Solution uniqueness for Net. Can be disabled on request (but is
[sgt/puzzles] / rect.c
CommitLineData
3870c4d8 1/*
2 * rect.c: Puzzle from nikoli.co.jp. You have a square grid with
3 * numbers in some squares; you must divide the square grid up into
4 * variously sized rectangles, such that every rectangle contains
5 * exactly one numbered square and the area of each rectangle is
6 * equal to the number contained in it.
7 */
8
9/*
10 * TODO:
11 *
12 * - Improve on singleton removal by making an aesthetic choice
13 * about which of the options to take.
14 *
15 * - When doing the 3x3 trick in singleton removal, limit the size
16 * of the generated rectangles in accordance with the max
17 * rectangle size.
18 *
3870c4d8 19 * - If we start by sorting the rectlist in descending order
20 * of area, we might be able to bias our random number
21 * selection to produce a few large rectangles more often
22 * than oodles of small ones? Unsure, but might be worth a
23 * try.
24 */
25
26#include <stdio.h>
27#include <stdlib.h>
28#include <string.h>
29#include <assert.h>
b0e26073 30#include <ctype.h>
3870c4d8 31#include <math.h>
32
33#include "puzzles.h"
34
3870c4d8 35enum {
36 COL_BACKGROUND,
37 COL_CORRECT,
38 COL_LINE,
39 COL_TEXT,
40 COL_GRID,
08dd70c3 41 COL_DRAG,
3870c4d8 42 NCOLOURS
43};
44
45struct game_params {
46 int w, h;
aea3ed9a 47 float expandfactor;
3870c4d8 48};
49
50#define INDEX(state, x, y) (((y) * (state)->w) + (x))
51#define index(state, a, x, y) ((a) [ INDEX(state,x,y) ])
52#define grid(state,x,y) index(state, (state)->grid, x, y)
53#define vedge(state,x,y) index(state, (state)->vedge, x, y)
54#define hedge(state,x,y) index(state, (state)->hedge, x, y)
55
56#define CRANGE(state,x,y,dx,dy) ( (x) >= dx && (x) < (state)->w && \
57 (y) >= dy && (y) < (state)->h )
58#define RANGE(state,x,y) CRANGE(state,x,y,0,0)
59#define HRANGE(state,x,y) CRANGE(state,x,y,0,1)
60#define VRANGE(state,x,y) CRANGE(state,x,y,1,0)
61
62#define TILE_SIZE 24
63#define BORDER 18
64
d4e7900f 65#define CORNER_TOLERANCE 0.15F
66#define CENTRE_TOLERANCE 0.15F
67
ef29354c 68#define FLASH_TIME 0.13F
69
3870c4d8 70#define COORD(x) ( (x) * TILE_SIZE + BORDER )
71#define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
72
73struct game_state {
74 int w, h;
75 int *grid; /* contains the numbers */
76 unsigned char *vedge; /* (w+1) x h */
77 unsigned char *hedge; /* w x (h+1) */
2ac6d24e 78 int completed, cheated;
3870c4d8 79};
80
be8d5aa1 81static game_params *default_params(void)
3870c4d8 82{
83 game_params *ret = snew(game_params);
84
85 ret->w = ret->h = 7;
aea3ed9a 86 ret->expandfactor = 0.0F;
3870c4d8 87
88 return ret;
89}
90
be8d5aa1 91static int game_fetch_preset(int i, char **name, game_params **params)
3870c4d8 92{
93 game_params *ret;
94 int w, h;
95 char buf[80];
96
97 switch (i) {
98 case 0: w = 7, h = 7; break;
99 case 1: w = 11, h = 11; break;
100 case 2: w = 15, h = 15; break;
101 case 3: w = 19, h = 19; break;
102 default: return FALSE;
103 }
104
105 sprintf(buf, "%dx%d", w, h);
106 *name = dupstr(buf);
107 *params = ret = snew(game_params);
108 ret->w = w;
109 ret->h = h;
aea3ed9a 110 ret->expandfactor = 0.0F;
3870c4d8 111 return TRUE;
112}
113
be8d5aa1 114static void free_params(game_params *params)
3870c4d8 115{
116 sfree(params);
117}
118
be8d5aa1 119static game_params *dup_params(game_params *params)
3870c4d8 120{
121 game_params *ret = snew(game_params);
122 *ret = *params; /* structure copy */
123 return ret;
124}
125
1185e3c5 126static void decode_params(game_params *ret, char const *string)
b0e26073 127{
b0e26073 128 ret->w = ret->h = atoi(string);
aea3ed9a 129 while (*string && isdigit((unsigned char)*string)) string++;
b0e26073 130 if (*string == 'x') {
131 string++;
132 ret->h = atoi(string);
aea3ed9a 133 while (*string && isdigit((unsigned char)*string)) string++;
134 }
135 if (*string == 'e') {
136 string++;
137 ret->expandfactor = atof(string);
b0e26073 138 }
b0e26073 139}
140
1185e3c5 141static char *encode_params(game_params *params, int full)
b0e26073 142{
143 char data[256];
144
145 sprintf(data, "%dx%d", params->w, params->h);
5472ceb6 146 if (full && params->expandfactor)
1185e3c5 147 sprintf(data + strlen(data), "e%g", params->expandfactor);
b0e26073 148
149 return dupstr(data);
150}
151
be8d5aa1 152static config_item *game_configure(game_params *params)
3870c4d8 153{
154 config_item *ret;
155 char buf[80];
156
157 ret = snewn(5, config_item);
158
159 ret[0].name = "Width";
160 ret[0].type = C_STRING;
161 sprintf(buf, "%d", params->w);
162 ret[0].sval = dupstr(buf);
163 ret[0].ival = 0;
164
165 ret[1].name = "Height";
166 ret[1].type = C_STRING;
167 sprintf(buf, "%d", params->h);
168 ret[1].sval = dupstr(buf);
169 ret[1].ival = 0;
170
aea3ed9a 171 ret[2].name = "Expansion factor";
172 ret[2].type = C_STRING;
173 sprintf(buf, "%g", params->expandfactor);
174 ret[2].sval = dupstr(buf);
3870c4d8 175 ret[2].ival = 0;
176
aea3ed9a 177 ret[3].name = NULL;
178 ret[3].type = C_END;
179 ret[3].sval = NULL;
180 ret[3].ival = 0;
181
3870c4d8 182 return ret;
183}
184
be8d5aa1 185static game_params *custom_params(config_item *cfg)
3870c4d8 186{
187 game_params *ret = snew(game_params);
188
189 ret->w = atoi(cfg[0].sval);
190 ret->h = atoi(cfg[1].sval);
aea3ed9a 191 ret->expandfactor = atof(cfg[2].sval);
3870c4d8 192
193 return ret;
194}
195
be8d5aa1 196static char *validate_params(game_params *params)
3870c4d8 197{
198 if (params->w <= 0 && params->h <= 0)
199 return "Width and height must both be greater than zero";
d4e7900f 200 if (params->w < 2 && params->h < 2)
201 return "Grid area must be greater than one";
aea3ed9a 202 if (params->expandfactor < 0.0F)
203 return "Expansion factor may not be negative";
3870c4d8 204 return NULL;
205}
206
26801d29 207struct point {
208 int x, y;
209};
210
3870c4d8 211struct rect {
212 int x, y;
213 int w, h;
214};
215
216struct rectlist {
217 struct rect *rects;
218 int n;
219};
220
26801d29 221struct numberdata {
222 int area;
223 int npoints;
224 struct point *points;
225};
226
227/* ----------------------------------------------------------------------
228 * Solver for Rectangles games.
229 *
230 * This solver is souped up beyond the needs of actually _solving_
231 * a puzzle. It is also designed to cope with uncertainty about
232 * where the numbers have been placed. This is because I run it on
233 * my generated grids _before_ placing the numbers, and have it
234 * tell me where I need to place the numbers to ensure a unique
235 * solution.
236 */
237
238static void remove_rect_placement(int w, int h,
239 struct rectlist *rectpositions,
240 int *overlaps,
241 int rectnum, int placement)
242{
243 int x, y, xx, yy;
244
245#ifdef SOLVER_DIAGNOSTICS
246 printf("ruling out rect %d placement at %d,%d w=%d h=%d\n", rectnum,
247 rectpositions[rectnum].rects[placement].x,
248 rectpositions[rectnum].rects[placement].y,
249 rectpositions[rectnum].rects[placement].w,
250 rectpositions[rectnum].rects[placement].h);
251#endif
252
253 /*
254 * Decrement each entry in the overlaps array to reflect the
255 * removal of this rectangle placement.
256 */
257 for (yy = 0; yy < rectpositions[rectnum].rects[placement].h; yy++) {
258 y = yy + rectpositions[rectnum].rects[placement].y;
259 for (xx = 0; xx < rectpositions[rectnum].rects[placement].w; xx++) {
260 x = xx + rectpositions[rectnum].rects[placement].x;
261
262 assert(overlaps[(rectnum * h + y) * w + x] != 0);
263
264 if (overlaps[(rectnum * h + y) * w + x] > 0)
265 overlaps[(rectnum * h + y) * w + x]--;
266 }
267 }
268
269 /*
270 * Remove the placement from the list of positions for that
271 * rectangle, by interchanging it with the one on the end.
272 */
273 if (placement < rectpositions[rectnum].n - 1) {
274 struct rect t;
275
276 t = rectpositions[rectnum].rects[rectpositions[rectnum].n - 1];
277 rectpositions[rectnum].rects[rectpositions[rectnum].n - 1] =
278 rectpositions[rectnum].rects[placement];
279 rectpositions[rectnum].rects[placement] = t;
280 }
281 rectpositions[rectnum].n--;
282}
283
284static void remove_number_placement(int w, int h, struct numberdata *number,
285 int index, int *rectbyplace)
286{
287 /*
288 * Remove the entry from the rectbyplace array.
289 */
290 rectbyplace[number->points[index].y * w + number->points[index].x] = -1;
291
292 /*
293 * Remove the placement from the list of candidates for that
294 * number, by interchanging it with the one on the end.
295 */
296 if (index < number->npoints - 1) {
297 struct point t;
298
299 t = number->points[number->npoints - 1];
300 number->points[number->npoints - 1] = number->points[index];
301 number->points[index] = t;
302 }
303 number->npoints--;
304}
305
306static int rect_solver(int w, int h, int nrects, struct numberdata *numbers,
307 random_state *rs)
308{
309 struct rectlist *rectpositions;
310 int *overlaps, *rectbyplace, *workspace;
311 int i, ret;
312
313 /*
314 * Start by setting up a list of candidate positions for each
315 * rectangle.
316 */
317 rectpositions = snewn(nrects, struct rectlist);
318 for (i = 0; i < nrects; i++) {
319 int rw, rh, area = numbers[i].area;
320 int j, minx, miny, maxx, maxy;
321 struct rect *rlist;
322 int rlistn, rlistsize;
323
324 /*
325 * For each rectangle, begin by finding the bounding
326 * rectangle of its candidate number placements.
327 */
328 maxx = maxy = -1;
329 minx = w;
330 miny = h;
331 for (j = 0; j < numbers[i].npoints; j++) {
332 if (minx > numbers[i].points[j].x) minx = numbers[i].points[j].x;
333 if (miny > numbers[i].points[j].y) miny = numbers[i].points[j].y;
334 if (maxx < numbers[i].points[j].x) maxx = numbers[i].points[j].x;
335 if (maxy < numbers[i].points[j].y) maxy = numbers[i].points[j].y;
336 }
337
338 /*
339 * Now loop over all possible rectangle placements
340 * overlapping a point within that bounding rectangle;
341 * ensure each one actually contains a candidate number
342 * placement, and add it to the list.
343 */
344 rlist = NULL;
345 rlistn = rlistsize = 0;
346
347 for (rw = 1; rw <= area && rw <= w; rw++) {
348 int x, y;
349
350 if (area % rw)
351 continue;
352 rh = area / rw;
353 if (rh > h)
354 continue;
355
356 for (y = miny - rh + 1; y <= maxy; y++) {
357 if (y < 0 || y+rh > h)
358 continue;
359
360 for (x = minx - rw + 1; x <= maxx; x++) {
361 if (x < 0 || x+rw > w)
362 continue;
363
364 /*
365 * See if we can find a candidate number
366 * placement within this rectangle.
367 */
368 for (j = 0; j < numbers[i].npoints; j++)
369 if (numbers[i].points[j].x >= x &&
370 numbers[i].points[j].x < x+rw &&
371 numbers[i].points[j].y >= y &&
372 numbers[i].points[j].y < y+rh)
373 break;
374
375 if (j < numbers[i].npoints) {
376 /*
377 * Add this to the list of candidate
378 * placements for this rectangle.
379 */
380 if (rlistn >= rlistsize) {
381 rlistsize = rlistn + 32;
382 rlist = sresize(rlist, rlistsize, struct rect);
383 }
384 rlist[rlistn].x = x;
385 rlist[rlistn].y = y;
386 rlist[rlistn].w = rw;
387 rlist[rlistn].h = rh;
388#ifdef SOLVER_DIAGNOSTICS
389 printf("rect %d [area %d]: candidate position at"
390 " %d,%d w=%d h=%d\n",
391 i, area, x, y, rw, rh);
392#endif
393 rlistn++;
394 }
395 }
396 }
397 }
398
399 rectpositions[i].rects = rlist;
400 rectpositions[i].n = rlistn;
401 }
402
403 /*
404 * Next, construct a multidimensional array tracking how many
405 * candidate positions for each rectangle overlap each square.
406 *
407 * Indexing of this array is by the formula
408 *
409 * overlaps[(rectindex * h + y) * w + x]
410 */
411 overlaps = snewn(nrects * w * h, int);
412 memset(overlaps, 0, nrects * w * h * sizeof(int));
413 for (i = 0; i < nrects; i++) {
414 int j;
415
416 for (j = 0; j < rectpositions[i].n; j++) {
417 int xx, yy;
418
419 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++)
420 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++)
421 overlaps[(i * h + yy+rectpositions[i].rects[j].y) * w +
422 xx+rectpositions[i].rects[j].x]++;
423 }
424 }
425
426 /*
427 * Also we want an array covering the grid once, to make it
428 * easy to figure out which squares are candidate number
429 * placements for which rectangles. (The existence of this
430 * single array assumes that no square starts off as a
431 * candidate number placement for more than one rectangle. This
432 * assumption is justified, because this solver is _either_
433 * used to solve real problems - in which case there is a
434 * single placement for every number - _or_ used to decide on
435 * number placements for a new puzzle, in which case each
436 * number's placements are confined to the intended position of
437 * the rectangle containing that number.)
438 */
439 rectbyplace = snewn(w * h, int);
440 for (i = 0; i < w*h; i++)
441 rectbyplace[i] = -1;
442
443 for (i = 0; i < nrects; i++) {
444 int j;
445
446 for (j = 0; j < numbers[i].npoints; j++) {
447 int x = numbers[i].points[j].x;
448 int y = numbers[i].points[j].y;
449
450 assert(rectbyplace[y * w + x] == -1);
451 rectbyplace[y * w + x] = i;
452 }
453 }
454
455 workspace = snewn(nrects, int);
456
457 /*
458 * Now run the actual deduction loop.
459 */
460 while (1) {
461 int done_something = FALSE;
462
463#ifdef SOLVER_DIAGNOSTICS
464 printf("starting deduction loop\n");
465
466 for (i = 0; i < nrects; i++) {
467 printf("rect %d overlaps:\n", i);
468 {
469 int x, y;
470 for (y = 0; y < h; y++) {
471 for (x = 0; x < w; x++) {
472 printf("%3d", overlaps[(i * h + y) * w + x]);
473 }
474 printf("\n");
475 }
476 }
477 }
478 printf("rectbyplace:\n");
479 {
480 int x, y;
481 for (y = 0; y < h; y++) {
482 for (x = 0; x < w; x++) {
483 printf("%3d", rectbyplace[y * w + x]);
484 }
485 printf("\n");
486 }
487 }
488#endif
489
490 /*
491 * Housekeeping. Look for rectangles whose number has only
492 * one candidate position left, and mark that square as
493 * known if it isn't already.
494 */
495 for (i = 0; i < nrects; i++) {
496 if (numbers[i].npoints == 1) {
497 int x = numbers[i].points[0].x;
498 int y = numbers[i].points[0].y;
499 if (overlaps[(i * h + y) * w + x] >= -1) {
500 int j;
501
502 assert(overlaps[(i * h + y) * w + x] > 0);
503#ifdef SOLVER_DIAGNOSTICS
504 printf("marking %d,%d as known for rect %d"
505 " (sole remaining number position)\n", x, y, i);
506#endif
507
508 for (j = 0; j < nrects; j++)
509 overlaps[(j * h + y) * w + x] = -1;
510
511 overlaps[(i * h + y) * w + x] = -2;
512 }
513 }
514 }
515
516 /*
517 * Now look at the intersection of all possible placements
518 * for each rectangle, and mark all squares in that
519 * intersection as known for that rectangle if they aren't
520 * already.
521 */
522 for (i = 0; i < nrects; i++) {
523 int minx, miny, maxx, maxy, xx, yy, j;
524
525 minx = miny = 0;
526 maxx = w;
527 maxy = h;
528
529 for (j = 0; j < rectpositions[i].n; j++) {
530 int x = rectpositions[i].rects[j].x;
531 int y = rectpositions[i].rects[j].y;
532 int w = rectpositions[i].rects[j].w;
533 int h = rectpositions[i].rects[j].h;
534
535 if (minx < x) minx = x;
536 if (miny < y) miny = y;
537 if (maxx > x+w) maxx = x+w;
538 if (maxy > y+h) maxy = y+h;
539 }
540
541 for (yy = miny; yy < maxy; yy++)
542 for (xx = minx; xx < maxx; xx++)
543 if (overlaps[(i * h + yy) * w + xx] >= -1) {
544 assert(overlaps[(i * h + yy) * w + xx] > 0);
545#ifdef SOLVER_DIAGNOSTICS
546 printf("marking %d,%d as known for rect %d"
547 " (intersection of all placements)\n",
548 xx, yy, i);
549#endif
550
551 for (j = 0; j < nrects; j++)
552 overlaps[(j * h + yy) * w + xx] = -1;
553
554 overlaps[(i * h + yy) * w + xx] = -2;
555 }
556 }
557
558 /*
559 * Rectangle-focused deduction. Look at each rectangle in
560 * turn and try to rule out some of its candidate
561 * placements.
562 */
563 for (i = 0; i < nrects; i++) {
564 int j;
565
566 for (j = 0; j < rectpositions[i].n; j++) {
567 int xx, yy, k;
568 int del = FALSE;
569
570 for (k = 0; k < nrects; k++)
571 workspace[k] = 0;
572
573 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
574 int y = yy + rectpositions[i].rects[j].y;
575 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
576 int x = xx + rectpositions[i].rects[j].x;
577
578 if (overlaps[(i * h + y) * w + x] == -1) {
579 /*
580 * This placement overlaps a square
581 * which is _known_ to be part of
582 * another rectangle. Therefore we must
583 * rule it out.
584 */
585#ifdef SOLVER_DIAGNOSTICS
586 printf("rect %d placement at %d,%d w=%d h=%d "
587 "contains %d,%d which is known-other\n", i,
588 rectpositions[i].rects[j].x,
589 rectpositions[i].rects[j].y,
590 rectpositions[i].rects[j].w,
591 rectpositions[i].rects[j].h,
592 x, y);
593#endif
594 del = TRUE;
595 }
596
597 if (rectbyplace[y * w + x] != -1) {
598 /*
599 * This placement overlaps one of the
600 * candidate number placements for some
601 * rectangle. Count it.
602 */
603 workspace[rectbyplace[y * w + x]]++;
604 }
605 }
606 }
607
608 if (!del) {
609 /*
610 * If we haven't ruled this placement out
611 * already, see if it overlaps _all_ of the
612 * candidate number placements for any
613 * rectangle. If so, we can rule it out.
614 */
615 for (k = 0; k < nrects; k++)
616 if (k != i && workspace[k] == numbers[k].npoints) {
617#ifdef SOLVER_DIAGNOSTICS
618 printf("rect %d placement at %d,%d w=%d h=%d "
619 "contains all number points for rect %d\n",
620 i,
621 rectpositions[i].rects[j].x,
622 rectpositions[i].rects[j].y,
623 rectpositions[i].rects[j].w,
624 rectpositions[i].rects[j].h,
625 k);
626#endif
627 del = TRUE;
628 break;
629 }
630
631 /*
632 * Failing that, see if it overlaps at least
633 * one of the candidate number placements for
634 * itself! (This might not be the case if one
635 * of those number placements has been removed
636 * recently.).
637 */
638 if (!del && workspace[i] == 0) {
639#ifdef SOLVER_DIAGNOSTICS
640 printf("rect %d placement at %d,%d w=%d h=%d "
641 "contains none of its own number points\n",
642 i,
643 rectpositions[i].rects[j].x,
644 rectpositions[i].rects[j].y,
645 rectpositions[i].rects[j].w,
646 rectpositions[i].rects[j].h);
647#endif
648 del = TRUE;
649 }
650 }
651
652 if (del) {
653 remove_rect_placement(w, h, rectpositions, overlaps, i, j);
654
655 j--; /* don't skip over next placement */
656
657 done_something = TRUE;
658 }
659 }
660 }
661
662 /*
663 * Square-focused deduction. Look at each square not marked
664 * as known, and see if there are any which can only be
665 * part of a single rectangle.
666 */
667 {
668 int x, y, n, index;
669 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
670 /* Known squares are marked as <0 everywhere, so we only need
671 * to check the overlaps entry for rect 0. */
672 if (overlaps[y * w + x] < 0)
673 continue; /* known already */
674
675 n = 0;
676 index = -1;
677 for (i = 0; i < nrects; i++)
678 if (overlaps[(i * h + y) * w + x] > 0)
679 n++, index = i;
680
681 if (n == 1) {
682 int j;
683
684 /*
685 * Now we can rule out all placements for
686 * rectangle `index' which _don't_ contain
687 * square x,y.
688 */
689#ifdef SOLVER_DIAGNOSTICS
690 printf("square %d,%d can only be in rectangle %d\n",
691 x, y, index);
692#endif
693 for (j = 0; j < rectpositions[index].n; j++) {
694 struct rect *r = &rectpositions[index].rects[j];
695 if (x >= r->x && x < r->x + r->w &&
696 y >= r->y && y < r->y + r->h)
697 continue; /* this one is OK */
698 remove_rect_placement(w, h, rectpositions, overlaps,
699 index, j);
700 j--; /* don't skip over next placement */
701 done_something = TRUE;
702 }
703 }
704 }
705 }
706
707 /*
708 * If we've managed to deduce anything by normal means,
709 * loop round again and see if there's more to be done.
710 * Only if normal deduction has completely failed us should
711 * we now move on to narrowing down the possible number
712 * placements.
713 */
714 if (done_something)
715 continue;
716
717 /*
718 * Now we have done everything we can with the current set
719 * of number placements. So we need to winnow the number
720 * placements so as to narrow down the possibilities. We do
721 * this by searching for a candidate placement (of _any_
722 * rectangle) which overlaps a candidate placement of the
723 * number for some other rectangle.
724 */
725 {
726 struct rpn {
727 int rect;
728 int placement;
729 int number;
730 } *rpns = NULL;
731 int nrpns = 0, rpnsize = 0;
732 int j;
733
734 for (i = 0; i < nrects; i++) {
735 for (j = 0; j < rectpositions[i].n; j++) {
736 int xx, yy;
737
738 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
739 int y = yy + rectpositions[i].rects[j].y;
740 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
741 int x = xx + rectpositions[i].rects[j].x;
742
743 if (rectbyplace[y * w + x] >= 0 &&
744 rectbyplace[y * w + x] != i) {
745 /*
746 * Add this to the list of
747 * winnowing possibilities.
748 */
749 if (nrpns >= rpnsize) {
750 rpnsize = rpnsize * 3 / 2 + 32;
751 rpns = sresize(rpns, rpnsize, struct rpn);
752 }
753 rpns[nrpns].rect = i;
754 rpns[nrpns].placement = j;
755 rpns[nrpns].number = rectbyplace[y * w + x];
756 nrpns++;
757 }
758 }
759 }
760
761 }
762 }
763
764#ifdef SOLVER_DIAGNOSTICS
765 printf("%d candidate rect placements we could eliminate\n", nrpns);
766#endif
767 if (nrpns > 0) {
768 /*
769 * Now choose one of these unwanted rectangle
770 * placements, and eliminate it.
771 */
772 int index = random_upto(rs, nrpns);
773 int k, m;
774 struct rpn rpn = rpns[index];
775 struct rect r;
776 sfree(rpns);
777
778 i = rpn.rect;
779 j = rpn.placement;
780 k = rpn.number;
781 r = rectpositions[i].rects[j];
782
783 /*
784 * We rule out placement j of rectangle i by means
785 * of removing all of rectangle k's candidate
786 * number placements which do _not_ overlap it.
787 * This will ensure that it is eliminated during
788 * the next pass of rectangle-focused deduction.
789 */
790#ifdef SOLVER_DIAGNOSTICS
791 printf("ensuring number for rect %d is within"
792 " rect %d's placement at %d,%d w=%d h=%d\n",
793 k, i, r.x, r.y, r.w, r.h);
794#endif
795
796 for (m = 0; m < numbers[k].npoints; m++) {
797 int x = numbers[k].points[m].x;
798 int y = numbers[k].points[m].y;
799
800 if (x < r.x || x >= r.x + r.w ||
801 y < r.y || y >= r.y + r.h) {
802#ifdef SOLVER_DIAGNOSTICS
803 printf("eliminating number for rect %d at %d,%d\n",
804 k, x, y);
805#endif
806 remove_number_placement(w, h, &numbers[k],
807 m, rectbyplace);
808 m--; /* don't skip the next one */
809 done_something = TRUE;
810 }
811 }
812 }
813 }
814
815 if (!done_something) {
816#ifdef SOLVER_DIAGNOSTICS
817 printf("terminating deduction loop\n");
818#endif
819 break;
820 }
821 }
822
823 ret = TRUE;
824 for (i = 0; i < nrects; i++) {
825#ifdef SOLVER_DIAGNOSTICS
826 printf("rect %d has %d possible placements\n",
827 i, rectpositions[i].n);
828#endif
829 assert(rectpositions[i].n > 0);
830 if (rectpositions[i].n > 1)
831 ret = FALSE;
832 }
833
834 /*
835 * Free up all allocated storage.
836 */
837 sfree(workspace);
838 sfree(rectbyplace);
839 sfree(overlaps);
840 for (i = 0; i < nrects; i++)
841 sfree(rectpositions[i].rects);
842 sfree(rectpositions);
843
844 return ret;
845}
846
847/* ----------------------------------------------------------------------
848 * Grid generation code.
849 */
850
3870c4d8 851static struct rectlist *get_rectlist(game_params *params, int *grid)
852{
853 int rw, rh;
854 int x, y;
855 int maxarea;
856 struct rect *rects = NULL;
857 int nrects = 0, rectsize = 0;
858
859 /*
d4e7900f 860 * Maximum rectangle area is 1/6 of total grid size, unless
861 * this means we can't place any rectangles at all in which
862 * case we set it to 2 at minimum.
3870c4d8 863 */
864 maxarea = params->w * params->h / 6;
d4e7900f 865 if (maxarea < 2)
866 maxarea = 2;
3870c4d8 867
868 for (rw = 1; rw <= params->w; rw++)
869 for (rh = 1; rh <= params->h; rh++) {
870 if (rw * rh > maxarea)
871 continue;
872 if (rw * rh == 1)
873 continue;
874 for (x = 0; x <= params->w - rw; x++)
875 for (y = 0; y <= params->h - rh; y++) {
3870c4d8 876 if (nrects >= rectsize) {
877 rectsize = nrects + 256;
878 rects = sresize(rects, rectsize, struct rect);
879 }
880
881 rects[nrects].x = x;
882 rects[nrects].y = y;
883 rects[nrects].w = rw;
884 rects[nrects].h = rh;
885 nrects++;
886 }
887 }
888
889 if (nrects > 0) {
890 struct rectlist *ret;
891 ret = snew(struct rectlist);
892 ret->rects = rects;
893 ret->n = nrects;
894 return ret;
895 } else {
896 assert(rects == NULL); /* hence no need to free */
897 return NULL;
898 }
899}
900
901static void free_rectlist(struct rectlist *list)
902{
903 sfree(list->rects);
904 sfree(list);
905}
906
907static void place_rect(game_params *params, int *grid, struct rect r)
908{
909 int idx = INDEX(params, r.x, r.y);
910 int x, y;
911
912 for (x = r.x; x < r.x+r.w; x++)
913 for (y = r.y; y < r.y+r.h; y++) {
914 index(params, grid, x, y) = idx;
915 }
916#ifdef GENERATION_DIAGNOSTICS
917 printf(" placing rectangle at (%d,%d) size %d x %d\n",
918 r.x, r.y, r.w, r.h);
919#endif
920}
921
922static struct rect find_rect(game_params *params, int *grid, int x, int y)
923{
924 int idx, w, h;
925 struct rect r;
926
927 /*
928 * Find the top left of the rectangle.
929 */
930 idx = index(params, grid, x, y);
931
932 if (idx < 0) {
933 r.x = x;
934 r.y = y;
935 r.w = r.h = 1;
936 return r; /* 1x1 singleton here */
937 }
938
939 y = idx / params->w;
940 x = idx % params->w;
941
942 /*
943 * Find the width and height of the rectangle.
944 */
945 for (w = 1;
946 (x+w < params->w && index(params,grid,x+w,y)==idx);
947 w++);
948 for (h = 1;
949 (y+h < params->h && index(params,grid,x,y+h)==idx);
950 h++);
951
952 r.x = x;
953 r.y = y;
954 r.w = w;
955 r.h = h;
956
957 return r;
958}
959
960#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 961static void display_grid(game_params *params, int *grid, int *numbers, int all)
3870c4d8 962{
963 unsigned char *egrid = snewn((params->w*2+3) * (params->h*2+3),
964 unsigned char);
3870c4d8 965 int x, y;
966 int r = (params->w*2+3);
967
aea3ed9a 968 memset(egrid, 0, (params->w*2+3) * (params->h*2+3));
969
3870c4d8 970 for (x = 0; x < params->w; x++)
971 for (y = 0; y < params->h; y++) {
972 int i = index(params, grid, x, y);
973 if (x == 0 || index(params, grid, x-1, y) != i)
974 egrid[(2*y+2) * r + (2*x+1)] = 1;
975 if (x == params->w-1 || index(params, grid, x+1, y) != i)
976 egrid[(2*y+2) * r + (2*x+3)] = 1;
977 if (y == 0 || index(params, grid, x, y-1) != i)
978 egrid[(2*y+1) * r + (2*x+2)] = 1;
979 if (y == params->h-1 || index(params, grid, x, y+1) != i)
980 egrid[(2*y+3) * r + (2*x+2)] = 1;
981 }
982
983 for (y = 1; y < 2*params->h+2; y++) {
984 for (x = 1; x < 2*params->w+2; x++) {
985 if (!((y|x)&1)) {
aea3ed9a 986 int k = numbers ? index(params, numbers, x/2-1, y/2-1) : 0;
987 if (k || (all && numbers)) printf("%2d", k); else printf(" ");
3870c4d8 988 } else if (!((y&x)&1)) {
989 int v = egrid[y*r+x];
990 if ((y&1) && v) v = '-';
991 if ((x&1) && v) v = '|';
992 if (!v) v = ' ';
993 putchar(v);
994 if (!(x&1)) putchar(v);
995 } else {
996 int c, d = 0;
997 if (egrid[y*r+(x+1)]) d |= 1;
998 if (egrid[(y-1)*r+x]) d |= 2;
999 if (egrid[y*r+(x-1)]) d |= 4;
1000 if (egrid[(y+1)*r+x]) d |= 8;
1001 c = " ??+?-++?+|+++++"[d];
1002 putchar(c);
1003 if (!(x&1)) putchar(c);
1004 }
1005 }
1006 putchar('\n');
1007 }
1008
1009 sfree(egrid);
1010}
1011#endif
1012
2ac6d24e 1013struct game_aux_info {
1014 int w, h;
1015 unsigned char *vedge; /* (w+1) x h */
1016 unsigned char *hedge; /* w x (h+1) */
1017};
1018
1185e3c5 1019static char *new_game_desc(game_params *params, random_state *rs,
6f2d8d7c 1020 game_aux_info **aux)
3870c4d8 1021{
26801d29 1022 int *grid, *numbers = NULL;
3870c4d8 1023 struct rectlist *list;
aea3ed9a 1024 int x, y, y2, y2last, yx, run, i;
1185e3c5 1025 char *desc, *p;
aea3ed9a 1026 game_params params2real, *params2 = &params2real;
3870c4d8 1027
26801d29 1028 while (1) {
1029 /*
1030 * Set up the smaller width and height which we will use to
1031 * generate the base grid.
1032 */
1033 params2->w = params->w / (1.0F + params->expandfactor);
1034 if (params2->w < 2 && params->w >= 2) params2->w = 2;
1035 params2->h = params->h / (1.0F + params->expandfactor);
1036 if (params2->h < 2 && params->h >= 2) params2->h = 2;
aea3ed9a 1037
26801d29 1038 grid = snewn(params2->w * params2->h, int);
3870c4d8 1039
26801d29 1040 for (y = 0; y < params2->h; y++)
1041 for (x = 0; x < params2->w; x++) {
1042 index(params2, grid, x, y) = -1;
1043 }
3870c4d8 1044
26801d29 1045 list = get_rectlist(params2, grid);
1046 assert(list != NULL);
3870c4d8 1047
1048 /*
26801d29 1049 * Place rectangles until we can't any more.
3870c4d8 1050 */
26801d29 1051 while (list->n > 0) {
1052 int i, m;
1053 struct rect r;
1054
1055 /*
1056 * Pick a random rectangle.
1057 */
1058 i = random_upto(rs, list->n);
1059 r = list->rects[i];
1060
1061 /*
1062 * Place it.
1063 */
1064 place_rect(params2, grid, r);
1065
1066 /*
1067 * Winnow the list by removing any rectangles which
1068 * overlap this one.
1069 */
1070 m = 0;
1071 for (i = 0; i < list->n; i++) {
1072 struct rect s = list->rects[i];
1073 if (s.x+s.w <= r.x || r.x+r.w <= s.x ||
1074 s.y+s.h <= r.y || r.y+r.h <= s.y)
1075 list->rects[m++] = s;
1076 }
1077 list->n = m;
1078 }
3870c4d8 1079
26801d29 1080 free_rectlist(list);
3870c4d8 1081
1082 /*
26801d29 1083 * Deal with singleton spaces remaining in the grid, one by
1084 * one.
1085 *
1086 * We do this by making a local change to the layout. There are
1087 * several possibilities:
1088 *
1089 * +-----+-----+ Here, we can remove the singleton by
1090 * | | | extending the 1x2 rectangle below it
1091 * +--+--+-----+ into a 1x3.
1092 * | | | |
1093 * | +--+ |
1094 * | | | |
1095 * | | | |
1096 * | | | |
1097 * +--+--+-----+
1098 *
1099 * +--+--+--+ Here, that trick doesn't work: there's no
1100 * | | | 1 x n rectangle with the singleton at one
1101 * | | | end. Instead, we extend a 1 x n rectangle
1102 * | | | _out_ from the singleton, shaving a layer
1103 * +--+--+ | off the end of another rectangle. So if we
1104 * | | | | extended up, we'd make our singleton part
1105 * | +--+--+ of a 1x3 and generate a 1x2 where the 2x2
1106 * | | | used to be; or we could extend right into
1107 * +--+-----+ a 2x1, turning the 1x3 into a 1x2.
1108 *
1109 * +-----+--+ Here, we can't even do _that_, since any
1110 * | | | direction we choose to extend the singleton
1111 * +--+--+ | will produce a new singleton as a result of
1112 * | | | | truncating one of the size-2 rectangles.
1113 * | +--+--+ Fortunately, this case can _only_ occur when
1114 * | | | a singleton is surrounded by four size-2s
1115 * +--+-----+ in this fashion; so instead we can simply
1116 * replace the whole section with a single 3x3.
3870c4d8 1117 */
26801d29 1118 for (x = 0; x < params2->w; x++) {
1119 for (y = 0; y < params2->h; y++) {
1120 if (index(params2, grid, x, y) < 0) {
1121 int dirs[4], ndirs;
3870c4d8 1122
1123#ifdef GENERATION_DIAGNOSTICS
26801d29 1124 display_grid(params2, grid, NULL, FALSE);
1125 printf("singleton at %d,%d\n", x, y);
3870c4d8 1126#endif
1127
26801d29 1128 /*
1129 * Check in which directions we can feasibly extend
1130 * the singleton. We can extend in a particular
1131 * direction iff either:
1132 *
1133 * - the rectangle on that side of the singleton
1134 * is not 2x1, and we are at one end of the edge
1135 * of it we are touching
1136 *
1137 * - it is 2x1 but we are on its short side.
1138 *
1139 * FIXME: we could plausibly choose between these
1140 * based on the sizes of the rectangles they would
1141 * create?
1142 */
1143 ndirs = 0;
1144 if (x < params2->w-1) {
1145 struct rect r = find_rect(params2, grid, x+1, y);
1146 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1147 dirs[ndirs++] = 1; /* right */
1148 }
1149 if (y > 0) {
1150 struct rect r = find_rect(params2, grid, x, y-1);
1151 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1152 dirs[ndirs++] = 2; /* up */
1153 }
1154 if (x > 0) {
1155 struct rect r = find_rect(params2, grid, x-1, y);
1156 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1157 dirs[ndirs++] = 4; /* left */
1158 }
1159 if (y < params2->h-1) {
1160 struct rect r = find_rect(params2, grid, x, y+1);
1161 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1162 dirs[ndirs++] = 8; /* down */
1163 }
3870c4d8 1164
26801d29 1165 if (ndirs > 0) {
1166 int which, dir;
1167 struct rect r1, r2;
3870c4d8 1168
26801d29 1169 which = random_upto(rs, ndirs);
1170 dir = dirs[which];
3870c4d8 1171
26801d29 1172 switch (dir) {
1173 case 1: /* right */
1174 assert(x < params2->w+1);
3870c4d8 1175#ifdef GENERATION_DIAGNOSTICS
26801d29 1176 printf("extending right\n");
3870c4d8 1177#endif
26801d29 1178 r1 = find_rect(params2, grid, x+1, y);
1179 r2.x = x;
1180 r2.y = y;
1181 r2.w = 1 + r1.w;
1182 r2.h = 1;
1183 if (r1.y == y)
1184 r1.y++;
1185 r1.h--;
1186 break;
1187 case 2: /* up */
1188 assert(y > 0);
3870c4d8 1189#ifdef GENERATION_DIAGNOSTICS
26801d29 1190 printf("extending up\n");
3870c4d8 1191#endif
26801d29 1192 r1 = find_rect(params2, grid, x, y-1);
1193 r2.x = x;
1194 r2.y = r1.y;
1195 r2.w = 1;
1196 r2.h = 1 + r1.h;
1197 if (r1.x == x)
1198 r1.x++;
1199 r1.w--;
1200 break;
1201 case 4: /* left */
1202 assert(x > 0);
3870c4d8 1203#ifdef GENERATION_DIAGNOSTICS
26801d29 1204 printf("extending left\n");
3870c4d8 1205#endif
26801d29 1206 r1 = find_rect(params2, grid, x-1, y);
1207 r2.x = r1.x;
1208 r2.y = y;
1209 r2.w = 1 + r1.w;
1210 r2.h = 1;
1211 if (r1.y == y)
1212 r1.y++;
1213 r1.h--;
1214 break;
1215 case 8: /* down */
1216 assert(y < params2->h+1);
3870c4d8 1217#ifdef GENERATION_DIAGNOSTICS
26801d29 1218 printf("extending down\n");
3870c4d8 1219#endif
26801d29 1220 r1 = find_rect(params2, grid, x, y+1);
1221 r2.x = x;
1222 r2.y = y;
1223 r2.w = 1;
1224 r2.h = 1 + r1.h;
1225 if (r1.x == x)
1226 r1.x++;
1227 r1.w--;
1228 break;
1229 }
1230 if (r1.h > 0 && r1.w > 0)
1231 place_rect(params2, grid, r1);
1232 place_rect(params2, grid, r2);
1233 } else {
3870c4d8 1234#ifndef NDEBUG
26801d29 1235 /*
1236 * Sanity-check that there really is a 3x3
1237 * rectangle surrounding this singleton and it
1238 * contains absolutely everything we could
1239 * possibly need.
1240 */
1241 {
1242 int xx, yy;
1243 assert(x > 0 && x < params2->w-1);
1244 assert(y > 0 && y < params2->h-1);
1245
1246 for (xx = x-1; xx <= x+1; xx++)
1247 for (yy = y-1; yy <= y+1; yy++) {
1248 struct rect r = find_rect(params2,grid,xx,yy);
1249 assert(r.x >= x-1);
1250 assert(r.y >= y-1);
1251 assert(r.x+r.w-1 <= x+1);
1252 assert(r.y+r.h-1 <= y+1);
1253 }
1254 }
3870c4d8 1255#endif
26801d29 1256
3870c4d8 1257#ifdef GENERATION_DIAGNOSTICS
26801d29 1258 printf("need the 3x3 trick\n");
3870c4d8 1259#endif
1260
26801d29 1261 /*
1262 * FIXME: If the maximum rectangle area for
1263 * this grid is less than 9, we ought to
1264 * subdivide the 3x3 in some fashion. There are
1265 * five other possibilities:
1266 *
1267 * - a 6 and a 3
1268 * - a 4, a 3 and a 2
1269 * - three 3s
1270 * - a 3 and three 2s (two different arrangements).
1271 */
1272
1273 {
1274 struct rect r;
1275 r.x = x-1;
1276 r.y = y-1;
1277 r.w = r.h = 3;
1278 place_rect(params2, grid, r);
1279 }
3870c4d8 1280 }
1281 }
1282 }
1283 }
3870c4d8 1284
26801d29 1285 /*
1286 * We have now constructed a grid of the size specified in
1287 * params2. Now we extend it into a grid of the size specified
1288 * in params. We do this in two passes: we extend it vertically
1289 * until it's the right height, then we transpose it, then
1290 * extend it vertically again (getting it effectively the right
1291 * width), then finally transpose again.
1292 */
1293 for (i = 0; i < 2; i++) {
1294 int *grid2, *expand, *where;
1295 game_params params3real, *params3 = &params3real;
aea3ed9a 1296
1297#ifdef GENERATION_DIAGNOSTICS
26801d29 1298 printf("before expansion:\n");
1299 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1300#endif
1301
26801d29 1302 /*
1303 * Set up the new grid.
1304 */
1305 grid2 = snewn(params2->w * params->h, int);
1306 expand = snewn(params2->h-1, int);
1307 where = snewn(params2->w, int);
1308 params3->w = params2->w;
1309 params3->h = params->h;
1310
1311 /*
1312 * Decide which horizontal edges are going to get expanded,
1313 * and by how much.
1314 */
1315 for (y = 0; y < params2->h-1; y++)
1316 expand[y] = 0;
1317 for (y = params2->h; y < params->h; y++) {
1318 x = random_upto(rs, params2->h-1);
1319 expand[x]++;
1320 }
aea3ed9a 1321
1322#ifdef GENERATION_DIAGNOSTICS
26801d29 1323 printf("expand[] = {");
1324 for (y = 0; y < params2->h-1; y++)
1325 printf(" %d", expand[y]);
1326 printf(" }\n");
aea3ed9a 1327#endif
1328
26801d29 1329 /*
1330 * Perform the expansion. The way this works is that we
1331 * alternately:
1332 *
1333 * - copy a row from grid into grid2
1334 *
1335 * - invent some number of additional rows in grid2 where
1336 * there was previously only a horizontal line between
1337 * rows in grid, and make random decisions about where
1338 * among these to place each rectangle edge that ran
1339 * along this line.
1340 */
1341 for (y = y2 = y2last = 0; y < params2->h; y++) {
1342 /*
1343 * Copy a single line from row y of grid into row y2 of
1344 * grid2.
1345 */
1346 for (x = 0; x < params2->w; x++) {
1347 int val = index(params2, grid, x, y);
1348 if (val / params2->w == y && /* rect starts on this line */
1349 (y2 == 0 || /* we're at the very top, or... */
1350 index(params3, grid2, x, y2-1) / params3->w < y2last
1351 /* this rect isn't already started */))
1352 index(params3, grid2, x, y2) =
1353 INDEX(params3, val % params2->w, y2);
1354 else
1355 index(params3, grid2, x, y2) =
1356 index(params3, grid2, x, y2-1);
1357 }
1358
1359 /*
1360 * If that was the last line, terminate the loop early.
1361 */
1362 if (++y2 == params3->h)
1363 break;
1364
1365 y2last = y2;
1366
1367 /*
1368 * Invent some number of additional lines. First walk
1369 * along this line working out where to put all the
1370 * edges that coincide with it.
1371 */
1372 yx = -1;
1373 for (x = 0; x < params2->w; x++) {
1374 if (index(params2, grid, x, y) !=
1375 index(params2, grid, x, y+1)) {
1376 /*
1377 * This is a horizontal edge, so it needs
1378 * placing.
1379 */
1380 if (x == 0 ||
1381 (index(params2, grid, x-1, y) !=
1382 index(params2, grid, x, y) &&
1383 index(params2, grid, x-1, y+1) !=
1384 index(params2, grid, x, y+1))) {
1385 /*
1386 * Here we have the chance to make a new
1387 * decision.
1388 */
1389 yx = random_upto(rs, expand[y]+1);
1390 } else {
1391 /*
1392 * Here we just reuse the previous value of
1393 * yx.
1394 */
1395 }
1396 } else
1397 yx = -1;
1398 where[x] = yx;
1399 }
1400
1401 for (yx = 0; yx < expand[y]; yx++) {
1402 /*
1403 * Invent a single row. For each square in the row,
1404 * we copy the grid entry from the square above it,
1405 * unless we're starting the new rectangle here.
1406 */
1407 for (x = 0; x < params2->w; x++) {
1408 if (yx == where[x]) {
1409 int val = index(params2, grid, x, y+1);
1410 val %= params2->w;
1411 val = INDEX(params3, val, y2);
1412 index(params3, grid2, x, y2) = val;
1413 } else
1414 index(params3, grid2, x, y2) =
1415 index(params3, grid2, x, y2-1);
1416 }
1417
1418 y2++;
1419 }
1420 }
1421
1422 sfree(expand);
1423 sfree(where);
aea3ed9a 1424
1425#ifdef GENERATION_DIAGNOSTICS
26801d29 1426 printf("after expansion:\n");
1427 display_grid(params3, grid2, NULL, TRUE);
aea3ed9a 1428#endif
26801d29 1429 /*
1430 * Transpose.
1431 */
1432 params2->w = params3->h;
1433 params2->h = params3->w;
1434 sfree(grid);
1435 grid = snewn(params2->w * params2->h, int);
1436 for (x = 0; x < params2->w; x++)
1437 for (y = 0; y < params2->h; y++) {
1438 int idx1 = INDEX(params2, x, y);
1439 int idx2 = INDEX(params3, y, x);
1440 int tmp;
1441
1442 tmp = grid2[idx2];
1443 tmp = (tmp % params3->w) * params2->w + (tmp / params3->w);
1444 grid[idx1] = tmp;
1445 }
1446
1447 sfree(grid2);
1448
1449 {
1450 int tmp;
1451 tmp = params->w;
1452 params->w = params->h;
1453 params->h = tmp;
1454 }
aea3ed9a 1455
1456#ifdef GENERATION_DIAGNOSTICS
26801d29 1457 printf("after transposition:\n");
1458 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1459#endif
26801d29 1460 }
aea3ed9a 1461
26801d29 1462 /*
1463 * Run the solver to narrow down the possible number
1464 * placements.
1465 */
1466 {
1467 struct numberdata *nd;
1468 int nnumbers, i, ret;
1469
1470 /* Count the rectangles. */
1471 nnumbers = 0;
1472 for (y = 0; y < params->h; y++) {
1473 for (x = 0; x < params->w; x++) {
1474 int idx = INDEX(params, x, y);
1475 if (index(params, grid, x, y) == idx)
1476 nnumbers++;
1477 }
1478 }
2ac6d24e 1479
26801d29 1480 nd = snewn(nnumbers, struct numberdata);
1481
1482 /* Now set up each number's candidate position list. */
1483 i = 0;
1484 for (y = 0; y < params->h; y++) {
1485 for (x = 0; x < params->w; x++) {
1486 int idx = INDEX(params, x, y);
1487 if (index(params, grid, x, y) == idx) {
1488 struct rect r = find_rect(params, grid, x, y);
1489 int j, k, m;
1490
1491 nd[i].area = r.w * r.h;
1492 nd[i].npoints = nd[i].area;
1493 nd[i].points = snewn(nd[i].npoints, struct point);
1494 m = 0;
1495 for (j = 0; j < r.h; j++)
1496 for (k = 0; k < r.w; k++) {
1497 nd[i].points[m].x = k + r.x;
1498 nd[i].points[m].y = j + r.y;
1499 m++;
1500 }
1501 assert(m == nd[i].npoints);
aea3ed9a 1502
26801d29 1503 i++;
1504 }
1505 }
1506 }
aea3ed9a 1507
26801d29 1508 ret = rect_solver(params->w, params->h, nnumbers, nd, rs);
3870c4d8 1509
26801d29 1510 if (ret) {
3870c4d8 1511 /*
26801d29 1512 * Now place the numbers according to the solver's
1513 * recommendations.
3870c4d8 1514 */
26801d29 1515 numbers = snewn(params->w * params->h, int);
1516
1517 for (y = 0; y < params->h; y++)
1518 for (x = 0; x < params->w; x++) {
1519 index(params, numbers, x, y) = 0;
1520 }
1521
1522 for (i = 0; i < nnumbers; i++) {
1523 int idx = random_upto(rs, nd[i].npoints);
1524 int x = nd[i].points[idx].x;
1525 int y = nd[i].points[idx].y;
1526 index(params,numbers,x,y) = nd[i].area;
1527 }
3870c4d8 1528 }
26801d29 1529
1530 /*
1531 * Clean up.
1532 */
1533 for (i = 0; i < nnumbers; i++)
1534 sfree(nd[i].points);
1535 sfree(nd);
1536
1537 /*
1538 * If we've succeeded, then terminate the loop.
1539 */
1540 if (ret)
1541 break;
3870c4d8 1542 }
26801d29 1543
1544 /*
1545 * Give up and go round again.
1546 */
1547 sfree(grid);
1548 }
1549
1550 /*
1551 * Store the rectangle data in the game_aux_info.
1552 */
1553 {
1554 game_aux_info *ai = snew(game_aux_info);
1555
1556 ai->w = params->w;
1557 ai->h = params->h;
1558 ai->vedge = snewn(ai->w * ai->h, unsigned char);
1559 ai->hedge = snewn(ai->w * ai->h, unsigned char);
1560
1561 for (y = 0; y < params->h; y++)
1562 for (x = 1; x < params->w; x++) {
1563 vedge(ai, x, y) =
1564 index(params, grid, x, y) != index(params, grid, x-1, y);
1565 }
1566 for (y = 1; y < params->h; y++)
1567 for (x = 0; x < params->w; x++) {
1568 hedge(ai, x, y) =
1569 index(params, grid, x, y) != index(params, grid, x, y-1);
1570 }
1571
1572 *aux = ai;
3870c4d8 1573 }
1574
1575#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 1576 display_grid(params, grid, numbers, FALSE);
3870c4d8 1577#endif
1578
1185e3c5 1579 desc = snewn(11 * params->w * params->h, char);
1580 p = desc;
3870c4d8 1581 run = 0;
1582 for (i = 0; i <= params->w * params->h; i++) {
1583 int n = (i < params->w * params->h ? numbers[i] : -1);
1584
1585 if (!n)
1586 run++;
1587 else {
1588 if (run) {
1589 while (run > 0) {
1590 int c = 'a' - 1 + run;
1591 if (run > 26)
1592 c = 'z';
1593 *p++ = c;
1594 run -= c - ('a' - 1);
1595 }
1596 } else {
0e87eedc 1597 /*
1598 * If there's a number in the very top left or
1599 * bottom right, there's no point putting an
1600 * unnecessary _ before or after it.
1601 */
1185e3c5 1602 if (p > desc && n > 0)
0e87eedc 1603 *p++ = '_';
3870c4d8 1604 }
1605 if (n > 0)
1606 p += sprintf(p, "%d", n);
1607 run = 0;
1608 }
1609 }
1610 *p = '\0';
1611
1612 sfree(grid);
1613 sfree(numbers);
1614
1185e3c5 1615 return desc;
3870c4d8 1616}
1617
2ac6d24e 1618static void game_free_aux_info(game_aux_info *ai)
6f2d8d7c 1619{
2ac6d24e 1620 sfree(ai->vedge);
1621 sfree(ai->hedge);
1622 sfree(ai);
6f2d8d7c 1623}
1624
1185e3c5 1625static char *validate_desc(game_params *params, char *desc)
3870c4d8 1626{
1627 int area = params->w * params->h;
1628 int squares = 0;
1629
1185e3c5 1630 while (*desc) {
1631 int n = *desc++;
3870c4d8 1632 if (n >= 'a' && n <= 'z') {
1633 squares += n - 'a' + 1;
1634 } else if (n == '_') {
1635 /* do nothing */;
1636 } else if (n > '0' && n <= '9') {
9bb5bf60 1637 squares++;
1185e3c5 1638 while (*desc >= '0' && *desc <= '9')
1639 desc++;
3870c4d8 1640 } else
1185e3c5 1641 return "Invalid character in game description";
3870c4d8 1642 }
1643
1644 if (squares < area)
1645 return "Not enough data to fill grid";
1646
1647 if (squares > area)
1648 return "Too much data to fit in grid";
1649
1650 return NULL;
1651}
1652
1185e3c5 1653static game_state *new_game(game_params *params, char *desc)
3870c4d8 1654{
1655 game_state *state = snew(game_state);
1656 int x, y, i, area;
1657
1658 state->w = params->w;
1659 state->h = params->h;
1660
1661 area = state->w * state->h;
1662
1663 state->grid = snewn(area, int);
1664 state->vedge = snewn(area, unsigned char);
1665 state->hedge = snewn(area, unsigned char);
2ac6d24e 1666 state->completed = state->cheated = FALSE;
3870c4d8 1667
1668 i = 0;
1185e3c5 1669 while (*desc) {
1670 int n = *desc++;
3870c4d8 1671 if (n >= 'a' && n <= 'z') {
1672 int run = n - 'a' + 1;
1673 assert(i + run <= area);
1674 while (run-- > 0)
1675 state->grid[i++] = 0;
1676 } else if (n == '_') {
1677 /* do nothing */;
1678 } else if (n > '0' && n <= '9') {
1679 assert(i < area);
1185e3c5 1680 state->grid[i++] = atoi(desc-1);
1681 while (*desc >= '0' && *desc <= '9')
1682 desc++;
3870c4d8 1683 } else {
1684 assert(!"We can't get here");
1685 }
1686 }
1687 assert(i == area);
1688
1689 for (y = 0; y < state->h; y++)
1690 for (x = 0; x < state->w; x++)
1691 vedge(state,x,y) = hedge(state,x,y) = 0;
1692
1693 return state;
1694}
1695
be8d5aa1 1696static game_state *dup_game(game_state *state)
3870c4d8 1697{
1698 game_state *ret = snew(game_state);
1699
1700 ret->w = state->w;
1701 ret->h = state->h;
1702
1703 ret->vedge = snewn(state->w * state->h, unsigned char);
1704 ret->hedge = snewn(state->w * state->h, unsigned char);
1705 ret->grid = snewn(state->w * state->h, int);
1706
ef29354c 1707 ret->completed = state->completed;
2ac6d24e 1708 ret->cheated = state->cheated;
ef29354c 1709
3870c4d8 1710 memcpy(ret->grid, state->grid, state->w * state->h * sizeof(int));
1711 memcpy(ret->vedge, state->vedge, state->w*state->h*sizeof(unsigned char));
1712 memcpy(ret->hedge, state->hedge, state->w*state->h*sizeof(unsigned char));
1713
1714 return ret;
1715}
1716
be8d5aa1 1717static void free_game(game_state *state)
3870c4d8 1718{
1719 sfree(state->grid);
1720 sfree(state->vedge);
1721 sfree(state->hedge);
1722 sfree(state);
1723}
1724
2ac6d24e 1725static game_state *solve_game(game_state *state, game_aux_info *ai,
1726 char **error)
1727{
1728 game_state *ret;
1729
1730 if (!ai) {
1731 *error = "Solution not known for this puzzle";
1732 return NULL;
1733 }
1734
1735 assert(state->w == ai->w);
1736 assert(state->h == ai->h);
1737
1738 ret = dup_game(state);
1739 memcpy(ret->vedge, ai->vedge, ai->w * ai->h * sizeof(unsigned char));
1740 memcpy(ret->hedge, ai->hedge, ai->w * ai->h * sizeof(unsigned char));
1741 ret->cheated = TRUE;
1742
1743 return ret;
1744}
1745
9b4b03d3 1746static char *game_text_format(game_state *state)
1747{
6ad5ed74 1748 char *ret, *p, buf[80];
1749 int i, x, y, col, maxlen;
1750
1751 /*
1752 * First determine the number of spaces required to display a
1753 * number. We'll use at least two, because one looks a bit
1754 * silly.
1755 */
1756 col = 2;
1757 for (i = 0; i < state->w * state->h; i++) {
1758 x = sprintf(buf, "%d", state->grid[i]);
1759 if (col < x) col = x;
1760 }
1761
1762 /*
1763 * Now we know the exact total size of the grid we're going to
1764 * produce: it's got 2*h+1 rows, each containing w lots of col,
1765 * w+1 boundary characters and a trailing newline.
1766 */
1767 maxlen = (2*state->h+1) * (state->w * (col+1) + 2);
1768
48a10826 1769 ret = snewn(maxlen+1, char);
6ad5ed74 1770 p = ret;
1771
1772 for (y = 0; y <= 2*state->h; y++) {
1773 for (x = 0; x <= 2*state->w; x++) {
1774 if (x & y & 1) {
1775 /*
1776 * Display a number.
1777 */
1778 int v = grid(state, x/2, y/2);
1779 if (v)
1780 sprintf(buf, "%*d", col, v);
1781 else
1782 sprintf(buf, "%*s", col, "");
1783 memcpy(p, buf, col);
1784 p += col;
1785 } else if (x & 1) {
1786 /*
1787 * Display a horizontal edge or nothing.
1788 */
1789 int h = (y==0 || y==2*state->h ? 1 :
1790 HRANGE(state, x/2, y/2) && hedge(state, x/2, y/2));
1791 int i;
1792 if (h)
1793 h = '-';
1794 else
1795 h = ' ';
1796 for (i = 0; i < col; i++)
1797 *p++ = h;
1798 } else if (y & 1) {
1799 /*
1800 * Display a vertical edge or nothing.
1801 */
1802 int v = (x==0 || x==2*state->w ? 1 :
1803 VRANGE(state, x/2, y/2) && vedge(state, x/2, y/2));
1804 if (v)
1805 *p++ = '|';
1806 else
1807 *p++ = ' ';
1808 } else {
1809 /*
1810 * Display a corner, or a vertical edge, or a
1811 * horizontal edge, or nothing.
1812 */
1813 int hl = (y==0 || y==2*state->h ? 1 :
1814 HRANGE(state, (x-1)/2, y/2) && hedge(state, (x-1)/2, y/2));
1815 int hr = (y==0 || y==2*state->h ? 1 :
1816 HRANGE(state, (x+1)/2, y/2) && hedge(state, (x+1)/2, y/2));
1817 int vu = (x==0 || x==2*state->w ? 1 :
1818 VRANGE(state, x/2, (y-1)/2) && vedge(state, x/2, (y-1)/2));
1819 int vd = (x==0 || x==2*state->w ? 1 :
1820 VRANGE(state, x/2, (y+1)/2) && vedge(state, x/2, (y+1)/2));
1821 if (!hl && !hr && !vu && !vd)
1822 *p++ = ' ';
1823 else if (hl && hr && !vu && !vd)
1824 *p++ = '-';
1825 else if (!hl && !hr && vu && vd)
1826 *p++ = '|';
1827 else
1828 *p++ = '+';
1829 }
1830 }
1831 *p++ = '\n';
1832 }
1833
1834 assert(p - ret == maxlen);
1835 *p = '\0';
1836 return ret;
9b4b03d3 1837}
1838
3870c4d8 1839static unsigned char *get_correct(game_state *state)
1840{
1841 unsigned char *ret;
1842 int x, y;
1843
1844 ret = snewn(state->w * state->h, unsigned char);
1845 memset(ret, 0xFF, state->w * state->h);
1846
1847 for (x = 0; x < state->w; x++)
1848 for (y = 0; y < state->h; y++)
1849 if (index(state,ret,x,y) == 0xFF) {
1850 int rw, rh;
1851 int xx, yy;
1852 int num, area, valid;
1853
1854 /*
1855 * Find a rectangle starting at this point.
1856 */
1857 rw = 1;
1858 while (x+rw < state->w && !vedge(state,x+rw,y))
1859 rw++;
1860 rh = 1;
1861 while (y+rh < state->h && !hedge(state,x,y+rh))
1862 rh++;
1863
1864 /*
1865 * We know what the dimensions of the rectangle
1866 * should be if it's there at all. Find out if we
1867 * really have a valid rectangle.
1868 */
1869 valid = TRUE;
1870 /* Check the horizontal edges. */
1871 for (xx = x; xx < x+rw; xx++) {
1872 for (yy = y; yy <= y+rh; yy++) {
1873 int e = !HRANGE(state,xx,yy) || hedge(state,xx,yy);
1874 int ec = (yy == y || yy == y+rh);
1875 if (e != ec)
1876 valid = FALSE;
1877 }
1878 }
1879 /* Check the vertical edges. */
1880 for (yy = y; yy < y+rh; yy++) {
1881 for (xx = x; xx <= x+rw; xx++) {
1882 int e = !VRANGE(state,xx,yy) || vedge(state,xx,yy);
1883 int ec = (xx == x || xx == x+rw);
1884 if (e != ec)
1885 valid = FALSE;
1886 }
1887 }
1888
1889 /*
1890 * If this is not a valid rectangle with no other
1891 * edges inside it, we just mark this square as not
1892 * complete and proceed to the next square.
1893 */
1894 if (!valid) {
1895 index(state, ret, x, y) = 0;
1896 continue;
1897 }
1898
1899 /*
1900 * We have a rectangle. Now see what its area is,
1901 * and how many numbers are in it.
1902 */
1903 num = 0;
1904 area = 0;
1905 for (xx = x; xx < x+rw; xx++) {
1906 for (yy = y; yy < y+rh; yy++) {
1907 area++;
1908 if (grid(state,xx,yy)) {
1909 if (num > 0)
1910 valid = FALSE; /* two numbers */
1911 num = grid(state,xx,yy);
1912 }
1913 }
1914 }
1915 if (num != area)
1916 valid = FALSE;
1917
1918 /*
1919 * Now fill in the whole rectangle based on the
1920 * value of `valid'.
1921 */
1922 for (xx = x; xx < x+rw; xx++) {
1923 for (yy = y; yy < y+rh; yy++) {
1924 index(state, ret, xx, yy) = valid;
1925 }
1926 }
1927 }
1928
1929 return ret;
1930}
1931
08dd70c3 1932struct game_ui {
1933 /*
1934 * These coordinates are 2 times the obvious grid coordinates.
1935 * Hence, the top left of the grid is (0,0), the grid point to
1936 * the right of that is (2,0), the one _below that_ is (2,2)
1937 * and so on. This is so that we can specify a drag start point
1938 * on an edge (one odd coordinate) or in the middle of a square
1939 * (two odd coordinates) rather than always at a corner.
1940 *
1941 * -1,-1 means no drag is in progress.
1942 */
1943 int drag_start_x;
1944 int drag_start_y;
1945 int drag_end_x;
1946 int drag_end_y;
1947 /*
1948 * This flag is set as soon as a dragging action moves the
1949 * mouse pointer away from its starting point, so that even if
1950 * the pointer _returns_ to its starting point the action is
1951 * treated as a small drag rather than a click.
1952 */
1953 int dragged;
1954};
1955
be8d5aa1 1956static game_ui *new_ui(game_state *state)
74a4e547 1957{
08dd70c3 1958 game_ui *ui = snew(game_ui);
1959 ui->drag_start_x = -1;
1960 ui->drag_start_y = -1;
1961 ui->drag_end_x = -1;
1962 ui->drag_end_y = -1;
1963 ui->dragged = FALSE;
1964 return ui;
74a4e547 1965}
1966
be8d5aa1 1967static void free_ui(game_ui *ui)
74a4e547 1968{
08dd70c3 1969 sfree(ui);
1970}
1971
be8d5aa1 1972static void coord_round(float x, float y, int *xr, int *yr)
08dd70c3 1973{
d4e7900f 1974 float xs, ys, xv, yv, dx, dy, dist;
08dd70c3 1975
1976 /*
d4e7900f 1977 * Find the nearest square-centre.
08dd70c3 1978 */
d4e7900f 1979 xs = (float)floor(x) + 0.5F;
1980 ys = (float)floor(y) + 0.5F;
08dd70c3 1981
1982 /*
d4e7900f 1983 * And find the nearest grid vertex.
08dd70c3 1984 */
d4e7900f 1985 xv = (float)floor(x + 0.5F);
1986 yv = (float)floor(y + 0.5F);
08dd70c3 1987
1988 /*
d4e7900f 1989 * We allocate clicks in parts of the grid square to either
1990 * corners, edges or square centres, as follows:
1991 *
1992 * +--+--------+--+
1993 * | | | |
1994 * +--+ +--+
1995 * | `. ,' |
1996 * | +--+ |
1997 * | | | |
1998 * | +--+ |
1999 * | ,' `. |
2000 * +--+ +--+
2001 * | | | |
2002 * +--+--------+--+
2003 *
2004 * (Not to scale!)
2005 *
2006 * In other words: we measure the square distance (i.e.
2007 * max(dx,dy)) from the click to the nearest corner, and if
2008 * it's within CORNER_TOLERANCE then we return a corner click.
2009 * We measure the square distance from the click to the nearest
2010 * centre, and if that's within CENTRE_TOLERANCE we return a
2011 * centre click. Failing that, we find which of the two edge
2012 * centres is nearer to the click and return that edge.
08dd70c3 2013 */
d4e7900f 2014
2015 /*
2016 * Check for corner click.
2017 */
2018 dx = (float)fabs(x - xv);
2019 dy = (float)fabs(y - yv);
2020 dist = (dx > dy ? dx : dy);
2021 if (dist < CORNER_TOLERANCE) {
2022 *xr = 2 * (int)xv;
2023 *yr = 2 * (int)yv;
2024 } else {
2025 /*
2026 * Check for centre click.
2027 */
2028 dx = (float)fabs(x - xs);
2029 dy = (float)fabs(y - ys);
2030 dist = (dx > dy ? dx : dy);
2031 if (dist < CENTRE_TOLERANCE) {
2032 *xr = 1 + 2 * (int)xs;
2033 *yr = 1 + 2 * (int)ys;
2034 } else {
2035 /*
2036 * Failing both of those, see which edge we're closer to.
2037 * Conveniently, this is simply done by testing the relative
2038 * magnitude of dx and dy (which are currently distances from
2039 * the square centre).
2040 */
2041 if (dx > dy) {
2042 /* Vertical edge: x-coord of corner,
2043 * y-coord of square centre. */
2044 *xr = 2 * (int)xv;
2045 *yr = 1 + 2 * (int)ys;
2046 } else {
2047 /* Horizontal edge: x-coord of square centre,
2048 * y-coord of corner. */
2049 *xr = 1 + 2 * (int)xs;
2050 *yr = 2 * (int)yv;
2051 }
2052 }
2053 }
08dd70c3 2054}
2055
2056static void ui_draw_rect(game_state *state, game_ui *ui,
2057 unsigned char *hedge, unsigned char *vedge, int c)
2058{
2059 int x1, x2, y1, y2, x, y, t;
2060
2061 x1 = ui->drag_start_x;
2062 x2 = ui->drag_end_x;
2063 if (x2 < x1) { t = x1; x1 = x2; x2 = t; }
2064
2065 y1 = ui->drag_start_y;
2066 y2 = ui->drag_end_y;
2067 if (y2 < y1) { t = y1; y1 = y2; y2 = t; }
2068
2069 x1 = x1 / 2; /* rounds down */
2070 x2 = (x2+1) / 2; /* rounds up */
2071 y1 = y1 / 2; /* rounds down */
2072 y2 = (y2+1) / 2; /* rounds up */
2073
2074 /*
2075 * Draw horizontal edges of rectangles.
2076 */
2077 for (x = x1; x < x2; x++)
2078 for (y = y1; y <= y2; y++)
2079 if (HRANGE(state,x,y)) {
2080 int val = index(state,hedge,x,y);
2081 if (y == y1 || y == y2)
2082 val = c;
2083 else if (c == 1)
2084 val = 0;
2085 index(state,hedge,x,y) = val;
2086 }
2087
2088 /*
2089 * Draw vertical edges of rectangles.
2090 */
2091 for (y = y1; y < y2; y++)
2092 for (x = x1; x <= x2; x++)
2093 if (VRANGE(state,x,y)) {
2094 int val = index(state,vedge,x,y);
2095 if (x == x1 || x == x2)
2096 val = c;
2097 else if (c == 1)
2098 val = 0;
2099 index(state,vedge,x,y) = val;
2100 }
74a4e547 2101}
2102
be8d5aa1 2103static game_state *make_move(game_state *from, game_ui *ui,
2104 int x, int y, int button)
3870c4d8 2105{
08dd70c3 2106 int xc, yc;
2107 int startdrag = FALSE, enddrag = FALSE, active = FALSE;
3870c4d8 2108 game_state *ret;
2109
08dd70c3 2110 if (button == LEFT_BUTTON) {
2111 startdrag = TRUE;
2112 } else if (button == LEFT_RELEASE) {
2113 enddrag = TRUE;
2114 } else if (button != LEFT_DRAG) {
2115 return NULL;
2116 }
2117
d4e7900f 2118 coord_round(FROMCOORD((float)x), FROMCOORD((float)y), &xc, &yc);
08dd70c3 2119
2120 if (startdrag) {
2121 ui->drag_start_x = xc;
2122 ui->drag_start_y = yc;
2123 ui->drag_end_x = xc;
2124 ui->drag_end_y = yc;
2125 ui->dragged = FALSE;
2126 active = TRUE;
2127 }
3870c4d8 2128
08dd70c3 2129 if (xc != ui->drag_end_x || yc != ui->drag_end_y) {
2130 ui->drag_end_x = xc;
2131 ui->drag_end_y = yc;
2132 ui->dragged = TRUE;
2133 active = TRUE;
2134 }
3870c4d8 2135
934797c7 2136 ret = NULL;
2137
2138 if (enddrag) {
2139 if (xc >= 0 && xc <= 2*from->w &&
2140 yc >= 0 && yc <= 2*from->h) {
2141 ret = dup_game(from);
2142
2143 if (ui->dragged) {
2144 ui_draw_rect(ret, ui, ret->hedge, ret->vedge, 1);
2145 } else {
2146 if ((xc & 1) && !(yc & 1) && HRANGE(from,xc/2,yc/2)) {
2147 hedge(ret,xc/2,yc/2) = !hedge(ret,xc/2,yc/2);
2148 }
2149 if ((yc & 1) && !(xc & 1) && VRANGE(from,xc/2,yc/2)) {
2150 vedge(ret,xc/2,yc/2) = !vedge(ret,xc/2,yc/2);
2151 }
2152 }
3870c4d8 2153
934797c7 2154 if (!memcmp(ret->hedge, from->hedge, from->w*from->h) &&
2155 !memcmp(ret->vedge, from->vedge, from->w*from->h)) {
2156 free_game(ret);
2157 ret = NULL;
2158 }
ef29354c 2159
2160 /*
2161 * We've made a real change to the grid. Check to see
2162 * if the game has been completed.
2163 */
d4e7900f 2164 if (ret && !ret->completed) {
ef29354c 2165 int x, y, ok;
2166 unsigned char *correct = get_correct(ret);
2167
2168 ok = TRUE;
2169 for (x = 0; x < ret->w; x++)
2170 for (y = 0; y < ret->h; y++)
2171 if (!index(ret, correct, x, y))
2172 ok = FALSE;
2173
2174 sfree(correct);
2175
2176 if (ok)
2177 ret->completed = TRUE;
2178 }
934797c7 2179 }
2180
2181 ui->drag_start_x = -1;
2182 ui->drag_start_y = -1;
2183 ui->drag_end_x = -1;
2184 ui->drag_end_y = -1;
2185 ui->dragged = FALSE;
2186 active = TRUE;
3870c4d8 2187 }
2188
934797c7 2189 if (ret)
2190 return ret; /* a move has been made */
2191 else if (active)
08dd70c3 2192 return from; /* UI activity has occurred */
934797c7 2193 else
2194 return NULL;
3870c4d8 2195}
2196
2197/* ----------------------------------------------------------------------
2198 * Drawing routines.
2199 */
2200
ec9a0f09 2201#define CORRECT 65536
08dd70c3 2202
2203#define COLOUR(k) ( (k)==1 ? COL_LINE : COL_DRAG )
2204#define MAX(x,y) ( (x)>(y) ? (x) : (y) )
2205#define MAX4(x,y,z,w) ( MAX(MAX(x,y),MAX(z,w)) )
3870c4d8 2206
2207struct game_drawstate {
2208 int started;
2209 int w, h;
ec9a0f09 2210 unsigned int *visible;
3870c4d8 2211};
2212
be8d5aa1 2213static void game_size(game_params *params, int *x, int *y)
3870c4d8 2214{
2215 *x = params->w * TILE_SIZE + 2*BORDER + 1;
2216 *y = params->h * TILE_SIZE + 2*BORDER + 1;
2217}
2218
be8d5aa1 2219static float *game_colours(frontend *fe, game_state *state, int *ncolours)
3870c4d8 2220{
2221 float *ret = snewn(3 * NCOLOURS, float);
2222
2223 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2224
2225 ret[COL_GRID * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2226 ret[COL_GRID * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2227 ret[COL_GRID * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2228
08dd70c3 2229 ret[COL_DRAG * 3 + 0] = 1.0F;
2230 ret[COL_DRAG * 3 + 1] = 0.0F;
2231 ret[COL_DRAG * 3 + 2] = 0.0F;
2232
3870c4d8 2233 ret[COL_CORRECT * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2234 ret[COL_CORRECT * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2235 ret[COL_CORRECT * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2236
2237 ret[COL_LINE * 3 + 0] = 0.0F;
2238 ret[COL_LINE * 3 + 1] = 0.0F;
2239 ret[COL_LINE * 3 + 2] = 0.0F;
2240
2241 ret[COL_TEXT * 3 + 0] = 0.0F;
2242 ret[COL_TEXT * 3 + 1] = 0.0F;
2243 ret[COL_TEXT * 3 + 2] = 0.0F;
2244
2245 *ncolours = NCOLOURS;
2246 return ret;
2247}
2248
be8d5aa1 2249static game_drawstate *game_new_drawstate(game_state *state)
3870c4d8 2250{
2251 struct game_drawstate *ds = snew(struct game_drawstate);
08dd70c3 2252 int i;
3870c4d8 2253
2254 ds->started = FALSE;
2255 ds->w = state->w;
2256 ds->h = state->h;
ec9a0f09 2257 ds->visible = snewn(ds->w * ds->h, unsigned int);
08dd70c3 2258 for (i = 0; i < ds->w * ds->h; i++)
2259 ds->visible[i] = 0xFFFF;
3870c4d8 2260
2261 return ds;
2262}
2263
be8d5aa1 2264static void game_free_drawstate(game_drawstate *ds)
3870c4d8 2265{
2266 sfree(ds->visible);
2267 sfree(ds);
2268}
2269
be8d5aa1 2270static void draw_tile(frontend *fe, game_state *state, int x, int y,
ec9a0f09 2271 unsigned char *hedge, unsigned char *vedge,
2272 unsigned char *corners, int correct)
3870c4d8 2273{
2274 int cx = COORD(x), cy = COORD(y);
2275 char str[80];
2276
2277 draw_rect(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1, COL_GRID);
2278 draw_rect(fe, cx+1, cy+1, TILE_SIZE-1, TILE_SIZE-1,
2279 correct ? COL_CORRECT : COL_BACKGROUND);
2280
2281 if (grid(state,x,y)) {
2282 sprintf(str, "%d", grid(state,x,y));
2283 draw_text(fe, cx+TILE_SIZE/2, cy+TILE_SIZE/2, FONT_VARIABLE,
105a00d0 2284 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_TEXT, str);
3870c4d8 2285 }
2286
2287 /*
2288 * Draw edges.
2289 */
08dd70c3 2290 if (!HRANGE(state,x,y) || index(state,hedge,x,y))
2291 draw_rect(fe, cx, cy, TILE_SIZE+1, 2,
2292 HRANGE(state,x,y) ? COLOUR(index(state,hedge,x,y)) :
2293 COL_LINE);
2294 if (!HRANGE(state,x,y+1) || index(state,hedge,x,y+1))
2295 draw_rect(fe, cx, cy+TILE_SIZE-1, TILE_SIZE+1, 2,
2296 HRANGE(state,x,y+1) ? COLOUR(index(state,hedge,x,y+1)) :
2297 COL_LINE);
2298 if (!VRANGE(state,x,y) || index(state,vedge,x,y))
2299 draw_rect(fe, cx, cy, 2, TILE_SIZE+1,
2300 VRANGE(state,x,y) ? COLOUR(index(state,vedge,x,y)) :
2301 COL_LINE);
2302 if (!VRANGE(state,x+1,y) || index(state,vedge,x+1,y))
2303 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, TILE_SIZE+1,
2304 VRANGE(state,x+1,y) ? COLOUR(index(state,vedge,x+1,y)) :
2305 COL_LINE);
3870c4d8 2306
2307 /*
2308 * Draw corners.
2309 */
ec9a0f09 2310 if (index(state,corners,x,y))
08dd70c3 2311 draw_rect(fe, cx, cy, 2, 2,
ec9a0f09 2312 COLOUR(index(state,corners,x,y)));
2313 if (x+1 < state->w && index(state,corners,x+1,y))
08dd70c3 2314 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, 2,
ec9a0f09 2315 COLOUR(index(state,corners,x+1,y)));
2316 if (y+1 < state->h && index(state,corners,x,y+1))
08dd70c3 2317 draw_rect(fe, cx, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2318 COLOUR(index(state,corners,x,y+1)));
2319 if (x+1 < state->w && y+1 < state->h && index(state,corners,x+1,y+1))
08dd70c3 2320 draw_rect(fe, cx+TILE_SIZE-1, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2321 COLOUR(index(state,corners,x+1,y+1)));
3870c4d8 2322
2323 draw_update(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1);
2324}
2325
be8d5aa1 2326static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
c822de4a 2327 game_state *state, int dir, game_ui *ui,
74a4e547 2328 float animtime, float flashtime)
3870c4d8 2329{
2330 int x, y;
2331 unsigned char *correct;
ec9a0f09 2332 unsigned char *hedge, *vedge, *corners;
3870c4d8 2333
2334 correct = get_correct(state);
2335
08dd70c3 2336 if (ui->dragged) {
2337 hedge = snewn(state->w*state->h, unsigned char);
2338 vedge = snewn(state->w*state->h, unsigned char);
2339 memcpy(hedge, state->hedge, state->w*state->h);
2340 memcpy(vedge, state->vedge, state->w*state->h);
2341 ui_draw_rect(state, ui, hedge, vedge, 2);
2342 } else {
2343 hedge = state->hedge;
2344 vedge = state->vedge;
2345 }
2346
ec9a0f09 2347 corners = snewn(state->w * state->h, unsigned char);
2348 memset(corners, 0, state->w * state->h);
2349 for (x = 0; x < state->w; x++)
2350 for (y = 0; y < state->h; y++) {
2351 if (x > 0) {
2352 int e = index(state, vedge, x, y);
2353 if (index(state,corners,x,y) < e)
2354 index(state,corners,x,y) = e;
2355 if (y+1 < state->h &&
2356 index(state,corners,x,y+1) < e)
2357 index(state,corners,x,y+1) = e;
2358 }
2359 if (y > 0) {
2360 int e = index(state, hedge, x, y);
2361 if (index(state,corners,x,y) < e)
2362 index(state,corners,x,y) = e;
2363 if (x+1 < state->w &&
2364 index(state,corners,x+1,y) < e)
2365 index(state,corners,x+1,y) = e;
2366 }
2367 }
2368
3870c4d8 2369 if (!ds->started) {
105a00d0 2370 draw_rect(fe, 0, 0,
2371 state->w * TILE_SIZE + 2*BORDER + 1,
2372 state->h * TILE_SIZE + 2*BORDER + 1, COL_BACKGROUND);
3870c4d8 2373 draw_rect(fe, COORD(0)-1, COORD(0)-1,
2374 ds->w*TILE_SIZE+3, ds->h*TILE_SIZE+3, COL_LINE);
2375 ds->started = TRUE;
863c3945 2376 draw_update(fe, 0, 0,
2377 state->w * TILE_SIZE + 2*BORDER + 1,
2378 state->h * TILE_SIZE + 2*BORDER + 1);
3870c4d8 2379 }
2380
2381 for (x = 0; x < state->w; x++)
2382 for (y = 0; y < state->h; y++) {
ec9a0f09 2383 unsigned int c = 0;
08dd70c3 2384
2385 if (HRANGE(state,x,y))
2386 c |= index(state,hedge,x,y);
eddb22e8 2387 if (HRANGE(state,x,y+1))
2388 c |= index(state,hedge,x,y+1) << 2;
08dd70c3 2389 if (VRANGE(state,x,y))
2390 c |= index(state,vedge,x,y) << 4;
eddb22e8 2391 if (VRANGE(state,x+1,y))
2392 c |= index(state,vedge,x+1,y) << 6;
ec9a0f09 2393 c |= index(state,corners,x,y) << 8;
2394 if (x+1 < state->w)
2395 c |= index(state,corners,x+1,y) << 10;
2396 if (y+1 < state->h)
2397 c |= index(state,corners,x,y+1) << 12;
2398 if (x+1 < state->w && y+1 < state->h)
2399 c |= index(state,corners,x+1,y+1) << 14;
ef29354c 2400 if (index(state, correct, x, y) && !flashtime)
3870c4d8 2401 c |= CORRECT;
2402
2403 if (index(ds,ds->visible,x,y) != c) {
ec9a0f09 2404 draw_tile(fe, state, x, y, hedge, vedge, corners, c & CORRECT);
2405 index(ds,ds->visible,x,y) = c;
3870c4d8 2406 }
2407 }
2408
08dd70c3 2409 if (hedge != state->hedge) {
2410 sfree(hedge);
2411 sfree(vedge);
2412 }
2413
11c44cf5 2414 sfree(corners);
3870c4d8 2415 sfree(correct);
2416}
2417
be8d5aa1 2418static float game_anim_length(game_state *oldstate,
2419 game_state *newstate, int dir)
3870c4d8 2420{
2421 return 0.0F;
2422}
2423
be8d5aa1 2424static float game_flash_length(game_state *oldstate,
2425 game_state *newstate, int dir)
3870c4d8 2426{
2ac6d24e 2427 if (!oldstate->completed && newstate->completed &&
2428 !oldstate->cheated && !newstate->cheated)
ef29354c 2429 return FLASH_TIME;
3870c4d8 2430 return 0.0F;
2431}
2432
be8d5aa1 2433static int game_wants_statusbar(void)
3870c4d8 2434{
2435 return FALSE;
2436}
be8d5aa1 2437
2438#ifdef COMBINED
2439#define thegame rect
2440#endif
2441
2442const struct game thegame = {
1d228b10 2443 "Rectangles", "games.rectangles",
be8d5aa1 2444 default_params,
2445 game_fetch_preset,
2446 decode_params,
2447 encode_params,
2448 free_params,
2449 dup_params,
1d228b10 2450 TRUE, game_configure, custom_params,
be8d5aa1 2451 validate_params,
1185e3c5 2452 new_game_desc,
6f2d8d7c 2453 game_free_aux_info,
1185e3c5 2454 validate_desc,
be8d5aa1 2455 new_game,
2456 dup_game,
2457 free_game,
2ac6d24e 2458 TRUE, solve_game,
6ad5ed74 2459 TRUE, game_text_format,
be8d5aa1 2460 new_ui,
2461 free_ui,
2462 make_move,
2463 game_size,
2464 game_colours,
2465 game_new_drawstate,
2466 game_free_drawstate,
2467 game_redraw,
2468 game_anim_length,
2469 game_flash_length,
2470 game_wants_statusbar,
2471};