Small UI bug: LEFT_RELEASEs were being thrown away completely if
[sgt/puzzles] / rect.c
CommitLineData
3870c4d8 1/*
2 * rect.c: Puzzle from nikoli.co.jp. You have a square grid with
3 * numbers in some squares; you must divide the square grid up into
4 * variously sized rectangles, such that every rectangle contains
5 * exactly one numbered square and the area of each rectangle is
6 * equal to the number contained in it.
7 */
8
9/*
10 * TODO:
11 *
12 * - Improve on singleton removal by making an aesthetic choice
13 * about which of the options to take.
14 *
15 * - When doing the 3x3 trick in singleton removal, limit the size
16 * of the generated rectangles in accordance with the max
17 * rectangle size.
18 *
3870c4d8 19 * - If we start by sorting the rectlist in descending order
20 * of area, we might be able to bias our random number
21 * selection to produce a few large rectangles more often
22 * than oodles of small ones? Unsure, but might be worth a
23 * try.
24 */
25
26#include <stdio.h>
27#include <stdlib.h>
28#include <string.h>
29#include <assert.h>
b0e26073 30#include <ctype.h>
3870c4d8 31#include <math.h>
32
33#include "puzzles.h"
34
3870c4d8 35enum {
36 COL_BACKGROUND,
37 COL_CORRECT,
38 COL_LINE,
39 COL_TEXT,
40 COL_GRID,
08dd70c3 41 COL_DRAG,
3870c4d8 42 NCOLOURS
43};
44
45struct game_params {
46 int w, h;
aea3ed9a 47 float expandfactor;
40fde884 48 int unique;
3870c4d8 49};
50
51#define INDEX(state, x, y) (((y) * (state)->w) + (x))
52#define index(state, a, x, y) ((a) [ INDEX(state,x,y) ])
53#define grid(state,x,y) index(state, (state)->grid, x, y)
54#define vedge(state,x,y) index(state, (state)->vedge, x, y)
55#define hedge(state,x,y) index(state, (state)->hedge, x, y)
56
57#define CRANGE(state,x,y,dx,dy) ( (x) >= dx && (x) < (state)->w && \
58 (y) >= dy && (y) < (state)->h )
59#define RANGE(state,x,y) CRANGE(state,x,y,0,0)
60#define HRANGE(state,x,y) CRANGE(state,x,y,0,1)
61#define VRANGE(state,x,y) CRANGE(state,x,y,1,0)
62
63#define TILE_SIZE 24
64#define BORDER 18
65
d4e7900f 66#define CORNER_TOLERANCE 0.15F
67#define CENTRE_TOLERANCE 0.15F
68
ef29354c 69#define FLASH_TIME 0.13F
70
3870c4d8 71#define COORD(x) ( (x) * TILE_SIZE + BORDER )
72#define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
73
74struct game_state {
75 int w, h;
76 int *grid; /* contains the numbers */
77 unsigned char *vedge; /* (w+1) x h */
78 unsigned char *hedge; /* w x (h+1) */
2ac6d24e 79 int completed, cheated;
3870c4d8 80};
81
be8d5aa1 82static game_params *default_params(void)
3870c4d8 83{
84 game_params *ret = snew(game_params);
85
86 ret->w = ret->h = 7;
aea3ed9a 87 ret->expandfactor = 0.0F;
40fde884 88 ret->unique = TRUE;
3870c4d8 89
90 return ret;
91}
92
be8d5aa1 93static int game_fetch_preset(int i, char **name, game_params **params)
3870c4d8 94{
95 game_params *ret;
96 int w, h;
97 char buf[80];
98
99 switch (i) {
100 case 0: w = 7, h = 7; break;
ab53eb64 101 case 1: w = 9, h = 9; break;
102 case 2: w = 11, h = 11; break;
103 case 3: w = 13, h = 13; break;
104 case 4: w = 15, h = 15; break;
105#ifndef SLOW_SYSTEM
106 case 5: w = 17, h = 17; break;
107 case 6: w = 19, h = 19; break;
108#endif
3870c4d8 109 default: return FALSE;
110 }
111
112 sprintf(buf, "%dx%d", w, h);
113 *name = dupstr(buf);
114 *params = ret = snew(game_params);
115 ret->w = w;
116 ret->h = h;
aea3ed9a 117 ret->expandfactor = 0.0F;
40fde884 118 ret->unique = TRUE;
3870c4d8 119 return TRUE;
120}
121
be8d5aa1 122static void free_params(game_params *params)
3870c4d8 123{
124 sfree(params);
125}
126
be8d5aa1 127static game_params *dup_params(game_params *params)
3870c4d8 128{
129 game_params *ret = snew(game_params);
130 *ret = *params; /* structure copy */
131 return ret;
132}
133
1185e3c5 134static void decode_params(game_params *ret, char const *string)
b0e26073 135{
b0e26073 136 ret->w = ret->h = atoi(string);
aea3ed9a 137 while (*string && isdigit((unsigned char)*string)) string++;
b0e26073 138 if (*string == 'x') {
139 string++;
140 ret->h = atoi(string);
aea3ed9a 141 while (*string && isdigit((unsigned char)*string)) string++;
142 }
143 if (*string == 'e') {
144 string++;
145 ret->expandfactor = atof(string);
40fde884 146 while (*string &&
147 (*string == '.' || isdigit((unsigned char)*string))) string++;
148 }
149 if (*string == 'a') {
150 string++;
151 ret->unique = FALSE;
b0e26073 152 }
b0e26073 153}
154
1185e3c5 155static char *encode_params(game_params *params, int full)
b0e26073 156{
157 char data[256];
158
159 sprintf(data, "%dx%d", params->w, params->h);
5472ceb6 160 if (full && params->expandfactor)
1185e3c5 161 sprintf(data + strlen(data), "e%g", params->expandfactor);
40fde884 162 if (full && !params->unique)
163 strcat(data, "a");
b0e26073 164
165 return dupstr(data);
166}
167
be8d5aa1 168static config_item *game_configure(game_params *params)
3870c4d8 169{
170 config_item *ret;
171 char buf[80];
172
173 ret = snewn(5, config_item);
174
175 ret[0].name = "Width";
176 ret[0].type = C_STRING;
177 sprintf(buf, "%d", params->w);
178 ret[0].sval = dupstr(buf);
179 ret[0].ival = 0;
180
181 ret[1].name = "Height";
182 ret[1].type = C_STRING;
183 sprintf(buf, "%d", params->h);
184 ret[1].sval = dupstr(buf);
185 ret[1].ival = 0;
186
aea3ed9a 187 ret[2].name = "Expansion factor";
188 ret[2].type = C_STRING;
189 sprintf(buf, "%g", params->expandfactor);
190 ret[2].sval = dupstr(buf);
3870c4d8 191 ret[2].ival = 0;
192
40fde884 193 ret[3].name = "Ensure unique solution";
194 ret[3].type = C_BOOLEAN;
aea3ed9a 195 ret[3].sval = NULL;
40fde884 196 ret[3].ival = params->unique;
197
198 ret[4].name = NULL;
199 ret[4].type = C_END;
200 ret[4].sval = NULL;
201 ret[4].ival = 0;
aea3ed9a 202
3870c4d8 203 return ret;
204}
205
be8d5aa1 206static game_params *custom_params(config_item *cfg)
3870c4d8 207{
208 game_params *ret = snew(game_params);
209
210 ret->w = atoi(cfg[0].sval);
211 ret->h = atoi(cfg[1].sval);
aea3ed9a 212 ret->expandfactor = atof(cfg[2].sval);
40fde884 213 ret->unique = cfg[3].ival;
3870c4d8 214
215 return ret;
216}
217
be8d5aa1 218static char *validate_params(game_params *params)
3870c4d8 219{
ab53eb64 220 if (params->w <= 0 || params->h <= 0)
3870c4d8 221 return "Width and height must both be greater than zero";
ab53eb64 222 if (params->w*params->h < 2)
d4e7900f 223 return "Grid area must be greater than one";
aea3ed9a 224 if (params->expandfactor < 0.0F)
225 return "Expansion factor may not be negative";
3870c4d8 226 return NULL;
227}
228
26801d29 229struct point {
230 int x, y;
231};
232
3870c4d8 233struct rect {
234 int x, y;
235 int w, h;
236};
237
238struct rectlist {
239 struct rect *rects;
240 int n;
241};
242
26801d29 243struct numberdata {
244 int area;
245 int npoints;
246 struct point *points;
247};
248
249/* ----------------------------------------------------------------------
250 * Solver for Rectangles games.
251 *
252 * This solver is souped up beyond the needs of actually _solving_
253 * a puzzle. It is also designed to cope with uncertainty about
254 * where the numbers have been placed. This is because I run it on
255 * my generated grids _before_ placing the numbers, and have it
256 * tell me where I need to place the numbers to ensure a unique
257 * solution.
258 */
259
260static void remove_rect_placement(int w, int h,
261 struct rectlist *rectpositions,
262 int *overlaps,
263 int rectnum, int placement)
264{
265 int x, y, xx, yy;
266
267#ifdef SOLVER_DIAGNOSTICS
268 printf("ruling out rect %d placement at %d,%d w=%d h=%d\n", rectnum,
269 rectpositions[rectnum].rects[placement].x,
270 rectpositions[rectnum].rects[placement].y,
271 rectpositions[rectnum].rects[placement].w,
272 rectpositions[rectnum].rects[placement].h);
273#endif
274
275 /*
276 * Decrement each entry in the overlaps array to reflect the
277 * removal of this rectangle placement.
278 */
279 for (yy = 0; yy < rectpositions[rectnum].rects[placement].h; yy++) {
280 y = yy + rectpositions[rectnum].rects[placement].y;
281 for (xx = 0; xx < rectpositions[rectnum].rects[placement].w; xx++) {
282 x = xx + rectpositions[rectnum].rects[placement].x;
283
284 assert(overlaps[(rectnum * h + y) * w + x] != 0);
285
286 if (overlaps[(rectnum * h + y) * w + x] > 0)
287 overlaps[(rectnum * h + y) * w + x]--;
288 }
289 }
290
291 /*
292 * Remove the placement from the list of positions for that
293 * rectangle, by interchanging it with the one on the end.
294 */
295 if (placement < rectpositions[rectnum].n - 1) {
296 struct rect t;
297
298 t = rectpositions[rectnum].rects[rectpositions[rectnum].n - 1];
299 rectpositions[rectnum].rects[rectpositions[rectnum].n - 1] =
300 rectpositions[rectnum].rects[placement];
301 rectpositions[rectnum].rects[placement] = t;
302 }
303 rectpositions[rectnum].n--;
304}
305
306static void remove_number_placement(int w, int h, struct numberdata *number,
307 int index, int *rectbyplace)
308{
309 /*
310 * Remove the entry from the rectbyplace array.
311 */
312 rectbyplace[number->points[index].y * w + number->points[index].x] = -1;
313
314 /*
315 * Remove the placement from the list of candidates for that
316 * number, by interchanging it with the one on the end.
317 */
318 if (index < number->npoints - 1) {
319 struct point t;
320
321 t = number->points[number->npoints - 1];
322 number->points[number->npoints - 1] = number->points[index];
323 number->points[index] = t;
324 }
325 number->npoints--;
326}
327
328static int rect_solver(int w, int h, int nrects, struct numberdata *numbers,
1507058f 329 game_state *result, random_state *rs)
26801d29 330{
331 struct rectlist *rectpositions;
332 int *overlaps, *rectbyplace, *workspace;
333 int i, ret;
334
335 /*
336 * Start by setting up a list of candidate positions for each
337 * rectangle.
338 */
339 rectpositions = snewn(nrects, struct rectlist);
340 for (i = 0; i < nrects; i++) {
341 int rw, rh, area = numbers[i].area;
342 int j, minx, miny, maxx, maxy;
343 struct rect *rlist;
344 int rlistn, rlistsize;
345
346 /*
347 * For each rectangle, begin by finding the bounding
348 * rectangle of its candidate number placements.
349 */
350 maxx = maxy = -1;
351 minx = w;
352 miny = h;
353 for (j = 0; j < numbers[i].npoints; j++) {
354 if (minx > numbers[i].points[j].x) minx = numbers[i].points[j].x;
355 if (miny > numbers[i].points[j].y) miny = numbers[i].points[j].y;
356 if (maxx < numbers[i].points[j].x) maxx = numbers[i].points[j].x;
357 if (maxy < numbers[i].points[j].y) maxy = numbers[i].points[j].y;
358 }
359
360 /*
361 * Now loop over all possible rectangle placements
362 * overlapping a point within that bounding rectangle;
363 * ensure each one actually contains a candidate number
364 * placement, and add it to the list.
365 */
366 rlist = NULL;
367 rlistn = rlistsize = 0;
368
369 for (rw = 1; rw <= area && rw <= w; rw++) {
370 int x, y;
371
372 if (area % rw)
373 continue;
374 rh = area / rw;
375 if (rh > h)
376 continue;
377
378 for (y = miny - rh + 1; y <= maxy; y++) {
379 if (y < 0 || y+rh > h)
380 continue;
381
382 for (x = minx - rw + 1; x <= maxx; x++) {
383 if (x < 0 || x+rw > w)
384 continue;
385
386 /*
387 * See if we can find a candidate number
388 * placement within this rectangle.
389 */
390 for (j = 0; j < numbers[i].npoints; j++)
391 if (numbers[i].points[j].x >= x &&
392 numbers[i].points[j].x < x+rw &&
393 numbers[i].points[j].y >= y &&
394 numbers[i].points[j].y < y+rh)
395 break;
396
397 if (j < numbers[i].npoints) {
398 /*
399 * Add this to the list of candidate
400 * placements for this rectangle.
401 */
402 if (rlistn >= rlistsize) {
403 rlistsize = rlistn + 32;
404 rlist = sresize(rlist, rlistsize, struct rect);
405 }
406 rlist[rlistn].x = x;
407 rlist[rlistn].y = y;
408 rlist[rlistn].w = rw;
409 rlist[rlistn].h = rh;
410#ifdef SOLVER_DIAGNOSTICS
411 printf("rect %d [area %d]: candidate position at"
412 " %d,%d w=%d h=%d\n",
413 i, area, x, y, rw, rh);
414#endif
415 rlistn++;
416 }
417 }
418 }
419 }
420
421 rectpositions[i].rects = rlist;
422 rectpositions[i].n = rlistn;
423 }
424
425 /*
426 * Next, construct a multidimensional array tracking how many
427 * candidate positions for each rectangle overlap each square.
428 *
429 * Indexing of this array is by the formula
430 *
431 * overlaps[(rectindex * h + y) * w + x]
432 */
433 overlaps = snewn(nrects * w * h, int);
434 memset(overlaps, 0, nrects * w * h * sizeof(int));
435 for (i = 0; i < nrects; i++) {
436 int j;
437
438 for (j = 0; j < rectpositions[i].n; j++) {
439 int xx, yy;
440
441 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++)
442 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++)
443 overlaps[(i * h + yy+rectpositions[i].rects[j].y) * w +
444 xx+rectpositions[i].rects[j].x]++;
445 }
446 }
447
448 /*
449 * Also we want an array covering the grid once, to make it
450 * easy to figure out which squares are candidate number
451 * placements for which rectangles. (The existence of this
452 * single array assumes that no square starts off as a
453 * candidate number placement for more than one rectangle. This
454 * assumption is justified, because this solver is _either_
455 * used to solve real problems - in which case there is a
456 * single placement for every number - _or_ used to decide on
457 * number placements for a new puzzle, in which case each
458 * number's placements are confined to the intended position of
459 * the rectangle containing that number.)
460 */
461 rectbyplace = snewn(w * h, int);
462 for (i = 0; i < w*h; i++)
463 rectbyplace[i] = -1;
464
465 for (i = 0; i < nrects; i++) {
466 int j;
467
468 for (j = 0; j < numbers[i].npoints; j++) {
469 int x = numbers[i].points[j].x;
470 int y = numbers[i].points[j].y;
471
472 assert(rectbyplace[y * w + x] == -1);
473 rectbyplace[y * w + x] = i;
474 }
475 }
476
477 workspace = snewn(nrects, int);
478
479 /*
480 * Now run the actual deduction loop.
481 */
482 while (1) {
483 int done_something = FALSE;
484
485#ifdef SOLVER_DIAGNOSTICS
486 printf("starting deduction loop\n");
487
488 for (i = 0; i < nrects; i++) {
489 printf("rect %d overlaps:\n", i);
490 {
491 int x, y;
492 for (y = 0; y < h; y++) {
493 for (x = 0; x < w; x++) {
494 printf("%3d", overlaps[(i * h + y) * w + x]);
495 }
496 printf("\n");
497 }
498 }
499 }
500 printf("rectbyplace:\n");
501 {
502 int x, y;
503 for (y = 0; y < h; y++) {
504 for (x = 0; x < w; x++) {
505 printf("%3d", rectbyplace[y * w + x]);
506 }
507 printf("\n");
508 }
509 }
510#endif
511
512 /*
513 * Housekeeping. Look for rectangles whose number has only
514 * one candidate position left, and mark that square as
515 * known if it isn't already.
516 */
517 for (i = 0; i < nrects; i++) {
518 if (numbers[i].npoints == 1) {
519 int x = numbers[i].points[0].x;
520 int y = numbers[i].points[0].y;
521 if (overlaps[(i * h + y) * w + x] >= -1) {
522 int j;
523
524 assert(overlaps[(i * h + y) * w + x] > 0);
525#ifdef SOLVER_DIAGNOSTICS
526 printf("marking %d,%d as known for rect %d"
527 " (sole remaining number position)\n", x, y, i);
528#endif
529
530 for (j = 0; j < nrects; j++)
531 overlaps[(j * h + y) * w + x] = -1;
532
533 overlaps[(i * h + y) * w + x] = -2;
534 }
535 }
536 }
537
538 /*
539 * Now look at the intersection of all possible placements
540 * for each rectangle, and mark all squares in that
541 * intersection as known for that rectangle if they aren't
542 * already.
543 */
544 for (i = 0; i < nrects; i++) {
545 int minx, miny, maxx, maxy, xx, yy, j;
546
547 minx = miny = 0;
548 maxx = w;
549 maxy = h;
550
551 for (j = 0; j < rectpositions[i].n; j++) {
552 int x = rectpositions[i].rects[j].x;
553 int y = rectpositions[i].rects[j].y;
554 int w = rectpositions[i].rects[j].w;
555 int h = rectpositions[i].rects[j].h;
556
557 if (minx < x) minx = x;
558 if (miny < y) miny = y;
559 if (maxx > x+w) maxx = x+w;
560 if (maxy > y+h) maxy = y+h;
561 }
562
563 for (yy = miny; yy < maxy; yy++)
564 for (xx = minx; xx < maxx; xx++)
565 if (overlaps[(i * h + yy) * w + xx] >= -1) {
566 assert(overlaps[(i * h + yy) * w + xx] > 0);
567#ifdef SOLVER_DIAGNOSTICS
568 printf("marking %d,%d as known for rect %d"
569 " (intersection of all placements)\n",
570 xx, yy, i);
571#endif
572
573 for (j = 0; j < nrects; j++)
574 overlaps[(j * h + yy) * w + xx] = -1;
575
576 overlaps[(i * h + yy) * w + xx] = -2;
577 }
578 }
579
580 /*
581 * Rectangle-focused deduction. Look at each rectangle in
582 * turn and try to rule out some of its candidate
583 * placements.
584 */
585 for (i = 0; i < nrects; i++) {
586 int j;
587
588 for (j = 0; j < rectpositions[i].n; j++) {
589 int xx, yy, k;
590 int del = FALSE;
591
592 for (k = 0; k < nrects; k++)
593 workspace[k] = 0;
594
595 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
596 int y = yy + rectpositions[i].rects[j].y;
597 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
598 int x = xx + rectpositions[i].rects[j].x;
599
600 if (overlaps[(i * h + y) * w + x] == -1) {
601 /*
602 * This placement overlaps a square
603 * which is _known_ to be part of
604 * another rectangle. Therefore we must
605 * rule it out.
606 */
607#ifdef SOLVER_DIAGNOSTICS
608 printf("rect %d placement at %d,%d w=%d h=%d "
609 "contains %d,%d which is known-other\n", i,
610 rectpositions[i].rects[j].x,
611 rectpositions[i].rects[j].y,
612 rectpositions[i].rects[j].w,
613 rectpositions[i].rects[j].h,
614 x, y);
615#endif
616 del = TRUE;
617 }
618
619 if (rectbyplace[y * w + x] != -1) {
620 /*
621 * This placement overlaps one of the
622 * candidate number placements for some
623 * rectangle. Count it.
624 */
625 workspace[rectbyplace[y * w + x]]++;
626 }
627 }
628 }
629
630 if (!del) {
631 /*
632 * If we haven't ruled this placement out
633 * already, see if it overlaps _all_ of the
634 * candidate number placements for any
635 * rectangle. If so, we can rule it out.
636 */
637 for (k = 0; k < nrects; k++)
638 if (k != i && workspace[k] == numbers[k].npoints) {
639#ifdef SOLVER_DIAGNOSTICS
640 printf("rect %d placement at %d,%d w=%d h=%d "
641 "contains all number points for rect %d\n",
642 i,
643 rectpositions[i].rects[j].x,
644 rectpositions[i].rects[j].y,
645 rectpositions[i].rects[j].w,
646 rectpositions[i].rects[j].h,
647 k);
648#endif
649 del = TRUE;
650 break;
651 }
652
653 /*
654 * Failing that, see if it overlaps at least
655 * one of the candidate number placements for
656 * itself! (This might not be the case if one
657 * of those number placements has been removed
658 * recently.).
659 */
660 if (!del && workspace[i] == 0) {
661#ifdef SOLVER_DIAGNOSTICS
662 printf("rect %d placement at %d,%d w=%d h=%d "
663 "contains none of its own number points\n",
664 i,
665 rectpositions[i].rects[j].x,
666 rectpositions[i].rects[j].y,
667 rectpositions[i].rects[j].w,
668 rectpositions[i].rects[j].h);
669#endif
670 del = TRUE;
671 }
672 }
673
674 if (del) {
675 remove_rect_placement(w, h, rectpositions, overlaps, i, j);
676
677 j--; /* don't skip over next placement */
678
679 done_something = TRUE;
680 }
681 }
682 }
683
684 /*
685 * Square-focused deduction. Look at each square not marked
686 * as known, and see if there are any which can only be
687 * part of a single rectangle.
688 */
689 {
690 int x, y, n, index;
691 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
692 /* Known squares are marked as <0 everywhere, so we only need
693 * to check the overlaps entry for rect 0. */
694 if (overlaps[y * w + x] < 0)
695 continue; /* known already */
696
697 n = 0;
698 index = -1;
699 for (i = 0; i < nrects; i++)
700 if (overlaps[(i * h + y) * w + x] > 0)
701 n++, index = i;
702
703 if (n == 1) {
704 int j;
705
706 /*
707 * Now we can rule out all placements for
708 * rectangle `index' which _don't_ contain
709 * square x,y.
710 */
711#ifdef SOLVER_DIAGNOSTICS
712 printf("square %d,%d can only be in rectangle %d\n",
713 x, y, index);
714#endif
715 for (j = 0; j < rectpositions[index].n; j++) {
716 struct rect *r = &rectpositions[index].rects[j];
717 if (x >= r->x && x < r->x + r->w &&
718 y >= r->y && y < r->y + r->h)
719 continue; /* this one is OK */
720 remove_rect_placement(w, h, rectpositions, overlaps,
721 index, j);
722 j--; /* don't skip over next placement */
723 done_something = TRUE;
724 }
725 }
726 }
727 }
728
729 /*
730 * If we've managed to deduce anything by normal means,
731 * loop round again and see if there's more to be done.
732 * Only if normal deduction has completely failed us should
733 * we now move on to narrowing down the possible number
734 * placements.
735 */
736 if (done_something)
737 continue;
738
739 /*
740 * Now we have done everything we can with the current set
741 * of number placements. So we need to winnow the number
742 * placements so as to narrow down the possibilities. We do
743 * this by searching for a candidate placement (of _any_
744 * rectangle) which overlaps a candidate placement of the
745 * number for some other rectangle.
746 */
1507058f 747 if (rs) {
26801d29 748 struct rpn {
749 int rect;
750 int placement;
751 int number;
752 } *rpns = NULL;
753 int nrpns = 0, rpnsize = 0;
754 int j;
755
756 for (i = 0; i < nrects; i++) {
757 for (j = 0; j < rectpositions[i].n; j++) {
758 int xx, yy;
759
760 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
761 int y = yy + rectpositions[i].rects[j].y;
762 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
763 int x = xx + rectpositions[i].rects[j].x;
764
765 if (rectbyplace[y * w + x] >= 0 &&
766 rectbyplace[y * w + x] != i) {
767 /*
768 * Add this to the list of
769 * winnowing possibilities.
770 */
771 if (nrpns >= rpnsize) {
772 rpnsize = rpnsize * 3 / 2 + 32;
773 rpns = sresize(rpns, rpnsize, struct rpn);
774 }
775 rpns[nrpns].rect = i;
776 rpns[nrpns].placement = j;
777 rpns[nrpns].number = rectbyplace[y * w + x];
778 nrpns++;
779 }
780 }
781 }
782
783 }
784 }
785
786#ifdef SOLVER_DIAGNOSTICS
787 printf("%d candidate rect placements we could eliminate\n", nrpns);
788#endif
789 if (nrpns > 0) {
790 /*
791 * Now choose one of these unwanted rectangle
792 * placements, and eliminate it.
793 */
794 int index = random_upto(rs, nrpns);
795 int k, m;
796 struct rpn rpn = rpns[index];
797 struct rect r;
798 sfree(rpns);
799
800 i = rpn.rect;
801 j = rpn.placement;
802 k = rpn.number;
803 r = rectpositions[i].rects[j];
804
805 /*
806 * We rule out placement j of rectangle i by means
807 * of removing all of rectangle k's candidate
808 * number placements which do _not_ overlap it.
809 * This will ensure that it is eliminated during
810 * the next pass of rectangle-focused deduction.
811 */
812#ifdef SOLVER_DIAGNOSTICS
813 printf("ensuring number for rect %d is within"
814 " rect %d's placement at %d,%d w=%d h=%d\n",
815 k, i, r.x, r.y, r.w, r.h);
816#endif
817
818 for (m = 0; m < numbers[k].npoints; m++) {
819 int x = numbers[k].points[m].x;
820 int y = numbers[k].points[m].y;
821
822 if (x < r.x || x >= r.x + r.w ||
823 y < r.y || y >= r.y + r.h) {
824#ifdef SOLVER_DIAGNOSTICS
825 printf("eliminating number for rect %d at %d,%d\n",
826 k, x, y);
827#endif
828 remove_number_placement(w, h, &numbers[k],
829 m, rectbyplace);
830 m--; /* don't skip the next one */
831 done_something = TRUE;
832 }
833 }
834 }
835 }
836
837 if (!done_something) {
838#ifdef SOLVER_DIAGNOSTICS
839 printf("terminating deduction loop\n");
840#endif
841 break;
842 }
843 }
844
845 ret = TRUE;
846 for (i = 0; i < nrects; i++) {
847#ifdef SOLVER_DIAGNOSTICS
848 printf("rect %d has %d possible placements\n",
849 i, rectpositions[i].n);
850#endif
851 assert(rectpositions[i].n > 0);
1507058f 852 if (rectpositions[i].n > 1) {
26801d29 853 ret = FALSE;
1507058f 854 } else if (result) {
855 /*
856 * Place the rectangle in its only possible position.
857 */
858 int x, y;
859 struct rect *r = &rectpositions[i].rects[0];
860
861 for (y = 0; y < r->h; y++) {
862 if (r->x > 0)
863 vedge(result, r->x, r->y+y) = 1;
864 if (r->x+r->w < result->w)
865 vedge(result, r->x+r->w, r->y+y) = 1;
866 }
867 for (x = 0; x < r->w; x++) {
868 if (r->y > 0)
869 hedge(result, r->x+x, r->y) = 1;
870 if (r->y+r->h < result->h)
871 hedge(result, r->x+x, r->y+r->h) = 1;
872 }
873 }
26801d29 874 }
875
876 /*
877 * Free up all allocated storage.
878 */
879 sfree(workspace);
880 sfree(rectbyplace);
881 sfree(overlaps);
882 for (i = 0; i < nrects; i++)
883 sfree(rectpositions[i].rects);
884 sfree(rectpositions);
885
886 return ret;
887}
888
889/* ----------------------------------------------------------------------
890 * Grid generation code.
891 */
892
3870c4d8 893static struct rectlist *get_rectlist(game_params *params, int *grid)
894{
895 int rw, rh;
896 int x, y;
897 int maxarea;
898 struct rect *rects = NULL;
899 int nrects = 0, rectsize = 0;
900
901 /*
d4e7900f 902 * Maximum rectangle area is 1/6 of total grid size, unless
903 * this means we can't place any rectangles at all in which
904 * case we set it to 2 at minimum.
3870c4d8 905 */
906 maxarea = params->w * params->h / 6;
d4e7900f 907 if (maxarea < 2)
908 maxarea = 2;
3870c4d8 909
910 for (rw = 1; rw <= params->w; rw++)
911 for (rh = 1; rh <= params->h; rh++) {
912 if (rw * rh > maxarea)
913 continue;
914 if (rw * rh == 1)
915 continue;
916 for (x = 0; x <= params->w - rw; x++)
917 for (y = 0; y <= params->h - rh; y++) {
3870c4d8 918 if (nrects >= rectsize) {
919 rectsize = nrects + 256;
920 rects = sresize(rects, rectsize, struct rect);
921 }
922
923 rects[nrects].x = x;
924 rects[nrects].y = y;
925 rects[nrects].w = rw;
926 rects[nrects].h = rh;
927 nrects++;
928 }
929 }
930
931 if (nrects > 0) {
932 struct rectlist *ret;
933 ret = snew(struct rectlist);
934 ret->rects = rects;
935 ret->n = nrects;
936 return ret;
937 } else {
938 assert(rects == NULL); /* hence no need to free */
939 return NULL;
940 }
941}
942
943static void free_rectlist(struct rectlist *list)
944{
945 sfree(list->rects);
946 sfree(list);
947}
948
949static void place_rect(game_params *params, int *grid, struct rect r)
950{
951 int idx = INDEX(params, r.x, r.y);
952 int x, y;
953
954 for (x = r.x; x < r.x+r.w; x++)
955 for (y = r.y; y < r.y+r.h; y++) {
956 index(params, grid, x, y) = idx;
957 }
958#ifdef GENERATION_DIAGNOSTICS
959 printf(" placing rectangle at (%d,%d) size %d x %d\n",
960 r.x, r.y, r.w, r.h);
961#endif
962}
963
964static struct rect find_rect(game_params *params, int *grid, int x, int y)
965{
966 int idx, w, h;
967 struct rect r;
968
969 /*
970 * Find the top left of the rectangle.
971 */
972 idx = index(params, grid, x, y);
973
974 if (idx < 0) {
975 r.x = x;
976 r.y = y;
977 r.w = r.h = 1;
978 return r; /* 1x1 singleton here */
979 }
980
981 y = idx / params->w;
982 x = idx % params->w;
983
984 /*
985 * Find the width and height of the rectangle.
986 */
987 for (w = 1;
988 (x+w < params->w && index(params,grid,x+w,y)==idx);
989 w++);
990 for (h = 1;
991 (y+h < params->h && index(params,grid,x,y+h)==idx);
992 h++);
993
994 r.x = x;
995 r.y = y;
996 r.w = w;
997 r.h = h;
998
999 return r;
1000}
1001
1002#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 1003static void display_grid(game_params *params, int *grid, int *numbers, int all)
3870c4d8 1004{
1005 unsigned char *egrid = snewn((params->w*2+3) * (params->h*2+3),
1006 unsigned char);
3870c4d8 1007 int x, y;
1008 int r = (params->w*2+3);
1009
aea3ed9a 1010 memset(egrid, 0, (params->w*2+3) * (params->h*2+3));
1011
3870c4d8 1012 for (x = 0; x < params->w; x++)
1013 for (y = 0; y < params->h; y++) {
1014 int i = index(params, grid, x, y);
1015 if (x == 0 || index(params, grid, x-1, y) != i)
1016 egrid[(2*y+2) * r + (2*x+1)] = 1;
1017 if (x == params->w-1 || index(params, grid, x+1, y) != i)
1018 egrid[(2*y+2) * r + (2*x+3)] = 1;
1019 if (y == 0 || index(params, grid, x, y-1) != i)
1020 egrid[(2*y+1) * r + (2*x+2)] = 1;
1021 if (y == params->h-1 || index(params, grid, x, y+1) != i)
1022 egrid[(2*y+3) * r + (2*x+2)] = 1;
1023 }
1024
1025 for (y = 1; y < 2*params->h+2; y++) {
1026 for (x = 1; x < 2*params->w+2; x++) {
1027 if (!((y|x)&1)) {
aea3ed9a 1028 int k = numbers ? index(params, numbers, x/2-1, y/2-1) : 0;
1029 if (k || (all && numbers)) printf("%2d", k); else printf(" ");
3870c4d8 1030 } else if (!((y&x)&1)) {
1031 int v = egrid[y*r+x];
1032 if ((y&1) && v) v = '-';
1033 if ((x&1) && v) v = '|';
1034 if (!v) v = ' ';
1035 putchar(v);
1036 if (!(x&1)) putchar(v);
1037 } else {
1038 int c, d = 0;
1039 if (egrid[y*r+(x+1)]) d |= 1;
1040 if (egrid[(y-1)*r+x]) d |= 2;
1041 if (egrid[y*r+(x-1)]) d |= 4;
1042 if (egrid[(y+1)*r+x]) d |= 8;
1043 c = " ??+?-++?+|+++++"[d];
1044 putchar(c);
1045 if (!(x&1)) putchar(c);
1046 }
1047 }
1048 putchar('\n');
1049 }
1050
1051 sfree(egrid);
1052}
1053#endif
1054
2ac6d24e 1055struct game_aux_info {
1056 int w, h;
1057 unsigned char *vedge; /* (w+1) x h */
1058 unsigned char *hedge; /* w x (h+1) */
1059};
1060
1185e3c5 1061static char *new_game_desc(game_params *params, random_state *rs,
6aa6af4c 1062 game_aux_info **aux, int interactive)
3870c4d8 1063{
26801d29 1064 int *grid, *numbers = NULL;
3870c4d8 1065 struct rectlist *list;
aea3ed9a 1066 int x, y, y2, y2last, yx, run, i;
1185e3c5 1067 char *desc, *p;
aea3ed9a 1068 game_params params2real, *params2 = &params2real;
3870c4d8 1069
26801d29 1070 while (1) {
1071 /*
1072 * Set up the smaller width and height which we will use to
1073 * generate the base grid.
1074 */
1075 params2->w = params->w / (1.0F + params->expandfactor);
1076 if (params2->w < 2 && params->w >= 2) params2->w = 2;
1077 params2->h = params->h / (1.0F + params->expandfactor);
1078 if (params2->h < 2 && params->h >= 2) params2->h = 2;
aea3ed9a 1079
26801d29 1080 grid = snewn(params2->w * params2->h, int);
3870c4d8 1081
26801d29 1082 for (y = 0; y < params2->h; y++)
1083 for (x = 0; x < params2->w; x++) {
1084 index(params2, grid, x, y) = -1;
1085 }
3870c4d8 1086
26801d29 1087 list = get_rectlist(params2, grid);
1088 assert(list != NULL);
3870c4d8 1089
1090 /*
26801d29 1091 * Place rectangles until we can't any more.
3870c4d8 1092 */
26801d29 1093 while (list->n > 0) {
1094 int i, m;
1095 struct rect r;
1096
1097 /*
1098 * Pick a random rectangle.
1099 */
1100 i = random_upto(rs, list->n);
1101 r = list->rects[i];
1102
1103 /*
1104 * Place it.
1105 */
1106 place_rect(params2, grid, r);
1107
1108 /*
1109 * Winnow the list by removing any rectangles which
1110 * overlap this one.
1111 */
1112 m = 0;
1113 for (i = 0; i < list->n; i++) {
1114 struct rect s = list->rects[i];
1115 if (s.x+s.w <= r.x || r.x+r.w <= s.x ||
1116 s.y+s.h <= r.y || r.y+r.h <= s.y)
1117 list->rects[m++] = s;
1118 }
1119 list->n = m;
1120 }
3870c4d8 1121
26801d29 1122 free_rectlist(list);
3870c4d8 1123
1124 /*
26801d29 1125 * Deal with singleton spaces remaining in the grid, one by
1126 * one.
1127 *
1128 * We do this by making a local change to the layout. There are
1129 * several possibilities:
1130 *
1131 * +-----+-----+ Here, we can remove the singleton by
1132 * | | | extending the 1x2 rectangle below it
1133 * +--+--+-----+ into a 1x3.
1134 * | | | |
1135 * | +--+ |
1136 * | | | |
1137 * | | | |
1138 * | | | |
1139 * +--+--+-----+
1140 *
1141 * +--+--+--+ Here, that trick doesn't work: there's no
1142 * | | | 1 x n rectangle with the singleton at one
1143 * | | | end. Instead, we extend a 1 x n rectangle
1144 * | | | _out_ from the singleton, shaving a layer
1145 * +--+--+ | off the end of another rectangle. So if we
1146 * | | | | extended up, we'd make our singleton part
1147 * | +--+--+ of a 1x3 and generate a 1x2 where the 2x2
1148 * | | | used to be; or we could extend right into
1149 * +--+-----+ a 2x1, turning the 1x3 into a 1x2.
1150 *
1151 * +-----+--+ Here, we can't even do _that_, since any
1152 * | | | direction we choose to extend the singleton
1153 * +--+--+ | will produce a new singleton as a result of
1154 * | | | | truncating one of the size-2 rectangles.
1155 * | +--+--+ Fortunately, this case can _only_ occur when
1156 * | | | a singleton is surrounded by four size-2s
1157 * +--+-----+ in this fashion; so instead we can simply
1158 * replace the whole section with a single 3x3.
3870c4d8 1159 */
26801d29 1160 for (x = 0; x < params2->w; x++) {
1161 for (y = 0; y < params2->h; y++) {
1162 if (index(params2, grid, x, y) < 0) {
1163 int dirs[4], ndirs;
3870c4d8 1164
1165#ifdef GENERATION_DIAGNOSTICS
26801d29 1166 display_grid(params2, grid, NULL, FALSE);
1167 printf("singleton at %d,%d\n", x, y);
3870c4d8 1168#endif
1169
26801d29 1170 /*
1171 * Check in which directions we can feasibly extend
1172 * the singleton. We can extend in a particular
1173 * direction iff either:
1174 *
1175 * - the rectangle on that side of the singleton
1176 * is not 2x1, and we are at one end of the edge
1177 * of it we are touching
1178 *
1179 * - it is 2x1 but we are on its short side.
1180 *
1181 * FIXME: we could plausibly choose between these
1182 * based on the sizes of the rectangles they would
1183 * create?
1184 */
1185 ndirs = 0;
1186 if (x < params2->w-1) {
1187 struct rect r = find_rect(params2, grid, x+1, y);
1188 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1189 dirs[ndirs++] = 1; /* right */
1190 }
1191 if (y > 0) {
1192 struct rect r = find_rect(params2, grid, x, y-1);
1193 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1194 dirs[ndirs++] = 2; /* up */
1195 }
1196 if (x > 0) {
1197 struct rect r = find_rect(params2, grid, x-1, y);
1198 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1199 dirs[ndirs++] = 4; /* left */
1200 }
1201 if (y < params2->h-1) {
1202 struct rect r = find_rect(params2, grid, x, y+1);
1203 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1204 dirs[ndirs++] = 8; /* down */
1205 }
3870c4d8 1206
26801d29 1207 if (ndirs > 0) {
1208 int which, dir;
1209 struct rect r1, r2;
3870c4d8 1210
26801d29 1211 which = random_upto(rs, ndirs);
1212 dir = dirs[which];
3870c4d8 1213
26801d29 1214 switch (dir) {
1215 case 1: /* right */
1216 assert(x < params2->w+1);
3870c4d8 1217#ifdef GENERATION_DIAGNOSTICS
26801d29 1218 printf("extending right\n");
3870c4d8 1219#endif
26801d29 1220 r1 = find_rect(params2, grid, x+1, y);
1221 r2.x = x;
1222 r2.y = y;
1223 r2.w = 1 + r1.w;
1224 r2.h = 1;
1225 if (r1.y == y)
1226 r1.y++;
1227 r1.h--;
1228 break;
1229 case 2: /* up */
1230 assert(y > 0);
3870c4d8 1231#ifdef GENERATION_DIAGNOSTICS
26801d29 1232 printf("extending up\n");
3870c4d8 1233#endif
26801d29 1234 r1 = find_rect(params2, grid, x, y-1);
1235 r2.x = x;
1236 r2.y = r1.y;
1237 r2.w = 1;
1238 r2.h = 1 + r1.h;
1239 if (r1.x == x)
1240 r1.x++;
1241 r1.w--;
1242 break;
1243 case 4: /* left */
1244 assert(x > 0);
3870c4d8 1245#ifdef GENERATION_DIAGNOSTICS
26801d29 1246 printf("extending left\n");
3870c4d8 1247#endif
26801d29 1248 r1 = find_rect(params2, grid, x-1, y);
1249 r2.x = r1.x;
1250 r2.y = y;
1251 r2.w = 1 + r1.w;
1252 r2.h = 1;
1253 if (r1.y == y)
1254 r1.y++;
1255 r1.h--;
1256 break;
1257 case 8: /* down */
1258 assert(y < params2->h+1);
3870c4d8 1259#ifdef GENERATION_DIAGNOSTICS
26801d29 1260 printf("extending down\n");
3870c4d8 1261#endif
26801d29 1262 r1 = find_rect(params2, grid, x, y+1);
1263 r2.x = x;
1264 r2.y = y;
1265 r2.w = 1;
1266 r2.h = 1 + r1.h;
1267 if (r1.x == x)
1268 r1.x++;
1269 r1.w--;
1270 break;
1271 }
1272 if (r1.h > 0 && r1.w > 0)
1273 place_rect(params2, grid, r1);
1274 place_rect(params2, grid, r2);
1275 } else {
3870c4d8 1276#ifndef NDEBUG
26801d29 1277 /*
1278 * Sanity-check that there really is a 3x3
1279 * rectangle surrounding this singleton and it
1280 * contains absolutely everything we could
1281 * possibly need.
1282 */
1283 {
1284 int xx, yy;
1285 assert(x > 0 && x < params2->w-1);
1286 assert(y > 0 && y < params2->h-1);
1287
1288 for (xx = x-1; xx <= x+1; xx++)
1289 for (yy = y-1; yy <= y+1; yy++) {
1290 struct rect r = find_rect(params2,grid,xx,yy);
1291 assert(r.x >= x-1);
1292 assert(r.y >= y-1);
1293 assert(r.x+r.w-1 <= x+1);
1294 assert(r.y+r.h-1 <= y+1);
1295 }
1296 }
3870c4d8 1297#endif
26801d29 1298
3870c4d8 1299#ifdef GENERATION_DIAGNOSTICS
26801d29 1300 printf("need the 3x3 trick\n");
3870c4d8 1301#endif
1302
26801d29 1303 /*
1304 * FIXME: If the maximum rectangle area for
1305 * this grid is less than 9, we ought to
1306 * subdivide the 3x3 in some fashion. There are
1307 * five other possibilities:
1308 *
1309 * - a 6 and a 3
1310 * - a 4, a 3 and a 2
1311 * - three 3s
1312 * - a 3 and three 2s (two different arrangements).
1313 */
1314
1315 {
1316 struct rect r;
1317 r.x = x-1;
1318 r.y = y-1;
1319 r.w = r.h = 3;
1320 place_rect(params2, grid, r);
1321 }
3870c4d8 1322 }
1323 }
1324 }
1325 }
3870c4d8 1326
26801d29 1327 /*
1328 * We have now constructed a grid of the size specified in
1329 * params2. Now we extend it into a grid of the size specified
1330 * in params. We do this in two passes: we extend it vertically
1331 * until it's the right height, then we transpose it, then
1332 * extend it vertically again (getting it effectively the right
1333 * width), then finally transpose again.
1334 */
1335 for (i = 0; i < 2; i++) {
1336 int *grid2, *expand, *where;
1337 game_params params3real, *params3 = &params3real;
aea3ed9a 1338
1339#ifdef GENERATION_DIAGNOSTICS
26801d29 1340 printf("before expansion:\n");
1341 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1342#endif
1343
26801d29 1344 /*
1345 * Set up the new grid.
1346 */
1347 grid2 = snewn(params2->w * params->h, int);
1348 expand = snewn(params2->h-1, int);
1349 where = snewn(params2->w, int);
1350 params3->w = params2->w;
1351 params3->h = params->h;
1352
1353 /*
1354 * Decide which horizontal edges are going to get expanded,
1355 * and by how much.
1356 */
1357 for (y = 0; y < params2->h-1; y++)
1358 expand[y] = 0;
1359 for (y = params2->h; y < params->h; y++) {
1360 x = random_upto(rs, params2->h-1);
1361 expand[x]++;
1362 }
aea3ed9a 1363
1364#ifdef GENERATION_DIAGNOSTICS
26801d29 1365 printf("expand[] = {");
1366 for (y = 0; y < params2->h-1; y++)
1367 printf(" %d", expand[y]);
1368 printf(" }\n");
aea3ed9a 1369#endif
1370
26801d29 1371 /*
1372 * Perform the expansion. The way this works is that we
1373 * alternately:
1374 *
1375 * - copy a row from grid into grid2
1376 *
1377 * - invent some number of additional rows in grid2 where
1378 * there was previously only a horizontal line between
1379 * rows in grid, and make random decisions about where
1380 * among these to place each rectangle edge that ran
1381 * along this line.
1382 */
1383 for (y = y2 = y2last = 0; y < params2->h; y++) {
1384 /*
1385 * Copy a single line from row y of grid into row y2 of
1386 * grid2.
1387 */
1388 for (x = 0; x < params2->w; x++) {
1389 int val = index(params2, grid, x, y);
1390 if (val / params2->w == y && /* rect starts on this line */
1391 (y2 == 0 || /* we're at the very top, or... */
1392 index(params3, grid2, x, y2-1) / params3->w < y2last
1393 /* this rect isn't already started */))
1394 index(params3, grid2, x, y2) =
1395 INDEX(params3, val % params2->w, y2);
1396 else
1397 index(params3, grid2, x, y2) =
1398 index(params3, grid2, x, y2-1);
1399 }
1400
1401 /*
1402 * If that was the last line, terminate the loop early.
1403 */
1404 if (++y2 == params3->h)
1405 break;
1406
1407 y2last = y2;
1408
1409 /*
1410 * Invent some number of additional lines. First walk
1411 * along this line working out where to put all the
1412 * edges that coincide with it.
1413 */
1414 yx = -1;
1415 for (x = 0; x < params2->w; x++) {
1416 if (index(params2, grid, x, y) !=
1417 index(params2, grid, x, y+1)) {
1418 /*
1419 * This is a horizontal edge, so it needs
1420 * placing.
1421 */
1422 if (x == 0 ||
1423 (index(params2, grid, x-1, y) !=
1424 index(params2, grid, x, y) &&
1425 index(params2, grid, x-1, y+1) !=
1426 index(params2, grid, x, y+1))) {
1427 /*
1428 * Here we have the chance to make a new
1429 * decision.
1430 */
1431 yx = random_upto(rs, expand[y]+1);
1432 } else {
1433 /*
1434 * Here we just reuse the previous value of
1435 * yx.
1436 */
1437 }
1438 } else
1439 yx = -1;
1440 where[x] = yx;
1441 }
1442
1443 for (yx = 0; yx < expand[y]; yx++) {
1444 /*
1445 * Invent a single row. For each square in the row,
1446 * we copy the grid entry from the square above it,
1447 * unless we're starting the new rectangle here.
1448 */
1449 for (x = 0; x < params2->w; x++) {
1450 if (yx == where[x]) {
1451 int val = index(params2, grid, x, y+1);
1452 val %= params2->w;
1453 val = INDEX(params3, val, y2);
1454 index(params3, grid2, x, y2) = val;
1455 } else
1456 index(params3, grid2, x, y2) =
1457 index(params3, grid2, x, y2-1);
1458 }
1459
1460 y2++;
1461 }
1462 }
1463
1464 sfree(expand);
1465 sfree(where);
aea3ed9a 1466
1467#ifdef GENERATION_DIAGNOSTICS
26801d29 1468 printf("after expansion:\n");
1469 display_grid(params3, grid2, NULL, TRUE);
aea3ed9a 1470#endif
26801d29 1471 /*
1472 * Transpose.
1473 */
1474 params2->w = params3->h;
1475 params2->h = params3->w;
1476 sfree(grid);
1477 grid = snewn(params2->w * params2->h, int);
1478 for (x = 0; x < params2->w; x++)
1479 for (y = 0; y < params2->h; y++) {
1480 int idx1 = INDEX(params2, x, y);
1481 int idx2 = INDEX(params3, y, x);
1482 int tmp;
1483
1484 tmp = grid2[idx2];
1485 tmp = (tmp % params3->w) * params2->w + (tmp / params3->w);
1486 grid[idx1] = tmp;
1487 }
1488
1489 sfree(grid2);
1490
1491 {
1492 int tmp;
1493 tmp = params->w;
1494 params->w = params->h;
1495 params->h = tmp;
1496 }
aea3ed9a 1497
1498#ifdef GENERATION_DIAGNOSTICS
26801d29 1499 printf("after transposition:\n");
1500 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1501#endif
26801d29 1502 }
aea3ed9a 1503
26801d29 1504 /*
1505 * Run the solver to narrow down the possible number
1506 * placements.
1507 */
1508 {
1509 struct numberdata *nd;
1510 int nnumbers, i, ret;
1511
1512 /* Count the rectangles. */
1513 nnumbers = 0;
1514 for (y = 0; y < params->h; y++) {
1515 for (x = 0; x < params->w; x++) {
1516 int idx = INDEX(params, x, y);
1517 if (index(params, grid, x, y) == idx)
1518 nnumbers++;
1519 }
1520 }
2ac6d24e 1521
26801d29 1522 nd = snewn(nnumbers, struct numberdata);
1523
1524 /* Now set up each number's candidate position list. */
1525 i = 0;
1526 for (y = 0; y < params->h; y++) {
1527 for (x = 0; x < params->w; x++) {
1528 int idx = INDEX(params, x, y);
1529 if (index(params, grid, x, y) == idx) {
1530 struct rect r = find_rect(params, grid, x, y);
1531 int j, k, m;
1532
1533 nd[i].area = r.w * r.h;
1534 nd[i].npoints = nd[i].area;
1535 nd[i].points = snewn(nd[i].npoints, struct point);
1536 m = 0;
1537 for (j = 0; j < r.h; j++)
1538 for (k = 0; k < r.w; k++) {
1539 nd[i].points[m].x = k + r.x;
1540 nd[i].points[m].y = j + r.y;
1541 m++;
1542 }
1543 assert(m == nd[i].npoints);
aea3ed9a 1544
26801d29 1545 i++;
1546 }
1547 }
1548 }
aea3ed9a 1549
40fde884 1550 if (params->unique)
1507058f 1551 ret = rect_solver(params->w, params->h, nnumbers, nd,
1552 NULL, rs);
40fde884 1553 else
1554 ret = TRUE; /* allow any number placement at all */
3870c4d8 1555
26801d29 1556 if (ret) {
3870c4d8 1557 /*
26801d29 1558 * Now place the numbers according to the solver's
1559 * recommendations.
3870c4d8 1560 */
26801d29 1561 numbers = snewn(params->w * params->h, int);
1562
1563 for (y = 0; y < params->h; y++)
1564 for (x = 0; x < params->w; x++) {
1565 index(params, numbers, x, y) = 0;
1566 }
1567
1568 for (i = 0; i < nnumbers; i++) {
1569 int idx = random_upto(rs, nd[i].npoints);
1570 int x = nd[i].points[idx].x;
1571 int y = nd[i].points[idx].y;
1572 index(params,numbers,x,y) = nd[i].area;
1573 }
3870c4d8 1574 }
26801d29 1575
1576 /*
1577 * Clean up.
1578 */
1579 for (i = 0; i < nnumbers; i++)
1580 sfree(nd[i].points);
1581 sfree(nd);
1582
1583 /*
1584 * If we've succeeded, then terminate the loop.
1585 */
1586 if (ret)
1587 break;
3870c4d8 1588 }
26801d29 1589
1590 /*
1591 * Give up and go round again.
1592 */
1593 sfree(grid);
1594 }
1595
1596 /*
1597 * Store the rectangle data in the game_aux_info.
1598 */
1599 {
1600 game_aux_info *ai = snew(game_aux_info);
1601
1602 ai->w = params->w;
1603 ai->h = params->h;
1604 ai->vedge = snewn(ai->w * ai->h, unsigned char);
1605 ai->hedge = snewn(ai->w * ai->h, unsigned char);
1606
1607 for (y = 0; y < params->h; y++)
1608 for (x = 1; x < params->w; x++) {
1609 vedge(ai, x, y) =
1610 index(params, grid, x, y) != index(params, grid, x-1, y);
1611 }
1612 for (y = 1; y < params->h; y++)
1613 for (x = 0; x < params->w; x++) {
1614 hedge(ai, x, y) =
1615 index(params, grid, x, y) != index(params, grid, x, y-1);
1616 }
1617
1618 *aux = ai;
3870c4d8 1619 }
1620
1621#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 1622 display_grid(params, grid, numbers, FALSE);
3870c4d8 1623#endif
1624
1185e3c5 1625 desc = snewn(11 * params->w * params->h, char);
1626 p = desc;
3870c4d8 1627 run = 0;
1628 for (i = 0; i <= params->w * params->h; i++) {
1629 int n = (i < params->w * params->h ? numbers[i] : -1);
1630
1631 if (!n)
1632 run++;
1633 else {
1634 if (run) {
1635 while (run > 0) {
1636 int c = 'a' - 1 + run;
1637 if (run > 26)
1638 c = 'z';
1639 *p++ = c;
1640 run -= c - ('a' - 1);
1641 }
1642 } else {
0e87eedc 1643 /*
1644 * If there's a number in the very top left or
1645 * bottom right, there's no point putting an
1646 * unnecessary _ before or after it.
1647 */
1185e3c5 1648 if (p > desc && n > 0)
0e87eedc 1649 *p++ = '_';
3870c4d8 1650 }
1651 if (n > 0)
1652 p += sprintf(p, "%d", n);
1653 run = 0;
1654 }
1655 }
1656 *p = '\0';
1657
1658 sfree(grid);
1659 sfree(numbers);
1660
1185e3c5 1661 return desc;
3870c4d8 1662}
1663
2ac6d24e 1664static void game_free_aux_info(game_aux_info *ai)
6f2d8d7c 1665{
2ac6d24e 1666 sfree(ai->vedge);
1667 sfree(ai->hedge);
1668 sfree(ai);
6f2d8d7c 1669}
1670
1185e3c5 1671static char *validate_desc(game_params *params, char *desc)
3870c4d8 1672{
1673 int area = params->w * params->h;
1674 int squares = 0;
1675
1185e3c5 1676 while (*desc) {
1677 int n = *desc++;
3870c4d8 1678 if (n >= 'a' && n <= 'z') {
1679 squares += n - 'a' + 1;
1680 } else if (n == '_') {
1681 /* do nothing */;
1682 } else if (n > '0' && n <= '9') {
9bb5bf60 1683 squares++;
1185e3c5 1684 while (*desc >= '0' && *desc <= '9')
1685 desc++;
3870c4d8 1686 } else
1185e3c5 1687 return "Invalid character in game description";
3870c4d8 1688 }
1689
1690 if (squares < area)
1691 return "Not enough data to fill grid";
1692
1693 if (squares > area)
1694 return "Too much data to fit in grid";
1695
1696 return NULL;
1697}
1698
c380832d 1699static game_state *new_game(midend_data *me, game_params *params, char *desc)
3870c4d8 1700{
1701 game_state *state = snew(game_state);
1702 int x, y, i, area;
1703
1704 state->w = params->w;
1705 state->h = params->h;
1706
1707 area = state->w * state->h;
1708
1709 state->grid = snewn(area, int);
1710 state->vedge = snewn(area, unsigned char);
1711 state->hedge = snewn(area, unsigned char);
2ac6d24e 1712 state->completed = state->cheated = FALSE;
3870c4d8 1713
1714 i = 0;
1185e3c5 1715 while (*desc) {
1716 int n = *desc++;
3870c4d8 1717 if (n >= 'a' && n <= 'z') {
1718 int run = n - 'a' + 1;
1719 assert(i + run <= area);
1720 while (run-- > 0)
1721 state->grid[i++] = 0;
1722 } else if (n == '_') {
1723 /* do nothing */;
1724 } else if (n > '0' && n <= '9') {
1725 assert(i < area);
1185e3c5 1726 state->grid[i++] = atoi(desc-1);
1727 while (*desc >= '0' && *desc <= '9')
1728 desc++;
3870c4d8 1729 } else {
1730 assert(!"We can't get here");
1731 }
1732 }
1733 assert(i == area);
1734
1735 for (y = 0; y < state->h; y++)
1736 for (x = 0; x < state->w; x++)
1737 vedge(state,x,y) = hedge(state,x,y) = 0;
1738
1739 return state;
1740}
1741
be8d5aa1 1742static game_state *dup_game(game_state *state)
3870c4d8 1743{
1744 game_state *ret = snew(game_state);
1745
1746 ret->w = state->w;
1747 ret->h = state->h;
1748
1749 ret->vedge = snewn(state->w * state->h, unsigned char);
1750 ret->hedge = snewn(state->w * state->h, unsigned char);
1751 ret->grid = snewn(state->w * state->h, int);
1752
ef29354c 1753 ret->completed = state->completed;
2ac6d24e 1754 ret->cheated = state->cheated;
ef29354c 1755
3870c4d8 1756 memcpy(ret->grid, state->grid, state->w * state->h * sizeof(int));
1757 memcpy(ret->vedge, state->vedge, state->w*state->h*sizeof(unsigned char));
1758 memcpy(ret->hedge, state->hedge, state->w*state->h*sizeof(unsigned char));
1759
1760 return ret;
1761}
1762
be8d5aa1 1763static void free_game(game_state *state)
3870c4d8 1764{
1765 sfree(state->grid);
1766 sfree(state->vedge);
1767 sfree(state->hedge);
1768 sfree(state);
1769}
1770
2ac6d24e 1771static game_state *solve_game(game_state *state, game_aux_info *ai,
1772 char **error)
1773{
1774 game_state *ret;
1775
1776 if (!ai) {
1507058f 1777 int i, j, n;
1778 struct numberdata *nd;
1779
1780 /*
1781 * Attempt the in-built solver.
1782 */
1783
1784 /* Set up each number's (very short) candidate position list. */
1785 for (i = n = 0; i < state->h * state->w; i++)
1786 if (state->grid[i])
1787 n++;
1788
1789 nd = snewn(n, struct numberdata);
1790
1791 for (i = j = 0; i < state->h * state->w; i++)
1792 if (state->grid[i]) {
1793 nd[j].area = state->grid[i];
1794 nd[j].npoints = 1;
1795 nd[j].points = snewn(1, struct point);
1796 nd[j].points[0].x = i % state->w;
1797 nd[j].points[0].y = i / state->w;
1798 j++;
1799 }
1800
1801 assert(j == n);
1802
1803 ret = dup_game(state);
1804 ret->cheated = TRUE;
1805
1806 rect_solver(state->w, state->h, n, nd, ret, NULL);
1807
1808 /*
1809 * Clean up.
1810 */
1811 for (i = 0; i < n; i++)
1812 sfree(nd[i].points);
1813 sfree(nd);
1814
1815 return ret;
2ac6d24e 1816 }
1817
1818 assert(state->w == ai->w);
1819 assert(state->h == ai->h);
1820
1821 ret = dup_game(state);
1822 memcpy(ret->vedge, ai->vedge, ai->w * ai->h * sizeof(unsigned char));
1823 memcpy(ret->hedge, ai->hedge, ai->w * ai->h * sizeof(unsigned char));
1824 ret->cheated = TRUE;
1825
1826 return ret;
1827}
1828
9b4b03d3 1829static char *game_text_format(game_state *state)
1830{
6ad5ed74 1831 char *ret, *p, buf[80];
1832 int i, x, y, col, maxlen;
1833
1834 /*
1835 * First determine the number of spaces required to display a
1836 * number. We'll use at least two, because one looks a bit
1837 * silly.
1838 */
1839 col = 2;
1840 for (i = 0; i < state->w * state->h; i++) {
1841 x = sprintf(buf, "%d", state->grid[i]);
1842 if (col < x) col = x;
1843 }
1844
1845 /*
1846 * Now we know the exact total size of the grid we're going to
1847 * produce: it's got 2*h+1 rows, each containing w lots of col,
1848 * w+1 boundary characters and a trailing newline.
1849 */
1850 maxlen = (2*state->h+1) * (state->w * (col+1) + 2);
1851
48a10826 1852 ret = snewn(maxlen+1, char);
6ad5ed74 1853 p = ret;
1854
1855 for (y = 0; y <= 2*state->h; y++) {
1856 for (x = 0; x <= 2*state->w; x++) {
1857 if (x & y & 1) {
1858 /*
1859 * Display a number.
1860 */
1861 int v = grid(state, x/2, y/2);
1862 if (v)
1863 sprintf(buf, "%*d", col, v);
1864 else
1865 sprintf(buf, "%*s", col, "");
1866 memcpy(p, buf, col);
1867 p += col;
1868 } else if (x & 1) {
1869 /*
1870 * Display a horizontal edge or nothing.
1871 */
1872 int h = (y==0 || y==2*state->h ? 1 :
1873 HRANGE(state, x/2, y/2) && hedge(state, x/2, y/2));
1874 int i;
1875 if (h)
1876 h = '-';
1877 else
1878 h = ' ';
1879 for (i = 0; i < col; i++)
1880 *p++ = h;
1881 } else if (y & 1) {
1882 /*
1883 * Display a vertical edge or nothing.
1884 */
1885 int v = (x==0 || x==2*state->w ? 1 :
1886 VRANGE(state, x/2, y/2) && vedge(state, x/2, y/2));
1887 if (v)
1888 *p++ = '|';
1889 else
1890 *p++ = ' ';
1891 } else {
1892 /*
1893 * Display a corner, or a vertical edge, or a
1894 * horizontal edge, or nothing.
1895 */
1896 int hl = (y==0 || y==2*state->h ? 1 :
1897 HRANGE(state, (x-1)/2, y/2) && hedge(state, (x-1)/2, y/2));
1898 int hr = (y==0 || y==2*state->h ? 1 :
1899 HRANGE(state, (x+1)/2, y/2) && hedge(state, (x+1)/2, y/2));
1900 int vu = (x==0 || x==2*state->w ? 1 :
1901 VRANGE(state, x/2, (y-1)/2) && vedge(state, x/2, (y-1)/2));
1902 int vd = (x==0 || x==2*state->w ? 1 :
1903 VRANGE(state, x/2, (y+1)/2) && vedge(state, x/2, (y+1)/2));
1904 if (!hl && !hr && !vu && !vd)
1905 *p++ = ' ';
1906 else if (hl && hr && !vu && !vd)
1907 *p++ = '-';
1908 else if (!hl && !hr && vu && vd)
1909 *p++ = '|';
1910 else
1911 *p++ = '+';
1912 }
1913 }
1914 *p++ = '\n';
1915 }
1916
1917 assert(p - ret == maxlen);
1918 *p = '\0';
1919 return ret;
9b4b03d3 1920}
1921
3870c4d8 1922static unsigned char *get_correct(game_state *state)
1923{
1924 unsigned char *ret;
1925 int x, y;
1926
1927 ret = snewn(state->w * state->h, unsigned char);
1928 memset(ret, 0xFF, state->w * state->h);
1929
1930 for (x = 0; x < state->w; x++)
1931 for (y = 0; y < state->h; y++)
1932 if (index(state,ret,x,y) == 0xFF) {
1933 int rw, rh;
1934 int xx, yy;
1935 int num, area, valid;
1936
1937 /*
1938 * Find a rectangle starting at this point.
1939 */
1940 rw = 1;
1941 while (x+rw < state->w && !vedge(state,x+rw,y))
1942 rw++;
1943 rh = 1;
1944 while (y+rh < state->h && !hedge(state,x,y+rh))
1945 rh++;
1946
1947 /*
1948 * We know what the dimensions of the rectangle
1949 * should be if it's there at all. Find out if we
1950 * really have a valid rectangle.
1951 */
1952 valid = TRUE;
1953 /* Check the horizontal edges. */
1954 for (xx = x; xx < x+rw; xx++) {
1955 for (yy = y; yy <= y+rh; yy++) {
1956 int e = !HRANGE(state,xx,yy) || hedge(state,xx,yy);
1957 int ec = (yy == y || yy == y+rh);
1958 if (e != ec)
1959 valid = FALSE;
1960 }
1961 }
1962 /* Check the vertical edges. */
1963 for (yy = y; yy < y+rh; yy++) {
1964 for (xx = x; xx <= x+rw; xx++) {
1965 int e = !VRANGE(state,xx,yy) || vedge(state,xx,yy);
1966 int ec = (xx == x || xx == x+rw);
1967 if (e != ec)
1968 valid = FALSE;
1969 }
1970 }
1971
1972 /*
1973 * If this is not a valid rectangle with no other
1974 * edges inside it, we just mark this square as not
1975 * complete and proceed to the next square.
1976 */
1977 if (!valid) {
1978 index(state, ret, x, y) = 0;
1979 continue;
1980 }
1981
1982 /*
1983 * We have a rectangle. Now see what its area is,
1984 * and how many numbers are in it.
1985 */
1986 num = 0;
1987 area = 0;
1988 for (xx = x; xx < x+rw; xx++) {
1989 for (yy = y; yy < y+rh; yy++) {
1990 area++;
1991 if (grid(state,xx,yy)) {
1992 if (num > 0)
1993 valid = FALSE; /* two numbers */
1994 num = grid(state,xx,yy);
1995 }
1996 }
1997 }
1998 if (num != area)
1999 valid = FALSE;
2000
2001 /*
2002 * Now fill in the whole rectangle based on the
2003 * value of `valid'.
2004 */
2005 for (xx = x; xx < x+rw; xx++) {
2006 for (yy = y; yy < y+rh; yy++) {
2007 index(state, ret, xx, yy) = valid;
2008 }
2009 }
2010 }
2011
2012 return ret;
2013}
2014
08dd70c3 2015struct game_ui {
2016 /*
2017 * These coordinates are 2 times the obvious grid coordinates.
2018 * Hence, the top left of the grid is (0,0), the grid point to
2019 * the right of that is (2,0), the one _below that_ is (2,2)
2020 * and so on. This is so that we can specify a drag start point
2021 * on an edge (one odd coordinate) or in the middle of a square
2022 * (two odd coordinates) rather than always at a corner.
2023 *
2024 * -1,-1 means no drag is in progress.
2025 */
2026 int drag_start_x;
2027 int drag_start_y;
2028 int drag_end_x;
2029 int drag_end_y;
2030 /*
2031 * This flag is set as soon as a dragging action moves the
2032 * mouse pointer away from its starting point, so that even if
2033 * the pointer _returns_ to its starting point the action is
2034 * treated as a small drag rather than a click.
2035 */
2036 int dragged;
2037};
2038
be8d5aa1 2039static game_ui *new_ui(game_state *state)
74a4e547 2040{
08dd70c3 2041 game_ui *ui = snew(game_ui);
2042 ui->drag_start_x = -1;
2043 ui->drag_start_y = -1;
2044 ui->drag_end_x = -1;
2045 ui->drag_end_y = -1;
2046 ui->dragged = FALSE;
2047 return ui;
74a4e547 2048}
2049
be8d5aa1 2050static void free_ui(game_ui *ui)
74a4e547 2051{
08dd70c3 2052 sfree(ui);
2053}
2054
be8d5aa1 2055static void coord_round(float x, float y, int *xr, int *yr)
08dd70c3 2056{
d4e7900f 2057 float xs, ys, xv, yv, dx, dy, dist;
08dd70c3 2058
2059 /*
d4e7900f 2060 * Find the nearest square-centre.
08dd70c3 2061 */
d4e7900f 2062 xs = (float)floor(x) + 0.5F;
2063 ys = (float)floor(y) + 0.5F;
08dd70c3 2064
2065 /*
d4e7900f 2066 * And find the nearest grid vertex.
08dd70c3 2067 */
d4e7900f 2068 xv = (float)floor(x + 0.5F);
2069 yv = (float)floor(y + 0.5F);
08dd70c3 2070
2071 /*
d4e7900f 2072 * We allocate clicks in parts of the grid square to either
2073 * corners, edges or square centres, as follows:
2074 *
2075 * +--+--------+--+
2076 * | | | |
2077 * +--+ +--+
2078 * | `. ,' |
2079 * | +--+ |
2080 * | | | |
2081 * | +--+ |
2082 * | ,' `. |
2083 * +--+ +--+
2084 * | | | |
2085 * +--+--------+--+
2086 *
2087 * (Not to scale!)
2088 *
2089 * In other words: we measure the square distance (i.e.
2090 * max(dx,dy)) from the click to the nearest corner, and if
2091 * it's within CORNER_TOLERANCE then we return a corner click.
2092 * We measure the square distance from the click to the nearest
2093 * centre, and if that's within CENTRE_TOLERANCE we return a
2094 * centre click. Failing that, we find which of the two edge
2095 * centres is nearer to the click and return that edge.
08dd70c3 2096 */
d4e7900f 2097
2098 /*
2099 * Check for corner click.
2100 */
2101 dx = (float)fabs(x - xv);
2102 dy = (float)fabs(y - yv);
2103 dist = (dx > dy ? dx : dy);
2104 if (dist < CORNER_TOLERANCE) {
2105 *xr = 2 * (int)xv;
2106 *yr = 2 * (int)yv;
2107 } else {
2108 /*
2109 * Check for centre click.
2110 */
2111 dx = (float)fabs(x - xs);
2112 dy = (float)fabs(y - ys);
2113 dist = (dx > dy ? dx : dy);
2114 if (dist < CENTRE_TOLERANCE) {
2115 *xr = 1 + 2 * (int)xs;
2116 *yr = 1 + 2 * (int)ys;
2117 } else {
2118 /*
2119 * Failing both of those, see which edge we're closer to.
2120 * Conveniently, this is simply done by testing the relative
2121 * magnitude of dx and dy (which are currently distances from
2122 * the square centre).
2123 */
2124 if (dx > dy) {
2125 /* Vertical edge: x-coord of corner,
2126 * y-coord of square centre. */
2127 *xr = 2 * (int)xv;
2128 *yr = 1 + 2 * (int)ys;
2129 } else {
2130 /* Horizontal edge: x-coord of square centre,
2131 * y-coord of corner. */
2132 *xr = 1 + 2 * (int)xs;
2133 *yr = 2 * (int)yv;
2134 }
2135 }
2136 }
08dd70c3 2137}
2138
2139static void ui_draw_rect(game_state *state, game_ui *ui,
2140 unsigned char *hedge, unsigned char *vedge, int c)
2141{
2142 int x1, x2, y1, y2, x, y, t;
2143
2144 x1 = ui->drag_start_x;
2145 x2 = ui->drag_end_x;
2146 if (x2 < x1) { t = x1; x1 = x2; x2 = t; }
2147
2148 y1 = ui->drag_start_y;
2149 y2 = ui->drag_end_y;
2150 if (y2 < y1) { t = y1; y1 = y2; y2 = t; }
2151
2152 x1 = x1 / 2; /* rounds down */
2153 x2 = (x2+1) / 2; /* rounds up */
2154 y1 = y1 / 2; /* rounds down */
2155 y2 = (y2+1) / 2; /* rounds up */
2156
2157 /*
2158 * Draw horizontal edges of rectangles.
2159 */
2160 for (x = x1; x < x2; x++)
2161 for (y = y1; y <= y2; y++)
2162 if (HRANGE(state,x,y)) {
2163 int val = index(state,hedge,x,y);
2164 if (y == y1 || y == y2)
2165 val = c;
2166 else if (c == 1)
2167 val = 0;
2168 index(state,hedge,x,y) = val;
2169 }
2170
2171 /*
2172 * Draw vertical edges of rectangles.
2173 */
2174 for (y = y1; y < y2; y++)
2175 for (x = x1; x <= x2; x++)
2176 if (VRANGE(state,x,y)) {
2177 int val = index(state,vedge,x,y);
2178 if (x == x1 || x == x2)
2179 val = c;
2180 else if (c == 1)
2181 val = 0;
2182 index(state,vedge,x,y) = val;
2183 }
74a4e547 2184}
2185
c0361acd 2186static game_state *make_move(game_state *from, game_ui *ui, game_drawstate *ds,
2187 int x, int y, int button) {
08dd70c3 2188 int xc, yc;
2189 int startdrag = FALSE, enddrag = FALSE, active = FALSE;
3870c4d8 2190 game_state *ret;
2191
f0ee053c 2192 button &= ~MOD_MASK;
2193
08dd70c3 2194 if (button == LEFT_BUTTON) {
2195 startdrag = TRUE;
2196 } else if (button == LEFT_RELEASE) {
2197 enddrag = TRUE;
2198 } else if (button != LEFT_DRAG) {
2199 return NULL;
2200 }
2201
d4e7900f 2202 coord_round(FROMCOORD((float)x), FROMCOORD((float)y), &xc, &yc);
08dd70c3 2203
2204 if (startdrag) {
2205 ui->drag_start_x = xc;
2206 ui->drag_start_y = yc;
2207 ui->drag_end_x = xc;
2208 ui->drag_end_y = yc;
2209 ui->dragged = FALSE;
2210 active = TRUE;
2211 }
3870c4d8 2212
08dd70c3 2213 if (xc != ui->drag_end_x || yc != ui->drag_end_y) {
2214 ui->drag_end_x = xc;
2215 ui->drag_end_y = yc;
2216 ui->dragged = TRUE;
2217 active = TRUE;
2218 }
3870c4d8 2219
934797c7 2220 ret = NULL;
2221
2222 if (enddrag) {
2223 if (xc >= 0 && xc <= 2*from->w &&
2224 yc >= 0 && yc <= 2*from->h) {
2225 ret = dup_game(from);
2226
2227 if (ui->dragged) {
2228 ui_draw_rect(ret, ui, ret->hedge, ret->vedge, 1);
2229 } else {
2230 if ((xc & 1) && !(yc & 1) && HRANGE(from,xc/2,yc/2)) {
2231 hedge(ret,xc/2,yc/2) = !hedge(ret,xc/2,yc/2);
2232 }
2233 if ((yc & 1) && !(xc & 1) && VRANGE(from,xc/2,yc/2)) {
2234 vedge(ret,xc/2,yc/2) = !vedge(ret,xc/2,yc/2);
2235 }
2236 }
3870c4d8 2237
934797c7 2238 if (!memcmp(ret->hedge, from->hedge, from->w*from->h) &&
2239 !memcmp(ret->vedge, from->vedge, from->w*from->h)) {
2240 free_game(ret);
2241 ret = NULL;
2242 }
ef29354c 2243
2244 /*
2245 * We've made a real change to the grid. Check to see
2246 * if the game has been completed.
2247 */
d4e7900f 2248 if (ret && !ret->completed) {
ef29354c 2249 int x, y, ok;
2250 unsigned char *correct = get_correct(ret);
2251
2252 ok = TRUE;
2253 for (x = 0; x < ret->w; x++)
2254 for (y = 0; y < ret->h; y++)
2255 if (!index(ret, correct, x, y))
2256 ok = FALSE;
2257
2258 sfree(correct);
2259
2260 if (ok)
2261 ret->completed = TRUE;
2262 }
934797c7 2263 }
2264
2265 ui->drag_start_x = -1;
2266 ui->drag_start_y = -1;
2267 ui->drag_end_x = -1;
2268 ui->drag_end_y = -1;
2269 ui->dragged = FALSE;
2270 active = TRUE;
3870c4d8 2271 }
2272
934797c7 2273 if (ret)
2274 return ret; /* a move has been made */
2275 else if (active)
08dd70c3 2276 return from; /* UI activity has occurred */
934797c7 2277 else
2278 return NULL;
3870c4d8 2279}
2280
2281/* ----------------------------------------------------------------------
2282 * Drawing routines.
2283 */
2284
ab53eb64 2285#define CORRECT (1L<<16)
08dd70c3 2286
2287#define COLOUR(k) ( (k)==1 ? COL_LINE : COL_DRAG )
ab53eb64 2288#define MAX4(x,y,z,w) ( max(max(x,y),max(z,w)) )
3870c4d8 2289
2290struct game_drawstate {
2291 int started;
2292 int w, h;
ab53eb64 2293 unsigned long *visible;
3870c4d8 2294};
2295
be8d5aa1 2296static void game_size(game_params *params, int *x, int *y)
3870c4d8 2297{
2298 *x = params->w * TILE_SIZE + 2*BORDER + 1;
2299 *y = params->h * TILE_SIZE + 2*BORDER + 1;
2300}
2301
be8d5aa1 2302static float *game_colours(frontend *fe, game_state *state, int *ncolours)
3870c4d8 2303{
2304 float *ret = snewn(3 * NCOLOURS, float);
2305
2306 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2307
2308 ret[COL_GRID * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2309 ret[COL_GRID * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2310 ret[COL_GRID * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2311
08dd70c3 2312 ret[COL_DRAG * 3 + 0] = 1.0F;
2313 ret[COL_DRAG * 3 + 1] = 0.0F;
2314 ret[COL_DRAG * 3 + 2] = 0.0F;
2315
3870c4d8 2316 ret[COL_CORRECT * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2317 ret[COL_CORRECT * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2318 ret[COL_CORRECT * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2319
2320 ret[COL_LINE * 3 + 0] = 0.0F;
2321 ret[COL_LINE * 3 + 1] = 0.0F;
2322 ret[COL_LINE * 3 + 2] = 0.0F;
2323
2324 ret[COL_TEXT * 3 + 0] = 0.0F;
2325 ret[COL_TEXT * 3 + 1] = 0.0F;
2326 ret[COL_TEXT * 3 + 2] = 0.0F;
2327
2328 *ncolours = NCOLOURS;
2329 return ret;
2330}
2331
be8d5aa1 2332static game_drawstate *game_new_drawstate(game_state *state)
3870c4d8 2333{
2334 struct game_drawstate *ds = snew(struct game_drawstate);
08dd70c3 2335 int i;
3870c4d8 2336
2337 ds->started = FALSE;
2338 ds->w = state->w;
2339 ds->h = state->h;
ab53eb64 2340 ds->visible = snewn(ds->w * ds->h, unsigned long);
08dd70c3 2341 for (i = 0; i < ds->w * ds->h; i++)
2342 ds->visible[i] = 0xFFFF;
3870c4d8 2343
2344 return ds;
2345}
2346
be8d5aa1 2347static void game_free_drawstate(game_drawstate *ds)
3870c4d8 2348{
2349 sfree(ds->visible);
2350 sfree(ds);
2351}
2352
be8d5aa1 2353static void draw_tile(frontend *fe, game_state *state, int x, int y,
ec9a0f09 2354 unsigned char *hedge, unsigned char *vedge,
2355 unsigned char *corners, int correct)
3870c4d8 2356{
2357 int cx = COORD(x), cy = COORD(y);
2358 char str[80];
2359
2360 draw_rect(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1, COL_GRID);
2361 draw_rect(fe, cx+1, cy+1, TILE_SIZE-1, TILE_SIZE-1,
2362 correct ? COL_CORRECT : COL_BACKGROUND);
2363
2364 if (grid(state,x,y)) {
2365 sprintf(str, "%d", grid(state,x,y));
2366 draw_text(fe, cx+TILE_SIZE/2, cy+TILE_SIZE/2, FONT_VARIABLE,
105a00d0 2367 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_TEXT, str);
3870c4d8 2368 }
2369
2370 /*
2371 * Draw edges.
2372 */
08dd70c3 2373 if (!HRANGE(state,x,y) || index(state,hedge,x,y))
2374 draw_rect(fe, cx, cy, TILE_SIZE+1, 2,
2375 HRANGE(state,x,y) ? COLOUR(index(state,hedge,x,y)) :
2376 COL_LINE);
2377 if (!HRANGE(state,x,y+1) || index(state,hedge,x,y+1))
2378 draw_rect(fe, cx, cy+TILE_SIZE-1, TILE_SIZE+1, 2,
2379 HRANGE(state,x,y+1) ? COLOUR(index(state,hedge,x,y+1)) :
2380 COL_LINE);
2381 if (!VRANGE(state,x,y) || index(state,vedge,x,y))
2382 draw_rect(fe, cx, cy, 2, TILE_SIZE+1,
2383 VRANGE(state,x,y) ? COLOUR(index(state,vedge,x,y)) :
2384 COL_LINE);
2385 if (!VRANGE(state,x+1,y) || index(state,vedge,x+1,y))
2386 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, TILE_SIZE+1,
2387 VRANGE(state,x+1,y) ? COLOUR(index(state,vedge,x+1,y)) :
2388 COL_LINE);
3870c4d8 2389
2390 /*
2391 * Draw corners.
2392 */
ec9a0f09 2393 if (index(state,corners,x,y))
08dd70c3 2394 draw_rect(fe, cx, cy, 2, 2,
ec9a0f09 2395 COLOUR(index(state,corners,x,y)));
2396 if (x+1 < state->w && index(state,corners,x+1,y))
08dd70c3 2397 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, 2,
ec9a0f09 2398 COLOUR(index(state,corners,x+1,y)));
2399 if (y+1 < state->h && index(state,corners,x,y+1))
08dd70c3 2400 draw_rect(fe, cx, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2401 COLOUR(index(state,corners,x,y+1)));
2402 if (x+1 < state->w && y+1 < state->h && index(state,corners,x+1,y+1))
08dd70c3 2403 draw_rect(fe, cx+TILE_SIZE-1, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2404 COLOUR(index(state,corners,x+1,y+1)));
3870c4d8 2405
2406 draw_update(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1);
2407}
2408
be8d5aa1 2409static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
c822de4a 2410 game_state *state, int dir, game_ui *ui,
74a4e547 2411 float animtime, float flashtime)
3870c4d8 2412{
2413 int x, y;
2414 unsigned char *correct;
ec9a0f09 2415 unsigned char *hedge, *vedge, *corners;
3870c4d8 2416
2417 correct = get_correct(state);
2418
08dd70c3 2419 if (ui->dragged) {
2420 hedge = snewn(state->w*state->h, unsigned char);
2421 vedge = snewn(state->w*state->h, unsigned char);
2422 memcpy(hedge, state->hedge, state->w*state->h);
2423 memcpy(vedge, state->vedge, state->w*state->h);
2424 ui_draw_rect(state, ui, hedge, vedge, 2);
2425 } else {
2426 hedge = state->hedge;
2427 vedge = state->vedge;
2428 }
2429
ec9a0f09 2430 corners = snewn(state->w * state->h, unsigned char);
2431 memset(corners, 0, state->w * state->h);
2432 for (x = 0; x < state->w; x++)
2433 for (y = 0; y < state->h; y++) {
2434 if (x > 0) {
2435 int e = index(state, vedge, x, y);
2436 if (index(state,corners,x,y) < e)
2437 index(state,corners,x,y) = e;
2438 if (y+1 < state->h &&
2439 index(state,corners,x,y+1) < e)
2440 index(state,corners,x,y+1) = e;
2441 }
2442 if (y > 0) {
2443 int e = index(state, hedge, x, y);
2444 if (index(state,corners,x,y) < e)
2445 index(state,corners,x,y) = e;
2446 if (x+1 < state->w &&
2447 index(state,corners,x+1,y) < e)
2448 index(state,corners,x+1,y) = e;
2449 }
2450 }
2451
3870c4d8 2452 if (!ds->started) {
105a00d0 2453 draw_rect(fe, 0, 0,
2454 state->w * TILE_SIZE + 2*BORDER + 1,
2455 state->h * TILE_SIZE + 2*BORDER + 1, COL_BACKGROUND);
3870c4d8 2456 draw_rect(fe, COORD(0)-1, COORD(0)-1,
2457 ds->w*TILE_SIZE+3, ds->h*TILE_SIZE+3, COL_LINE);
2458 ds->started = TRUE;
863c3945 2459 draw_update(fe, 0, 0,
2460 state->w * TILE_SIZE + 2*BORDER + 1,
2461 state->h * TILE_SIZE + 2*BORDER + 1);
3870c4d8 2462 }
2463
2464 for (x = 0; x < state->w; x++)
2465 for (y = 0; y < state->h; y++) {
ab53eb64 2466 unsigned long c = 0;
08dd70c3 2467
2468 if (HRANGE(state,x,y))
2469 c |= index(state,hedge,x,y);
eddb22e8 2470 if (HRANGE(state,x,y+1))
2471 c |= index(state,hedge,x,y+1) << 2;
08dd70c3 2472 if (VRANGE(state,x,y))
2473 c |= index(state,vedge,x,y) << 4;
eddb22e8 2474 if (VRANGE(state,x+1,y))
2475 c |= index(state,vedge,x+1,y) << 6;
ec9a0f09 2476 c |= index(state,corners,x,y) << 8;
2477 if (x+1 < state->w)
2478 c |= index(state,corners,x+1,y) << 10;
2479 if (y+1 < state->h)
2480 c |= index(state,corners,x,y+1) << 12;
2481 if (x+1 < state->w && y+1 < state->h)
ab53eb64 2482 /* cast to prevent 2<<14 sign-extending on promotion to long */
2483 c |= (unsigned long)index(state,corners,x+1,y+1) << 14;
ef29354c 2484 if (index(state, correct, x, y) && !flashtime)
3870c4d8 2485 c |= CORRECT;
2486
2487 if (index(ds,ds->visible,x,y) != c) {
ab53eb64 2488 draw_tile(fe, state, x, y, hedge, vedge, corners,
2489 (c & CORRECT) ? 1 : 0);
ec9a0f09 2490 index(ds,ds->visible,x,y) = c;
3870c4d8 2491 }
2492 }
2493
08dd70c3 2494 if (hedge != state->hedge) {
2495 sfree(hedge);
2496 sfree(vedge);
2497 }
2498
11c44cf5 2499 sfree(corners);
3870c4d8 2500 sfree(correct);
2501}
2502
be8d5aa1 2503static float game_anim_length(game_state *oldstate,
e3f21163 2504 game_state *newstate, int dir, game_ui *ui)
3870c4d8 2505{
2506 return 0.0F;
2507}
2508
be8d5aa1 2509static float game_flash_length(game_state *oldstate,
e3f21163 2510 game_state *newstate, int dir, game_ui *ui)
3870c4d8 2511{
2ac6d24e 2512 if (!oldstate->completed && newstate->completed &&
2513 !oldstate->cheated && !newstate->cheated)
ef29354c 2514 return FLASH_TIME;
3870c4d8 2515 return 0.0F;
2516}
2517
be8d5aa1 2518static int game_wants_statusbar(void)
3870c4d8 2519{
2520 return FALSE;
2521}
be8d5aa1 2522
48dcdd62 2523static int game_timing_state(game_state *state)
2524{
2525 return TRUE;
2526}
2527
be8d5aa1 2528#ifdef COMBINED
2529#define thegame rect
2530#endif
2531
2532const struct game thegame = {
1d228b10 2533 "Rectangles", "games.rectangles",
be8d5aa1 2534 default_params,
2535 game_fetch_preset,
2536 decode_params,
2537 encode_params,
2538 free_params,
2539 dup_params,
1d228b10 2540 TRUE, game_configure, custom_params,
be8d5aa1 2541 validate_params,
1185e3c5 2542 new_game_desc,
6f2d8d7c 2543 game_free_aux_info,
1185e3c5 2544 validate_desc,
be8d5aa1 2545 new_game,
2546 dup_game,
2547 free_game,
2ac6d24e 2548 TRUE, solve_game,
6ad5ed74 2549 TRUE, game_text_format,
be8d5aa1 2550 new_ui,
2551 free_ui,
2552 make_move,
2553 game_size,
2554 game_colours,
2555 game_new_drawstate,
2556 game_free_drawstate,
2557 game_redraw,
2558 game_anim_length,
2559 game_flash_length,
2560 game_wants_statusbar,
48dcdd62 2561 FALSE, game_timing_state,
93b1da3d 2562 0, /* mouse_priorities */
be8d5aa1 2563};