ds->h = state->h;
ec9a0f09 2277 ds->visible = snewn(ds->w * ds->h, unsigned int);
08dd70c3 2278 for (i = 0; i < ds->w * ds->h; i++)
2279 ds->visible[i] = 0xFFFF;
3870c4d8 2280
2281 return ds;
2282}
2283
be8d5aa1 2284static void game_free_drawstate(game_drawstate *ds)
3870c4d8 2285{
2286 sfree(ds->visible);
2287 sfree(ds);
2288}
2289
be8d5aa1 2290static void draw_tile(frontend *fe, game_state *state, int x, int y,
ec9a0f09 2291 unsigned char *hedge, unsigned char *vedge,
2292 unsigned char *corners, int correct)
3870c4d8 2293{
2294 int cx = COORD(x), cy = COORD(y);
2295 char str[80];
2296
2297 draw_rect(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1, COL_GRID);
2298 draw_rect(fe, cx+1, cy+1, TILE_SIZE-1, TILE_SIZE-1,
2299 correct ? COL_CORRECT : COL_BACKGROUND);
2300
2301 if (grid(state,x,y)) {
2302 sprintf(str, "%d", grid(state,x,y));
2303 draw_text(fe, cx+TILE_SIZE/2, cy+TILE_SIZE/2, FONT_VARIABLE,
105a00d0 2304 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_TEXT, str);
3870c4d8 2305 }
2306
2307 /*
2308 * Draw edges.
2309 */
08dd70c3 2310 if (!HRANGE(state,x,y) || index(state,hedge,x,y))
2311 draw_rect(fe, cx, cy, TILE_SIZE+1, 2,
2312 HRANGE(state,x,y) ? COLOUR(index(state,hedge,x,y)) :
2313 COL_LINE);
2314 if (!HRANGE(state,x,y+1) || index(state,hedge,x,y+1))
2315 draw_rect(fe, cx, cy+TILE_SIZE-1, TILE_SIZE+1, 2,
2316 HRANGE(state,x,y+1) ? COLOUR(index(state,hedge,x,y+1)) :
2317 COL_LINE);
2318 if (!VRANGE(state,x,y) || index(state,vedge,x,y))
2319 draw_rect(fe, cx, cy, 2, TILE_SIZE+1,
2320 VRANGE(state,x,y) ? COLOUR(index(state,vedge,x,y)) :
2321 COL_LINE);
2322 if (!VRANGE(state,x+1,y) || index(state,vedge,x+1,y))
2323 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, TILE_SIZE+1,
2324 VRANGE(state,x+1,y) ? COLOUR(index(state,vedge,x+1,y)) :
2325 COL_LINE);
3870c4d8 2326
2327 /*
2328 * Draw corners.
2329 */
ec9a0f09 2330 if (index(state,corners,x,y))
08dd70c3 2331 draw_rect(fe, cx, cy, 2, 2,
ec9a0f09 2332 COLOUR(index(state,corners,x,y)));
2333 if (x+1 < state->w && index(state,corners,x+1,y))
08dd70c3 2334 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, 2,
ec9a0f09 2335 COLOUR(index(state,corners,x+1,y)));
2336 if (y+1 < state->h && index(state,corners,x,y+1))
08dd70c3 2337 draw_rect(fe, cx, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2338 COLOUR(index(state,corners,x,y+1)));
2339 if (x+1 < state->w && y+1 < state->h && index(state,corners,x+1,y+1))
08dd70c3 2340 draw_rect(fe, cx+TILE_SIZE-1, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2341 COLOUR(index(state,corners,x+1,y+1)));
3870c4d8 2342
2343 draw_update(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1);
2344}
2345
be8d5aa1 2346static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
c822de4a 2347 game_state *state, int dir, game_ui *ui,
74a4e547 2348 float animtime, float flashtime)
3870c4d8 2349{
2350 int x, y;
2351 unsigned char *correct;
ec9a0f09 2352 unsigned char *hedge, *vedge, *corners;
3870c4d8 2353
2354 correct = get_correct(state);
2355
08dd70c3 2356 if (ui->dragged) {
2357 hedge = snewn(state->w*state->h, unsigned char);
2358 vedge = snewn(state->w*state->h, unsigned char);
2359 memcpy(hedge, state->hedge, state->w*state->h);
2360 memcpy(vedge, state->vedge, state->w*state->h);
2361 ui_draw_rect(state, ui, hedge, vedge, 2);
2362 } else {
2363 hedge = state->hedge;
2364 vedge = state->vedge;
2365 }
2366
ec9a0f09 2367 corners = snewn(state->w * state->h, unsigned char);
2368 memset(corners, 0, state->w * state->h);
2369 for (x = 0; x < state->w; x++)
2370 for (y = 0; y < state->h; y++) {
2371 if (x > 0) {
2372 int e = index(state, vedge, x, y);
2373 if (index(state,corners,x,y) < e)
2374 index(state,corners,x,y) = e;
2375 if (y+1 < state->h &&
2376 index(state,corners,x,y+1) < e)
2377 index(state,corners,x,y+1) = e;
2378 }
2379 if (y > 0) {
2380 int e = index(state, hedge, x, y);
2381 if (index(state,corners,x,y) < e)
2382 index(state,corners,x,y) = e;
2383 if (x+1 < state->w &&
2384 index(state,corners,x+1,y) < e)
2385 index(state,corners,x+1,y) = e;
2386 }
2387 }
2388
3870c4d8 2389 if (!ds->started) {
105a00d0 2390 draw_rect(fe, 0, 0,
2391 state->w * TILE_SIZE + 2*BORDER + 1,
2392 state->h * TILE_SIZE + 2*BORDER + 1, COL_BACKGROUND);
3870c4d8 2393 draw_rect(fe, COORD(0)-1, COORD(0)-1,
2394 ds->w*TILE_SIZE+3, ds->h*TILE_SIZE+3, COL_LINE);
2395 ds->started = TRUE;
863c3945 2396 draw_update(fe, 0, 0,
2397 state->w * TILE_SIZE + 2*BORDER + 1,
2398 state->h * TILE_SIZE + 2*BORDER + 1);
3870c4d8 2399 }
2400
2401 for (x = 0; x < state->w; x++)
2402 for (y = 0; y < state->h; y++) {
ec9a0f09 2403 unsigned int c = 0;
08dd70c3 2404
2405 if (HRANGE(state,x,y))
2406 c |= index(state,hedge,x,y);
eddb22e8 2407 if (HRANGE(state,x,y+1))
2408 c |= index(state,hedge,x,y+1) << 2;
08dd70c3 2409 if (VRANGE(state,x,y))
2410 c |= index(state,vedge,x,y) << 4;
eddb22e8 2411 if (VRANGE(state,x+1,y))
2412 c |= index(state,vedge,x+1,y) << 6;
ec9a0f09 2413 c |= index(state,corners,x,y) << 8;
2414 if (x+1 < state->w)
2415 c |= index(state,corners,x+1,y) << 10;
2416 if (y+1 < state->h)
2417 c |= index(state,corners,x,y+1) << 12;
2418 if (x+1 < state->w && y+1 < state->h)
2419 c |= index(state,corners,x+1,y+1) << 14;
ef29354c 2420 if (index(state, correct, x, y) && !flashtime)
3870c4d8 2421 c |= CORRECT;
2422
2423 if (index(ds,ds->visible,x,y) != c) {
ec9a0f09 2424 draw_tile(fe, state, x, y, hedge, vedge, corners, c & CORRECT);
2425 index(ds,ds->visible,x,y) = c;
3870c4d8 2426 }
2427 }
2428
08dd70c3 2429 if (hedge != state->hedge) {
2430 sfree(hedge);
2431 sfree(vedge);
2432 }
2433
11c44cf5 2434 sfree(corners);
3870c4d8 2435 sfree(correct);
2436}
2437
be8d5aa1 2438static float game_anim_length(game_state *oldstate,
2439 game_state *newstate, int dir)
3870c4d8 2440{
2441 return 0.0F;
2442}
2443
be8d5aa1 2444static float game_flash_length(game_state *oldstate,
2445 game_state *newstate, int dir)
3870c4d8 2446{
2ac6d24e 2447 if (!oldstate->completed && newstate->completed &&
2448 !oldstate->cheated && !newstate->cheated)
ef29354c 2449 return FLASH_TIME;
3870c4d8 2450 return 0.0F;
2451}
2452
be8d5aa1 2453static int game_wants_statusbar(void)
3870c4d8 2454{
2455 return FALSE;
2456}
be8d5aa1 2457
2458#ifdef COMBINED
2459#define thegame rect
2460#endif
2461
2462const struct game thegame = {
1d228b10 2463 "Rectangles", "games.rectangles",
be8d5aa1 2464 default_params,
2465 game_fetch_preset,
2466 decode_params,
2467 encode_params,
2468 free_params,
2469 dup_params,
1d228b10 2470 TRUE, game_configure, custom_params,
be8d5aa1 2471 validate_params,
1185e3c5 2472 new_game_desc,
6f2d8d7c 2473 game_free_aux_info,
1185e3c5 2474 validate_desc,
be8d5aa1 2475 new_game,
2476 dup_game,
2477 free_game,
2ac6d24e 2478 TRUE, solve_game,
6ad5ed74 2479 TRUE, game_text_format,
be8d5aa1 2480 new_ui,
2481 free_ui,
2482 make_move,
2483 game_size,
2484 game_colours,
2485 game_new_drawstate,
2486 game_free_drawstate,
2487 game_redraw,
2488 game_anim_length,
2489 game_flash_length,
2490 game_wants_statusbar,
2491};