Add a limited-shuffle mode like that added to Sixteen and Twiddle in r5769,
[sgt/puzzles] / rect.c
CommitLineData
3870c4d8 1/*
2 * rect.c: Puzzle from nikoli.co.jp. You have a square grid with
3 * numbers in some squares; you must divide the square grid up into
4 * variously sized rectangles, such that every rectangle contains
5 * exactly one numbered square and the area of each rectangle is
6 * equal to the number contained in it.
7 */
8
9/*
10 * TODO:
11 *
12 * - Improve on singleton removal by making an aesthetic choice
13 * about which of the options to take.
14 *
15 * - When doing the 3x3 trick in singleton removal, limit the size
16 * of the generated rectangles in accordance with the max
17 * rectangle size.
18 *
3870c4d8 19 * - If we start by sorting the rectlist in descending order
20 * of area, we might be able to bias our random number
21 * selection to produce a few large rectangles more often
22 * than oodles of small ones? Unsure, but might be worth a
23 * try.
24 */
25
26#include <stdio.h>
27#include <stdlib.h>
28#include <string.h>
29#include <assert.h>
b0e26073 30#include <ctype.h>
3870c4d8 31#include <math.h>
32
33#include "puzzles.h"
34
3870c4d8 35enum {
36 COL_BACKGROUND,
37 COL_CORRECT,
38 COL_LINE,
39 COL_TEXT,
40 COL_GRID,
08dd70c3 41 COL_DRAG,
3870c4d8 42 NCOLOURS
43};
44
45struct game_params {
46 int w, h;
aea3ed9a 47 float expandfactor;
40fde884 48 int unique;
3870c4d8 49};
50
51#define INDEX(state, x, y) (((y) * (state)->w) + (x))
52#define index(state, a, x, y) ((a) [ INDEX(state,x,y) ])
53#define grid(state,x,y) index(state, (state)->grid, x, y)
54#define vedge(state,x,y) index(state, (state)->vedge, x, y)
55#define hedge(state,x,y) index(state, (state)->hedge, x, y)
56
57#define CRANGE(state,x,y,dx,dy) ( (x) >= dx && (x) < (state)->w && \
58 (y) >= dy && (y) < (state)->h )
59#define RANGE(state,x,y) CRANGE(state,x,y,0,0)
60#define HRANGE(state,x,y) CRANGE(state,x,y,0,1)
61#define VRANGE(state,x,y) CRANGE(state,x,y,1,0)
62
63#define TILE_SIZE 24
64#define BORDER 18
65
d4e7900f 66#define CORNER_TOLERANCE 0.15F
67#define CENTRE_TOLERANCE 0.15F
68
ef29354c 69#define FLASH_TIME 0.13F
70
3870c4d8 71#define COORD(x) ( (x) * TILE_SIZE + BORDER )
72#define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
73
74struct game_state {
75 int w, h;
76 int *grid; /* contains the numbers */
77 unsigned char *vedge; /* (w+1) x h */
78 unsigned char *hedge; /* w x (h+1) */
2ac6d24e 79 int completed, cheated;
3870c4d8 80};
81
be8d5aa1 82static game_params *default_params(void)
3870c4d8 83{
84 game_params *ret = snew(game_params);
85
86 ret->w = ret->h = 7;
aea3ed9a 87 ret->expandfactor = 0.0F;
40fde884 88 ret->unique = TRUE;
3870c4d8 89
90 return ret;
91}
92
be8d5aa1 93static int game_fetch_preset(int i, char **name, game_params **params)
3870c4d8 94{
95 game_params *ret;
96 int w, h;
97 char buf[80];
98
99 switch (i) {
100 case 0: w = 7, h = 7; break;
101 case 1: w = 11, h = 11; break;
102 case 2: w = 15, h = 15; break;
103 case 3: w = 19, h = 19; break;
104 default: return FALSE;
105 }
106
107 sprintf(buf, "%dx%d", w, h);
108 *name = dupstr(buf);
109 *params = ret = snew(game_params);
110 ret->w = w;
111 ret->h = h;
aea3ed9a 112 ret->expandfactor = 0.0F;
40fde884 113 ret->unique = TRUE;
3870c4d8 114 return TRUE;
115}
116
be8d5aa1 117static void free_params(game_params *params)
3870c4d8 118{
119 sfree(params);
120}
121
be8d5aa1 122static game_params *dup_params(game_params *params)
3870c4d8 123{
124 game_params *ret = snew(game_params);
125 *ret = *params; /* structure copy */
126 return ret;
127}
128
1185e3c5 129static void decode_params(game_params *ret, char const *string)
b0e26073 130{
b0e26073 131 ret->w = ret->h = atoi(string);
aea3ed9a 132 while (*string && isdigit((unsigned char)*string)) string++;
b0e26073 133 if (*string == 'x') {
134 string++;
135 ret->h = atoi(string);
aea3ed9a 136 while (*string && isdigit((unsigned char)*string)) string++;
137 }
138 if (*string == 'e') {
139 string++;
140 ret->expandfactor = atof(string);
40fde884 141 while (*string &&
142 (*string == '.' || isdigit((unsigned char)*string))) string++;
143 }
144 if (*string == 'a') {
145 string++;
146 ret->unique = FALSE;
b0e26073 147 }
b0e26073 148}
149
1185e3c5 150static char *encode_params(game_params *params, int full)
b0e26073 151{
152 char data[256];
153
154 sprintf(data, "%dx%d", params->w, params->h);
5472ceb6 155 if (full && params->expandfactor)
1185e3c5 156 sprintf(data + strlen(data), "e%g", params->expandfactor);
40fde884 157 if (full && !params->unique)
158 strcat(data, "a");
b0e26073 159
160 return dupstr(data);
161}
162
be8d5aa1 163static config_item *game_configure(game_params *params)
3870c4d8 164{
165 config_item *ret;
166 char buf[80];
167
168 ret = snewn(5, config_item);
169
170 ret[0].name = "Width";
171 ret[0].type = C_STRING;
172 sprintf(buf, "%d", params->w);
173 ret[0].sval = dupstr(buf);
174 ret[0].ival = 0;
175
176 ret[1].name = "Height";
177 ret[1].type = C_STRING;
178 sprintf(buf, "%d", params->h);
179 ret[1].sval = dupstr(buf);
180 ret[1].ival = 0;
181
aea3ed9a 182 ret[2].name = "Expansion factor";
183 ret[2].type = C_STRING;
184 sprintf(buf, "%g", params->expandfactor);
185 ret[2].sval = dupstr(buf);
3870c4d8 186 ret[2].ival = 0;
187
40fde884 188 ret[3].name = "Ensure unique solution";
189 ret[3].type = C_BOOLEAN;
aea3ed9a 190 ret[3].sval = NULL;
40fde884 191 ret[3].ival = params->unique;
192
193 ret[4].name = NULL;
194 ret[4].type = C_END;
195 ret[4].sval = NULL;
196 ret[4].ival = 0;
aea3ed9a 197
3870c4d8 198 return ret;
199}
200
be8d5aa1 201static game_params *custom_params(config_item *cfg)
3870c4d8 202{
203 game_params *ret = snew(game_params);
204
205 ret->w = atoi(cfg[0].sval);
206 ret->h = atoi(cfg[1].sval);
aea3ed9a 207 ret->expandfactor = atof(cfg[2].sval);
40fde884 208 ret->unique = cfg[3].ival;
3870c4d8 209
210 return ret;
211}
212
be8d5aa1 213static char *validate_params(game_params *params)
3870c4d8 214{
215 if (params->w <= 0 && params->h <= 0)
216 return "Width and height must both be greater than zero";
d4e7900f 217 if (params->w < 2 && params->h < 2)
218 return "Grid area must be greater than one";
aea3ed9a 219 if (params->expandfactor < 0.0F)
220 return "Expansion factor may not be negative";
3870c4d8 221 return NULL;
222}
223
26801d29 224struct point {
225 int x, y;
226};
227
3870c4d8 228struct rect {
229 int x, y;
230 int w, h;
231};
232
233struct rectlist {
234 struct rect *rects;
235 int n;
236};
237
26801d29 238struct numberdata {
239 int area;
240 int npoints;
241 struct point *points;
242};
243
244/* ----------------------------------------------------------------------
245 * Solver for Rectangles games.
246 *
247 * This solver is souped up beyond the needs of actually _solving_
248 * a puzzle. It is also designed to cope with uncertainty about
249 * where the numbers have been placed. This is because I run it on
250 * my generated grids _before_ placing the numbers, and have it
251 * tell me where I need to place the numbers to ensure a unique
252 * solution.
253 */
254
255static void remove_rect_placement(int w, int h,
256 struct rectlist *rectpositions,
257 int *overlaps,
258 int rectnum, int placement)
259{
260 int x, y, xx, yy;
261
262#ifdef SOLVER_DIAGNOSTICS
263 printf("ruling out rect %d placement at %d,%d w=%d h=%d\n", rectnum,
264 rectpositions[rectnum].rects[placement].x,
265 rectpositions[rectnum].rects[placement].y,
266 rectpositions[rectnum].rects[placement].w,
267 rectpositions[rectnum].rects[placement].h);
268#endif
269
270 /*
271 * Decrement each entry in the overlaps array to reflect the
272 * removal of this rectangle placement.
273 */
274 for (yy = 0; yy < rectpositions[rectnum].rects[placement].h; yy++) {
275 y = yy + rectpositions[rectnum].rects[placement].y;
276 for (xx = 0; xx < rectpositions[rectnum].rects[placement].w; xx++) {
277 x = xx + rectpositions[rectnum].rects[placement].x;
278
279 assert(overlaps[(rectnum * h + y) * w + x] != 0);
280
281 if (overlaps[(rectnum * h + y) * w + x] > 0)
282 overlaps[(rectnum * h + y) * w + x]--;
283 }
284 }
285
286 /*
287 * Remove the placement from the list of positions for that
288 * rectangle, by interchanging it with the one on the end.
289 */
290 if (placement < rectpositions[rectnum].n - 1) {
291 struct rect t;
292
293 t = rectpositions[rectnum].rects[rectpositions[rectnum].n - 1];
294 rectpositions[rectnum].rects[rectpositions[rectnum].n - 1] =
295 rectpositions[rectnum].rects[placement];
296 rectpositions[rectnum].rects[placement] = t;
297 }
298 rectpositions[rectnum].n--;
299}
300
301static void remove_number_placement(int w, int h, struct numberdata *number,
302 int index, int *rectbyplace)
303{
304 /*
305 * Remove the entry from the rectbyplace array.
306 */
307 rectbyplace[number->points[index].y * w + number->points[index].x] = -1;
308
309 /*
310 * Remove the placement from the list of candidates for that
311 * number, by interchanging it with the one on the end.
312 */
313 if (index < number->npoints - 1) {
314 struct point t;
315
316 t = number->points[number->npoints - 1];
317 number->points[number->npoints - 1] = number->points[index];
318 number->points[index] = t;
319 }
320 number->npoints--;
321}
322
323static int rect_solver(int w, int h, int nrects, struct numberdata *numbers,
1507058f 324 game_state *result, random_state *rs)
26801d29 325{
326 struct rectlist *rectpositions;
327 int *overlaps, *rectbyplace, *workspace;
328 int i, ret;
329
330 /*
331 * Start by setting up a list of candidate positions for each
332 * rectangle.
333 */
334 rectpositions = snewn(nrects, struct rectlist);
335 for (i = 0; i < nrects; i++) {
336 int rw, rh, area = numbers[i].area;
337 int j, minx, miny, maxx, maxy;
338 struct rect *rlist;
339 int rlistn, rlistsize;
340
341 /*
342 * For each rectangle, begin by finding the bounding
343 * rectangle of its candidate number placements.
344 */
345 maxx = maxy = -1;
346 minx = w;
347 miny = h;
348 for (j = 0; j < numbers[i].npoints; j++) {
349 if (minx > numbers[i].points[j].x) minx = numbers[i].points[j].x;
350 if (miny > numbers[i].points[j].y) miny = numbers[i].points[j].y;
351 if (maxx < numbers[i].points[j].x) maxx = numbers[i].points[j].x;
352 if (maxy < numbers[i].points[j].y) maxy = numbers[i].points[j].y;
353 }
354
355 /*
356 * Now loop over all possible rectangle placements
357 * overlapping a point within that bounding rectangle;
358 * ensure each one actually contains a candidate number
359 * placement, and add it to the list.
360 */
361 rlist = NULL;
362 rlistn = rlistsize = 0;
363
364 for (rw = 1; rw <= area && rw <= w; rw++) {
365 int x, y;
366
367 if (area % rw)
368 continue;
369 rh = area / rw;
370 if (rh > h)
371 continue;
372
373 for (y = miny - rh + 1; y <= maxy; y++) {
374 if (y < 0 || y+rh > h)
375 continue;
376
377 for (x = minx - rw + 1; x <= maxx; x++) {
378 if (x < 0 || x+rw > w)
379 continue;
380
381 /*
382 * See if we can find a candidate number
383 * placement within this rectangle.
384 */
385 for (j = 0; j < numbers[i].npoints; j++)
386 if (numbers[i].points[j].x >= x &&
387 numbers[i].points[j].x < x+rw &&
388 numbers[i].points[j].y >= y &&
389 numbers[i].points[j].y < y+rh)
390 break;
391
392 if (j < numbers[i].npoints) {
393 /*
394 * Add this to the list of candidate
395 * placements for this rectangle.
396 */
397 if (rlistn >= rlistsize) {
398 rlistsize = rlistn + 32;
399 rlist = sresize(rlist, rlistsize, struct rect);
400 }
401 rlist[rlistn].x = x;
402 rlist[rlistn].y = y;
403 rlist[rlistn].w = rw;
404 rlist[rlistn].h = rh;
405#ifdef SOLVER_DIAGNOSTICS
406 printf("rect %d [area %d]: candidate position at"
407 " %d,%d w=%d h=%d\n",
408 i, area, x, y, rw, rh);
409#endif
410 rlistn++;
411 }
412 }
413 }
414 }
415
416 rectpositions[i].rects = rlist;
417 rectpositions[i].n = rlistn;
418 }
419
420 /*
421 * Next, construct a multidimensional array tracking how many
422 * candidate positions for each rectangle overlap each square.
423 *
424 * Indexing of this array is by the formula
425 *
426 * overlaps[(rectindex * h + y) * w + x]
427 */
428 overlaps = snewn(nrects * w * h, int);
429 memset(overlaps, 0, nrects * w * h * sizeof(int));
430 for (i = 0; i < nrects; i++) {
431 int j;
432
433 for (j = 0; j < rectpositions[i].n; j++) {
434 int xx, yy;
435
436 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++)
437 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++)
438 overlaps[(i * h + yy+rectpositions[i].rects[j].y) * w +
439 xx+rectpositions[i].rects[j].x]++;
440 }
441 }
442
443 /*
444 * Also we want an array covering the grid once, to make it
445 * easy to figure out which squares are candidate number
446 * placements for which rectangles. (The existence of this
447 * single array assumes that no square starts off as a
448 * candidate number placement for more than one rectangle. This
449 * assumption is justified, because this solver is _either_
450 * used to solve real problems - in which case there is a
451 * single placement for every number - _or_ used to decide on
452 * number placements for a new puzzle, in which case each
453 * number's placements are confined to the intended position of
454 * the rectangle containing that number.)
455 */
456 rectbyplace = snewn(w * h, int);
457 for (i = 0; i < w*h; i++)
458 rectbyplace[i] = -1;
459
460 for (i = 0; i < nrects; i++) {
461 int j;
462
463 for (j = 0; j < numbers[i].npoints; j++) {
464 int x = numbers[i].points[j].x;
465 int y = numbers[i].points[j].y;
466
467 assert(rectbyplace[y * w + x] == -1);
468 rectbyplace[y * w + x] = i;
469 }
470 }
471
472 workspace = snewn(nrects, int);
473
474 /*
475 * Now run the actual deduction loop.
476 */
477 while (1) {
478 int done_something = FALSE;
479
480#ifdef SOLVER_DIAGNOSTICS
481 printf("starting deduction loop\n");
482
483 for (i = 0; i < nrects; i++) {
484 printf("rect %d overlaps:\n", i);
485 {
486 int x, y;
487 for (y = 0; y < h; y++) {
488 for (x = 0; x < w; x++) {
489 printf("%3d", overlaps[(i * h + y) * w + x]);
490 }
491 printf("\n");
492 }
493 }
494 }
495 printf("rectbyplace:\n");
496 {
497 int x, y;
498 for (y = 0; y < h; y++) {
499 for (x = 0; x < w; x++) {
500 printf("%3d", rectbyplace[y * w + x]);
501 }
502 printf("\n");
503 }
504 }
505#endif
506
507 /*
508 * Housekeeping. Look for rectangles whose number has only
509 * one candidate position left, and mark that square as
510 * known if it isn't already.
511 */
512 for (i = 0; i < nrects; i++) {
513 if (numbers[i].npoints == 1) {
514 int x = numbers[i].points[0].x;
515 int y = numbers[i].points[0].y;
516 if (overlaps[(i * h + y) * w + x] >= -1) {
517 int j;
518
519 assert(overlaps[(i * h + y) * w + x] > 0);
520#ifdef SOLVER_DIAGNOSTICS
521 printf("marking %d,%d as known for rect %d"
522 " (sole remaining number position)\n", x, y, i);
523#endif
524
525 for (j = 0; j < nrects; j++)
526 overlaps[(j * h + y) * w + x] = -1;
527
528 overlaps[(i * h + y) * w + x] = -2;
529 }
530 }
531 }
532
533 /*
534 * Now look at the intersection of all possible placements
535 * for each rectangle, and mark all squares in that
536 * intersection as known for that rectangle if they aren't
537 * already.
538 */
539 for (i = 0; i < nrects; i++) {
540 int minx, miny, maxx, maxy, xx, yy, j;
541
542 minx = miny = 0;
543 maxx = w;
544 maxy = h;
545
546 for (j = 0; j < rectpositions[i].n; j++) {
547 int x = rectpositions[i].rects[j].x;
548 int y = rectpositions[i].rects[j].y;
549 int w = rectpositions[i].rects[j].w;
550 int h = rectpositions[i].rects[j].h;
551
552 if (minx < x) minx = x;
553 if (miny < y) miny = y;
554 if (maxx > x+w) maxx = x+w;
555 if (maxy > y+h) maxy = y+h;
556 }
557
558 for (yy = miny; yy < maxy; yy++)
559 for (xx = minx; xx < maxx; xx++)
560 if (overlaps[(i * h + yy) * w + xx] >= -1) {
561 assert(overlaps[(i * h + yy) * w + xx] > 0);
562#ifdef SOLVER_DIAGNOSTICS
563 printf("marking %d,%d as known for rect %d"
564 " (intersection of all placements)\n",
565 xx, yy, i);
566#endif
567
568 for (j = 0; j < nrects; j++)
569 overlaps[(j * h + yy) * w + xx] = -1;
570
571 overlaps[(i * h + yy) * w + xx] = -2;
572 }
573 }
574
575 /*
576 * Rectangle-focused deduction. Look at each rectangle in
577 * turn and try to rule out some of its candidate
578 * placements.
579 */
580 for (i = 0; i < nrects; i++) {
581 int j;
582
583 for (j = 0; j < rectpositions[i].n; j++) {
584 int xx, yy, k;
585 int del = FALSE;
586
587 for (k = 0; k < nrects; k++)
588 workspace[k] = 0;
589
590 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
591 int y = yy + rectpositions[i].rects[j].y;
592 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
593 int x = xx + rectpositions[i].rects[j].x;
594
595 if (overlaps[(i * h + y) * w + x] == -1) {
596 /*
597 * This placement overlaps a square
598 * which is _known_ to be part of
599 * another rectangle. Therefore we must
600 * rule it out.
601 */
602#ifdef SOLVER_DIAGNOSTICS
603 printf("rect %d placement at %d,%d w=%d h=%d "
604 "contains %d,%d which is known-other\n", i,
605 rectpositions[i].rects[j].x,
606 rectpositions[i].rects[j].y,
607 rectpositions[i].rects[j].w,
608 rectpositions[i].rects[j].h,
609 x, y);
610#endif
611 del = TRUE;
612 }
613
614 if (rectbyplace[y * w + x] != -1) {
615 /*
616 * This placement overlaps one of the
617 * candidate number placements for some
618 * rectangle. Count it.
619 */
620 workspace[rectbyplace[y * w + x]]++;
621 }
622 }
623 }
624
625 if (!del) {
626 /*
627 * If we haven't ruled this placement out
628 * already, see if it overlaps _all_ of the
629 * candidate number placements for any
630 * rectangle. If so, we can rule it out.
631 */
632 for (k = 0; k < nrects; k++)
633 if (k != i && workspace[k] == numbers[k].npoints) {
634#ifdef SOLVER_DIAGNOSTICS
635 printf("rect %d placement at %d,%d w=%d h=%d "
636 "contains all number points for rect %d\n",
637 i,
638 rectpositions[i].rects[j].x,
639 rectpositions[i].rects[j].y,
640 rectpositions[i].rects[j].w,
641 rectpositions[i].rects[j].h,
642 k);
643#endif
644 del = TRUE;
645 break;
646 }
647
648 /*
649 * Failing that, see if it overlaps at least
650 * one of the candidate number placements for
651 * itself! (This might not be the case if one
652 * of those number placements has been removed
653 * recently.).
654 */
655 if (!del && workspace[i] == 0) {
656#ifdef SOLVER_DIAGNOSTICS
657 printf("rect %d placement at %d,%d w=%d h=%d "
658 "contains none of its own number points\n",
659 i,
660 rectpositions[i].rects[j].x,
661 rectpositions[i].rects[j].y,
662 rectpositions[i].rects[j].w,
663 rectpositions[i].rects[j].h);
664#endif
665 del = TRUE;
666 }
667 }
668
669 if (del) {
670 remove_rect_placement(w, h, rectpositions, overlaps, i, j);
671
672 j--; /* don't skip over next placement */
673
674 done_something = TRUE;
675 }
676 }
677 }
678
679 /*
680 * Square-focused deduction. Look at each square not marked
681 * as known, and see if there are any which can only be
682 * part of a single rectangle.
683 */
684 {
685 int x, y, n, index;
686 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
687 /* Known squares are marked as <0 everywhere, so we only need
688 * to check the overlaps entry for rect 0. */
689 if (overlaps[y * w + x] < 0)
690 continue; /* known already */
691
692 n = 0;
693 index = -1;
694 for (i = 0; i < nrects; i++)
695 if (overlaps[(i * h + y) * w + x] > 0)
696 n++, index = i;
697
698 if (n == 1) {
699 int j;
700
701 /*
702 * Now we can rule out all placements for
703 * rectangle `index' which _don't_ contain
704 * square x,y.
705 */
706#ifdef SOLVER_DIAGNOSTICS
707 printf("square %d,%d can only be in rectangle %d\n",
708 x, y, index);
709#endif
710 for (j = 0; j < rectpositions[index].n; j++) {
711 struct rect *r = &rectpositions[index].rects[j];
712 if (x >= r->x && x < r->x + r->w &&
713 y >= r->y && y < r->y + r->h)
714 continue; /* this one is OK */
715 remove_rect_placement(w, h, rectpositions, overlaps,
716 index, j);
717 j--; /* don't skip over next placement */
718 done_something = TRUE;
719 }
720 }
721 }
722 }
723
724 /*
725 * If we've managed to deduce anything by normal means,
726 * loop round again and see if there's more to be done.
727 * Only if normal deduction has completely failed us should
728 * we now move on to narrowing down the possible number
729 * placements.
730 */
731 if (done_something)
732 continue;
733
734 /*
735 * Now we have done everything we can with the current set
736 * of number placements. So we need to winnow the number
737 * placements so as to narrow down the possibilities. We do
738 * this by searching for a candidate placement (of _any_
739 * rectangle) which overlaps a candidate placement of the
740 * number for some other rectangle.
741 */
1507058f 742 if (rs) {
26801d29 743 struct rpn {
744 int rect;
745 int placement;
746 int number;
747 } *rpns = NULL;
748 int nrpns = 0, rpnsize = 0;
749 int j;
750
751 for (i = 0; i < nrects; i++) {
752 for (j = 0; j < rectpositions[i].n; j++) {
753 int xx, yy;
754
755 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
756 int y = yy + rectpositions[i].rects[j].y;
757 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
758 int x = xx + rectpositions[i].rects[j].x;
759
760 if (rectbyplace[y * w + x] >= 0 &&
761 rectbyplace[y * w + x] != i) {
762 /*
763 * Add this to the list of
764 * winnowing possibilities.
765 */
766 if (nrpns >= rpnsize) {
767 rpnsize = rpnsize * 3 / 2 + 32;
768 rpns = sresize(rpns, rpnsize, struct rpn);
769 }
770 rpns[nrpns].rect = i;
771 rpns[nrpns].placement = j;
772 rpns[nrpns].number = rectbyplace[y * w + x];
773 nrpns++;
774 }
775 }
776 }
777
778 }
779 }
780
781#ifdef SOLVER_DIAGNOSTICS
782 printf("%d candidate rect placements we could eliminate\n", nrpns);
783#endif
784 if (nrpns > 0) {
785 /*
786 * Now choose one of these unwanted rectangle
787 * placements, and eliminate it.
788 */
789 int index = random_upto(rs, nrpns);
790 int k, m;
791 struct rpn rpn = rpns[index];
792 struct rect r;
793 sfree(rpns);
794
795 i = rpn.rect;
796 j = rpn.placement;
797 k = rpn.number;
798 r = rectpositions[i].rects[j];
799
800 /*
801 * We rule out placement j of rectangle i by means
802 * of removing all of rectangle k's candidate
803 * number placements which do _not_ overlap it.
804 * This will ensure that it is eliminated during
805 * the next pass of rectangle-focused deduction.
806 */
807#ifdef SOLVER_DIAGNOSTICS
808 printf("ensuring number for rect %d is within"
809 " rect %d's placement at %d,%d w=%d h=%d\n",
810 k, i, r.x, r.y, r.w, r.h);
811#endif
812
813 for (m = 0; m < numbers[k].npoints; m++) {
814 int x = numbers[k].points[m].x;
815 int y = numbers[k].points[m].y;
816
817 if (x < r.x || x >= r.x + r.w ||
818 y < r.y || y >= r.y + r.h) {
819#ifdef SOLVER_DIAGNOSTICS
820 printf("eliminating number for rect %d at %d,%d\n",
821 k, x, y);
822#endif
823 remove_number_placement(w, h, &numbers[k],
824 m, rectbyplace);
825 m--; /* don't skip the next one */
826 done_something = TRUE;
827 }
828 }
829 }
830 }
831
832 if (!done_something) {
833#ifdef SOLVER_DIAGNOSTICS
834 printf("terminating deduction loop\n");
835#endif
836 break;
837 }
838 }
839
840 ret = TRUE;
841 for (i = 0; i < nrects; i++) {
842#ifdef SOLVER_DIAGNOSTICS
843 printf("rect %d has %d possible placements\n",
844 i, rectpositions[i].n);
845#endif
846 assert(rectpositions[i].n > 0);
1507058f 847 if (rectpositions[i].n > 1) {
26801d29 848 ret = FALSE;
1507058f 849 } else if (result) {
850 /*
851 * Place the rectangle in its only possible position.
852 */
853 int x, y;
854 struct rect *r = &rectpositions[i].rects[0];
855
856 for (y = 0; y < r->h; y++) {
857 if (r->x > 0)
858 vedge(result, r->x, r->y+y) = 1;
859 if (r->x+r->w < result->w)
860 vedge(result, r->x+r->w, r->y+y) = 1;
861 }
862 for (x = 0; x < r->w; x++) {
863 if (r->y > 0)
864 hedge(result, r->x+x, r->y) = 1;
865 if (r->y+r->h < result->h)
866 hedge(result, r->x+x, r->y+r->h) = 1;
867 }
868 }
26801d29 869 }
870
871 /*
872 * Free up all allocated storage.
873 */
874 sfree(workspace);
875 sfree(rectbyplace);
876 sfree(overlaps);
877 for (i = 0; i < nrects; i++)
878 sfree(rectpositions[i].rects);
879 sfree(rectpositions);
880
881 return ret;
882}
883
884/* ----------------------------------------------------------------------
885 * Grid generation code.
886 */
887
3870c4d8 888static struct rectlist *get_rectlist(game_params *params, int *grid)
889{
890 int rw, rh;
891 int x, y;
892 int maxarea;
893 struct rect *rects = NULL;
894 int nrects = 0, rectsize = 0;
895
896 /*
d4e7900f 897 * Maximum rectangle area is 1/6 of total grid size, unless
898 * this means we can't place any rectangles at all in which
899 * case we set it to 2 at minimum.
3870c4d8 900 */
901 maxarea = params->w * params->h / 6;
d4e7900f 902 if (maxarea < 2)
903 maxarea = 2;
3870c4d8 904
905 for (rw = 1; rw <= params->w; rw++)
906 for (rh = 1; rh <= params->h; rh++) {
907 if (rw * rh > maxarea)
908 continue;
909 if (rw * rh == 1)
910 continue;
911 for (x = 0; x <= params->w - rw; x++)
912 for (y = 0; y <= params->h - rh; y++) {
3870c4d8 913 if (nrects >= rectsize) {
914 rectsize = nrects + 256;
915 rects = sresize(rects, rectsize, struct rect);
916 }
917
918 rects[nrects].x = x;
919 rects[nrects].y = y;
920 rects[nrects].w = rw;
921 rects[nrects].h = rh;
922 nrects++;
923 }
924 }
925
926 if (nrects > 0) {
927 struct rectlist *ret;
928 ret = snew(struct rectlist);
929 ret->rects = rects;
930 ret->n = nrects;
931 return ret;
932 } else {
933 assert(rects == NULL); /* hence no need to free */
934 return NULL;
935 }
936}
937
938static void free_rectlist(struct rectlist *list)
939{
940 sfree(list->rects);
941 sfree(list);
942}
943
944static void place_rect(game_params *params, int *grid, struct rect r)
945{
946 int idx = INDEX(params, r.x, r.y);
947 int x, y;
948
949 for (x = r.x; x < r.x+r.w; x++)
950 for (y = r.y; y < r.y+r.h; y++) {
951 index(params, grid, x, y) = idx;
952 }
953#ifdef GENERATION_DIAGNOSTICS
954 printf(" placing rectangle at (%d,%d) size %d x %d\n",
955 r.x, r.y, r.w, r.h);
956#endif
957}
958
959static struct rect find_rect(game_params *params, int *grid, int x, int y)
960{
961 int idx, w, h;
962 struct rect r;
963
964 /*
965 * Find the top left of the rectangle.
966 */
967 idx = index(params, grid, x, y);
968
969 if (idx < 0) {
970 r.x = x;
971 r.y = y;
972 r.w = r.h = 1;
973 return r; /* 1x1 singleton here */
974 }
975
976 y = idx / params->w;
977 x = idx % params->w;
978
979 /*
980 * Find the width and height of the rectangle.
981 */
982 for (w = 1;
983 (x+w < params->w && index(params,grid,x+w,y)==idx);
984 w++);
985 for (h = 1;
986 (y+h < params->h && index(params,grid,x,y+h)==idx);
987 h++);
988
989 r.x = x;
990 r.y = y;
991 r.w = w;
992 r.h = h;
993
994 return r;
995}
996
997#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 998static void display_grid(game_params *params, int *grid, int *numbers, int all)
3870c4d8 999{
1000 unsigned char *egrid = snewn((params->w*2+3) * (params->h*2+3),
1001 unsigned char);
3870c4d8 1002 int x, y;
1003 int r = (params->w*2+3);
1004
aea3ed9a 1005 memset(egrid, 0, (params->w*2+3) * (params->h*2+3));
1006
3870c4d8 1007 for (x = 0; x < params->w; x++)
1008 for (y = 0; y < params->h; y++) {
1009 int i = index(params, grid, x, y);
1010 if (x == 0 || index(params, grid, x-1, y) != i)
1011 egrid[(2*y+2) * r + (2*x+1)] = 1;
1012 if (x == params->w-1 || index(params, grid, x+1, y) != i)
1013 egrid[(2*y+2) * r + (2*x+3)] = 1;
1014 if (y == 0 || index(params, grid, x, y-1) != i)
1015 egrid[(2*y+1) * r + (2*x+2)] = 1;
1016 if (y == params->h-1 || index(params, grid, x, y+1) != i)
1017 egrid[(2*y+3) * r + (2*x+2)] = 1;
1018 }
1019
1020 for (y = 1; y < 2*params->h+2; y++) {
1021 for (x = 1; x < 2*params->w+2; x++) {
1022 if (!((y|x)&1)) {
aea3ed9a 1023 int k = numbers ? index(params, numbers, x/2-1, y/2-1) : 0;
1024 if (k || (all && numbers)) printf("%2d", k); else printf(" ");
3870c4d8 1025 } else if (!((y&x)&1)) {
1026 int v = egrid[y*r+x];
1027 if ((y&1) && v) v = '-';
1028 if ((x&1) && v) v = '|';
1029 if (!v) v = ' ';
1030 putchar(v);
1031 if (!(x&1)) putchar(v);
1032 } else {
1033 int c, d = 0;
1034 if (egrid[y*r+(x+1)]) d |= 1;
1035 if (egrid[(y-1)*r+x]) d |= 2;
1036 if (egrid[y*r+(x-1)]) d |= 4;
1037 if (egrid[(y+1)*r+x]) d |= 8;
1038 c = " ??+?-++?+|+++++"[d];
1039 putchar(c);
1040 if (!(x&1)) putchar(c);
1041 }
1042 }
1043 putchar('\n');
1044 }
1045
1046 sfree(egrid);
1047}
1048#endif
1049
2ac6d24e 1050struct game_aux_info {
1051 int w, h;
1052 unsigned char *vedge; /* (w+1) x h */
1053 unsigned char *hedge; /* w x (h+1) */
1054};
1055
1185e3c5 1056static char *new_game_desc(game_params *params, random_state *rs,
6f2d8d7c 1057 game_aux_info **aux)
3870c4d8 1058{
26801d29 1059 int *grid, *numbers = NULL;
3870c4d8 1060 struct rectlist *list;
aea3ed9a 1061 int x, y, y2, y2last, yx, run, i;
1185e3c5 1062 char *desc, *p;
aea3ed9a 1063 game_params params2real, *params2 = &params2real;
3870c4d8 1064
26801d29 1065 while (1) {
1066 /*
1067 * Set up the smaller width and height which we will use to
1068 * generate the base grid.
1069 */
1070 params2->w = params->w / (1.0F + params->expandfactor);
1071 if (params2->w < 2 && params->w >= 2) params2->w = 2;
1072 params2->h = params->h / (1.0F + params->expandfactor);
1073 if (params2->h < 2 && params->h >= 2) params2->h = 2;
aea3ed9a 1074
26801d29 1075 grid = snewn(params2->w * params2->h, int);
3870c4d8 1076
26801d29 1077 for (y = 0; y < params2->h; y++)
1078 for (x = 0; x < params2->w; x++) {
1079 index(params2, grid, x, y) = -1;
1080 }
3870c4d8 1081
26801d29 1082 list = get_rectlist(params2, grid);
1083 assert(list != NULL);
3870c4d8 1084
1085 /*
26801d29 1086 * Place rectangles until we can't any more.
3870c4d8 1087 */
26801d29 1088 while (list->n > 0) {
1089 int i, m;
1090 struct rect r;
1091
1092 /*
1093 * Pick a random rectangle.
1094 */
1095 i = random_upto(rs, list->n);
1096 r = list->rects[i];
1097
1098 /*
1099 * Place it.
1100 */
1101 place_rect(params2, grid, r);
1102
1103 /*
1104 * Winnow the list by removing any rectangles which
1105 * overlap this one.
1106 */
1107 m = 0;
1108 for (i = 0; i < list->n; i++) {
1109 struct rect s = list->rects[i];
1110 if (s.x+s.w <= r.x || r.x+r.w <= s.x ||
1111 s.y+s.h <= r.y || r.y+r.h <= s.y)
1112 list->rects[m++] = s;
1113 }
1114 list->n = m;
1115 }
3870c4d8 1116
26801d29 1117 free_rectlist(list);
3870c4d8 1118
1119 /*
26801d29 1120 * Deal with singleton spaces remaining in the grid, one by
1121 * one.
1122 *
1123 * We do this by making a local change to the layout. There are
1124 * several possibilities:
1125 *
1126 * +-----+-----+ Here, we can remove the singleton by
1127 * | | | extending the 1x2 rectangle below it
1128 * +--+--+-----+ into a 1x3.
1129 * | | | |
1130 * | +--+ |
1131 * | | | |
1132 * | | | |
1133 * | | | |
1134 * +--+--+-----+
1135 *
1136 * +--+--+--+ Here, that trick doesn't work: there's no
1137 * | | | 1 x n rectangle with the singleton at one
1138 * | | | end. Instead, we extend a 1 x n rectangle
1139 * | | | _out_ from the singleton, shaving a layer
1140 * +--+--+ | off the end of another rectangle. So if we
1141 * | | | | extended up, we'd make our singleton part
1142 * | +--+--+ of a 1x3 and generate a 1x2 where the 2x2
1143 * | | | used to be; or we could extend right into
1144 * +--+-----+ a 2x1, turning the 1x3 into a 1x2.
1145 *
1146 * +-----+--+ Here, we can't even do _that_, since any
1147 * | | | direction we choose to extend the singleton
1148 * +--+--+ | will produce a new singleton as a result of
1149 * | | | | truncating one of the size-2 rectangles.
1150 * | +--+--+ Fortunately, this case can _only_ occur when
1151 * | | | a singleton is surrounded by four size-2s
1152 * +--+-----+ in this fashion; so instead we can simply
1153 * replace the whole section with a single 3x3.
3870c4d8 1154 */
26801d29 1155 for (x = 0; x < params2->w; x++) {
1156 for (y = 0; y < params2->h; y++) {
1157 if (index(params2, grid, x, y) < 0) {
1158 int dirs[4], ndirs;
3870c4d8 1159
1160#ifdef GENERATION_DIAGNOSTICS
26801d29 1161 display_grid(params2, grid, NULL, FALSE);
1162 printf("singleton at %d,%d\n", x, y);
3870c4d8 1163#endif
1164
26801d29 1165 /*
1166 * Check in which directions we can feasibly extend
1167 * the singleton. We can extend in a particular
1168 * direction iff either:
1169 *
1170 * - the rectangle on that side of the singleton
1171 * is not 2x1, and we are at one end of the edge
1172 * of it we are touching
1173 *
1174 * - it is 2x1 but we are on its short side.
1175 *
1176 * FIXME: we could plausibly choose between these
1177 * based on the sizes of the rectangles they would
1178 * create?
1179 */
1180 ndirs = 0;
1181 if (x < params2->w-1) {
1182 struct rect r = find_rect(params2, grid, x+1, y);
1183 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1184 dirs[ndirs++] = 1; /* right */
1185 }
1186 if (y > 0) {
1187 struct rect r = find_rect(params2, grid, x, y-1);
1188 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1189 dirs[ndirs++] = 2; /* up */
1190 }
1191 if (x > 0) {
1192 struct rect r = find_rect(params2, grid, x-1, y);
1193 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1194 dirs[ndirs++] = 4; /* left */
1195 }
1196 if (y < params2->h-1) {
1197 struct rect r = find_rect(params2, grid, x, y+1);
1198 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1199 dirs[ndirs++] = 8; /* down */
1200 }
3870c4d8 1201
26801d29 1202 if (ndirs > 0) {
1203 int which, dir;
1204 struct rect r1, r2;
3870c4d8 1205
26801d29 1206 which = random_upto(rs, ndirs);
1207 dir = dirs[which];
3870c4d8 1208
26801d29 1209 switch (dir) {
1210 case 1: /* right */
1211 assert(x < params2->w+1);
3870c4d8 1212#ifdef GENERATION_DIAGNOSTICS
26801d29 1213 printf("extending right\n");
3870c4d8 1214#endif
26801d29 1215 r1 = find_rect(params2, grid, x+1, y);
1216 r2.x = x;
1217 r2.y = y;
1218 r2.w = 1 + r1.w;
1219 r2.h = 1;
1220 if (r1.y == y)
1221 r1.y++;
1222 r1.h--;
1223 break;
1224 case 2: /* up */
1225 assert(y > 0);
3870c4d8 1226#ifdef GENERATION_DIAGNOSTICS
26801d29 1227 printf("extending up\n");
3870c4d8 1228#endif
26801d29 1229 r1 = find_rect(params2, grid, x, y-1);
1230 r2.x = x;
1231 r2.y = r1.y;
1232 r2.w = 1;
1233 r2.h = 1 + r1.h;
1234 if (r1.x == x)
1235 r1.x++;
1236 r1.w--;
1237 break;
1238 case 4: /* left */
1239 assert(x > 0);
3870c4d8 1240#ifdef GENERATION_DIAGNOSTICS
26801d29 1241 printf("extending left\n");
3870c4d8 1242#endif
26801d29 1243 r1 = find_rect(params2, grid, x-1, y);
1244 r2.x = r1.x;
1245 r2.y = y;
1246 r2.w = 1 + r1.w;
1247 r2.h = 1;
1248 if (r1.y == y)
1249 r1.y++;
1250 r1.h--;
1251 break;
1252 case 8: /* down */
1253 assert(y < params2->h+1);
3870c4d8 1254#ifdef GENERATION_DIAGNOSTICS
26801d29 1255 printf("extending down\n");
3870c4d8 1256#endif
26801d29 1257 r1 = find_rect(params2, grid, x, y+1);
1258 r2.x = x;
1259 r2.y = y;
1260 r2.w = 1;
1261 r2.h = 1 + r1.h;
1262 if (r1.x == x)
1263 r1.x++;
1264 r1.w--;
1265 break;
1266 }
1267 if (r1.h > 0 && r1.w > 0)
1268 place_rect(params2, grid, r1);
1269 place_rect(params2, grid, r2);
1270 } else {
3870c4d8 1271#ifndef NDEBUG
26801d29 1272 /*
1273 * Sanity-check that there really is a 3x3
1274 * rectangle surrounding this singleton and it
1275 * contains absolutely everything we could
1276 * possibly need.
1277 */
1278 {
1279 int xx, yy;
1280 assert(x > 0 && x < params2->w-1);
1281 assert(y > 0 && y < params2->h-1);
1282
1283 for (xx = x-1; xx <= x+1; xx++)
1284 for (yy = y-1; yy <= y+1; yy++) {
1285 struct rect r = find_rect(params2,grid,xx,yy);
1286 assert(r.x >= x-1);
1287 assert(r.y >= y-1);
1288 assert(r.x+r.w-1 <= x+1);
1289 assert(r.y+r.h-1 <= y+1);
1290 }
1291 }
3870c4d8 1292#endif
26801d29 1293
3870c4d8 1294#ifdef GENERATION_DIAGNOSTICS
26801d29 1295 printf("need the 3x3 trick\n");
3870c4d8 1296#endif
1297
26801d29 1298 /*
1299 * FIXME: If the maximum rectangle area for
1300 * this grid is less than 9, we ought to
1301 * subdivide the 3x3 in some fashion. There are
1302 * five other possibilities:
1303 *
1304 * - a 6 and a 3
1305 * - a 4, a 3 and a 2
1306 * - three 3s
1307 * - a 3 and three 2s (two different arrangements).
1308 */
1309
1310 {
1311 struct rect r;
1312 r.x = x-1;
1313 r.y = y-1;
1314 r.w = r.h = 3;
1315 place_rect(params2, grid, r);
1316 }
3870c4d8 1317 }
1318 }
1319 }
1320 }
3870c4d8 1321
26801d29 1322 /*
1323 * We have now constructed a grid of the size specified in
1324 * params2. Now we extend it into a grid of the size specified
1325 * in params. We do this in two passes: we extend it vertically
1326 * until it's the right height, then we transpose it, then
1327 * extend it vertically again (getting it effectively the right
1328 * width), then finally transpose again.
1329 */
1330 for (i = 0; i < 2; i++) {
1331 int *grid2, *expand, *where;
1332 game_params params3real, *params3 = &params3real;
aea3ed9a 1333
1334#ifdef GENERATION_DIAGNOSTICS
26801d29 1335 printf("before expansion:\n");
1336 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1337#endif
1338
26801d29 1339 /*
1340 * Set up the new grid.
1341 */
1342 grid2 = snewn(params2->w * params->h, int);
1343 expand = snewn(params2->h-1, int);
1344 where = snewn(params2->w, int);
1345 params3->w = params2->w;
1346 params3->h = params->h;
1347
1348 /*
1349 * Decide which horizontal edges are going to get expanded,
1350 * and by how much.
1351 */
1352 for (y = 0; y < params2->h-1; y++)
1353 expand[y] = 0;
1354 for (y = params2->h; y < params->h; y++) {
1355 x = random_upto(rs, params2->h-1);
1356 expand[x]++;
1357 }
aea3ed9a 1358
1359#ifdef GENERATION_DIAGNOSTICS
26801d29 1360 printf("expand[] = {");
1361 for (y = 0; y < params2->h-1; y++)
1362 printf(" %d", expand[y]);
1363 printf(" }\n");
aea3ed9a 1364#endif
1365
26801d29 1366 /*
1367 * Perform the expansion. The way this works is that we
1368 * alternately:
1369 *
1370 * - copy a row from grid into grid2
1371 *
1372 * - invent some number of additional rows in grid2 where
1373 * there was previously only a horizontal line between
1374 * rows in grid, and make random decisions about where
1375 * among these to place each rectangle edge that ran
1376 * along this line.
1377 */
1378 for (y = y2 = y2last = 0; y < params2->h; y++) {
1379 /*
1380 * Copy a single line from row y of grid into row y2 of
1381 * grid2.
1382 */
1383 for (x = 0; x < params2->w; x++) {
1384 int val = index(params2, grid, x, y);
1385 if (val / params2->w == y && /* rect starts on this line */
1386 (y2 == 0 || /* we're at the very top, or... */
1387 index(params3, grid2, x, y2-1) / params3->w < y2last
1388 /* this rect isn't already started */))
1389 index(params3, grid2, x, y2) =
1390 INDEX(params3, val % params2->w, y2);
1391 else
1392 index(params3, grid2, x, y2) =
1393 index(params3, grid2, x, y2-1);
1394 }
1395
1396 /*
1397 * If that was the last line, terminate the loop early.
1398 */
1399 if (++y2 == params3->h)
1400 break;
1401
1402 y2last = y2;
1403
1404 /*
1405 * Invent some number of additional lines. First walk
1406 * along this line working out where to put all the
1407 * edges that coincide with it.
1408 */
1409 yx = -1;
1410 for (x = 0; x < params2->w; x++) {
1411 if (index(params2, grid, x, y) !=
1412 index(params2, grid, x, y+1)) {
1413 /*
1414 * This is a horizontal edge, so it needs
1415 * placing.
1416 */
1417 if (x == 0 ||
1418 (index(params2, grid, x-1, y) !=
1419 index(params2, grid, x, y) &&
1420 index(params2, grid, x-1, y+1) !=
1421 index(params2, grid, x, y+1))) {
1422 /*
1423 * Here we have the chance to make a new
1424 * decision.
1425 */
1426 yx = random_upto(rs, expand[y]+1);
1427 } else {
1428 /*
1429 * Here we just reuse the previous value of
1430 * yx.
1431 */
1432 }
1433 } else
1434 yx = -1;
1435 where[x] = yx;
1436 }
1437
1438 for (yx = 0; yx < expand[y]; yx++) {
1439 /*
1440 * Invent a single row. For each square in the row,
1441 * we copy the grid entry from the square above it,
1442 * unless we're starting the new rectangle here.
1443 */
1444 for (x = 0; x < params2->w; x++) {
1445 if (yx == where[x]) {
1446 int val = index(params2, grid, x, y+1);
1447 val %= params2->w;
1448 val = INDEX(params3, val, y2);
1449 index(params3, grid2, x, y2) = val;
1450 } else
1451 index(params3, grid2, x, y2) =
1452 index(params3, grid2, x, y2-1);
1453 }
1454
1455 y2++;
1456 }
1457 }
1458
1459 sfree(expand);
1460 sfree(where);
aea3ed9a 1461
1462#ifdef GENERATION_DIAGNOSTICS
26801d29 1463 printf("after expansion:\n");
1464 display_grid(params3, grid2, NULL, TRUE);
aea3ed9a 1465#endif
26801d29 1466 /*
1467 * Transpose.
1468 */
1469 params2->w = params3->h;
1470 params2->h = params3->w;
1471 sfree(grid);
1472 grid = snewn(params2->w * params2->h, int);
1473 for (x = 0; x < params2->w; x++)
1474 for (y = 0; y < params2->h; y++) {
1475 int idx1 = INDEX(params2, x, y);
1476 int idx2 = INDEX(params3, y, x);
1477 int tmp;
1478
1479 tmp = grid2[idx2];
1480 tmp = (tmp % params3->w) * params2->w + (tmp / params3->w);
1481 grid[idx1] = tmp;
1482 }
1483
1484 sfree(grid2);
1485
1486 {
1487 int tmp;
1488 tmp = params->w;
1489 params->w = params->h;
1490 params->h = tmp;
1491 }
aea3ed9a 1492
1493#ifdef GENERATION_DIAGNOSTICS
26801d29 1494 printf("after transposition:\n");
1495 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1496#endif
26801d29 1497 }
aea3ed9a 1498
26801d29 1499 /*
1500 * Run the solver to narrow down the possible number
1501 * placements.
1502 */
1503 {
1504 struct numberdata *nd;
1505 int nnumbers, i, ret;
1506
1507 /* Count the rectangles. */
1508 nnumbers = 0;
1509 for (y = 0; y < params->h; y++) {
1510 for (x = 0; x < params->w; x++) {
1511 int idx = INDEX(params, x, y);
1512 if (index(params, grid, x, y) == idx)
1513 nnumbers++;
1514 }
1515 }
2ac6d24e 1516
26801d29 1517 nd = snewn(nnumbers, struct numberdata);
1518
1519 /* Now set up each number's candidate position list. */
1520 i = 0;
1521 for (y = 0; y < params->h; y++) {
1522 for (x = 0; x < params->w; x++) {
1523 int idx = INDEX(params, x, y);
1524 if (index(params, grid, x, y) == idx) {
1525 struct rect r = find_rect(params, grid, x, y);
1526 int j, k, m;
1527
1528 nd[i].area = r.w * r.h;
1529 nd[i].npoints = nd[i].area;
1530 nd[i].points = snewn(nd[i].npoints, struct point);
1531 m = 0;
1532 for (j = 0; j < r.h; j++)
1533 for (k = 0; k < r.w; k++) {
1534 nd[i].points[m].x = k + r.x;
1535 nd[i].points[m].y = j + r.y;
1536 m++;
1537 }
1538 assert(m == nd[i].npoints);
aea3ed9a 1539
26801d29 1540 i++;
1541 }
1542 }
1543 }
aea3ed9a 1544
40fde884 1545 if (params->unique)
1507058f 1546 ret = rect_solver(params->w, params->h, nnumbers, nd,
1547 NULL, rs);
40fde884 1548 else
1549 ret = TRUE; /* allow any number placement at all */
3870c4d8 1550
26801d29 1551 if (ret) {
3870c4d8 1552 /*
26801d29 1553 * Now place the numbers according to the solver's
1554 * recommendations.
3870c4d8 1555 */
26801d29 1556 numbers = snewn(params->w * params->h, int);
1557
1558 for (y = 0; y < params->h; y++)
1559 for (x = 0; x < params->w; x++) {
1560 index(params, numbers, x, y) = 0;
1561 }
1562
1563 for (i = 0; i < nnumbers; i++) {
1564 int idx = random_upto(rs, nd[i].npoints);
1565 int x = nd[i].points[idx].x;
1566 int y = nd[i].points[idx].y;
1567 index(params,numbers,x,y) = nd[i].area;
1568 }
3870c4d8 1569 }
26801d29 1570
1571 /*
1572 * Clean up.
1573 */
1574 for (i = 0; i < nnumbers; i++)
1575 sfree(nd[i].points);
1576 sfree(nd);
1577
1578 /*
1579 * If we've succeeded, then terminate the loop.
1580 */
1581 if (ret)
1582 break;
3870c4d8 1583 }
26801d29 1584
1585 /*
1586 * Give up and go round again.
1587 */
1588 sfree(grid);
1589 }
1590
1591 /*
1592 * Store the rectangle data in the game_aux_info.
1593 */
1594 {
1595 game_aux_info *ai = snew(game_aux_info);
1596
1597 ai->w = params->w;
1598 ai->h = params->h;
1599 ai->vedge = snewn(ai->w * ai->h, unsigned char);
1600 ai->hedge = snewn(ai->w * ai->h, unsigned char);
1601
1602 for (y = 0; y < params->h; y++)
1603 for (x = 1; x < params->w; x++) {
1604 vedge(ai, x, y) =
1605 index(params, grid, x, y) != index(params, grid, x-1, y);
1606 }
1607 for (y = 1; y < params->h; y++)
1608 for (x = 0; x < params->w; x++) {
1609 hedge(ai, x, y) =
1610 index(params, grid, x, y) != index(params, grid, x, y-1);
1611 }
1612
1613 *aux = ai;
3870c4d8 1614 }
1615
1616#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 1617 display_grid(params, grid, numbers, FALSE);
3870c4d8 1618#endif
1619
1185e3c5 1620 desc = snewn(11 * params->w * params->h, char);
1621 p = desc;
3870c4d8 1622 run = 0;
1623 for (i = 0; i <= params->w * params->h; i++) {
1624 int n = (i < params->w * params->h ? numbers[i] : -1);
1625
1626 if (!n)
1627 run++;
1628 else {
1629 if (run) {
1630 while (run > 0) {
1631 int c = 'a' - 1 + run;
1632 if (run > 26)
1633 c = 'z';
1634 *p++ = c;
1635 run -= c - ('a' - 1);
1636 }
1637 } else {
0e87eedc 1638 /*
1639 * If there's a number in the very top left or
1640 * bottom right, there's no point putting an
1641 * unnecessary _ before or after it.
1642 */
1185e3c5 1643 if (p > desc && n > 0)
0e87eedc 1644 *p++ = '_';
3870c4d8 1645 }
1646 if (n > 0)
1647 p += sprintf(p, "%d", n);
1648 run = 0;
1649 }
1650 }
1651 *p = '\0';
1652
1653 sfree(grid);
1654 sfree(numbers);
1655
1185e3c5 1656 return desc;
3870c4d8 1657}
1658
2ac6d24e 1659static void game_free_aux_info(game_aux_info *ai)
6f2d8d7c 1660{
2ac6d24e 1661 sfree(ai->vedge);
1662 sfree(ai->hedge);
1663 sfree(ai);
6f2d8d7c 1664}
1665
1185e3c5 1666static char *validate_desc(game_params *params, char *desc)
3870c4d8 1667{
1668 int area = params->w * params->h;
1669 int squares = 0;
1670
1185e3c5 1671 while (*desc) {
1672 int n = *desc++;
3870c4d8 1673 if (n >= 'a' && n <= 'z') {
1674 squares += n - 'a' + 1;
1675 } else if (n == '_') {
1676 /* do nothing */;
1677 } else if (n > '0' && n <= '9') {
9bb5bf60 1678 squares++;
1185e3c5 1679 while (*desc >= '0' && *desc <= '9')
1680 desc++;
3870c4d8 1681 } else
1185e3c5 1682 return "Invalid character in game description";
3870c4d8 1683 }
1684
1685 if (squares < area)
1686 return "Not enough data to fill grid";
1687
1688 if (squares > area)
1689 return "Too much data to fit in grid";
1690
1691 return NULL;
1692}
1693
1185e3c5 1694static game_state *new_game(game_params *params, char *desc)
3870c4d8 1695{
1696 game_state *state = snew(game_state);
1697 int x, y, i, area;
1698
1699 state->w = params->w;
1700 state->h = params->h;
1701
1702 area = state->w * state->h;
1703
1704 state->grid = snewn(area, int);
1705 state->vedge = snewn(area, unsigned char);
1706 state->hedge = snewn(area, unsigned char);
2ac6d24e 1707 state->completed = state->cheated = FALSE;
3870c4d8 1708
1709 i = 0;
1185e3c5 1710 while (*desc) {
1711 int n = *desc++;
3870c4d8 1712 if (n >= 'a' && n <= 'z') {
1713 int run = n - 'a' + 1;
1714 assert(i + run <= area);
1715 while (run-- > 0)
1716 state->grid[i++] = 0;
1717 } else if (n == '_') {
1718 /* do nothing */;
1719 } else if (n > '0' && n <= '9') {
1720 assert(i < area);
1185e3c5 1721 state->grid[i++] = atoi(desc-1);
1722 while (*desc >= '0' && *desc <= '9')
1723 desc++;
3870c4d8 1724 } else {
1725 assert(!"We can't get here");
1726 }
1727 }
1728 assert(i == area);
1729
1730 for (y = 0; y < state->h; y++)
1731 for (x = 0; x < state->w; x++)
1732 vedge(state,x,y) = hedge(state,x,y) = 0;
1733
1734 return state;
1735}
1736
be8d5aa1 1737static game_state *dup_game(game_state *state)
3870c4d8 1738{
1739 game_state *ret = snew(game_state);
1740
1741 ret->w = state->w;
1742 ret->h = state->h;
1743
1744 ret->vedge = snewn(state->w * state->h, unsigned char);
1745 ret->hedge = snewn(state->w * state->h, unsigned char);
1746 ret->grid = snewn(state->w * state->h, int);
1747
ef29354c 1748 ret->completed = state->completed;
2ac6d24e 1749 ret->cheated = state->cheated;
ef29354c 1750
3870c4d8 1751 memcpy(ret->grid, state->grid, state->w * state->h * sizeof(int));
1752 memcpy(ret->vedge, state->vedge, state->w*state->h*sizeof(unsigned char));
1753 memcpy(ret->hedge, state->hedge, state->w*state->h*sizeof(unsigned char));
1754
1755 return ret;
1756}
1757
be8d5aa1 1758static void free_game(game_state *state)
3870c4d8 1759{
1760 sfree(state->grid);
1761 sfree(state->vedge);
1762 sfree(state->hedge);
1763 sfree(state);
1764}
1765
2ac6d24e 1766static game_state *solve_game(game_state *state, game_aux_info *ai,
1767 char **error)
1768{
1769 game_state *ret;
1770
1771 if (!ai) {
1507058f 1772 int i, j, n;
1773 struct numberdata *nd;
1774
1775 /*
1776 * Attempt the in-built solver.
1777 */
1778
1779 /* Set up each number's (very short) candidate position list. */
1780 for (i = n = 0; i < state->h * state->w; i++)
1781 if (state->grid[i])
1782 n++;
1783
1784 nd = snewn(n, struct numberdata);
1785
1786 for (i = j = 0; i < state->h * state->w; i++)
1787 if (state->grid[i]) {
1788 nd[j].area = state->grid[i];
1789 nd[j].npoints = 1;
1790 nd[j].points = snewn(1, struct point);
1791 nd[j].points[0].x = i % state->w;
1792 nd[j].points[0].y = i / state->w;
1793 j++;
1794 }
1795
1796 assert(j == n);
1797
1798 ret = dup_game(state);
1799 ret->cheated = TRUE;
1800
1801 rect_solver(state->w, state->h, n, nd, ret, NULL);
1802
1803 /*
1804 * Clean up.
1805 */
1806 for (i = 0; i < n; i++)
1807 sfree(nd[i].points);
1808 sfree(nd);
1809
1810 return ret;
2ac6d24e 1811 }
1812
1813 assert(state->w == ai->w);
1814 assert(state->h == ai->h);
1815
1816 ret = dup_game(state);
1817 memcpy(ret->vedge, ai->vedge, ai->w * ai->h * sizeof(unsigned char));
1818 memcpy(ret->hedge, ai->hedge, ai->w * ai->h * sizeof(unsigned char));
1819 ret->cheated = TRUE;
1820
1821 return ret;
1822}
1823
9b4b03d3 1824static char *game_text_format(game_state *state)
1825{
6ad5ed74 1826 char *ret, *p, buf[80];
1827 int i, x, y, col, maxlen;
1828
1829 /*
1830 * First determine the number of spaces required to display a
1831 * number. We'll use at least two, because one looks a bit
1832 * silly.
1833 */
1834 col = 2;
1835 for (i = 0; i < state->w * state->h; i++) {
1836 x = sprintf(buf, "%d", state->grid[i]);
1837 if (col < x) col = x;
1838 }
1839
1840 /*
1841 * Now we know the exact total size of the grid we're going to
1842 * produce: it's got 2*h+1 rows, each containing w lots of col,
1843 * w+1 boundary characters and a trailing newline.
1844 */
1845 maxlen = (2*state->h+1) * (state->w * (col+1) + 2);
1846
48a10826 1847 ret = snewn(maxlen+1, char);
6ad5ed74 1848 p = ret;
1849
1850 for (y = 0; y <= 2*state->h; y++) {
1851 for (x = 0; x <= 2*state->w; x++) {
1852 if (x & y & 1) {
1853 /*
1854 * Display a number.
1855 */
1856 int v = grid(state, x/2, y/2);
1857 if (v)
1858 sprintf(buf, "%*d", col, v);
1859 else
1860 sprintf(buf, "%*s", col, "");
1861 memcpy(p, buf, col);
1862 p += col;
1863 } else if (x & 1) {
1864 /*
1865 * Display a horizontal edge or nothing.
1866 */
1867 int h = (y==0 || y==2*state->h ? 1 :
1868 HRANGE(state, x/2, y/2) && hedge(state, x/2, y/2));
1869 int i;
1870 if (h)
1871 h = '-';
1872 else
1873 h = ' ';
1874 for (i = 0; i < col; i++)
1875 *p++ = h;
1876 } else if (y & 1) {
1877 /*
1878 * Display a vertical edge or nothing.
1879 */
1880 int v = (x==0 || x==2*state->w ? 1 :
1881 VRANGE(state, x/2, y/2) && vedge(state, x/2, y/2));
1882 if (v)
1883 *p++ = '|';
1884 else
1885 *p++ = ' ';
1886 } else {
1887 /*
1888 * Display a corner, or a vertical edge, or a
1889 * horizontal edge, or nothing.
1890 */
1891 int hl = (y==0 || y==2*state->h ? 1 :
1892 HRANGE(state, (x-1)/2, y/2) && hedge(state, (x-1)/2, y/2));
1893 int hr = (y==0 || y==2*state->h ? 1 :
1894 HRANGE(state, (x+1)/2, y/2) && hedge(state, (x+1)/2, y/2));
1895 int vu = (x==0 || x==2*state->w ? 1 :
1896 VRANGE(state, x/2, (y-1)/2) && vedge(state, x/2, (y-1)/2));
1897 int vd = (x==0 || x==2*state->w ? 1 :
1898 VRANGE(state, x/2, (y+1)/2) && vedge(state, x/2, (y+1)/2));
1899 if (!hl && !hr && !vu && !vd)
1900 *p++ = ' ';
1901 else if (hl && hr && !vu && !vd)
1902 *p++ = '-';
1903 else if (!hl && !hr && vu && vd)
1904 *p++ = '|';
1905 else
1906 *p++ = '+';
1907 }
1908 }
1909 *p++ = '\n';
1910 }
1911
1912 assert(p - ret == maxlen);
1913 *p = '\0';
1914 return ret;
9b4b03d3 1915}
1916
3870c4d8 1917static unsigned char *get_correct(game_state *state)
1918{
1919 unsigned char *ret;
1920 int x, y;
1921
1922 ret = snewn(state->w * state->h, unsigned char);
1923 memset(ret, 0xFF, state->w * state->h);
1924
1925 for (x = 0; x < state->w; x++)
1926 for (y = 0; y < state->h; y++)
1927 if (index(state,ret,x,y) == 0xFF) {
1928 int rw, rh;
1929 int xx, yy;
1930 int num, area, valid;
1931
1932 /*
1933 * Find a rectangle starting at this point.
1934 */
1935 rw = 1;
1936 while (x+rw < state->w && !vedge(state,x+rw,y))
1937 rw++;
1938 rh = 1;
1939 while (y+rh < state->h && !hedge(state,x,y+rh))
1940 rh++;
1941
1942 /*
1943 * We know what the dimensions of the rectangle
1944 * should be if it's there at all. Find out if we
1945 * really have a valid rectangle.
1946 */
1947 valid = TRUE;
1948 /* Check the horizontal edges. */
1949 for (xx = x; xx < x+rw; xx++) {
1950 for (yy = y; yy <= y+rh; yy++) {
1951 int e = !HRANGE(state,xx,yy) || hedge(state,xx,yy);
1952 int ec = (yy == y || yy == y+rh);
1953 if (e != ec)
1954 valid = FALSE;
1955 }
1956 }
1957 /* Check the vertical edges. */
1958 for (yy = y; yy < y+rh; yy++) {
1959 for (xx = x; xx <= x+rw; xx++) {
1960 int e = !VRANGE(state,xx,yy) || vedge(state,xx,yy);
1961 int ec = (xx == x || xx == x+rw);
1962 if (e != ec)
1963 valid = FALSE;
1964 }
1965 }
1966
1967 /*
1968 * If this is not a valid rectangle with no other
1969 * edges inside it, we just mark this square as not
1970 * complete and proceed to the next square.
1971 */
1972 if (!valid) {
1973 index(state, ret, x, y) = 0;
1974 continue;
1975 }
1976
1977 /*
1978 * We have a rectangle. Now see what its area is,
1979 * and how many numbers are in it.
1980 */
1981 num = 0;
1982 area = 0;
1983 for (xx = x; xx < x+rw; xx++) {
1984 for (yy = y; yy < y+rh; yy++) {
1985 area++;
1986 if (grid(state,xx,yy)) {
1987 if (num > 0)
1988 valid = FALSE; /* two numbers */
1989 num = grid(state,xx,yy);
1990 }
1991 }
1992 }
1993 if (num != area)
1994 valid = FALSE;
1995
1996 /*
1997 * Now fill in the whole rectangle based on the
1998 * value of `valid'.
1999 */
2000 for (xx = x; xx < x+rw; xx++) {
2001 for (yy = y; yy < y+rh; yy++) {
2002 index(state, ret, xx, yy) = valid;
2003 }
2004 }
2005 }
2006
2007 return ret;
2008}
2009
08dd70c3 2010struct game_ui {
2011 /*
2012 * These coordinates are 2 times the obvious grid coordinates.
2013 * Hence, the top left of the grid is (0,0), the grid point to
2014 * the right of that is (2,0), the one _below that_ is (2,2)
2015 * and so on. This is so that we can specify a drag start point
2016 * on an edge (one odd coordinate) or in the middle of a square
2017 * (two odd coordinates) rather than always at a corner.
2018 *
2019 * -1,-1 means no drag is in progress.
2020 */
2021 int drag_start_x;
2022 int drag_start_y;
2023 int drag_end_x;
2024 int drag_end_y;
2025 /*
2026 * This flag is set as soon as a dragging action moves the
2027 * mouse pointer away from its starting point, so that even if
2028 * the pointer _returns_ to its starting point the action is
2029 * treated as a small drag rather than a click.
2030 */
2031 int dragged;
2032};
2033
be8d5aa1 2034static game_ui *new_ui(game_state *state)
74a4e547 2035{
08dd70c3 2036 game_ui *ui = snew(game_ui);
2037 ui->drag_start_x = -1;
2038 ui->drag_start_y = -1;
2039 ui->drag_end_x = -1;
2040 ui->drag_end_y = -1;
2041 ui->dragged = FALSE;
2042 return ui;
74a4e547 2043}
2044
be8d5aa1 2045static void free_ui(game_ui *ui)
74a4e547 2046{
08dd70c3 2047 sfree(ui);
2048}
2049
be8d5aa1 2050static void coord_round(float x, float y, int *xr, int *yr)
08dd70c3 2051{
d4e7900f 2052 float xs, ys, xv, yv, dx, dy, dist;
08dd70c3 2053
2054 /*
d4e7900f 2055 * Find the nearest square-centre.
08dd70c3 2056 */
d4e7900f 2057 xs = (float)floor(x) + 0.5F;
2058 ys = (float)floor(y) + 0.5F;
08dd70c3 2059
2060 /*
d4e7900f 2061 * And find the nearest grid vertex.
08dd70c3 2062 */
d4e7900f 2063 xv = (float)floor(x + 0.5F);
2064 yv = (float)floor(y + 0.5F);
08dd70c3 2065
2066 /*
d4e7900f 2067 * We allocate clicks in parts of the grid square to either
2068 * corners, edges or square centres, as follows:
2069 *
2070 * +--+--------+--+
2071 * | | | |
2072 * +--+ +--+
2073 * | `. ,' |
2074 * | +--+ |
2075 * | | | |
2076 * | +--+ |
2077 * | ,' `. |
2078 * +--+ +--+
2079 * | | | |
2080 * +--+--------+--+
2081 *
2082 * (Not to scale!)
2083 *
2084 * In other words: we measure the square distance (i.e.
2085 * max(dx,dy)) from the click to the nearest corner, and if
2086 * it's within CORNER_TOLERANCE then we return a corner click.
2087 * We measure the square distance from the click to the nearest
2088 * centre, and if that's within CENTRE_TOLERANCE we return a
2089 * centre click. Failing that, we find which of the two edge
2090 * centres is nearer to the click and return that edge.
08dd70c3 2091 */
d4e7900f 2092
2093 /*
2094 * Check for corner click.
2095 */
2096 dx = (float)fabs(x - xv);
2097 dy = (float)fabs(y - yv);
2098 dist = (dx > dy ? dx : dy);
2099 if (dist < CORNER_TOLERANCE) {
2100 *xr = 2 * (int)xv;
2101 *yr = 2 * (int)yv;
2102 } else {
2103 /*
2104 * Check for centre click.
2105 */
2106 dx = (float)fabs(x - xs);
2107 dy = (float)fabs(y - ys);
2108 dist = (dx > dy ? dx : dy);
2109 if (dist < CENTRE_TOLERANCE) {
2110 *xr = 1 + 2 * (int)xs;
2111 *yr = 1 + 2 * (int)ys;
2112 } else {
2113 /*
2114 * Failing both of those, see which edge we're closer to.
2115 * Conveniently, this is simply done by testing the relative
2116 * magnitude of dx and dy (which are currently distances from
2117 * the square centre).
2118 */
2119 if (dx > dy) {
2120 /* Vertical edge: x-coord of corner,
2121 * y-coord of square centre. */
2122 *xr = 2 * (int)xv;
2123 *yr = 1 + 2 * (int)ys;
2124 } else {
2125 /* Horizontal edge: x-coord of square centre,
2126 * y-coord of corner. */
2127 *xr = 1 + 2 * (int)xs;
2128 *yr = 2 * (int)yv;
2129 }
2130 }
2131 }
08dd70c3 2132}
2133
2134static void ui_draw_rect(game_state *state, game_ui *ui,
2135 unsigned char *hedge, unsigned char *vedge, int c)
2136{
2137 int x1, x2, y1, y2, x, y, t;
2138
2139 x1 = ui->drag_start_x;
2140 x2 = ui->drag_end_x;
2141 if (x2 < x1) { t = x1; x1 = x2; x2 = t; }
2142
2143 y1 = ui->drag_start_y;
2144 y2 = ui->drag_end_y;
2145 if (y2 < y1) { t = y1; y1 = y2; y2 = t; }
2146
2147 x1 = x1 / 2; /* rounds down */
2148 x2 = (x2+1) / 2; /* rounds up */
2149 y1 = y1 / 2; /* rounds down */
2150 y2 = (y2+1) / 2; /* rounds up */
2151
2152 /*
2153 * Draw horizontal edges of rectangles.
2154 */
2155 for (x = x1; x < x2; x++)
2156 for (y = y1; y <= y2; y++)
2157 if (HRANGE(state,x,y)) {
2158 int val = index(state,hedge,x,y);
2159 if (y == y1 || y == y2)
2160 val = c;
2161 else if (c == 1)
2162 val = 0;
2163 index(state,hedge,x,y) = val;
2164 }
2165
2166 /*
2167 * Draw vertical edges of rectangles.
2168 */
2169 for (y = y1; y < y2; y++)
2170 for (x = x1; x <= x2; x++)
2171 if (VRANGE(state,x,y)) {
2172 int val = index(state,vedge,x,y);
2173 if (x == x1 || x == x2)
2174 val = c;
2175 else if (c == 1)
2176 val = 0;
2177 index(state,vedge,x,y) = val;
2178 }
74a4e547 2179}
2180
be8d5aa1 2181static game_state *make_move(game_state *from, game_ui *ui,
2182 int x, int y, int button)
3870c4d8 2183{
08dd70c3 2184 int xc, yc;
2185 int startdrag = FALSE, enddrag = FALSE, active = FALSE;
3870c4d8 2186 game_state *ret;
2187
f0ee053c 2188 button &= ~MOD_MASK;
2189
08dd70c3 2190 if (button == LEFT_BUTTON) {
2191 startdrag = TRUE;
2192 } else if (button == LEFT_RELEASE) {
2193 enddrag = TRUE;
2194 } else if (button != LEFT_DRAG) {
2195 return NULL;
2196 }
2197
d4e7900f 2198 coord_round(FROMCOORD((float)x), FROMCOORD((float)y), &xc, &yc);
08dd70c3 2199
2200 if (startdrag) {
2201 ui->drag_start_x = xc;
2202 ui->drag_start_y = yc;
2203 ui->drag_end_x = xc;
2204 ui->drag_end_y = yc;
2205 ui->dragged = FALSE;
2206 active = TRUE;
2207 }
3870c4d8 2208
08dd70c3 2209 if (xc != ui->drag_end_x || yc != ui->drag_end_y) {
2210 ui->drag_end_x = xc;
2211 ui->drag_end_y = yc;
2212 ui->dragged = TRUE;
2213 active = TRUE;
2214 }
3870c4d8 2215
934797c7 2216 ret = NULL;
2217
2218 if (enddrag) {
2219 if (xc >= 0 && xc <= 2*from->w &&
2220 yc >= 0 && yc <= 2*from->h) {
2221 ret = dup_game(from);
2222
2223 if (ui->dragged) {
2224 ui_draw_rect(ret, ui, ret->hedge, ret->vedge, 1);
2225 } else {
2226 if ((xc & 1) && !(yc & 1) && HRANGE(from,xc/2,yc/2)) {
2227 hedge(ret,xc/2,yc/2) = !hedge(ret,xc/2,yc/2);
2228 }
2229 if ((yc & 1) && !(xc & 1) && VRANGE(from,xc/2,yc/2)) {
2230 vedge(ret,xc/2,yc/2) = !vedge(ret,xc/2,yc/2);
2231 }
2232 }
3870c4d8 2233
934797c7 2234 if (!memcmp(ret->hedge, from->hedge, from->w*from->h) &&
2235 !memcmp(ret->vedge, from->vedge, from->w*from->h)) {
2236 free_game(ret);
2237 ret = NULL;
2238 }
ef29354c 2239
2240 /*
2241 * We've made a real change to the grid. Check to see
2242 * if the game has been completed.
2243 */
d4e7900f 2244 if (ret && !ret->completed) {
ef29354c 2245 int x, y, ok;
2246 unsigned char *correct = get_correct(ret);
2247
2248 ok = TRUE;
2249 for (x = 0; x < ret->w; x++)
2250 for (y = 0; y < ret->h; y++)
2251 if (!index(ret, correct, x, y))
2252 ok = FALSE;
2253
2254 sfree(correct);
2255
2256 if (ok)
2257 ret->completed = TRUE;
2258 }
934797c7 2259 }
2260
2261 ui->drag_start_x = -1;
2262 ui->drag_start_y = -1;
2263 ui->drag_end_x = -1;
2264 ui->drag_end_y = -1;
2265 ui->dragged = FALSE;
2266 active = TRUE;
3870c4d8 2267 }
2268
934797c7 2269 if (ret)
2270 return ret; /* a move has been made */
2271 else if (active)
08dd70c3 2272 return from; /* UI activity has occurred */
934797c7 2273 else
2274 return NULL;
3870c4d8 2275}
2276
2277/* ----------------------------------------------------------------------
2278 * Drawing routines.
2279 */
2280
ec9a0f09 2281#define CORRECT 65536
08dd70c3 2282
2283#define COLOUR(k) ( (k)==1 ? COL_LINE : COL_DRAG )
2284#define MAX(x,y) ( (x)>(y) ? (x) : (y) )
2285#define MAX4(x,y,z,w) ( MAX(MAX(x,y),MAX(z,w)) )
3870c4d8 2286
2287struct game_drawstate {
2288 int started;
2289 int w, h;
ec9a0f09 2290 unsigned int *visible;
3870c4d8 2291};
2292
be8d5aa1 2293static void game_size(game_params *params, int *x, int *y)
3870c4d8 2294{
2295 *x = params->w * TILE_SIZE + 2*BORDER + 1;
2296 *y = params->h * TILE_SIZE + 2*BORDER + 1;
2297}
2298
be8d5aa1 2299static float *game_colours(frontend *fe, game_state *state, int *ncolours)
3870c4d8 2300{
2301 float *ret = snewn(3 * NCOLOURS, float);
2302
2303 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2304
2305 ret[COL_GRID * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2306 ret[COL_GRID * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2307 ret[COL_GRID * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2308
08dd70c3 2309 ret[COL_DRAG * 3 + 0] = 1.0F;
2310 ret[COL_DRAG * 3 + 1] = 0.0F;
2311 ret[COL_DRAG * 3 + 2] = 0.0F;
2312
3870c4d8 2313 ret[COL_CORRECT * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2314 ret[COL_CORRECT * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2315 ret[COL_CORRECT * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2316
2317 ret[COL_LINE * 3 + 0] = 0.0F;
2318 ret[COL_LINE * 3 + 1] = 0.0F;
2319 ret[COL_LINE * 3 + 2] = 0.0F;
2320
2321 ret[COL_TEXT * 3 + 0] = 0.0F;
2322 ret[COL_TEXT * 3 + 1] = 0.0F;
2323 ret[COL_TEXT * 3 + 2] = 0.0F;
2324
2325 *ncolours = NCOLOURS;
2326 return ret;
2327}
2328
be8d5aa1 2329static game_drawstate *game_new_drawstate(game_state *state)
3870c4d8 2330{
2331 struct game_drawstate *ds = snew(struct game_drawstate);
08dd70c3 2332 int i;
3870c4d8 2333
2334 ds->started = FALSE;
2335 ds->w = state->w;
2336 ds->h = state->h;
ec9a0f09 2337 ds->visible = snewn(ds->w * ds->h, unsigned int);
08dd70c3 2338 for (i = 0; i < ds->w * ds->h; i++)
2339 ds->visible[i] = 0xFFFF;
3870c4d8 2340
2341 return ds;
2342}
2343
be8d5aa1 2344static void game_free_drawstate(game_drawstate *ds)
3870c4d8 2345{
2346 sfree(ds->visible);
2347 sfree(ds);
2348}
2349
be8d5aa1 2350static void draw_tile(frontend *fe, game_state *state, int x, int y,
ec9a0f09 2351 unsigned char *hedge, unsigned char *vedge,
2352 unsigned char *corners, int correct)
3870c4d8 2353{
2354 int cx = COORD(x), cy = COORD(y);
2355 char str[80];
2356
2357 draw_rect(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1, COL_GRID);
2358 draw_rect(fe, cx+1, cy+1, TILE_SIZE-1, TILE_SIZE-1,
2359 correct ? COL_CORRECT : COL_BACKGROUND);
2360
2361 if (grid(state,x,y)) {
2362 sprintf(str, "%d", grid(state,x,y));
2363 draw_text(fe, cx+TILE_SIZE/2, cy+TILE_SIZE/2, FONT_VARIABLE,
105a00d0 2364 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_TEXT, str);
3870c4d8 2365 }
2366
2367 /*
2368 * Draw edges.
2369 */
08dd70c3 2370 if (!HRANGE(state,x,y) || index(state,hedge,x,y))
2371 draw_rect(fe, cx, cy, TILE_SIZE+1, 2,
2372 HRANGE(state,x,y) ? COLOUR(index(state,hedge,x,y)) :
2373 COL_LINE);
2374 if (!HRANGE(state,x,y+1) || index(state,hedge,x,y+1))
2375 draw_rect(fe, cx, cy+TILE_SIZE-1, TILE_SIZE+1, 2,
2376 HRANGE(state,x,y+1) ? COLOUR(index(state,hedge,x,y+1)) :
2377 COL_LINE);
2378 if (!VRANGE(state,x,y) || index(state,vedge,x,y))
2379 draw_rect(fe, cx, cy, 2, TILE_SIZE+1,
2380 VRANGE(state,x,y) ? COLOUR(index(state,vedge,x,y)) :
2381 COL_LINE);
2382 if (!VRANGE(state,x+1,y) || index(state,vedge,x+1,y))
2383 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, TILE_SIZE+1,
2384 VRANGE(state,x+1,y) ? COLOUR(index(state,vedge,x+1,y)) :
2385 COL_LINE);
3870c4d8 2386
2387 /*
2388 * Draw corners.
2389 */
ec9a0f09 2390 if (index(state,corners,x,y))
08dd70c3 2391 draw_rect(fe, cx, cy, 2, 2,
ec9a0f09 2392 COLOUR(index(state,corners,x,y)));
2393 if (x+1 < state->w && index(state,corners,x+1,y))
08dd70c3 2394 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, 2,
ec9a0f09 2395 COLOUR(index(state,corners,x+1,y)));
2396 if (y+1 < state->h && index(state,corners,x,y+1))
08dd70c3 2397 draw_rect(fe, cx, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2398 COLOUR(index(state,corners,x,y+1)));
2399 if (x+1 < state->w && y+1 < state->h && index(state,corners,x+1,y+1))
08dd70c3 2400 draw_rect(fe, cx+TILE_SIZE-1, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2401 COLOUR(index(state,corners,x+1,y+1)));
3870c4d8 2402
2403 draw_update(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1);
2404}
2405
be8d5aa1 2406static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
c822de4a 2407 game_state *state, int dir, game_ui *ui,
74a4e547 2408 float animtime, float flashtime)
3870c4d8 2409{
2410 int x, y;
2411 unsigned char *correct;
ec9a0f09 2412 unsigned char *hedge, *vedge, *corners;
3870c4d8 2413
2414 correct = get_correct(state);
2415
08dd70c3 2416 if (ui->dragged) {
2417 hedge = snewn(state->w*state->h, unsigned char);
2418 vedge = snewn(state->w*state->h, unsigned char);
2419 memcpy(hedge, state->hedge, state->w*state->h);
2420 memcpy(vedge, state->vedge, state->w*state->h);
2421 ui_draw_rect(state, ui, hedge, vedge, 2);
2422 } else {
2423 hedge = state->hedge;
2424 vedge = state->vedge;
2425 }
2426
ec9a0f09 2427 corners = snewn(state->w * state->h, unsigned char);
2428 memset(corners, 0, state->w * state->h);
2429 for (x = 0; x < state->w; x++)
2430 for (y = 0; y < state->h; y++) {
2431 if (x > 0) {
2432 int e = index(state, vedge, x, y);
2433 if (index(state,corners,x,y) < e)
2434 index(state,corners,x,y) = e;
2435 if (y+1 < state->h &&
2436 index(state,corners,x,y+1) < e)
2437 index(state,corners,x,y+1) = e;
2438 }
2439 if (y > 0) {
2440 int e = index(state, hedge, x, y);
2441 if (index(state,corners,x,y) < e)
2442 index(state,corners,x,y) = e;
2443 if (x+1 < state->w &&
2444 index(state,corners,x+1,y) < e)
2445 index(state,corners,x+1,y) = e;
2446 }
2447 }
2448
3870c4d8 2449 if (!ds->started) {
105a00d0 2450 draw_rect(fe, 0, 0,
2451 state->w * TILE_SIZE + 2*BORDER + 1,
2452 state->h * TILE_SIZE + 2*BORDER + 1, COL_BACKGROUND);
3870c4d8 2453 draw_rect(fe, COORD(0)-1, COORD(0)-1,
2454 ds->w*TILE_SIZE+3, ds->h*TILE_SIZE+3, COL_LINE);
2455 ds->started = TRUE;
863c3945 2456 draw_update(fe, 0, 0,
2457 state->w * TILE_SIZE + 2*BORDER + 1,
2458 state->h * TILE_SIZE + 2*BORDER + 1);
3870c4d8 2459 }
2460
2461 for (x = 0; x < state->w; x++)
2462 for (y = 0; y < state->h; y++) {
ec9a0f09 2463 unsigned int c = 0;
08dd70c3 2464
2465 if (HRANGE(state,x,y))
2466 c |= index(state,hedge,x,y);
eddb22e8 2467 if (HRANGE(state,x,y+1))
2468 c |= index(state,hedge,x,y+1) << 2;
08dd70c3 2469 if (VRANGE(state,x,y))
2470 c |= index(state,vedge,x,y) << 4;
eddb22e8 2471 if (VRANGE(state,x+1,y))
2472 c |= index(state,vedge,x+1,y) << 6;
ec9a0f09 2473 c |= index(state,corners,x,y) << 8;
2474 if (x+1 < state->w)
2475 c |= index(state,corners,x+1,y) << 10;
2476 if (y+1 < state->h)
2477 c |= index(state,corners,x,y+1) << 12;
2478 if (x+1 < state->w && y+1 < state->h)
2479 c |= index(state,corners,x+1,y+1) << 14;
ef29354c 2480 if (index(state, correct, x, y) && !flashtime)
3870c4d8 2481 c |= CORRECT;
2482
2483 if (index(ds,ds->visible,x,y) != c) {
ec9a0f09 2484 draw_tile(fe, state, x, y, hedge, vedge, corners, c & CORRECT);
2485 index(ds,ds->visible,x,y) = c;
3870c4d8 2486 }
2487 }
2488
08dd70c3 2489 if (hedge != state->hedge) {
2490 sfree(hedge);
2491 sfree(vedge);
2492 }
2493
11c44cf5 2494 sfree(corners);
3870c4d8 2495 sfree(correct);
2496}
2497
be8d5aa1 2498static float game_anim_length(game_state *oldstate,
2499 game_state *newstate, int dir)
3870c4d8 2500{
2501 return 0.0F;
2502}
2503
be8d5aa1 2504static float game_flash_length(game_state *oldstate,
2505 game_state *newstate, int dir)
3870c4d8 2506{
2ac6d24e 2507 if (!oldstate->completed && newstate->completed &&
2508 !oldstate->cheated && !newstate->cheated)
ef29354c 2509 return FLASH_TIME;
3870c4d8 2510 return 0.0F;
2511}
2512
be8d5aa1 2513static int game_wants_statusbar(void)
3870c4d8 2514{
2515 return FALSE;
2516}
be8d5aa1 2517
2518#ifdef COMBINED
2519#define thegame rect
2520#endif
2521
2522const struct game thegame = {
1d228b10 2523 "Rectangles", "games.rectangles",
be8d5aa1 2524 default_params,
2525 game_fetch_preset,
2526 decode_params,
2527 encode_params,
2528 free_params,
2529 dup_params,
1d228b10 2530 TRUE, game_configure, custom_params,
be8d5aa1 2531 validate_params,
1185e3c5 2532 new_game_desc,
6f2d8d7c 2533 game_free_aux_info,
1185e3c5 2534 validate_desc,
be8d5aa1 2535 new_game,
2536 dup_game,
2537 free_game,
2ac6d24e 2538 TRUE, solve_game,
6ad5ed74 2539 TRUE, game_text_format,
be8d5aa1 2540 new_ui,
2541 free_ui,
2542 make_move,
2543 game_size,
2544 game_colours,
2545 game_new_drawstate,
2546 game_free_drawstate,
2547 game_redraw,
2548 game_anim_length,
2549 game_flash_length,
2550 game_wants_statusbar,
2551};