Fix GTK casts to restore correct compilation on GTK 2.0 after r6022.
[sgt/puzzles] / rect.c
CommitLineData
3870c4d8 1/*
2 * rect.c: Puzzle from nikoli.co.jp. You have a square grid with
3 * numbers in some squares; you must divide the square grid up into
4 * variously sized rectangles, such that every rectangle contains
5 * exactly one numbered square and the area of each rectangle is
6 * equal to the number contained in it.
7 */
8
9/*
10 * TODO:
11 *
738d2f61 12 * - Improve singleton removal.
13 * + It would be nice to limit the size of the generated
14 * rectangles in accordance with existing constraints such as
15 * the maximum rectangle size and the one about not
16 * generating a rectangle the full width or height of the
17 * grid.
18 * + This could be achieved by making a less random choice
19 * about which of the available options to use.
20 * + Alternatively, we could create our rectangle and then
21 * split it up.
3870c4d8 22 */
23
24#include <stdio.h>
25#include <stdlib.h>
26#include <string.h>
27#include <assert.h>
b0e26073 28#include <ctype.h>
3870c4d8 29#include <math.h>
30
31#include "puzzles.h"
32
3870c4d8 33enum {
34 COL_BACKGROUND,
35 COL_CORRECT,
36 COL_LINE,
37 COL_TEXT,
38 COL_GRID,
08dd70c3 39 COL_DRAG,
3870c4d8 40 NCOLOURS
41};
42
43struct game_params {
44 int w, h;
aea3ed9a 45 float expandfactor;
40fde884 46 int unique;
3870c4d8 47};
48
49#define INDEX(state, x, y) (((y) * (state)->w) + (x))
50#define index(state, a, x, y) ((a) [ INDEX(state,x,y) ])
51#define grid(state,x,y) index(state, (state)->grid, x, y)
52#define vedge(state,x,y) index(state, (state)->vedge, x, y)
53#define hedge(state,x,y) index(state, (state)->hedge, x, y)
54
55#define CRANGE(state,x,y,dx,dy) ( (x) >= dx && (x) < (state)->w && \
56 (y) >= dy && (y) < (state)->h )
57#define RANGE(state,x,y) CRANGE(state,x,y,0,0)
58#define HRANGE(state,x,y) CRANGE(state,x,y,0,1)
59#define VRANGE(state,x,y) CRANGE(state,x,y,1,0)
60
1e3e152d 61#define PREFERRED_TILE_SIZE 24
62#define TILE_SIZE (ds->tilesize)
63#define BORDER (TILE_SIZE * 3 / 4)
3870c4d8 64
d4e7900f 65#define CORNER_TOLERANCE 0.15F
66#define CENTRE_TOLERANCE 0.15F
67
ef29354c 68#define FLASH_TIME 0.13F
69
3870c4d8 70#define COORD(x) ( (x) * TILE_SIZE + BORDER )
71#define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
72
73struct game_state {
74 int w, h;
75 int *grid; /* contains the numbers */
76 unsigned char *vedge; /* (w+1) x h */
77 unsigned char *hedge; /* w x (h+1) */
2ac6d24e 78 int completed, cheated;
3870c4d8 79};
80
be8d5aa1 81static game_params *default_params(void)
3870c4d8 82{
83 game_params *ret = snew(game_params);
84
85 ret->w = ret->h = 7;
aea3ed9a 86 ret->expandfactor = 0.0F;
40fde884 87 ret->unique = TRUE;
3870c4d8 88
89 return ret;
90}
91
be8d5aa1 92static int game_fetch_preset(int i, char **name, game_params **params)
3870c4d8 93{
94 game_params *ret;
95 int w, h;
96 char buf[80];
97
98 switch (i) {
99 case 0: w = 7, h = 7; break;
ab53eb64 100 case 1: w = 9, h = 9; break;
101 case 2: w = 11, h = 11; break;
102 case 3: w = 13, h = 13; break;
103 case 4: w = 15, h = 15; break;
ab53eb64 104 case 5: w = 17, h = 17; break;
105 case 6: w = 19, h = 19; break;
3870c4d8 106 default: return FALSE;
107 }
108
109 sprintf(buf, "%dx%d", w, h);
110 *name = dupstr(buf);
111 *params = ret = snew(game_params);
112 ret->w = w;
113 ret->h = h;
aea3ed9a 114 ret->expandfactor = 0.0F;
40fde884 115 ret->unique = TRUE;
3870c4d8 116 return TRUE;
117}
118
be8d5aa1 119static void free_params(game_params *params)
3870c4d8 120{
121 sfree(params);
122}
123
be8d5aa1 124static game_params *dup_params(game_params *params)
3870c4d8 125{
126 game_params *ret = snew(game_params);
127 *ret = *params; /* structure copy */
128 return ret;
129}
130
1185e3c5 131static void decode_params(game_params *ret, char const *string)
b0e26073 132{
b0e26073 133 ret->w = ret->h = atoi(string);
aea3ed9a 134 while (*string && isdigit((unsigned char)*string)) string++;
b0e26073 135 if (*string == 'x') {
136 string++;
137 ret->h = atoi(string);
aea3ed9a 138 while (*string && isdigit((unsigned char)*string)) string++;
139 }
140 if (*string == 'e') {
141 string++;
142 ret->expandfactor = atof(string);
40fde884 143 while (*string &&
144 (*string == '.' || isdigit((unsigned char)*string))) string++;
145 }
146 if (*string == 'a') {
147 string++;
148 ret->unique = FALSE;
b0e26073 149 }
b0e26073 150}
151
1185e3c5 152static char *encode_params(game_params *params, int full)
b0e26073 153{
154 char data[256];
155
156 sprintf(data, "%dx%d", params->w, params->h);
5472ceb6 157 if (full && params->expandfactor)
1185e3c5 158 sprintf(data + strlen(data), "e%g", params->expandfactor);
40fde884 159 if (full && !params->unique)
160 strcat(data, "a");
b0e26073 161
162 return dupstr(data);
163}
164
be8d5aa1 165static config_item *game_configure(game_params *params)
3870c4d8 166{
167 config_item *ret;
168 char buf[80];
169
170 ret = snewn(5, config_item);
171
172 ret[0].name = "Width";
173 ret[0].type = C_STRING;
174 sprintf(buf, "%d", params->w);
175 ret[0].sval = dupstr(buf);
176 ret[0].ival = 0;
177
178 ret[1].name = "Height";
179 ret[1].type = C_STRING;
180 sprintf(buf, "%d", params->h);
181 ret[1].sval = dupstr(buf);
182 ret[1].ival = 0;
183
aea3ed9a 184 ret[2].name = "Expansion factor";
185 ret[2].type = C_STRING;
186 sprintf(buf, "%g", params->expandfactor);
187 ret[2].sval = dupstr(buf);
3870c4d8 188 ret[2].ival = 0;
189
40fde884 190 ret[3].name = "Ensure unique solution";
191 ret[3].type = C_BOOLEAN;
aea3ed9a 192 ret[3].sval = NULL;
40fde884 193 ret[3].ival = params->unique;
194
195 ret[4].name = NULL;
196 ret[4].type = C_END;
197 ret[4].sval = NULL;
198 ret[4].ival = 0;
aea3ed9a 199
3870c4d8 200 return ret;
201}
202
be8d5aa1 203static game_params *custom_params(config_item *cfg)
3870c4d8 204{
205 game_params *ret = snew(game_params);
206
207 ret->w = atoi(cfg[0].sval);
208 ret->h = atoi(cfg[1].sval);
aea3ed9a 209 ret->expandfactor = atof(cfg[2].sval);
40fde884 210 ret->unique = cfg[3].ival;
3870c4d8 211
212 return ret;
213}
214
be8d5aa1 215static char *validate_params(game_params *params)
3870c4d8 216{
ab53eb64 217 if (params->w <= 0 || params->h <= 0)
3870c4d8 218 return "Width and height must both be greater than zero";
ab53eb64 219 if (params->w*params->h < 2)
d4e7900f 220 return "Grid area must be greater than one";
aea3ed9a 221 if (params->expandfactor < 0.0F)
222 return "Expansion factor may not be negative";
3870c4d8 223 return NULL;
224}
225
26801d29 226struct point {
227 int x, y;
228};
229
3870c4d8 230struct rect {
231 int x, y;
232 int w, h;
233};
234
235struct rectlist {
236 struct rect *rects;
237 int n;
238};
239
26801d29 240struct numberdata {
241 int area;
242 int npoints;
243 struct point *points;
244};
245
246/* ----------------------------------------------------------------------
247 * Solver for Rectangles games.
248 *
249 * This solver is souped up beyond the needs of actually _solving_
250 * a puzzle. It is also designed to cope with uncertainty about
251 * where the numbers have been placed. This is because I run it on
252 * my generated grids _before_ placing the numbers, and have it
253 * tell me where I need to place the numbers to ensure a unique
254 * solution.
255 */
256
257static void remove_rect_placement(int w, int h,
258 struct rectlist *rectpositions,
259 int *overlaps,
260 int rectnum, int placement)
261{
262 int x, y, xx, yy;
263
264#ifdef SOLVER_DIAGNOSTICS
265 printf("ruling out rect %d placement at %d,%d w=%d h=%d\n", rectnum,
266 rectpositions[rectnum].rects[placement].x,
267 rectpositions[rectnum].rects[placement].y,
268 rectpositions[rectnum].rects[placement].w,
269 rectpositions[rectnum].rects[placement].h);
270#endif
271
272 /*
273 * Decrement each entry in the overlaps array to reflect the
274 * removal of this rectangle placement.
275 */
276 for (yy = 0; yy < rectpositions[rectnum].rects[placement].h; yy++) {
277 y = yy + rectpositions[rectnum].rects[placement].y;
278 for (xx = 0; xx < rectpositions[rectnum].rects[placement].w; xx++) {
279 x = xx + rectpositions[rectnum].rects[placement].x;
280
281 assert(overlaps[(rectnum * h + y) * w + x] != 0);
282
283 if (overlaps[(rectnum * h + y) * w + x] > 0)
284 overlaps[(rectnum * h + y) * w + x]--;
285 }
286 }
287
288 /*
289 * Remove the placement from the list of positions for that
290 * rectangle, by interchanging it with the one on the end.
291 */
292 if (placement < rectpositions[rectnum].n - 1) {
293 struct rect t;
294
295 t = rectpositions[rectnum].rects[rectpositions[rectnum].n - 1];
296 rectpositions[rectnum].rects[rectpositions[rectnum].n - 1] =
297 rectpositions[rectnum].rects[placement];
298 rectpositions[rectnum].rects[placement] = t;
299 }
300 rectpositions[rectnum].n--;
301}
302
303static void remove_number_placement(int w, int h, struct numberdata *number,
304 int index, int *rectbyplace)
305{
306 /*
307 * Remove the entry from the rectbyplace array.
308 */
309 rectbyplace[number->points[index].y * w + number->points[index].x] = -1;
310
311 /*
312 * Remove the placement from the list of candidates for that
313 * number, by interchanging it with the one on the end.
314 */
315 if (index < number->npoints - 1) {
316 struct point t;
317
318 t = number->points[number->npoints - 1];
319 number->points[number->npoints - 1] = number->points[index];
320 number->points[index] = t;
321 }
322 number->npoints--;
323}
324
325static int rect_solver(int w, int h, int nrects, struct numberdata *numbers,
1507058f 326 game_state *result, random_state *rs)
26801d29 327{
328 struct rectlist *rectpositions;
329 int *overlaps, *rectbyplace, *workspace;
330 int i, ret;
331
332 /*
333 * Start by setting up a list of candidate positions for each
334 * rectangle.
335 */
336 rectpositions = snewn(nrects, struct rectlist);
337 for (i = 0; i < nrects; i++) {
338 int rw, rh, area = numbers[i].area;
339 int j, minx, miny, maxx, maxy;
340 struct rect *rlist;
341 int rlistn, rlistsize;
342
343 /*
344 * For each rectangle, begin by finding the bounding
345 * rectangle of its candidate number placements.
346 */
347 maxx = maxy = -1;
348 minx = w;
349 miny = h;
350 for (j = 0; j < numbers[i].npoints; j++) {
351 if (minx > numbers[i].points[j].x) minx = numbers[i].points[j].x;
352 if (miny > numbers[i].points[j].y) miny = numbers[i].points[j].y;
353 if (maxx < numbers[i].points[j].x) maxx = numbers[i].points[j].x;
354 if (maxy < numbers[i].points[j].y) maxy = numbers[i].points[j].y;
355 }
356
357 /*
358 * Now loop over all possible rectangle placements
359 * overlapping a point within that bounding rectangle;
360 * ensure each one actually contains a candidate number
361 * placement, and add it to the list.
362 */
363 rlist = NULL;
364 rlistn = rlistsize = 0;
365
366 for (rw = 1; rw <= area && rw <= w; rw++) {
367 int x, y;
368
369 if (area % rw)
370 continue;
371 rh = area / rw;
372 if (rh > h)
373 continue;
374
375 for (y = miny - rh + 1; y <= maxy; y++) {
376 if (y < 0 || y+rh > h)
377 continue;
378
379 for (x = minx - rw + 1; x <= maxx; x++) {
380 if (x < 0 || x+rw > w)
381 continue;
382
383 /*
384 * See if we can find a candidate number
385 * placement within this rectangle.
386 */
387 for (j = 0; j < numbers[i].npoints; j++)
388 if (numbers[i].points[j].x >= x &&
389 numbers[i].points[j].x < x+rw &&
390 numbers[i].points[j].y >= y &&
391 numbers[i].points[j].y < y+rh)
392 break;
393
394 if (j < numbers[i].npoints) {
395 /*
396 * Add this to the list of candidate
397 * placements for this rectangle.
398 */
399 if (rlistn >= rlistsize) {
400 rlistsize = rlistn + 32;
401 rlist = sresize(rlist, rlistsize, struct rect);
402 }
403 rlist[rlistn].x = x;
404 rlist[rlistn].y = y;
405 rlist[rlistn].w = rw;
406 rlist[rlistn].h = rh;
407#ifdef SOLVER_DIAGNOSTICS
408 printf("rect %d [area %d]: candidate position at"
409 " %d,%d w=%d h=%d\n",
410 i, area, x, y, rw, rh);
411#endif
412 rlistn++;
413 }
414 }
415 }
416 }
417
418 rectpositions[i].rects = rlist;
419 rectpositions[i].n = rlistn;
420 }
421
422 /*
423 * Next, construct a multidimensional array tracking how many
424 * candidate positions for each rectangle overlap each square.
425 *
426 * Indexing of this array is by the formula
427 *
428 * overlaps[(rectindex * h + y) * w + x]
429 */
430 overlaps = snewn(nrects * w * h, int);
431 memset(overlaps, 0, nrects * w * h * sizeof(int));
432 for (i = 0; i < nrects; i++) {
433 int j;
434
435 for (j = 0; j < rectpositions[i].n; j++) {
436 int xx, yy;
437
438 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++)
439 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++)
440 overlaps[(i * h + yy+rectpositions[i].rects[j].y) * w +
441 xx+rectpositions[i].rects[j].x]++;
442 }
443 }
444
445 /*
446 * Also we want an array covering the grid once, to make it
447 * easy to figure out which squares are candidate number
448 * placements for which rectangles. (The existence of this
449 * single array assumes that no square starts off as a
450 * candidate number placement for more than one rectangle. This
451 * assumption is justified, because this solver is _either_
452 * used to solve real problems - in which case there is a
453 * single placement for every number - _or_ used to decide on
454 * number placements for a new puzzle, in which case each
455 * number's placements are confined to the intended position of
456 * the rectangle containing that number.)
457 */
458 rectbyplace = snewn(w * h, int);
459 for (i = 0; i < w*h; i++)
460 rectbyplace[i] = -1;
461
462 for (i = 0; i < nrects; i++) {
463 int j;
464
465 for (j = 0; j < numbers[i].npoints; j++) {
466 int x = numbers[i].points[j].x;
467 int y = numbers[i].points[j].y;
468
469 assert(rectbyplace[y * w + x] == -1);
470 rectbyplace[y * w + x] = i;
471 }
472 }
473
474 workspace = snewn(nrects, int);
475
476 /*
477 * Now run the actual deduction loop.
478 */
479 while (1) {
480 int done_something = FALSE;
481
482#ifdef SOLVER_DIAGNOSTICS
483 printf("starting deduction loop\n");
484
485 for (i = 0; i < nrects; i++) {
486 printf("rect %d overlaps:\n", i);
487 {
488 int x, y;
489 for (y = 0; y < h; y++) {
490 for (x = 0; x < w; x++) {
491 printf("%3d", overlaps[(i * h + y) * w + x]);
492 }
493 printf("\n");
494 }
495 }
496 }
497 printf("rectbyplace:\n");
498 {
499 int x, y;
500 for (y = 0; y < h; y++) {
501 for (x = 0; x < w; x++) {
502 printf("%3d", rectbyplace[y * w + x]);
503 }
504 printf("\n");
505 }
506 }
507#endif
508
509 /*
510 * Housekeeping. Look for rectangles whose number has only
511 * one candidate position left, and mark that square as
512 * known if it isn't already.
513 */
514 for (i = 0; i < nrects; i++) {
515 if (numbers[i].npoints == 1) {
516 int x = numbers[i].points[0].x;
517 int y = numbers[i].points[0].y;
518 if (overlaps[(i * h + y) * w + x] >= -1) {
519 int j;
520
521 assert(overlaps[(i * h + y) * w + x] > 0);
522#ifdef SOLVER_DIAGNOSTICS
523 printf("marking %d,%d as known for rect %d"
524 " (sole remaining number position)\n", x, y, i);
525#endif
526
527 for (j = 0; j < nrects; j++)
528 overlaps[(j * h + y) * w + x] = -1;
529
530 overlaps[(i * h + y) * w + x] = -2;
531 }
532 }
533 }
534
535 /*
536 * Now look at the intersection of all possible placements
537 * for each rectangle, and mark all squares in that
538 * intersection as known for that rectangle if they aren't
539 * already.
540 */
541 for (i = 0; i < nrects; i++) {
542 int minx, miny, maxx, maxy, xx, yy, j;
543
544 minx = miny = 0;
545 maxx = w;
546 maxy = h;
547
548 for (j = 0; j < rectpositions[i].n; j++) {
549 int x = rectpositions[i].rects[j].x;
550 int y = rectpositions[i].rects[j].y;
551 int w = rectpositions[i].rects[j].w;
552 int h = rectpositions[i].rects[j].h;
553
554 if (minx < x) minx = x;
555 if (miny < y) miny = y;
556 if (maxx > x+w) maxx = x+w;
557 if (maxy > y+h) maxy = y+h;
558 }
559
560 for (yy = miny; yy < maxy; yy++)
561 for (xx = minx; xx < maxx; xx++)
562 if (overlaps[(i * h + yy) * w + xx] >= -1) {
563 assert(overlaps[(i * h + yy) * w + xx] > 0);
564#ifdef SOLVER_DIAGNOSTICS
565 printf("marking %d,%d as known for rect %d"
566 " (intersection of all placements)\n",
567 xx, yy, i);
568#endif
569
570 for (j = 0; j < nrects; j++)
571 overlaps[(j * h + yy) * w + xx] = -1;
572
573 overlaps[(i * h + yy) * w + xx] = -2;
574 }
575 }
576
577 /*
578 * Rectangle-focused deduction. Look at each rectangle in
579 * turn and try to rule out some of its candidate
580 * placements.
581 */
582 for (i = 0; i < nrects; i++) {
583 int j;
584
585 for (j = 0; j < rectpositions[i].n; j++) {
586 int xx, yy, k;
587 int del = FALSE;
588
589 for (k = 0; k < nrects; k++)
590 workspace[k] = 0;
591
592 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
593 int y = yy + rectpositions[i].rects[j].y;
594 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
595 int x = xx + rectpositions[i].rects[j].x;
596
597 if (overlaps[(i * h + y) * w + x] == -1) {
598 /*
599 * This placement overlaps a square
600 * which is _known_ to be part of
601 * another rectangle. Therefore we must
602 * rule it out.
603 */
604#ifdef SOLVER_DIAGNOSTICS
605 printf("rect %d placement at %d,%d w=%d h=%d "
606 "contains %d,%d which is known-other\n", i,
607 rectpositions[i].rects[j].x,
608 rectpositions[i].rects[j].y,
609 rectpositions[i].rects[j].w,
610 rectpositions[i].rects[j].h,
611 x, y);
612#endif
613 del = TRUE;
614 }
615
616 if (rectbyplace[y * w + x] != -1) {
617 /*
618 * This placement overlaps one of the
619 * candidate number placements for some
620 * rectangle. Count it.
621 */
622 workspace[rectbyplace[y * w + x]]++;
623 }
624 }
625 }
626
627 if (!del) {
628 /*
629 * If we haven't ruled this placement out
630 * already, see if it overlaps _all_ of the
631 * candidate number placements for any
632 * rectangle. If so, we can rule it out.
633 */
634 for (k = 0; k < nrects; k++)
635 if (k != i && workspace[k] == numbers[k].npoints) {
636#ifdef SOLVER_DIAGNOSTICS
637 printf("rect %d placement at %d,%d w=%d h=%d "
638 "contains all number points for rect %d\n",
639 i,
640 rectpositions[i].rects[j].x,
641 rectpositions[i].rects[j].y,
642 rectpositions[i].rects[j].w,
643 rectpositions[i].rects[j].h,
644 k);
645#endif
646 del = TRUE;
647 break;
648 }
649
650 /*
651 * Failing that, see if it overlaps at least
652 * one of the candidate number placements for
653 * itself! (This might not be the case if one
654 * of those number placements has been removed
655 * recently.).
656 */
657 if (!del && workspace[i] == 0) {
658#ifdef SOLVER_DIAGNOSTICS
659 printf("rect %d placement at %d,%d w=%d h=%d "
660 "contains none of its own number points\n",
661 i,
662 rectpositions[i].rects[j].x,
663 rectpositions[i].rects[j].y,
664 rectpositions[i].rects[j].w,
665 rectpositions[i].rects[j].h);
666#endif
667 del = TRUE;
668 }
669 }
670
671 if (del) {
672 remove_rect_placement(w, h, rectpositions, overlaps, i, j);
673
674 j--; /* don't skip over next placement */
675
676 done_something = TRUE;
677 }
678 }
679 }
680
681 /*
682 * Square-focused deduction. Look at each square not marked
683 * as known, and see if there are any which can only be
684 * part of a single rectangle.
685 */
686 {
687 int x, y, n, index;
688 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
689 /* Known squares are marked as <0 everywhere, so we only need
690 * to check the overlaps entry for rect 0. */
691 if (overlaps[y * w + x] < 0)
692 continue; /* known already */
693
694 n = 0;
695 index = -1;
696 for (i = 0; i < nrects; i++)
697 if (overlaps[(i * h + y) * w + x] > 0)
698 n++, index = i;
699
700 if (n == 1) {
701 int j;
702
703 /*
704 * Now we can rule out all placements for
705 * rectangle `index' which _don't_ contain
706 * square x,y.
707 */
708#ifdef SOLVER_DIAGNOSTICS
709 printf("square %d,%d can only be in rectangle %d\n",
710 x, y, index);
711#endif
712 for (j = 0; j < rectpositions[index].n; j++) {
713 struct rect *r = &rectpositions[index].rects[j];
714 if (x >= r->x && x < r->x + r->w &&
715 y >= r->y && y < r->y + r->h)
716 continue; /* this one is OK */
717 remove_rect_placement(w, h, rectpositions, overlaps,
718 index, j);
719 j--; /* don't skip over next placement */
720 done_something = TRUE;
721 }
722 }
723 }
724 }
725
726 /*
727 * If we've managed to deduce anything by normal means,
728 * loop round again and see if there's more to be done.
729 * Only if normal deduction has completely failed us should
730 * we now move on to narrowing down the possible number
731 * placements.
732 */
733 if (done_something)
734 continue;
735
736 /*
737 * Now we have done everything we can with the current set
738 * of number placements. So we need to winnow the number
739 * placements so as to narrow down the possibilities. We do
740 * this by searching for a candidate placement (of _any_
741 * rectangle) which overlaps a candidate placement of the
742 * number for some other rectangle.
743 */
1507058f 744 if (rs) {
26801d29 745 struct rpn {
746 int rect;
747 int placement;
748 int number;
749 } *rpns = NULL;
64aec339 750 size_t nrpns = 0, rpnsize = 0;
26801d29 751 int j;
752
753 for (i = 0; i < nrects; i++) {
754 for (j = 0; j < rectpositions[i].n; j++) {
755 int xx, yy;
756
757 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
758 int y = yy + rectpositions[i].rects[j].y;
759 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
760 int x = xx + rectpositions[i].rects[j].x;
761
762 if (rectbyplace[y * w + x] >= 0 &&
763 rectbyplace[y * w + x] != i) {
764 /*
765 * Add this to the list of
766 * winnowing possibilities.
767 */
768 if (nrpns >= rpnsize) {
769 rpnsize = rpnsize * 3 / 2 + 32;
770 rpns = sresize(rpns, rpnsize, struct rpn);
771 }
772 rpns[nrpns].rect = i;
773 rpns[nrpns].placement = j;
774 rpns[nrpns].number = rectbyplace[y * w + x];
775 nrpns++;
776 }
777 }
778 }
779
780 }
781 }
782
783#ifdef SOLVER_DIAGNOSTICS
784 printf("%d candidate rect placements we could eliminate\n", nrpns);
785#endif
786 if (nrpns > 0) {
787 /*
788 * Now choose one of these unwanted rectangle
789 * placements, and eliminate it.
790 */
791 int index = random_upto(rs, nrpns);
792 int k, m;
793 struct rpn rpn = rpns[index];
794 struct rect r;
795 sfree(rpns);
796
797 i = rpn.rect;
798 j = rpn.placement;
799 k = rpn.number;
800 r = rectpositions[i].rects[j];
801
802 /*
803 * We rule out placement j of rectangle i by means
804 * of removing all of rectangle k's candidate
805 * number placements which do _not_ overlap it.
806 * This will ensure that it is eliminated during
807 * the next pass of rectangle-focused deduction.
808 */
809#ifdef SOLVER_DIAGNOSTICS
810 printf("ensuring number for rect %d is within"
811 " rect %d's placement at %d,%d w=%d h=%d\n",
812 k, i, r.x, r.y, r.w, r.h);
813#endif
814
815 for (m = 0; m < numbers[k].npoints; m++) {
816 int x = numbers[k].points[m].x;
817 int y = numbers[k].points[m].y;
818
819 if (x < r.x || x >= r.x + r.w ||
820 y < r.y || y >= r.y + r.h) {
821#ifdef SOLVER_DIAGNOSTICS
822 printf("eliminating number for rect %d at %d,%d\n",
823 k, x, y);
824#endif
825 remove_number_placement(w, h, &numbers[k],
826 m, rectbyplace);
827 m--; /* don't skip the next one */
828 done_something = TRUE;
829 }
830 }
831 }
832 }
833
834 if (!done_something) {
835#ifdef SOLVER_DIAGNOSTICS
836 printf("terminating deduction loop\n");
837#endif
838 break;
839 }
840 }
841
842 ret = TRUE;
843 for (i = 0; i < nrects; i++) {
844#ifdef SOLVER_DIAGNOSTICS
845 printf("rect %d has %d possible placements\n",
846 i, rectpositions[i].n);
847#endif
848 assert(rectpositions[i].n > 0);
1507058f 849 if (rectpositions[i].n > 1) {
26801d29 850 ret = FALSE;
1507058f 851 } else if (result) {
852 /*
853 * Place the rectangle in its only possible position.
854 */
855 int x, y;
856 struct rect *r = &rectpositions[i].rects[0];
857
858 for (y = 0; y < r->h; y++) {
859 if (r->x > 0)
860 vedge(result, r->x, r->y+y) = 1;
861 if (r->x+r->w < result->w)
862 vedge(result, r->x+r->w, r->y+y) = 1;
863 }
864 for (x = 0; x < r->w; x++) {
865 if (r->y > 0)
866 hedge(result, r->x+x, r->y) = 1;
867 if (r->y+r->h < result->h)
868 hedge(result, r->x+x, r->y+r->h) = 1;
869 }
870 }
26801d29 871 }
872
873 /*
874 * Free up all allocated storage.
875 */
876 sfree(workspace);
877 sfree(rectbyplace);
878 sfree(overlaps);
879 for (i = 0; i < nrects; i++)
880 sfree(rectpositions[i].rects);
881 sfree(rectpositions);
882
883 return ret;
884}
885
886/* ----------------------------------------------------------------------
887 * Grid generation code.
888 */
889
738d2f61 890/*
891 * This function does one of two things. If passed r==NULL, it
892 * counts the number of possible rectangles which cover the given
893 * square, and returns it in *n. If passed r!=NULL then it _reads_
894 * *n to find an index, counts the possible rectangles until it
895 * reaches the nth, and writes it into r.
896 *
897 * `scratch' is expected to point to an array of 2 * params->w
898 * ints, used internally as scratch space (and passed in like this
899 * to avoid re-allocating and re-freeing it every time round a
900 * tight loop).
901 */
902static void enum_rects(game_params *params, int *grid, struct rect *r, int *n,
903 int sx, int sy, int *scratch)
3870c4d8 904{
738d2f61 905 int rw, rh, mw, mh;
906 int x, y, dx, dy;
907 int maxarea, realmaxarea;
908 int index = 0;
909 int *top, *bottom;
3870c4d8 910
911 /*
d4e7900f 912 * Maximum rectangle area is 1/6 of total grid size, unless
913 * this means we can't place any rectangles at all in which
914 * case we set it to 2 at minimum.
3870c4d8 915 */
916 maxarea = params->w * params->h / 6;
d4e7900f 917 if (maxarea < 2)
918 maxarea = 2;
3870c4d8 919
738d2f61 920 /*
921 * Scan the grid to find the limits of the region within which
922 * any rectangle containing this point must fall. This will
923 * save us trawling the inside of every rectangle later on to
924 * see if it contains any used squares.
925 */
926 top = scratch;
927 bottom = scratch + params->w;
928 for (dy = -1; dy <= +1; dy += 2) {
929 int *array = (dy == -1 ? top : bottom);
930 for (dx = -1; dx <= +1; dx += 2) {
931 for (x = sx; x >= 0 && x < params->w; x += dx) {
932 array[x] = -2 * params->h * dy;
933 for (y = sy; y >= 0 && y < params->h; y += dy) {
934 if (index(params, grid, x, y) == -1 &&
935 (x == sx || dy*y <= dy*array[x-dx]))
936 array[x] = y;
937 else
938 break;
939 }
940 }
941 }
942 }
943
944 /*
945 * Now scan again to work out the largest rectangles we can fit
946 * in the grid, so that we can terminate the following loops
947 * early once we get down to not having much space left in the
948 * grid.
949 */
950 realmaxarea = 0;
951 for (x = 0; x < params->w; x++) {
952 int x2;
953
954 rh = bottom[x] - top[x] + 1;
955 if (rh <= 0)
956 continue; /* no rectangles can start here */
957
958 dx = (x > sx ? -1 : +1);
959 for (x2 = x; x2 >= 0 && x2 < params->w; x2 += dx)
960 if (bottom[x2] < bottom[x] || top[x2] > top[x])
961 break;
962
963 rw = abs(x2 - x);
964 if (realmaxarea < rw * rh)
965 realmaxarea = rw * rh;
966 }
967
968 if (realmaxarea > maxarea)
969 realmaxarea = maxarea;
970
971 /*
972 * Rectangles which go right the way across the grid are
973 * boring, although they can't be helped in the case of
974 * extremely small grids. (Also they might be generated later
975 * on by the singleton-removal process; we can't help that.)
976 */
977 mw = params->w - 1;
978 if (mw < 3) mw++;
979 mh = params->h - 1;
980 if (mh < 3) mh++;
981
982 for (rw = 1; rw <= mw; rw++)
983 for (rh = 1; rh <= mh; rh++) {
984 if (rw * rh > realmaxarea)
3870c4d8 985 continue;
986 if (rw * rh == 1)
987 continue;
738d2f61 988 for (x = max(sx - rw + 1, 0); x <= min(sx, params->w - rw); x++)
989 for (y = max(sy - rh + 1, 0); y <= min(sy, params->h - rh);
990 y++) {
991 /*
992 * Check this rectangle against the region we
993 * defined above.
994 */
995 if (top[x] <= y && top[x+rw-1] <= y &&
996 bottom[x] >= y+rh-1 && bottom[x+rw-1] >= y+rh-1) {
997 if (r && index == *n) {
998 r->x = x;
999 r->y = y;
1000 r->w = rw;
1001 r->h = rh;
1002 return;
1003 }
1004 index++;
3870c4d8 1005 }
3870c4d8 1006 }
1007 }
1008
738d2f61 1009 assert(!r);
1010 *n = index;
3870c4d8 1011}
1012
1013static void place_rect(game_params *params, int *grid, struct rect r)
1014{
1015 int idx = INDEX(params, r.x, r.y);
1016 int x, y;
1017
1018 for (x = r.x; x < r.x+r.w; x++)
1019 for (y = r.y; y < r.y+r.h; y++) {
1020 index(params, grid, x, y) = idx;
1021 }
1022#ifdef GENERATION_DIAGNOSTICS
1023 printf(" placing rectangle at (%d,%d) size %d x %d\n",
1024 r.x, r.y, r.w, r.h);
1025#endif
1026}
1027
1028static struct rect find_rect(game_params *params, int *grid, int x, int y)
1029{
1030 int idx, w, h;
1031 struct rect r;
1032
1033 /*
1034 * Find the top left of the rectangle.
1035 */
1036 idx = index(params, grid, x, y);
1037
1038 if (idx < 0) {
1039 r.x = x;
1040 r.y = y;
1041 r.w = r.h = 1;
1042 return r; /* 1x1 singleton here */
1043 }
1044
1045 y = idx / params->w;
1046 x = idx % params->w;
1047
1048 /*
1049 * Find the width and height of the rectangle.
1050 */
1051 for (w = 1;
1052 (x+w < params->w && index(params,grid,x+w,y)==idx);
1053 w++);
1054 for (h = 1;
1055 (y+h < params->h && index(params,grid,x,y+h)==idx);
1056 h++);
1057
1058 r.x = x;
1059 r.y = y;
1060 r.w = w;
1061 r.h = h;
1062
1063 return r;
1064}
1065
1066#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 1067static void display_grid(game_params *params, int *grid, int *numbers, int all)
3870c4d8 1068{
1069 unsigned char *egrid = snewn((params->w*2+3) * (params->h*2+3),
1070 unsigned char);
3870c4d8 1071 int x, y;
1072 int r = (params->w*2+3);
1073
aea3ed9a 1074 memset(egrid, 0, (params->w*2+3) * (params->h*2+3));
1075
3870c4d8 1076 for (x = 0; x < params->w; x++)
1077 for (y = 0; y < params->h; y++) {
1078 int i = index(params, grid, x, y);
1079 if (x == 0 || index(params, grid, x-1, y) != i)
1080 egrid[(2*y+2) * r + (2*x+1)] = 1;
1081 if (x == params->w-1 || index(params, grid, x+1, y) != i)
1082 egrid[(2*y+2) * r + (2*x+3)] = 1;
1083 if (y == 0 || index(params, grid, x, y-1) != i)
1084 egrid[(2*y+1) * r + (2*x+2)] = 1;
1085 if (y == params->h-1 || index(params, grid, x, y+1) != i)
1086 egrid[(2*y+3) * r + (2*x+2)] = 1;
1087 }
1088
1089 for (y = 1; y < 2*params->h+2; y++) {
1090 for (x = 1; x < 2*params->w+2; x++) {
1091 if (!((y|x)&1)) {
aea3ed9a 1092 int k = numbers ? index(params, numbers, x/2-1, y/2-1) : 0;
1093 if (k || (all && numbers)) printf("%2d", k); else printf(" ");
3870c4d8 1094 } else if (!((y&x)&1)) {
1095 int v = egrid[y*r+x];
1096 if ((y&1) && v) v = '-';
1097 if ((x&1) && v) v = '|';
1098 if (!v) v = ' ';
1099 putchar(v);
1100 if (!(x&1)) putchar(v);
1101 } else {
1102 int c, d = 0;
1103 if (egrid[y*r+(x+1)]) d |= 1;
1104 if (egrid[(y-1)*r+x]) d |= 2;
1105 if (egrid[y*r+(x-1)]) d |= 4;
1106 if (egrid[(y+1)*r+x]) d |= 8;
1107 c = " ??+?-++?+|+++++"[d];
1108 putchar(c);
1109 if (!(x&1)) putchar(c);
1110 }
1111 }
1112 putchar('\n');
1113 }
1114
1115 sfree(egrid);
1116}
1117#endif
1118
2ac6d24e 1119struct game_aux_info {
1120 int w, h;
1121 unsigned char *vedge; /* (w+1) x h */
1122 unsigned char *hedge; /* w x (h+1) */
1123};
1124
1185e3c5 1125static char *new_game_desc(game_params *params, random_state *rs,
6aa6af4c 1126 game_aux_info **aux, int interactive)
3870c4d8 1127{
26801d29 1128 int *grid, *numbers = NULL;
738d2f61 1129 int x, y, y2, y2last, yx, run, i, nsquares;
1185e3c5 1130 char *desc, *p;
738d2f61 1131 int *enum_rects_scratch;
aea3ed9a 1132 game_params params2real, *params2 = &params2real;
3870c4d8 1133
26801d29 1134 while (1) {
1135 /*
1136 * Set up the smaller width and height which we will use to
1137 * generate the base grid.
1138 */
1139 params2->w = params->w / (1.0F + params->expandfactor);
1140 if (params2->w < 2 && params->w >= 2) params2->w = 2;
1141 params2->h = params->h / (1.0F + params->expandfactor);
1142 if (params2->h < 2 && params->h >= 2) params2->h = 2;
aea3ed9a 1143
26801d29 1144 grid = snewn(params2->w * params2->h, int);
3870c4d8 1145
738d2f61 1146 enum_rects_scratch = snewn(2 * params2->w, int);
1147
1148 nsquares = 0;
26801d29 1149 for (y = 0; y < params2->h; y++)
1150 for (x = 0; x < params2->w; x++) {
1151 index(params2, grid, x, y) = -1;
738d2f61 1152 nsquares++;
26801d29 1153 }
3870c4d8 1154
3870c4d8 1155 /*
738d2f61 1156 * Place rectangles until we can't any more. We do this by
1157 * finding a square we haven't yet covered, and randomly
1158 * choosing a rectangle to cover it.
3870c4d8 1159 */
738d2f61 1160
1161 while (nsquares > 0) {
1162 int square = random_upto(rs, nsquares);
1163 int n;
26801d29 1164 struct rect r;
1165
738d2f61 1166 x = params2->w;
1167 y = params2->h;
1168 for (y = 0; y < params2->h; y++) {
1169 for (x = 0; x < params2->w; x++) {
1170 if (index(params2, grid, x, y) == -1 && square-- == 0)
1171 break;
1172 }
1173 if (x < params2->w)
1174 break;
1175 }
1176 assert(x < params2->w && y < params2->h);
26801d29 1177
1178 /*
738d2f61 1179 * Now see how many rectangles fit around this one.
26801d29 1180 */
738d2f61 1181 enum_rects(params2, grid, NULL, &n, x, y, enum_rects_scratch);
26801d29 1182
738d2f61 1183 if (!n) {
1184 /*
1185 * There are no possible rectangles covering this
1186 * square, meaning it must be a singleton. Mark it
1187 * -2 so we know not to keep trying.
1188 */
1189 index(params2, grid, x, y) = -2;
1190 nsquares--;
1191 } else {
1192 /*
1193 * Pick one at random.
1194 */
1195 n = random_upto(rs, n);
1196 enum_rects(params2, grid, &r, &n, x, y, enum_rects_scratch);
1197
1198 /*
1199 * Place it.
1200 */
1201 place_rect(params2, grid, r);
1202 nsquares -= r.w * r.h;
26801d29 1203 }
26801d29 1204 }
3870c4d8 1205
738d2f61 1206 sfree(enum_rects_scratch);
3870c4d8 1207
1208 /*
26801d29 1209 * Deal with singleton spaces remaining in the grid, one by
1210 * one.
1211 *
1212 * We do this by making a local change to the layout. There are
1213 * several possibilities:
1214 *
1215 * +-----+-----+ Here, we can remove the singleton by
1216 * | | | extending the 1x2 rectangle below it
1217 * +--+--+-----+ into a 1x3.
1218 * | | | |
1219 * | +--+ |
1220 * | | | |
1221 * | | | |
1222 * | | | |
1223 * +--+--+-----+
1224 *
1225 * +--+--+--+ Here, that trick doesn't work: there's no
1226 * | | | 1 x n rectangle with the singleton at one
1227 * | | | end. Instead, we extend a 1 x n rectangle
1228 * | | | _out_ from the singleton, shaving a layer
1229 * +--+--+ | off the end of another rectangle. So if we
1230 * | | | | extended up, we'd make our singleton part
1231 * | +--+--+ of a 1x3 and generate a 1x2 where the 2x2
1232 * | | | used to be; or we could extend right into
1233 * +--+-----+ a 2x1, turning the 1x3 into a 1x2.
1234 *
1235 * +-----+--+ Here, we can't even do _that_, since any
1236 * | | | direction we choose to extend the singleton
1237 * +--+--+ | will produce a new singleton as a result of
1238 * | | | | truncating one of the size-2 rectangles.
1239 * | +--+--+ Fortunately, this case can _only_ occur when
1240 * | | | a singleton is surrounded by four size-2s
1241 * +--+-----+ in this fashion; so instead we can simply
1242 * replace the whole section with a single 3x3.
3870c4d8 1243 */
26801d29 1244 for (x = 0; x < params2->w; x++) {
1245 for (y = 0; y < params2->h; y++) {
1246 if (index(params2, grid, x, y) < 0) {
1247 int dirs[4], ndirs;
3870c4d8 1248
1249#ifdef GENERATION_DIAGNOSTICS
26801d29 1250 display_grid(params2, grid, NULL, FALSE);
1251 printf("singleton at %d,%d\n", x, y);
3870c4d8 1252#endif
1253
26801d29 1254 /*
1255 * Check in which directions we can feasibly extend
1256 * the singleton. We can extend in a particular
1257 * direction iff either:
1258 *
1259 * - the rectangle on that side of the singleton
1260 * is not 2x1, and we are at one end of the edge
1261 * of it we are touching
1262 *
1263 * - it is 2x1 but we are on its short side.
1264 *
1265 * FIXME: we could plausibly choose between these
1266 * based on the sizes of the rectangles they would
1267 * create?
1268 */
1269 ndirs = 0;
1270 if (x < params2->w-1) {
1271 struct rect r = find_rect(params2, grid, x+1, y);
1272 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1273 dirs[ndirs++] = 1; /* right */
1274 }
1275 if (y > 0) {
1276 struct rect r = find_rect(params2, grid, x, y-1);
1277 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1278 dirs[ndirs++] = 2; /* up */
1279 }
1280 if (x > 0) {
1281 struct rect r = find_rect(params2, grid, x-1, y);
1282 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1283 dirs[ndirs++] = 4; /* left */
1284 }
1285 if (y < params2->h-1) {
1286 struct rect r = find_rect(params2, grid, x, y+1);
1287 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1288 dirs[ndirs++] = 8; /* down */
1289 }
3870c4d8 1290
26801d29 1291 if (ndirs > 0) {
1292 int which, dir;
1293 struct rect r1, r2;
3870c4d8 1294
26801d29 1295 which = random_upto(rs, ndirs);
1296 dir = dirs[which];
3870c4d8 1297
26801d29 1298 switch (dir) {
1299 case 1: /* right */
1300 assert(x < params2->w+1);
3870c4d8 1301#ifdef GENERATION_DIAGNOSTICS
26801d29 1302 printf("extending right\n");
3870c4d8 1303#endif
26801d29 1304 r1 = find_rect(params2, grid, x+1, y);
1305 r2.x = x;
1306 r2.y = y;
1307 r2.w = 1 + r1.w;
1308 r2.h = 1;
1309 if (r1.y == y)
1310 r1.y++;
1311 r1.h--;
1312 break;
1313 case 2: /* up */
1314 assert(y > 0);
3870c4d8 1315#ifdef GENERATION_DIAGNOSTICS
26801d29 1316 printf("extending up\n");
3870c4d8 1317#endif
26801d29 1318 r1 = find_rect(params2, grid, x, y-1);
1319 r2.x = x;
1320 r2.y = r1.y;
1321 r2.w = 1;
1322 r2.h = 1 + r1.h;
1323 if (r1.x == x)
1324 r1.x++;
1325 r1.w--;
1326 break;
1327 case 4: /* left */
1328 assert(x > 0);
3870c4d8 1329#ifdef GENERATION_DIAGNOSTICS
26801d29 1330 printf("extending left\n");
3870c4d8 1331#endif
26801d29 1332 r1 = find_rect(params2, grid, x-1, y);
1333 r2.x = r1.x;
1334 r2.y = y;
1335 r2.w = 1 + r1.w;
1336 r2.h = 1;
1337 if (r1.y == y)
1338 r1.y++;
1339 r1.h--;
1340 break;
1341 case 8: /* down */
1342 assert(y < params2->h+1);
3870c4d8 1343#ifdef GENERATION_DIAGNOSTICS
26801d29 1344 printf("extending down\n");
3870c4d8 1345#endif
26801d29 1346 r1 = find_rect(params2, grid, x, y+1);
1347 r2.x = x;
1348 r2.y = y;
1349 r2.w = 1;
1350 r2.h = 1 + r1.h;
1351 if (r1.x == x)
1352 r1.x++;
1353 r1.w--;
1354 break;
1355 }
1356 if (r1.h > 0 && r1.w > 0)
1357 place_rect(params2, grid, r1);
1358 place_rect(params2, grid, r2);
1359 } else {
3870c4d8 1360#ifndef NDEBUG
26801d29 1361 /*
1362 * Sanity-check that there really is a 3x3
1363 * rectangle surrounding this singleton and it
1364 * contains absolutely everything we could
1365 * possibly need.
1366 */
1367 {
1368 int xx, yy;
1369 assert(x > 0 && x < params2->w-1);
1370 assert(y > 0 && y < params2->h-1);
1371
1372 for (xx = x-1; xx <= x+1; xx++)
1373 for (yy = y-1; yy <= y+1; yy++) {
1374 struct rect r = find_rect(params2,grid,xx,yy);
1375 assert(r.x >= x-1);
1376 assert(r.y >= y-1);
1377 assert(r.x+r.w-1 <= x+1);
1378 assert(r.y+r.h-1 <= y+1);
1379 }
1380 }
3870c4d8 1381#endif
26801d29 1382
3870c4d8 1383#ifdef GENERATION_DIAGNOSTICS
26801d29 1384 printf("need the 3x3 trick\n");
3870c4d8 1385#endif
1386
26801d29 1387 /*
1388 * FIXME: If the maximum rectangle area for
1389 * this grid is less than 9, we ought to
1390 * subdivide the 3x3 in some fashion. There are
1391 * five other possibilities:
1392 *
1393 * - a 6 and a 3
1394 * - a 4, a 3 and a 2
1395 * - three 3s
1396 * - a 3 and three 2s (two different arrangements).
1397 */
1398
1399 {
1400 struct rect r;
1401 r.x = x-1;
1402 r.y = y-1;
1403 r.w = r.h = 3;
1404 place_rect(params2, grid, r);
1405 }
3870c4d8 1406 }
1407 }
1408 }
1409 }
3870c4d8 1410
26801d29 1411 /*
1412 * We have now constructed a grid of the size specified in
1413 * params2. Now we extend it into a grid of the size specified
1414 * in params. We do this in two passes: we extend it vertically
1415 * until it's the right height, then we transpose it, then
1416 * extend it vertically again (getting it effectively the right
1417 * width), then finally transpose again.
1418 */
1419 for (i = 0; i < 2; i++) {
1420 int *grid2, *expand, *where;
1421 game_params params3real, *params3 = &params3real;
aea3ed9a 1422
1423#ifdef GENERATION_DIAGNOSTICS
26801d29 1424 printf("before expansion:\n");
1425 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1426#endif
1427
26801d29 1428 /*
1429 * Set up the new grid.
1430 */
1431 grid2 = snewn(params2->w * params->h, int);
1432 expand = snewn(params2->h-1, int);
1433 where = snewn(params2->w, int);
1434 params3->w = params2->w;
1435 params3->h = params->h;
1436
1437 /*
1438 * Decide which horizontal edges are going to get expanded,
1439 * and by how much.
1440 */
1441 for (y = 0; y < params2->h-1; y++)
1442 expand[y] = 0;
1443 for (y = params2->h; y < params->h; y++) {
1444 x = random_upto(rs, params2->h-1);
1445 expand[x]++;
1446 }
aea3ed9a 1447
1448#ifdef GENERATION_DIAGNOSTICS
26801d29 1449 printf("expand[] = {");
1450 for (y = 0; y < params2->h-1; y++)
1451 printf(" %d", expand[y]);
1452 printf(" }\n");
aea3ed9a 1453#endif
1454
26801d29 1455 /*
1456 * Perform the expansion. The way this works is that we
1457 * alternately:
1458 *
1459 * - copy a row from grid into grid2
1460 *
1461 * - invent some number of additional rows in grid2 where
1462 * there was previously only a horizontal line between
1463 * rows in grid, and make random decisions about where
1464 * among these to place each rectangle edge that ran
1465 * along this line.
1466 */
1467 for (y = y2 = y2last = 0; y < params2->h; y++) {
1468 /*
1469 * Copy a single line from row y of grid into row y2 of
1470 * grid2.
1471 */
1472 for (x = 0; x < params2->w; x++) {
1473 int val = index(params2, grid, x, y);
1474 if (val / params2->w == y && /* rect starts on this line */
1475 (y2 == 0 || /* we're at the very top, or... */
1476 index(params3, grid2, x, y2-1) / params3->w < y2last
1477 /* this rect isn't already started */))
1478 index(params3, grid2, x, y2) =
1479 INDEX(params3, val % params2->w, y2);
1480 else
1481 index(params3, grid2, x, y2) =
1482 index(params3, grid2, x, y2-1);
1483 }
1484
1485 /*
1486 * If that was the last line, terminate the loop early.
1487 */
1488 if (++y2 == params3->h)
1489 break;
1490
1491 y2last = y2;
1492
1493 /*
1494 * Invent some number of additional lines. First walk
1495 * along this line working out where to put all the
1496 * edges that coincide with it.
1497 */
1498 yx = -1;
1499 for (x = 0; x < params2->w; x++) {
1500 if (index(params2, grid, x, y) !=
1501 index(params2, grid, x, y+1)) {
1502 /*
1503 * This is a horizontal edge, so it needs
1504 * placing.
1505 */
1506 if (x == 0 ||
1507 (index(params2, grid, x-1, y) !=
1508 index(params2, grid, x, y) &&
1509 index(params2, grid, x-1, y+1) !=
1510 index(params2, grid, x, y+1))) {
1511 /*
1512 * Here we have the chance to make a new
1513 * decision.
1514 */
1515 yx = random_upto(rs, expand[y]+1);
1516 } else {
1517 /*
1518 * Here we just reuse the previous value of
1519 * yx.
1520 */
1521 }
1522 } else
1523 yx = -1;
1524 where[x] = yx;
1525 }
1526
1527 for (yx = 0; yx < expand[y]; yx++) {
1528 /*
1529 * Invent a single row. For each square in the row,
1530 * we copy the grid entry from the square above it,
1531 * unless we're starting the new rectangle here.
1532 */
1533 for (x = 0; x < params2->w; x++) {
1534 if (yx == where[x]) {
1535 int val = index(params2, grid, x, y+1);
1536 val %= params2->w;
1537 val = INDEX(params3, val, y2);
1538 index(params3, grid2, x, y2) = val;
1539 } else
1540 index(params3, grid2, x, y2) =
1541 index(params3, grid2, x, y2-1);
1542 }
1543
1544 y2++;
1545 }
1546 }
1547
1548 sfree(expand);
1549 sfree(where);
aea3ed9a 1550
1551#ifdef GENERATION_DIAGNOSTICS
26801d29 1552 printf("after expansion:\n");
1553 display_grid(params3, grid2, NULL, TRUE);
aea3ed9a 1554#endif
26801d29 1555 /*
1556 * Transpose.
1557 */
1558 params2->w = params3->h;
1559 params2->h = params3->w;
1560 sfree(grid);
1561 grid = snewn(params2->w * params2->h, int);
1562 for (x = 0; x < params2->w; x++)
1563 for (y = 0; y < params2->h; y++) {
1564 int idx1 = INDEX(params2, x, y);
1565 int idx2 = INDEX(params3, y, x);
1566 int tmp;
1567
1568 tmp = grid2[idx2];
1569 tmp = (tmp % params3->w) * params2->w + (tmp / params3->w);
1570 grid[idx1] = tmp;
1571 }
1572
1573 sfree(grid2);
1574
1575 {
1576 int tmp;
1577 tmp = params->w;
1578 params->w = params->h;
1579 params->h = tmp;
1580 }
aea3ed9a 1581
1582#ifdef GENERATION_DIAGNOSTICS
26801d29 1583 printf("after transposition:\n");
1584 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1585#endif
26801d29 1586 }
aea3ed9a 1587
26801d29 1588 /*
1589 * Run the solver to narrow down the possible number
1590 * placements.
1591 */
1592 {
1593 struct numberdata *nd;
1594 int nnumbers, i, ret;
1595
1596 /* Count the rectangles. */
1597 nnumbers = 0;
1598 for (y = 0; y < params->h; y++) {
1599 for (x = 0; x < params->w; x++) {
1600 int idx = INDEX(params, x, y);
1601 if (index(params, grid, x, y) == idx)
1602 nnumbers++;
1603 }
1604 }
2ac6d24e 1605
26801d29 1606 nd = snewn(nnumbers, struct numberdata);
1607
1608 /* Now set up each number's candidate position list. */
1609 i = 0;
1610 for (y = 0; y < params->h; y++) {
1611 for (x = 0; x < params->w; x++) {
1612 int idx = INDEX(params, x, y);
1613 if (index(params, grid, x, y) == idx) {
1614 struct rect r = find_rect(params, grid, x, y);
1615 int j, k, m;
1616
1617 nd[i].area = r.w * r.h;
1618 nd[i].npoints = nd[i].area;
1619 nd[i].points = snewn(nd[i].npoints, struct point);
1620 m = 0;
1621 for (j = 0; j < r.h; j++)
1622 for (k = 0; k < r.w; k++) {
1623 nd[i].points[m].x = k + r.x;
1624 nd[i].points[m].y = j + r.y;
1625 m++;
1626 }
1627 assert(m == nd[i].npoints);
aea3ed9a 1628
26801d29 1629 i++;
1630 }
1631 }
1632 }
aea3ed9a 1633
40fde884 1634 if (params->unique)
1507058f 1635 ret = rect_solver(params->w, params->h, nnumbers, nd,
1636 NULL, rs);
40fde884 1637 else
1638 ret = TRUE; /* allow any number placement at all */
3870c4d8 1639
26801d29 1640 if (ret) {
3870c4d8 1641 /*
26801d29 1642 * Now place the numbers according to the solver's
1643 * recommendations.
3870c4d8 1644 */
26801d29 1645 numbers = snewn(params->w * params->h, int);
1646
1647 for (y = 0; y < params->h; y++)
1648 for (x = 0; x < params->w; x++) {
1649 index(params, numbers, x, y) = 0;
1650 }
1651
1652 for (i = 0; i < nnumbers; i++) {
1653 int idx = random_upto(rs, nd[i].npoints);
1654 int x = nd[i].points[idx].x;
1655 int y = nd[i].points[idx].y;
1656 index(params,numbers,x,y) = nd[i].area;
1657 }
3870c4d8 1658 }
26801d29 1659
1660 /*
1661 * Clean up.
1662 */
1663 for (i = 0; i < nnumbers; i++)
1664 sfree(nd[i].points);
1665 sfree(nd);
1666
1667 /*
1668 * If we've succeeded, then terminate the loop.
1669 */
1670 if (ret)
1671 break;
3870c4d8 1672 }
26801d29 1673
1674 /*
1675 * Give up and go round again.
1676 */
1677 sfree(grid);
1678 }
1679
1680 /*
1681 * Store the rectangle data in the game_aux_info.
1682 */
1683 {
1684 game_aux_info *ai = snew(game_aux_info);
1685
1686 ai->w = params->w;
1687 ai->h = params->h;
1688 ai->vedge = snewn(ai->w * ai->h, unsigned char);
1689 ai->hedge = snewn(ai->w * ai->h, unsigned char);
1690
1691 for (y = 0; y < params->h; y++)
1692 for (x = 1; x < params->w; x++) {
1693 vedge(ai, x, y) =
1694 index(params, grid, x, y) != index(params, grid, x-1, y);
1695 }
1696 for (y = 1; y < params->h; y++)
1697 for (x = 0; x < params->w; x++) {
1698 hedge(ai, x, y) =
1699 index(params, grid, x, y) != index(params, grid, x, y-1);
1700 }
1701
1702 *aux = ai;
3870c4d8 1703 }
1704
1705#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 1706 display_grid(params, grid, numbers, FALSE);
3870c4d8 1707#endif
1708
1185e3c5 1709 desc = snewn(11 * params->w * params->h, char);
1710 p = desc;
3870c4d8 1711 run = 0;
1712 for (i = 0; i <= params->w * params->h; i++) {
1713 int n = (i < params->w * params->h ? numbers[i] : -1);
1714
1715 if (!n)
1716 run++;
1717 else {
1718 if (run) {
1719 while (run > 0) {
1720 int c = 'a' - 1 + run;
1721 if (run > 26)
1722 c = 'z';
1723 *p++ = c;
1724 run -= c - ('a' - 1);
1725 }
1726 } else {
0e87eedc 1727 /*
1728 * If there's a number in the very top left or
1729 * bottom right, there's no point putting an
1730 * unnecessary _ before or after it.
1731 */
1185e3c5 1732 if (p > desc && n > 0)
0e87eedc 1733 *p++ = '_';
3870c4d8 1734 }
1735 if (n > 0)
1736 p += sprintf(p, "%d", n);
1737 run = 0;
1738 }
1739 }
1740 *p = '\0';
1741
1742 sfree(grid);
1743 sfree(numbers);
1744
1185e3c5 1745 return desc;
3870c4d8 1746}
1747
2ac6d24e 1748static void game_free_aux_info(game_aux_info *ai)
6f2d8d7c 1749{
2ac6d24e 1750 sfree(ai->vedge);
1751 sfree(ai->hedge);
1752 sfree(ai);
6f2d8d7c 1753}
1754
1185e3c5 1755static char *validate_desc(game_params *params, char *desc)
3870c4d8 1756{
1757 int area = params->w * params->h;
1758 int squares = 0;
1759
1185e3c5 1760 while (*desc) {
1761 int n = *desc++;
3870c4d8 1762 if (n >= 'a' && n <= 'z') {
1763 squares += n - 'a' + 1;
1764 } else if (n == '_') {
1765 /* do nothing */;
1766 } else if (n > '0' && n <= '9') {
9bb5bf60 1767 squares++;
1185e3c5 1768 while (*desc >= '0' && *desc <= '9')
1769 desc++;
3870c4d8 1770 } else
1185e3c5 1771 return "Invalid character in game description";
3870c4d8 1772 }
1773
1774 if (squares < area)
1775 return "Not enough data to fill grid";
1776
1777 if (squares > area)
1778 return "Too much data to fit in grid";
1779
1780 return NULL;
1781}
1782
c380832d 1783static game_state *new_game(midend_data *me, game_params *params, char *desc)
3870c4d8 1784{
1785 game_state *state = snew(game_state);
1786 int x, y, i, area;
1787
1788 state->w = params->w;
1789 state->h = params->h;
1790
1791 area = state->w * state->h;
1792
1793 state->grid = snewn(area, int);
1794 state->vedge = snewn(area, unsigned char);
1795 state->hedge = snewn(area, unsigned char);
2ac6d24e 1796 state->completed = state->cheated = FALSE;
3870c4d8 1797
1798 i = 0;
1185e3c5 1799 while (*desc) {
1800 int n = *desc++;
3870c4d8 1801 if (n >= 'a' && n <= 'z') {
1802 int run = n - 'a' + 1;
1803 assert(i + run <= area);
1804 while (run-- > 0)
1805 state->grid[i++] = 0;
1806 } else if (n == '_') {
1807 /* do nothing */;
1808 } else if (n > '0' && n <= '9') {
1809 assert(i < area);
1185e3c5 1810 state->grid[i++] = atoi(desc-1);
1811 while (*desc >= '0' && *desc <= '9')
1812 desc++;
3870c4d8 1813 } else {
1814 assert(!"We can't get here");
1815 }
1816 }
1817 assert(i == area);
1818
1819 for (y = 0; y < state->h; y++)
1820 for (x = 0; x < state->w; x++)
1821 vedge(state,x,y) = hedge(state,x,y) = 0;
1822
1823 return state;
1824}
1825
be8d5aa1 1826static game_state *dup_game(game_state *state)
3870c4d8 1827{
1828 game_state *ret = snew(game_state);
1829
1830 ret->w = state->w;
1831 ret->h = state->h;
1832
1833 ret->vedge = snewn(state->w * state->h, unsigned char);
1834 ret->hedge = snewn(state->w * state->h, unsigned char);
1835 ret->grid = snewn(state->w * state->h, int);
1836
ef29354c 1837 ret->completed = state->completed;
2ac6d24e 1838 ret->cheated = state->cheated;
ef29354c 1839
3870c4d8 1840 memcpy(ret->grid, state->grid, state->w * state->h * sizeof(int));
1841 memcpy(ret->vedge, state->vedge, state->w*state->h*sizeof(unsigned char));
1842 memcpy(ret->hedge, state->hedge, state->w*state->h*sizeof(unsigned char));
1843
1844 return ret;
1845}
1846
be8d5aa1 1847static void free_game(game_state *state)
3870c4d8 1848{
1849 sfree(state->grid);
1850 sfree(state->vedge);
1851 sfree(state->hedge);
1852 sfree(state);
1853}
1854
4a29930e 1855static game_state *solve_game(game_state *state, game_state *currstate,
1856 game_aux_info *ai, char **error)
2ac6d24e 1857{
1858 game_state *ret;
1859
1860 if (!ai) {
1507058f 1861 int i, j, n;
1862 struct numberdata *nd;
1863
1864 /*
1865 * Attempt the in-built solver.
1866 */
1867
1868 /* Set up each number's (very short) candidate position list. */
1869 for (i = n = 0; i < state->h * state->w; i++)
1870 if (state->grid[i])
1871 n++;
1872
1873 nd = snewn(n, struct numberdata);
1874
1875 for (i = j = 0; i < state->h * state->w; i++)
1876 if (state->grid[i]) {
1877 nd[j].area = state->grid[i];
1878 nd[j].npoints = 1;
1879 nd[j].points = snewn(1, struct point);
1880 nd[j].points[0].x = i % state->w;
1881 nd[j].points[0].y = i / state->w;
1882 j++;
1883 }
1884
1885 assert(j == n);
1886
1887 ret = dup_game(state);
1888 ret->cheated = TRUE;
1889
1890 rect_solver(state->w, state->h, n, nd, ret, NULL);
1891
1892 /*
1893 * Clean up.
1894 */
1895 for (i = 0; i < n; i++)
1896 sfree(nd[i].points);
1897 sfree(nd);
1898
1899 return ret;
2ac6d24e 1900 }
1901
1902 assert(state->w == ai->w);
1903 assert(state->h == ai->h);
1904
1905 ret = dup_game(state);
1906 memcpy(ret->vedge, ai->vedge, ai->w * ai->h * sizeof(unsigned char));
1907 memcpy(ret->hedge, ai->hedge, ai->w * ai->h * sizeof(unsigned char));
1908 ret->cheated = TRUE;
1909
1910 return ret;
1911}
1912
9b4b03d3 1913static char *game_text_format(game_state *state)
1914{
6ad5ed74 1915 char *ret, *p, buf[80];
1916 int i, x, y, col, maxlen;
1917
1918 /*
1919 * First determine the number of spaces required to display a
1920 * number. We'll use at least two, because one looks a bit
1921 * silly.
1922 */
1923 col = 2;
1924 for (i = 0; i < state->w * state->h; i++) {
1925 x = sprintf(buf, "%d", state->grid[i]);
1926 if (col < x) col = x;
1927 }
1928
1929 /*
1930 * Now we know the exact total size of the grid we're going to
1931 * produce: it's got 2*h+1 rows, each containing w lots of col,
1932 * w+1 boundary characters and a trailing newline.
1933 */
1934 maxlen = (2*state->h+1) * (state->w * (col+1) + 2);
1935
48a10826 1936 ret = snewn(maxlen+1, char);
6ad5ed74 1937 p = ret;
1938
1939 for (y = 0; y <= 2*state->h; y++) {
1940 for (x = 0; x <= 2*state->w; x++) {
1941 if (x & y & 1) {
1942 /*
1943 * Display a number.
1944 */
1945 int v = grid(state, x/2, y/2);
1946 if (v)
1947 sprintf(buf, "%*d", col, v);
1948 else
1949 sprintf(buf, "%*s", col, "");
1950 memcpy(p, buf, col);
1951 p += col;
1952 } else if (x & 1) {
1953 /*
1954 * Display a horizontal edge or nothing.
1955 */
1956 int h = (y==0 || y==2*state->h ? 1 :
1957 HRANGE(state, x/2, y/2) && hedge(state, x/2, y/2));
1958 int i;
1959 if (h)
1960 h = '-';
1961 else
1962 h = ' ';
1963 for (i = 0; i < col; i++)
1964 *p++ = h;
1965 } else if (y & 1) {
1966 /*
1967 * Display a vertical edge or nothing.
1968 */
1969 int v = (x==0 || x==2*state->w ? 1 :
1970 VRANGE(state, x/2, y/2) && vedge(state, x/2, y/2));
1971 if (v)
1972 *p++ = '|';
1973 else
1974 *p++ = ' ';
1975 } else {
1976 /*
1977 * Display a corner, or a vertical edge, or a
1978 * horizontal edge, or nothing.
1979 */
1980 int hl = (y==0 || y==2*state->h ? 1 :
1981 HRANGE(state, (x-1)/2, y/2) && hedge(state, (x-1)/2, y/2));
1982 int hr = (y==0 || y==2*state->h ? 1 :
1983 HRANGE(state, (x+1)/2, y/2) && hedge(state, (x+1)/2, y/2));
1984 int vu = (x==0 || x==2*state->w ? 1 :
1985 VRANGE(state, x/2, (y-1)/2) && vedge(state, x/2, (y-1)/2));
1986 int vd = (x==0 || x==2*state->w ? 1 :
1987 VRANGE(state, x/2, (y+1)/2) && vedge(state, x/2, (y+1)/2));
1988 if (!hl && !hr && !vu && !vd)
1989 *p++ = ' ';
1990 else if (hl && hr && !vu && !vd)
1991 *p++ = '-';
1992 else if (!hl && !hr && vu && vd)
1993 *p++ = '|';
1994 else
1995 *p++ = '+';
1996 }
1997 }
1998 *p++ = '\n';
1999 }
2000
2001 assert(p - ret == maxlen);
2002 *p = '\0';
2003 return ret;
9b4b03d3 2004}
2005
3870c4d8 2006static unsigned char *get_correct(game_state *state)
2007{
2008 unsigned char *ret;
2009 int x, y;
2010
2011 ret = snewn(state->w * state->h, unsigned char);
2012 memset(ret, 0xFF, state->w * state->h);
2013
2014 for (x = 0; x < state->w; x++)
2015 for (y = 0; y < state->h; y++)
2016 if (index(state,ret,x,y) == 0xFF) {
2017 int rw, rh;
2018 int xx, yy;
2019 int num, area, valid;
2020
2021 /*
2022 * Find a rectangle starting at this point.
2023 */
2024 rw = 1;
2025 while (x+rw < state->w && !vedge(state,x+rw,y))
2026 rw++;
2027 rh = 1;
2028 while (y+rh < state->h && !hedge(state,x,y+rh))
2029 rh++;
2030
2031 /*
2032 * We know what the dimensions of the rectangle
2033 * should be if it's there at all. Find out if we
2034 * really have a valid rectangle.
2035 */
2036 valid = TRUE;
2037 /* Check the horizontal edges. */
2038 for (xx = x; xx < x+rw; xx++) {
2039 for (yy = y; yy <= y+rh; yy++) {
2040 int e = !HRANGE(state,xx,yy) || hedge(state,xx,yy);
2041 int ec = (yy == y || yy == y+rh);
2042 if (e != ec)
2043 valid = FALSE;
2044 }
2045 }
2046 /* Check the vertical edges. */
2047 for (yy = y; yy < y+rh; yy++) {
2048 for (xx = x; xx <= x+rw; xx++) {
2049 int e = !VRANGE(state,xx,yy) || vedge(state,xx,yy);
2050 int ec = (xx == x || xx == x+rw);
2051 if (e != ec)
2052 valid = FALSE;
2053 }
2054 }
2055
2056 /*
2057 * If this is not a valid rectangle with no other
2058 * edges inside it, we just mark this square as not
2059 * complete and proceed to the next square.
2060 */
2061 if (!valid) {
2062 index(state, ret, x, y) = 0;
2063 continue;
2064 }
2065
2066 /*
2067 * We have a rectangle. Now see what its area is,
2068 * and how many numbers are in it.
2069 */
2070 num = 0;
2071 area = 0;
2072 for (xx = x; xx < x+rw; xx++) {
2073 for (yy = y; yy < y+rh; yy++) {
2074 area++;
2075 if (grid(state,xx,yy)) {
2076 if (num > 0)
2077 valid = FALSE; /* two numbers */
2078 num = grid(state,xx,yy);
2079 }
2080 }
2081 }
2082 if (num != area)
2083 valid = FALSE;
2084
2085 /*
2086 * Now fill in the whole rectangle based on the
2087 * value of `valid'.
2088 */
2089 for (xx = x; xx < x+rw; xx++) {
2090 for (yy = y; yy < y+rh; yy++) {
2091 index(state, ret, xx, yy) = valid;
2092 }
2093 }
2094 }
2095
2096 return ret;
2097}
2098
08dd70c3 2099struct game_ui {
2100 /*
2101 * These coordinates are 2 times the obvious grid coordinates.
2102 * Hence, the top left of the grid is (0,0), the grid point to
2103 * the right of that is (2,0), the one _below that_ is (2,2)
2104 * and so on. This is so that we can specify a drag start point
2105 * on an edge (one odd coordinate) or in the middle of a square
2106 * (two odd coordinates) rather than always at a corner.
2107 *
2108 * -1,-1 means no drag is in progress.
2109 */
2110 int drag_start_x;
2111 int drag_start_y;
2112 int drag_end_x;
2113 int drag_end_y;
2114 /*
2115 * This flag is set as soon as a dragging action moves the
2116 * mouse pointer away from its starting point, so that even if
2117 * the pointer _returns_ to its starting point the action is
2118 * treated as a small drag rather than a click.
2119 */
2120 int dragged;
375c9b4d 2121 /*
2122 * These are the co-ordinates of the top-left and bottom-right squares
2123 * in the drag box, respectively, or -1 otherwise.
2124 */
2125 int x1;
2126 int y1;
2127 int x2;
2128 int y2;
08dd70c3 2129};
2130
be8d5aa1 2131static game_ui *new_ui(game_state *state)
74a4e547 2132{
08dd70c3 2133 game_ui *ui = snew(game_ui);
2134 ui->drag_start_x = -1;
2135 ui->drag_start_y = -1;
2136 ui->drag_end_x = -1;
2137 ui->drag_end_y = -1;
2138 ui->dragged = FALSE;
375c9b4d 2139 ui->x1 = -1;
2140 ui->y1 = -1;
2141 ui->x2 = -1;
2142 ui->y2 = -1;
08dd70c3 2143 return ui;
74a4e547 2144}
2145
be8d5aa1 2146static void free_ui(game_ui *ui)
74a4e547 2147{
08dd70c3 2148 sfree(ui);
2149}
2150
be8d5aa1 2151static void coord_round(float x, float y, int *xr, int *yr)
08dd70c3 2152{
d4e7900f 2153 float xs, ys, xv, yv, dx, dy, dist;
08dd70c3 2154
2155 /*
d4e7900f 2156 * Find the nearest square-centre.
08dd70c3 2157 */
d4e7900f 2158 xs = (float)floor(x) + 0.5F;
2159 ys = (float)floor(y) + 0.5F;
08dd70c3 2160
2161 /*
d4e7900f 2162 * And find the nearest grid vertex.
08dd70c3 2163 */
d4e7900f 2164 xv = (float)floor(x + 0.5F);
2165 yv = (float)floor(y + 0.5F);
08dd70c3 2166
2167 /*
d4e7900f 2168 * We allocate clicks in parts of the grid square to either
2169 * corners, edges or square centres, as follows:
2170 *
2171 * +--+--------+--+
2172 * | | | |
2173 * +--+ +--+
2174 * | `. ,' |
2175 * | +--+ |
2176 * | | | |
2177 * | +--+ |
2178 * | ,' `. |
2179 * +--+ +--+
2180 * | | | |
2181 * +--+--------+--+
2182 *
2183 * (Not to scale!)
2184 *
2185 * In other words: we measure the square distance (i.e.
2186 * max(dx,dy)) from the click to the nearest corner, and if
2187 * it's within CORNER_TOLERANCE then we return a corner click.
2188 * We measure the square distance from the click to the nearest
2189 * centre, and if that's within CENTRE_TOLERANCE we return a
2190 * centre click. Failing that, we find which of the two edge
2191 * centres is nearer to the click and return that edge.
08dd70c3 2192 */
d4e7900f 2193
2194 /*
2195 * Check for corner click.
2196 */
2197 dx = (float)fabs(x - xv);
2198 dy = (float)fabs(y - yv);
2199 dist = (dx > dy ? dx : dy);
2200 if (dist < CORNER_TOLERANCE) {
2201 *xr = 2 * (int)xv;
2202 *yr = 2 * (int)yv;
2203 } else {
2204 /*
2205 * Check for centre click.
2206 */
2207 dx = (float)fabs(x - xs);
2208 dy = (float)fabs(y - ys);
2209 dist = (dx > dy ? dx : dy);
2210 if (dist < CENTRE_TOLERANCE) {
2211 *xr = 1 + 2 * (int)xs;
2212 *yr = 1 + 2 * (int)ys;
2213 } else {
2214 /*
2215 * Failing both of those, see which edge we're closer to.
2216 * Conveniently, this is simply done by testing the relative
2217 * magnitude of dx and dy (which are currently distances from
2218 * the square centre).
2219 */
2220 if (dx > dy) {
2221 /* Vertical edge: x-coord of corner,
2222 * y-coord of square centre. */
2223 *xr = 2 * (int)xv;
ee03cb5f 2224 *yr = 1 + 2 * (int)floor(ys);
d4e7900f 2225 } else {
2226 /* Horizontal edge: x-coord of square centre,
2227 * y-coord of corner. */
ee03cb5f 2228 *xr = 1 + 2 * (int)floor(xs);
d4e7900f 2229 *yr = 2 * (int)yv;
2230 }
2231 }
2232 }
08dd70c3 2233}
2234
2235static void ui_draw_rect(game_state *state, game_ui *ui,
2236 unsigned char *hedge, unsigned char *vedge, int c)
2237{
375c9b4d 2238 int x, y;
2239 int x1 = ui->x1;
2240 int y1 = ui->y1;
2241 int x2 = ui->x2;
2242 int y2 = ui->y2;
08dd70c3 2243
2244 /*
2245 * Draw horizontal edges of rectangles.
2246 */
2247 for (x = x1; x < x2; x++)
2248 for (y = y1; y <= y2; y++)
2249 if (HRANGE(state,x,y)) {
2250 int val = index(state,hedge,x,y);
2251 if (y == y1 || y == y2)
2252 val = c;
2253 else if (c == 1)
2254 val = 0;
2255 index(state,hedge,x,y) = val;
2256 }
2257
2258 /*
2259 * Draw vertical edges of rectangles.
2260 */
2261 for (y = y1; y < y2; y++)
2262 for (x = x1; x <= x2; x++)
2263 if (VRANGE(state,x,y)) {
2264 int val = index(state,vedge,x,y);
2265 if (x == x1 || x == x2)
2266 val = c;
2267 else if (c == 1)
2268 val = 0;
2269 index(state,vedge,x,y) = val;
2270 }
74a4e547 2271}
2272
07dfb697 2273static void game_changed_state(game_ui *ui, game_state *oldstate,
2274 game_state *newstate)
2275{
2276}
2277
1e3e152d 2278struct game_drawstate {
2279 int started;
2280 int w, h, tilesize;
2281 unsigned long *visible;
2282};
2283
c0361acd 2284static game_state *make_move(game_state *from, game_ui *ui, game_drawstate *ds,
2285 int x, int y, int button) {
08dd70c3 2286 int xc, yc;
2287 int startdrag = FALSE, enddrag = FALSE, active = FALSE;
3870c4d8 2288 game_state *ret;
2289
f0ee053c 2290 button &= ~MOD_MASK;
2291
08dd70c3 2292 if (button == LEFT_BUTTON) {
2293 startdrag = TRUE;
2294 } else if (button == LEFT_RELEASE) {
2295 enddrag = TRUE;
2296 } else if (button != LEFT_DRAG) {
2297 return NULL;
2298 }
2299
d4e7900f 2300 coord_round(FROMCOORD((float)x), FROMCOORD((float)y), &xc, &yc);
08dd70c3 2301
2302 if (startdrag) {
2303 ui->drag_start_x = xc;
2304 ui->drag_start_y = yc;
2305 ui->drag_end_x = xc;
2306 ui->drag_end_y = yc;
2307 ui->dragged = FALSE;
2308 active = TRUE;
2309 }
3870c4d8 2310
08dd70c3 2311 if (xc != ui->drag_end_x || yc != ui->drag_end_y) {
375c9b4d 2312 int t;
2313
08dd70c3 2314 ui->drag_end_x = xc;
2315 ui->drag_end_y = yc;
2316 ui->dragged = TRUE;
2317 active = TRUE;
375c9b4d 2318
ee03cb5f 2319 if (xc >= 0 && xc <= 2*from->w &&
2320 yc >= 0 && yc <= 2*from->h) {
2321 ui->x1 = ui->drag_start_x;
2322 ui->x2 = ui->drag_end_x;
2323 if (ui->x2 < ui->x1) { t = ui->x1; ui->x1 = ui->x2; ui->x2 = t; }
2324
2325 ui->y1 = ui->drag_start_y;
2326 ui->y2 = ui->drag_end_y;
2327 if (ui->y2 < ui->y1) { t = ui->y1; ui->y1 = ui->y2; ui->y2 = t; }
2328
2329 ui->x1 = ui->x1 / 2; /* rounds down */
2330 ui->x2 = (ui->x2+1) / 2; /* rounds up */
2331 ui->y1 = ui->y1 / 2; /* rounds down */
2332 ui->y2 = (ui->y2+1) / 2; /* rounds up */
2333 } else {
2334 ui->x1 = -1;
2335 ui->y1 = -1;
2336 ui->x2 = -1;
2337 ui->y2 = -1;
2338 }
08dd70c3 2339 }
3870c4d8 2340
934797c7 2341 ret = NULL;
2342
2343 if (enddrag) {
2344 if (xc >= 0 && xc <= 2*from->w &&
2345 yc >= 0 && yc <= 2*from->h) {
2346 ret = dup_game(from);
2347
2348 if (ui->dragged) {
2349 ui_draw_rect(ret, ui, ret->hedge, ret->vedge, 1);
2350 } else {
2351 if ((xc & 1) && !(yc & 1) && HRANGE(from,xc/2,yc/2)) {
2352 hedge(ret,xc/2,yc/2) = !hedge(ret,xc/2,yc/2);
2353 }
2354 if ((yc & 1) && !(xc & 1) && VRANGE(from,xc/2,yc/2)) {
2355 vedge(ret,xc/2,yc/2) = !vedge(ret,xc/2,yc/2);
2356 }
2357 }
3870c4d8 2358
934797c7 2359 if (!memcmp(ret->hedge, from->hedge, from->w*from->h) &&
2360 !memcmp(ret->vedge, from->vedge, from->w*from->h)) {
2361 free_game(ret);
2362 ret = NULL;
2363 }
ef29354c 2364
2365 /*
2366 * We've made a real change to the grid. Check to see
2367 * if the game has been completed.
2368 */
d4e7900f 2369 if (ret && !ret->completed) {
ef29354c 2370 int x, y, ok;
2371 unsigned char *correct = get_correct(ret);
2372
2373 ok = TRUE;
2374 for (x = 0; x < ret->w; x++)
2375 for (y = 0; y < ret->h; y++)
2376 if (!index(ret, correct, x, y))
2377 ok = FALSE;
2378
2379 sfree(correct);
2380
2381 if (ok)
2382 ret->completed = TRUE;
2383 }
934797c7 2384 }
2385
2386 ui->drag_start_x = -1;
2387 ui->drag_start_y = -1;
2388 ui->drag_end_x = -1;
2389 ui->drag_end_y = -1;
375c9b4d 2390 ui->x1 = -1;
2391 ui->y1 = -1;
2392 ui->x2 = -1;
2393 ui->y2 = -1;
934797c7 2394 ui->dragged = FALSE;
2395 active = TRUE;
3870c4d8 2396 }
2397
934797c7 2398 if (ret)
2399 return ret; /* a move has been made */
2400 else if (active)
08dd70c3 2401 return from; /* UI activity has occurred */
934797c7 2402 else
2403 return NULL;
3870c4d8 2404}
2405
2406/* ----------------------------------------------------------------------
2407 * Drawing routines.
2408 */
2409
ab53eb64 2410#define CORRECT (1L<<16)
08dd70c3 2411
2412#define COLOUR(k) ( (k)==1 ? COL_LINE : COL_DRAG )
ab53eb64 2413#define MAX4(x,y,z,w) ( max(max(x,y),max(z,w)) )
3870c4d8 2414
1e3e152d 2415static void game_size(game_params *params, game_drawstate *ds,
2416 int *x, int *y, int expand)
3870c4d8 2417{
1e3e152d 2418 int tsx, tsy, ts;
2419 /*
2420 * Each window dimension equals the tile size times 1.5 more
2421 * than the grid dimension (the border is 3/4 the width of the
2422 * tiles).
a65c0e54 2423 *
2424 * We must cast to unsigned before multiplying by two, because
2425 * *x might be INT_MAX.
1e3e152d 2426 */
a65c0e54 2427 tsx = 2 * (unsigned)*x / (2 * params->w + 3);
2428 tsy = 2 * (unsigned)*y / (2 * params->h + 3);
1e3e152d 2429 ts = min(tsx, tsy);
2430 if (expand)
2431 ds->tilesize = ts;
2432 else
2433 ds->tilesize = min(ts, PREFERRED_TILE_SIZE);
2434
3870c4d8 2435 *x = params->w * TILE_SIZE + 2*BORDER + 1;
2436 *y = params->h * TILE_SIZE + 2*BORDER + 1;
2437}
2438
be8d5aa1 2439static float *game_colours(frontend *fe, game_state *state, int *ncolours)
3870c4d8 2440{
2441 float *ret = snewn(3 * NCOLOURS, float);
2442
2443 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2444
2445 ret[COL_GRID * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2446 ret[COL_GRID * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2447 ret[COL_GRID * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2448
08dd70c3 2449 ret[COL_DRAG * 3 + 0] = 1.0F;
2450 ret[COL_DRAG * 3 + 1] = 0.0F;
2451 ret[COL_DRAG * 3 + 2] = 0.0F;
2452
3870c4d8 2453 ret[COL_CORRECT * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2454 ret[COL_CORRECT * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2455 ret[COL_CORRECT * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2456
2457 ret[COL_LINE * 3 + 0] = 0.0F;
2458 ret[COL_LINE * 3 + 1] = 0.0F;
2459 ret[COL_LINE * 3 + 2] = 0.0F;
2460
2461 ret[COL_TEXT * 3 + 0] = 0.0F;
2462 ret[COL_TEXT * 3 + 1] = 0.0F;
2463 ret[COL_TEXT * 3 + 2] = 0.0F;
2464
2465 *ncolours = NCOLOURS;
2466 return ret;
2467}
2468
be8d5aa1 2469static game_drawstate *game_new_drawstate(game_state *state)
3870c4d8 2470{
2471 struct game_drawstate *ds = snew(struct game_drawstate);
08dd70c3 2472 int i;
3870c4d8 2473
2474 ds->started = FALSE;
2475 ds->w = state->w;
2476 ds->h = state->h;
ab53eb64 2477 ds->visible = snewn(ds->w * ds->h, unsigned long);
1e3e152d 2478 ds->tilesize = 0; /* not decided yet */
08dd70c3 2479 for (i = 0; i < ds->w * ds->h; i++)
2480 ds->visible[i] = 0xFFFF;
3870c4d8 2481
2482 return ds;
2483}
2484
be8d5aa1 2485static void game_free_drawstate(game_drawstate *ds)
3870c4d8 2486{
2487 sfree(ds->visible);
2488 sfree(ds);
2489}
2490
1e3e152d 2491static void draw_tile(frontend *fe, game_drawstate *ds, game_state *state,
2492 int x, int y, unsigned char *hedge, unsigned char *vedge,
2493 unsigned char *corners, int correct)
3870c4d8 2494{
2495 int cx = COORD(x), cy = COORD(y);
2496 char str[80];
2497
2498 draw_rect(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1, COL_GRID);
2499 draw_rect(fe, cx+1, cy+1, TILE_SIZE-1, TILE_SIZE-1,
2500 correct ? COL_CORRECT : COL_BACKGROUND);
2501
2502 if (grid(state,x,y)) {
2503 sprintf(str, "%d", grid(state,x,y));
2504 draw_text(fe, cx+TILE_SIZE/2, cy+TILE_SIZE/2, FONT_VARIABLE,
105a00d0 2505 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_TEXT, str);
3870c4d8 2506 }
2507
2508 /*
2509 * Draw edges.
2510 */
08dd70c3 2511 if (!HRANGE(state,x,y) || index(state,hedge,x,y))
2512 draw_rect(fe, cx, cy, TILE_SIZE+1, 2,
2513 HRANGE(state,x,y) ? COLOUR(index(state,hedge,x,y)) :
2514 COL_LINE);
2515 if (!HRANGE(state,x,y+1) || index(state,hedge,x,y+1))
2516 draw_rect(fe, cx, cy+TILE_SIZE-1, TILE_SIZE+1, 2,
2517 HRANGE(state,x,y+1) ? COLOUR(index(state,hedge,x,y+1)) :
2518 COL_LINE);
2519 if (!VRANGE(state,x,y) || index(state,vedge,x,y))
2520 draw_rect(fe, cx, cy, 2, TILE_SIZE+1,
2521 VRANGE(state,x,y) ? COLOUR(index(state,vedge,x,y)) :
2522 COL_LINE);
2523 if (!VRANGE(state,x+1,y) || index(state,vedge,x+1,y))
2524 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, TILE_SIZE+1,
2525 VRANGE(state,x+1,y) ? COLOUR(index(state,vedge,x+1,y)) :
2526 COL_LINE);
3870c4d8 2527
2528 /*
2529 * Draw corners.
2530 */
ec9a0f09 2531 if (index(state,corners,x,y))
08dd70c3 2532 draw_rect(fe, cx, cy, 2, 2,
ec9a0f09 2533 COLOUR(index(state,corners,x,y)));
2534 if (x+1 < state->w && index(state,corners,x+1,y))
08dd70c3 2535 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, 2,
ec9a0f09 2536 COLOUR(index(state,corners,x+1,y)));
2537 if (y+1 < state->h && index(state,corners,x,y+1))
08dd70c3 2538 draw_rect(fe, cx, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2539 COLOUR(index(state,corners,x,y+1)));
2540 if (x+1 < state->w && y+1 < state->h && index(state,corners,x+1,y+1))
08dd70c3 2541 draw_rect(fe, cx+TILE_SIZE-1, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2542 COLOUR(index(state,corners,x+1,y+1)));
3870c4d8 2543
2544 draw_update(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1);
2545}
2546
be8d5aa1 2547static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
c822de4a 2548 game_state *state, int dir, game_ui *ui,
74a4e547 2549 float animtime, float flashtime)
3870c4d8 2550{
2551 int x, y;
2552 unsigned char *correct;
ec9a0f09 2553 unsigned char *hedge, *vedge, *corners;
3870c4d8 2554
2555 correct = get_correct(state);
2556
08dd70c3 2557 if (ui->dragged) {
2558 hedge = snewn(state->w*state->h, unsigned char);
2559 vedge = snewn(state->w*state->h, unsigned char);
2560 memcpy(hedge, state->hedge, state->w*state->h);
2561 memcpy(vedge, state->vedge, state->w*state->h);
2562 ui_draw_rect(state, ui, hedge, vedge, 2);
2563 } else {
2564 hedge = state->hedge;
2565 vedge = state->vedge;
2566 }
2567
ec9a0f09 2568 corners = snewn(state->w * state->h, unsigned char);
2569 memset(corners, 0, state->w * state->h);
2570 for (x = 0; x < state->w; x++)
2571 for (y = 0; y < state->h; y++) {
2572 if (x > 0) {
2573 int e = index(state, vedge, x, y);
2574 if (index(state,corners,x,y) < e)
2575 index(state,corners,x,y) = e;
2576 if (y+1 < state->h &&
2577 index(state,corners,x,y+1) < e)
2578 index(state,corners,x,y+1) = e;
2579 }
2580 if (y > 0) {
2581 int e = index(state, hedge, x, y);
2582 if (index(state,corners,x,y) < e)
2583 index(state,corners,x,y) = e;
2584 if (x+1 < state->w &&
2585 index(state,corners,x+1,y) < e)
2586 index(state,corners,x+1,y) = e;
2587 }
2588 }
2589
3870c4d8 2590 if (!ds->started) {
105a00d0 2591 draw_rect(fe, 0, 0,
2592 state->w * TILE_SIZE + 2*BORDER + 1,
2593 state->h * TILE_SIZE + 2*BORDER + 1, COL_BACKGROUND);
3870c4d8 2594 draw_rect(fe, COORD(0)-1, COORD(0)-1,
2595 ds->w*TILE_SIZE+3, ds->h*TILE_SIZE+3, COL_LINE);
2596 ds->started = TRUE;
863c3945 2597 draw_update(fe, 0, 0,
2598 state->w * TILE_SIZE + 2*BORDER + 1,
2599 state->h * TILE_SIZE + 2*BORDER + 1);
3870c4d8 2600 }
2601
2602 for (x = 0; x < state->w; x++)
2603 for (y = 0; y < state->h; y++) {
ab53eb64 2604 unsigned long c = 0;
08dd70c3 2605
2606 if (HRANGE(state,x,y))
2607 c |= index(state,hedge,x,y);
eddb22e8 2608 if (HRANGE(state,x,y+1))
2609 c |= index(state,hedge,x,y+1) << 2;
08dd70c3 2610 if (VRANGE(state,x,y))
2611 c |= index(state,vedge,x,y) << 4;
eddb22e8 2612 if (VRANGE(state,x+1,y))
2613 c |= index(state,vedge,x+1,y) << 6;
ec9a0f09 2614 c |= index(state,corners,x,y) << 8;
2615 if (x+1 < state->w)
2616 c |= index(state,corners,x+1,y) << 10;
2617 if (y+1 < state->h)
2618 c |= index(state,corners,x,y+1) << 12;
2619 if (x+1 < state->w && y+1 < state->h)
ab53eb64 2620 /* cast to prevent 2<<14 sign-extending on promotion to long */
2621 c |= (unsigned long)index(state,corners,x+1,y+1) << 14;
ef29354c 2622 if (index(state, correct, x, y) && !flashtime)
3870c4d8 2623 c |= CORRECT;
2624
2625 if (index(ds,ds->visible,x,y) != c) {
1e3e152d 2626 draw_tile(fe, ds, state, x, y, hedge, vedge, corners,
ab53eb64 2627 (c & CORRECT) ? 1 : 0);
ec9a0f09 2628 index(ds,ds->visible,x,y) = c;
3870c4d8 2629 }
2630 }
2631
375c9b4d 2632 {
2633 char buf[256];
2634
2635 if (ui->x1 >= 0 && ui->y1 >= 0 &&
2636 ui->x2 >= 0 && ui->y2 >= 0) {
2637 sprintf(buf, "%dx%d ",
2638 ui->x2-ui->x1,
2639 ui->y2-ui->y1);
2640 } else {
2641 buf[0] = '\0';
2642 }
2643
2644 if (state->cheated)
2645 strcat(buf, "Auto-solved.");
2646 else if (state->completed)
2647 strcat(buf, "COMPLETED!");
2648
2649 status_bar(fe, buf);
2650 }
2651
08dd70c3 2652 if (hedge != state->hedge) {
2653 sfree(hedge);
2654 sfree(vedge);
375c9b4d 2655 }
08dd70c3 2656
11c44cf5 2657 sfree(corners);
3870c4d8 2658 sfree(correct);
2659}
2660
be8d5aa1 2661static float game_anim_length(game_state *oldstate,
e3f21163 2662 game_state *newstate, int dir, game_ui *ui)
3870c4d8 2663{
2664 return 0.0F;
2665}
2666
be8d5aa1 2667static float game_flash_length(game_state *oldstate,
e3f21163 2668 game_state *newstate, int dir, game_ui *ui)
3870c4d8 2669{
2ac6d24e 2670 if (!oldstate->completed && newstate->completed &&
2671 !oldstate->cheated && !newstate->cheated)
ef29354c 2672 return FLASH_TIME;
3870c4d8 2673 return 0.0F;
2674}
2675
be8d5aa1 2676static int game_wants_statusbar(void)
3870c4d8 2677{
375c9b4d 2678 return TRUE;
3870c4d8 2679}
be8d5aa1 2680
48dcdd62 2681static int game_timing_state(game_state *state)
2682{
2683 return TRUE;
2684}
2685
be8d5aa1 2686#ifdef COMBINED
2687#define thegame rect
2688#endif
2689
2690const struct game thegame = {
1d228b10 2691 "Rectangles", "games.rectangles",
be8d5aa1 2692 default_params,
2693 game_fetch_preset,
2694 decode_params,
2695 encode_params,
2696 free_params,
2697 dup_params,
1d228b10 2698 TRUE, game_configure, custom_params,
be8d5aa1 2699 validate_params,
1185e3c5 2700 new_game_desc,
6f2d8d7c 2701 game_free_aux_info,
1185e3c5 2702 validate_desc,
be8d5aa1 2703 new_game,
2704 dup_game,
2705 free_game,
2ac6d24e 2706 TRUE, solve_game,
6ad5ed74 2707 TRUE, game_text_format,
be8d5aa1 2708 new_ui,
2709 free_ui,
07dfb697 2710 game_changed_state,
be8d5aa1 2711 make_move,
2712 game_size,
2713 game_colours,
2714 game_new_drawstate,
2715 game_free_drawstate,
2716 game_redraw,
2717 game_anim_length,
2718 game_flash_length,
2719 game_wants_statusbar,
48dcdd62 2720 FALSE, game_timing_state,
93b1da3d 2721 0, /* mouse_priorities */
be8d5aa1 2722};