Switch Untangle to using `long' rather than `int' in its internal
[sgt/puzzles] / rect.c
CommitLineData
3870c4d8 1/*
2 * rect.c: Puzzle from nikoli.co.jp. You have a square grid with
3 * numbers in some squares; you must divide the square grid up into
4 * variously sized rectangles, such that every rectangle contains
5 * exactly one numbered square and the area of each rectangle is
6 * equal to the number contained in it.
7 */
8
9/*
10 * TODO:
11 *
738d2f61 12 * - Improve singleton removal.
13 * + It would be nice to limit the size of the generated
14 * rectangles in accordance with existing constraints such as
15 * the maximum rectangle size and the one about not
16 * generating a rectangle the full width or height of the
17 * grid.
18 * + This could be achieved by making a less random choice
19 * about which of the available options to use.
20 * + Alternatively, we could create our rectangle and then
21 * split it up.
3870c4d8 22 */
23
24#include <stdio.h>
25#include <stdlib.h>
26#include <string.h>
27#include <assert.h>
b0e26073 28#include <ctype.h>
3870c4d8 29#include <math.h>
30
31#include "puzzles.h"
32
3870c4d8 33enum {
34 COL_BACKGROUND,
35 COL_CORRECT,
36 COL_LINE,
37 COL_TEXT,
38 COL_GRID,
08dd70c3 39 COL_DRAG,
3870c4d8 40 NCOLOURS
41};
42
43struct game_params {
44 int w, h;
aea3ed9a 45 float expandfactor;
40fde884 46 int unique;
3870c4d8 47};
48
49#define INDEX(state, x, y) (((y) * (state)->w) + (x))
50#define index(state, a, x, y) ((a) [ INDEX(state,x,y) ])
51#define grid(state,x,y) index(state, (state)->grid, x, y)
52#define vedge(state,x,y) index(state, (state)->vedge, x, y)
53#define hedge(state,x,y) index(state, (state)->hedge, x, y)
54
55#define CRANGE(state,x,y,dx,dy) ( (x) >= dx && (x) < (state)->w && \
56 (y) >= dy && (y) < (state)->h )
57#define RANGE(state,x,y) CRANGE(state,x,y,0,0)
58#define HRANGE(state,x,y) CRANGE(state,x,y,0,1)
59#define VRANGE(state,x,y) CRANGE(state,x,y,1,0)
60
1e3e152d 61#define PREFERRED_TILE_SIZE 24
62#define TILE_SIZE (ds->tilesize)
63#define BORDER (TILE_SIZE * 3 / 4)
3870c4d8 64
d4e7900f 65#define CORNER_TOLERANCE 0.15F
66#define CENTRE_TOLERANCE 0.15F
67
ef29354c 68#define FLASH_TIME 0.13F
69
3870c4d8 70#define COORD(x) ( (x) * TILE_SIZE + BORDER )
71#define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
72
73struct game_state {
74 int w, h;
75 int *grid; /* contains the numbers */
76 unsigned char *vedge; /* (w+1) x h */
77 unsigned char *hedge; /* w x (h+1) */
2ac6d24e 78 int completed, cheated;
9bb4a9a0 79 unsigned char *correct;
3870c4d8 80};
81
be8d5aa1 82static game_params *default_params(void)
3870c4d8 83{
84 game_params *ret = snew(game_params);
85
86 ret->w = ret->h = 7;
aea3ed9a 87 ret->expandfactor = 0.0F;
40fde884 88 ret->unique = TRUE;
3870c4d8 89
90 return ret;
91}
92
be8d5aa1 93static int game_fetch_preset(int i, char **name, game_params **params)
3870c4d8 94{
95 game_params *ret;
96 int w, h;
97 char buf[80];
98
99 switch (i) {
100 case 0: w = 7, h = 7; break;
ab53eb64 101 case 1: w = 9, h = 9; break;
102 case 2: w = 11, h = 11; break;
103 case 3: w = 13, h = 13; break;
104 case 4: w = 15, h = 15; break;
ab53eb64 105 case 5: w = 17, h = 17; break;
106 case 6: w = 19, h = 19; break;
3870c4d8 107 default: return FALSE;
108 }
109
110 sprintf(buf, "%dx%d", w, h);
111 *name = dupstr(buf);
112 *params = ret = snew(game_params);
113 ret->w = w;
114 ret->h = h;
aea3ed9a 115 ret->expandfactor = 0.0F;
40fde884 116 ret->unique = TRUE;
3870c4d8 117 return TRUE;
118}
119
be8d5aa1 120static void free_params(game_params *params)
3870c4d8 121{
122 sfree(params);
123}
124
be8d5aa1 125static game_params *dup_params(game_params *params)
3870c4d8 126{
127 game_params *ret = snew(game_params);
128 *ret = *params; /* structure copy */
129 return ret;
130}
131
1185e3c5 132static void decode_params(game_params *ret, char const *string)
b0e26073 133{
b0e26073 134 ret->w = ret->h = atoi(string);
aea3ed9a 135 while (*string && isdigit((unsigned char)*string)) string++;
b0e26073 136 if (*string == 'x') {
137 string++;
138 ret->h = atoi(string);
aea3ed9a 139 while (*string && isdigit((unsigned char)*string)) string++;
140 }
141 if (*string == 'e') {
142 string++;
143 ret->expandfactor = atof(string);
40fde884 144 while (*string &&
145 (*string == '.' || isdigit((unsigned char)*string))) string++;
146 }
147 if (*string == 'a') {
148 string++;
149 ret->unique = FALSE;
b0e26073 150 }
b0e26073 151}
152
1185e3c5 153static char *encode_params(game_params *params, int full)
b0e26073 154{
155 char data[256];
156
157 sprintf(data, "%dx%d", params->w, params->h);
5472ceb6 158 if (full && params->expandfactor)
1185e3c5 159 sprintf(data + strlen(data), "e%g", params->expandfactor);
40fde884 160 if (full && !params->unique)
161 strcat(data, "a");
b0e26073 162
163 return dupstr(data);
164}
165
be8d5aa1 166static config_item *game_configure(game_params *params)
3870c4d8 167{
168 config_item *ret;
169 char buf[80];
170
171 ret = snewn(5, config_item);
172
173 ret[0].name = "Width";
174 ret[0].type = C_STRING;
175 sprintf(buf, "%d", params->w);
176 ret[0].sval = dupstr(buf);
177 ret[0].ival = 0;
178
179 ret[1].name = "Height";
180 ret[1].type = C_STRING;
181 sprintf(buf, "%d", params->h);
182 ret[1].sval = dupstr(buf);
183 ret[1].ival = 0;
184
aea3ed9a 185 ret[2].name = "Expansion factor";
186 ret[2].type = C_STRING;
187 sprintf(buf, "%g", params->expandfactor);
188 ret[2].sval = dupstr(buf);
3870c4d8 189 ret[2].ival = 0;
190
40fde884 191 ret[3].name = "Ensure unique solution";
192 ret[3].type = C_BOOLEAN;
aea3ed9a 193 ret[3].sval = NULL;
40fde884 194 ret[3].ival = params->unique;
195
196 ret[4].name = NULL;
197 ret[4].type = C_END;
198 ret[4].sval = NULL;
199 ret[4].ival = 0;
aea3ed9a 200
3870c4d8 201 return ret;
202}
203
be8d5aa1 204static game_params *custom_params(config_item *cfg)
3870c4d8 205{
206 game_params *ret = snew(game_params);
207
208 ret->w = atoi(cfg[0].sval);
209 ret->h = atoi(cfg[1].sval);
aea3ed9a 210 ret->expandfactor = atof(cfg[2].sval);
40fde884 211 ret->unique = cfg[3].ival;
3870c4d8 212
213 return ret;
214}
215
3ff276f2 216static char *validate_params(game_params *params, int full)
3870c4d8 217{
ab53eb64 218 if (params->w <= 0 || params->h <= 0)
3870c4d8 219 return "Width and height must both be greater than zero";
ab53eb64 220 if (params->w*params->h < 2)
d4e7900f 221 return "Grid area must be greater than one";
aea3ed9a 222 if (params->expandfactor < 0.0F)
223 return "Expansion factor may not be negative";
3870c4d8 224 return NULL;
225}
226
26801d29 227struct point {
228 int x, y;
229};
230
3870c4d8 231struct rect {
232 int x, y;
233 int w, h;
234};
235
236struct rectlist {
237 struct rect *rects;
238 int n;
239};
240
26801d29 241struct numberdata {
242 int area;
243 int npoints;
244 struct point *points;
245};
246
247/* ----------------------------------------------------------------------
248 * Solver for Rectangles games.
249 *
250 * This solver is souped up beyond the needs of actually _solving_
251 * a puzzle. It is also designed to cope with uncertainty about
252 * where the numbers have been placed. This is because I run it on
253 * my generated grids _before_ placing the numbers, and have it
254 * tell me where I need to place the numbers to ensure a unique
255 * solution.
256 */
257
258static void remove_rect_placement(int w, int h,
259 struct rectlist *rectpositions,
260 int *overlaps,
261 int rectnum, int placement)
262{
263 int x, y, xx, yy;
264
265#ifdef SOLVER_DIAGNOSTICS
266 printf("ruling out rect %d placement at %d,%d w=%d h=%d\n", rectnum,
267 rectpositions[rectnum].rects[placement].x,
268 rectpositions[rectnum].rects[placement].y,
269 rectpositions[rectnum].rects[placement].w,
270 rectpositions[rectnum].rects[placement].h);
271#endif
272
273 /*
274 * Decrement each entry in the overlaps array to reflect the
275 * removal of this rectangle placement.
276 */
277 for (yy = 0; yy < rectpositions[rectnum].rects[placement].h; yy++) {
278 y = yy + rectpositions[rectnum].rects[placement].y;
279 for (xx = 0; xx < rectpositions[rectnum].rects[placement].w; xx++) {
280 x = xx + rectpositions[rectnum].rects[placement].x;
281
282 assert(overlaps[(rectnum * h + y) * w + x] != 0);
283
284 if (overlaps[(rectnum * h + y) * w + x] > 0)
285 overlaps[(rectnum * h + y) * w + x]--;
286 }
287 }
288
289 /*
290 * Remove the placement from the list of positions for that
291 * rectangle, by interchanging it with the one on the end.
292 */
293 if (placement < rectpositions[rectnum].n - 1) {
294 struct rect t;
295
296 t = rectpositions[rectnum].rects[rectpositions[rectnum].n - 1];
297 rectpositions[rectnum].rects[rectpositions[rectnum].n - 1] =
298 rectpositions[rectnum].rects[placement];
299 rectpositions[rectnum].rects[placement] = t;
300 }
301 rectpositions[rectnum].n--;
302}
303
304static void remove_number_placement(int w, int h, struct numberdata *number,
305 int index, int *rectbyplace)
306{
307 /*
308 * Remove the entry from the rectbyplace array.
309 */
310 rectbyplace[number->points[index].y * w + number->points[index].x] = -1;
311
312 /*
313 * Remove the placement from the list of candidates for that
314 * number, by interchanging it with the one on the end.
315 */
316 if (index < number->npoints - 1) {
317 struct point t;
318
319 t = number->points[number->npoints - 1];
320 number->points[number->npoints - 1] = number->points[index];
321 number->points[index] = t;
322 }
323 number->npoints--;
324}
325
326static int rect_solver(int w, int h, int nrects, struct numberdata *numbers,
df11cd4e 327 unsigned char *hedge, unsigned char *vedge,
328 random_state *rs)
26801d29 329{
330 struct rectlist *rectpositions;
331 int *overlaps, *rectbyplace, *workspace;
332 int i, ret;
333
334 /*
335 * Start by setting up a list of candidate positions for each
336 * rectangle.
337 */
338 rectpositions = snewn(nrects, struct rectlist);
339 for (i = 0; i < nrects; i++) {
340 int rw, rh, area = numbers[i].area;
341 int j, minx, miny, maxx, maxy;
342 struct rect *rlist;
343 int rlistn, rlistsize;
344
345 /*
346 * For each rectangle, begin by finding the bounding
347 * rectangle of its candidate number placements.
348 */
349 maxx = maxy = -1;
350 minx = w;
351 miny = h;
352 for (j = 0; j < numbers[i].npoints; j++) {
353 if (minx > numbers[i].points[j].x) minx = numbers[i].points[j].x;
354 if (miny > numbers[i].points[j].y) miny = numbers[i].points[j].y;
355 if (maxx < numbers[i].points[j].x) maxx = numbers[i].points[j].x;
356 if (maxy < numbers[i].points[j].y) maxy = numbers[i].points[j].y;
357 }
358
359 /*
360 * Now loop over all possible rectangle placements
361 * overlapping a point within that bounding rectangle;
362 * ensure each one actually contains a candidate number
363 * placement, and add it to the list.
364 */
365 rlist = NULL;
366 rlistn = rlistsize = 0;
367
368 for (rw = 1; rw <= area && rw <= w; rw++) {
369 int x, y;
370
371 if (area % rw)
372 continue;
373 rh = area / rw;
374 if (rh > h)
375 continue;
376
377 for (y = miny - rh + 1; y <= maxy; y++) {
378 if (y < 0 || y+rh > h)
379 continue;
380
381 for (x = minx - rw + 1; x <= maxx; x++) {
382 if (x < 0 || x+rw > w)
383 continue;
384
385 /*
386 * See if we can find a candidate number
387 * placement within this rectangle.
388 */
389 for (j = 0; j < numbers[i].npoints; j++)
390 if (numbers[i].points[j].x >= x &&
391 numbers[i].points[j].x < x+rw &&
392 numbers[i].points[j].y >= y &&
393 numbers[i].points[j].y < y+rh)
394 break;
395
396 if (j < numbers[i].npoints) {
397 /*
398 * Add this to the list of candidate
399 * placements for this rectangle.
400 */
401 if (rlistn >= rlistsize) {
402 rlistsize = rlistn + 32;
403 rlist = sresize(rlist, rlistsize, struct rect);
404 }
405 rlist[rlistn].x = x;
406 rlist[rlistn].y = y;
407 rlist[rlistn].w = rw;
408 rlist[rlistn].h = rh;
409#ifdef SOLVER_DIAGNOSTICS
410 printf("rect %d [area %d]: candidate position at"
411 " %d,%d w=%d h=%d\n",
412 i, area, x, y, rw, rh);
413#endif
414 rlistn++;
415 }
416 }
417 }
418 }
419
420 rectpositions[i].rects = rlist;
421 rectpositions[i].n = rlistn;
422 }
423
424 /*
425 * Next, construct a multidimensional array tracking how many
426 * candidate positions for each rectangle overlap each square.
427 *
428 * Indexing of this array is by the formula
429 *
430 * overlaps[(rectindex * h + y) * w + x]
431 */
432 overlaps = snewn(nrects * w * h, int);
433 memset(overlaps, 0, nrects * w * h * sizeof(int));
434 for (i = 0; i < nrects; i++) {
435 int j;
436
437 for (j = 0; j < rectpositions[i].n; j++) {
438 int xx, yy;
439
440 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++)
441 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++)
442 overlaps[(i * h + yy+rectpositions[i].rects[j].y) * w +
443 xx+rectpositions[i].rects[j].x]++;
444 }
445 }
446
447 /*
448 * Also we want an array covering the grid once, to make it
449 * easy to figure out which squares are candidate number
450 * placements for which rectangles. (The existence of this
451 * single array assumes that no square starts off as a
452 * candidate number placement for more than one rectangle. This
453 * assumption is justified, because this solver is _either_
454 * used to solve real problems - in which case there is a
455 * single placement for every number - _or_ used to decide on
456 * number placements for a new puzzle, in which case each
457 * number's placements are confined to the intended position of
458 * the rectangle containing that number.)
459 */
460 rectbyplace = snewn(w * h, int);
461 for (i = 0; i < w*h; i++)
462 rectbyplace[i] = -1;
463
464 for (i = 0; i < nrects; i++) {
465 int j;
466
467 for (j = 0; j < numbers[i].npoints; j++) {
468 int x = numbers[i].points[j].x;
469 int y = numbers[i].points[j].y;
470
471 assert(rectbyplace[y * w + x] == -1);
472 rectbyplace[y * w + x] = i;
473 }
474 }
475
476 workspace = snewn(nrects, int);
477
478 /*
479 * Now run the actual deduction loop.
480 */
481 while (1) {
482 int done_something = FALSE;
483
484#ifdef SOLVER_DIAGNOSTICS
485 printf("starting deduction loop\n");
486
487 for (i = 0; i < nrects; i++) {
488 printf("rect %d overlaps:\n", i);
489 {
490 int x, y;
491 for (y = 0; y < h; y++) {
492 for (x = 0; x < w; x++) {
493 printf("%3d", overlaps[(i * h + y) * w + x]);
494 }
495 printf("\n");
496 }
497 }
498 }
499 printf("rectbyplace:\n");
500 {
501 int x, y;
502 for (y = 0; y < h; y++) {
503 for (x = 0; x < w; x++) {
504 printf("%3d", rectbyplace[y * w + x]);
505 }
506 printf("\n");
507 }
508 }
509#endif
510
511 /*
512 * Housekeeping. Look for rectangles whose number has only
513 * one candidate position left, and mark that square as
514 * known if it isn't already.
515 */
516 for (i = 0; i < nrects; i++) {
517 if (numbers[i].npoints == 1) {
518 int x = numbers[i].points[0].x;
519 int y = numbers[i].points[0].y;
520 if (overlaps[(i * h + y) * w + x] >= -1) {
521 int j;
522
523 assert(overlaps[(i * h + y) * w + x] > 0);
524#ifdef SOLVER_DIAGNOSTICS
525 printf("marking %d,%d as known for rect %d"
526 " (sole remaining number position)\n", x, y, i);
527#endif
528
529 for (j = 0; j < nrects; j++)
530 overlaps[(j * h + y) * w + x] = -1;
531
532 overlaps[(i * h + y) * w + x] = -2;
533 }
534 }
535 }
536
537 /*
538 * Now look at the intersection of all possible placements
539 * for each rectangle, and mark all squares in that
540 * intersection as known for that rectangle if they aren't
541 * already.
542 */
543 for (i = 0; i < nrects; i++) {
544 int minx, miny, maxx, maxy, xx, yy, j;
545
546 minx = miny = 0;
547 maxx = w;
548 maxy = h;
549
550 for (j = 0; j < rectpositions[i].n; j++) {
551 int x = rectpositions[i].rects[j].x;
552 int y = rectpositions[i].rects[j].y;
553 int w = rectpositions[i].rects[j].w;
554 int h = rectpositions[i].rects[j].h;
555
556 if (minx < x) minx = x;
557 if (miny < y) miny = y;
558 if (maxx > x+w) maxx = x+w;
559 if (maxy > y+h) maxy = y+h;
560 }
561
562 for (yy = miny; yy < maxy; yy++)
563 for (xx = minx; xx < maxx; xx++)
564 if (overlaps[(i * h + yy) * w + xx] >= -1) {
565 assert(overlaps[(i * h + yy) * w + xx] > 0);
566#ifdef SOLVER_DIAGNOSTICS
567 printf("marking %d,%d as known for rect %d"
568 " (intersection of all placements)\n",
569 xx, yy, i);
570#endif
571
572 for (j = 0; j < nrects; j++)
573 overlaps[(j * h + yy) * w + xx] = -1;
574
575 overlaps[(i * h + yy) * w + xx] = -2;
576 }
577 }
578
579 /*
580 * Rectangle-focused deduction. Look at each rectangle in
581 * turn and try to rule out some of its candidate
582 * placements.
583 */
584 for (i = 0; i < nrects; i++) {
585 int j;
586
587 for (j = 0; j < rectpositions[i].n; j++) {
588 int xx, yy, k;
589 int del = FALSE;
590
591 for (k = 0; k < nrects; k++)
592 workspace[k] = 0;
593
594 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
595 int y = yy + rectpositions[i].rects[j].y;
596 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
597 int x = xx + rectpositions[i].rects[j].x;
598
599 if (overlaps[(i * h + y) * w + x] == -1) {
600 /*
601 * This placement overlaps a square
602 * which is _known_ to be part of
603 * another rectangle. Therefore we must
604 * rule it out.
605 */
606#ifdef SOLVER_DIAGNOSTICS
607 printf("rect %d placement at %d,%d w=%d h=%d "
608 "contains %d,%d which is known-other\n", i,
609 rectpositions[i].rects[j].x,
610 rectpositions[i].rects[j].y,
611 rectpositions[i].rects[j].w,
612 rectpositions[i].rects[j].h,
613 x, y);
614#endif
615 del = TRUE;
616 }
617
618 if (rectbyplace[y * w + x] != -1) {
619 /*
620 * This placement overlaps one of the
621 * candidate number placements for some
622 * rectangle. Count it.
623 */
624 workspace[rectbyplace[y * w + x]]++;
625 }
626 }
627 }
628
629 if (!del) {
630 /*
631 * If we haven't ruled this placement out
632 * already, see if it overlaps _all_ of the
633 * candidate number placements for any
634 * rectangle. If so, we can rule it out.
635 */
636 for (k = 0; k < nrects; k++)
637 if (k != i && workspace[k] == numbers[k].npoints) {
638#ifdef SOLVER_DIAGNOSTICS
639 printf("rect %d placement at %d,%d w=%d h=%d "
640 "contains all number points for rect %d\n",
641 i,
642 rectpositions[i].rects[j].x,
643 rectpositions[i].rects[j].y,
644 rectpositions[i].rects[j].w,
645 rectpositions[i].rects[j].h,
646 k);
647#endif
648 del = TRUE;
649 break;
650 }
651
652 /*
653 * Failing that, see if it overlaps at least
654 * one of the candidate number placements for
655 * itself! (This might not be the case if one
656 * of those number placements has been removed
657 * recently.).
658 */
659 if (!del && workspace[i] == 0) {
660#ifdef SOLVER_DIAGNOSTICS
661 printf("rect %d placement at %d,%d w=%d h=%d "
662 "contains none of its own number points\n",
663 i,
664 rectpositions[i].rects[j].x,
665 rectpositions[i].rects[j].y,
666 rectpositions[i].rects[j].w,
667 rectpositions[i].rects[j].h);
668#endif
669 del = TRUE;
670 }
671 }
672
673 if (del) {
674 remove_rect_placement(w, h, rectpositions, overlaps, i, j);
675
676 j--; /* don't skip over next placement */
677
678 done_something = TRUE;
679 }
680 }
681 }
682
683 /*
684 * Square-focused deduction. Look at each square not marked
685 * as known, and see if there are any which can only be
686 * part of a single rectangle.
687 */
688 {
689 int x, y, n, index;
690 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
691 /* Known squares are marked as <0 everywhere, so we only need
692 * to check the overlaps entry for rect 0. */
693 if (overlaps[y * w + x] < 0)
694 continue; /* known already */
695
696 n = 0;
697 index = -1;
698 for (i = 0; i < nrects; i++)
699 if (overlaps[(i * h + y) * w + x] > 0)
700 n++, index = i;
701
702 if (n == 1) {
703 int j;
704
705 /*
706 * Now we can rule out all placements for
707 * rectangle `index' which _don't_ contain
708 * square x,y.
709 */
710#ifdef SOLVER_DIAGNOSTICS
711 printf("square %d,%d can only be in rectangle %d\n",
712 x, y, index);
713#endif
714 for (j = 0; j < rectpositions[index].n; j++) {
715 struct rect *r = &rectpositions[index].rects[j];
716 if (x >= r->x && x < r->x + r->w &&
717 y >= r->y && y < r->y + r->h)
718 continue; /* this one is OK */
719 remove_rect_placement(w, h, rectpositions, overlaps,
720 index, j);
721 j--; /* don't skip over next placement */
722 done_something = TRUE;
723 }
724 }
725 }
726 }
727
728 /*
729 * If we've managed to deduce anything by normal means,
730 * loop round again and see if there's more to be done.
731 * Only if normal deduction has completely failed us should
732 * we now move on to narrowing down the possible number
733 * placements.
734 */
735 if (done_something)
736 continue;
737
738 /*
739 * Now we have done everything we can with the current set
740 * of number placements. So we need to winnow the number
741 * placements so as to narrow down the possibilities. We do
742 * this by searching for a candidate placement (of _any_
743 * rectangle) which overlaps a candidate placement of the
744 * number for some other rectangle.
745 */
1507058f 746 if (rs) {
26801d29 747 struct rpn {
748 int rect;
749 int placement;
750 int number;
751 } *rpns = NULL;
64aec339 752 size_t nrpns = 0, rpnsize = 0;
26801d29 753 int j;
754
755 for (i = 0; i < nrects; i++) {
756 for (j = 0; j < rectpositions[i].n; j++) {
757 int xx, yy;
758
759 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
760 int y = yy + rectpositions[i].rects[j].y;
761 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
762 int x = xx + rectpositions[i].rects[j].x;
763
764 if (rectbyplace[y * w + x] >= 0 &&
765 rectbyplace[y * w + x] != i) {
766 /*
767 * Add this to the list of
768 * winnowing possibilities.
769 */
770 if (nrpns >= rpnsize) {
771 rpnsize = rpnsize * 3 / 2 + 32;
772 rpns = sresize(rpns, rpnsize, struct rpn);
773 }
774 rpns[nrpns].rect = i;
775 rpns[nrpns].placement = j;
776 rpns[nrpns].number = rectbyplace[y * w + x];
777 nrpns++;
778 }
779 }
780 }
781
782 }
783 }
784
785#ifdef SOLVER_DIAGNOSTICS
786 printf("%d candidate rect placements we could eliminate\n", nrpns);
787#endif
788 if (nrpns > 0) {
789 /*
790 * Now choose one of these unwanted rectangle
791 * placements, and eliminate it.
792 */
793 int index = random_upto(rs, nrpns);
794 int k, m;
795 struct rpn rpn = rpns[index];
796 struct rect r;
797 sfree(rpns);
798
799 i = rpn.rect;
800 j = rpn.placement;
801 k = rpn.number;
802 r = rectpositions[i].rects[j];
803
804 /*
805 * We rule out placement j of rectangle i by means
806 * of removing all of rectangle k's candidate
807 * number placements which do _not_ overlap it.
808 * This will ensure that it is eliminated during
809 * the next pass of rectangle-focused deduction.
810 */
811#ifdef SOLVER_DIAGNOSTICS
812 printf("ensuring number for rect %d is within"
813 " rect %d's placement at %d,%d w=%d h=%d\n",
814 k, i, r.x, r.y, r.w, r.h);
815#endif
816
817 for (m = 0; m < numbers[k].npoints; m++) {
818 int x = numbers[k].points[m].x;
819 int y = numbers[k].points[m].y;
820
821 if (x < r.x || x >= r.x + r.w ||
822 y < r.y || y >= r.y + r.h) {
823#ifdef SOLVER_DIAGNOSTICS
824 printf("eliminating number for rect %d at %d,%d\n",
825 k, x, y);
826#endif
827 remove_number_placement(w, h, &numbers[k],
828 m, rectbyplace);
829 m--; /* don't skip the next one */
830 done_something = TRUE;
831 }
832 }
833 }
834 }
835
836 if (!done_something) {
837#ifdef SOLVER_DIAGNOSTICS
838 printf("terminating deduction loop\n");
839#endif
840 break;
841 }
842 }
843
844 ret = TRUE;
845 for (i = 0; i < nrects; i++) {
846#ifdef SOLVER_DIAGNOSTICS
847 printf("rect %d has %d possible placements\n",
848 i, rectpositions[i].n);
849#endif
850 assert(rectpositions[i].n > 0);
1507058f 851 if (rectpositions[i].n > 1) {
26801d29 852 ret = FALSE;
df11cd4e 853 } else if (hedge && vedge) {
854 /*
855 * Place the rectangle in its only possible position.
856 */
857 int x, y;
858 struct rect *r = &rectpositions[i].rects[0];
859
860 for (y = 0; y < r->h; y++) {
861 if (r->x > 0)
862 vedge[(r->y+y) * w + r->x] = 1;
863 if (r->x+r->w < w)
864 vedge[(r->y+y) * w + r->x+r->w] = 1;
865 }
866 for (x = 0; x < r->w; x++) {
867 if (r->y > 0)
868 hedge[r->y * w + r->x+x] = 1;
869 if (r->y+r->h < h)
870 hedge[(r->y+r->h) * w + r->x+x] = 1;
871 }
1507058f 872 }
26801d29 873 }
874
875 /*
876 * Free up all allocated storage.
877 */
878 sfree(workspace);
879 sfree(rectbyplace);
880 sfree(overlaps);
881 for (i = 0; i < nrects; i++)
882 sfree(rectpositions[i].rects);
883 sfree(rectpositions);
884
885 return ret;
886}
887
888/* ----------------------------------------------------------------------
889 * Grid generation code.
890 */
891
738d2f61 892/*
893 * This function does one of two things. If passed r==NULL, it
894 * counts the number of possible rectangles which cover the given
895 * square, and returns it in *n. If passed r!=NULL then it _reads_
896 * *n to find an index, counts the possible rectangles until it
897 * reaches the nth, and writes it into r.
898 *
899 * `scratch' is expected to point to an array of 2 * params->w
900 * ints, used internally as scratch space (and passed in like this
901 * to avoid re-allocating and re-freeing it every time round a
902 * tight loop).
903 */
904static void enum_rects(game_params *params, int *grid, struct rect *r, int *n,
905 int sx, int sy, int *scratch)
3870c4d8 906{
738d2f61 907 int rw, rh, mw, mh;
908 int x, y, dx, dy;
909 int maxarea, realmaxarea;
910 int index = 0;
911 int *top, *bottom;
3870c4d8 912
913 /*
d4e7900f 914 * Maximum rectangle area is 1/6 of total grid size, unless
915 * this means we can't place any rectangles at all in which
916 * case we set it to 2 at minimum.
3870c4d8 917 */
918 maxarea = params->w * params->h / 6;
d4e7900f 919 if (maxarea < 2)
920 maxarea = 2;
3870c4d8 921
738d2f61 922 /*
923 * Scan the grid to find the limits of the region within which
924 * any rectangle containing this point must fall. This will
925 * save us trawling the inside of every rectangle later on to
926 * see if it contains any used squares.
927 */
928 top = scratch;
929 bottom = scratch + params->w;
930 for (dy = -1; dy <= +1; dy += 2) {
931 int *array = (dy == -1 ? top : bottom);
932 for (dx = -1; dx <= +1; dx += 2) {
933 for (x = sx; x >= 0 && x < params->w; x += dx) {
934 array[x] = -2 * params->h * dy;
935 for (y = sy; y >= 0 && y < params->h; y += dy) {
936 if (index(params, grid, x, y) == -1 &&
937 (x == sx || dy*y <= dy*array[x-dx]))
938 array[x] = y;
939 else
940 break;
941 }
942 }
943 }
944 }
945
946 /*
947 * Now scan again to work out the largest rectangles we can fit
948 * in the grid, so that we can terminate the following loops
949 * early once we get down to not having much space left in the
950 * grid.
951 */
952 realmaxarea = 0;
953 for (x = 0; x < params->w; x++) {
954 int x2;
955
956 rh = bottom[x] - top[x] + 1;
957 if (rh <= 0)
958 continue; /* no rectangles can start here */
959
960 dx = (x > sx ? -1 : +1);
961 for (x2 = x; x2 >= 0 && x2 < params->w; x2 += dx)
962 if (bottom[x2] < bottom[x] || top[x2] > top[x])
963 break;
964
965 rw = abs(x2 - x);
966 if (realmaxarea < rw * rh)
967 realmaxarea = rw * rh;
968 }
969
970 if (realmaxarea > maxarea)
971 realmaxarea = maxarea;
972
973 /*
974 * Rectangles which go right the way across the grid are
975 * boring, although they can't be helped in the case of
976 * extremely small grids. (Also they might be generated later
977 * on by the singleton-removal process; we can't help that.)
978 */
979 mw = params->w - 1;
980 if (mw < 3) mw++;
981 mh = params->h - 1;
982 if (mh < 3) mh++;
983
984 for (rw = 1; rw <= mw; rw++)
985 for (rh = 1; rh <= mh; rh++) {
986 if (rw * rh > realmaxarea)
3870c4d8 987 continue;
988 if (rw * rh == 1)
989 continue;
738d2f61 990 for (x = max(sx - rw + 1, 0); x <= min(sx, params->w - rw); x++)
991 for (y = max(sy - rh + 1, 0); y <= min(sy, params->h - rh);
992 y++) {
993 /*
994 * Check this rectangle against the region we
995 * defined above.
996 */
997 if (top[x] <= y && top[x+rw-1] <= y &&
998 bottom[x] >= y+rh-1 && bottom[x+rw-1] >= y+rh-1) {
999 if (r && index == *n) {
1000 r->x = x;
1001 r->y = y;
1002 r->w = rw;
1003 r->h = rh;
1004 return;
1005 }
1006 index++;
3870c4d8 1007 }
3870c4d8 1008 }
1009 }
1010
738d2f61 1011 assert(!r);
1012 *n = index;
3870c4d8 1013}
1014
1015static void place_rect(game_params *params, int *grid, struct rect r)
1016{
1017 int idx = INDEX(params, r.x, r.y);
1018 int x, y;
1019
1020 for (x = r.x; x < r.x+r.w; x++)
1021 for (y = r.y; y < r.y+r.h; y++) {
1022 index(params, grid, x, y) = idx;
1023 }
1024#ifdef GENERATION_DIAGNOSTICS
1025 printf(" placing rectangle at (%d,%d) size %d x %d\n",
1026 r.x, r.y, r.w, r.h);
1027#endif
1028}
1029
1030static struct rect find_rect(game_params *params, int *grid, int x, int y)
1031{
1032 int idx, w, h;
1033 struct rect r;
1034
1035 /*
1036 * Find the top left of the rectangle.
1037 */
1038 idx = index(params, grid, x, y);
1039
1040 if (idx < 0) {
1041 r.x = x;
1042 r.y = y;
1043 r.w = r.h = 1;
1044 return r; /* 1x1 singleton here */
1045 }
1046
1047 y = idx / params->w;
1048 x = idx % params->w;
1049
1050 /*
1051 * Find the width and height of the rectangle.
1052 */
1053 for (w = 1;
1054 (x+w < params->w && index(params,grid,x+w,y)==idx);
1055 w++);
1056 for (h = 1;
1057 (y+h < params->h && index(params,grid,x,y+h)==idx);
1058 h++);
1059
1060 r.x = x;
1061 r.y = y;
1062 r.w = w;
1063 r.h = h;
1064
1065 return r;
1066}
1067
1068#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 1069static void display_grid(game_params *params, int *grid, int *numbers, int all)
3870c4d8 1070{
1071 unsigned char *egrid = snewn((params->w*2+3) * (params->h*2+3),
1072 unsigned char);
3870c4d8 1073 int x, y;
1074 int r = (params->w*2+3);
1075
aea3ed9a 1076 memset(egrid, 0, (params->w*2+3) * (params->h*2+3));
1077
3870c4d8 1078 for (x = 0; x < params->w; x++)
1079 for (y = 0; y < params->h; y++) {
1080 int i = index(params, grid, x, y);
1081 if (x == 0 || index(params, grid, x-1, y) != i)
1082 egrid[(2*y+2) * r + (2*x+1)] = 1;
1083 if (x == params->w-1 || index(params, grid, x+1, y) != i)
1084 egrid[(2*y+2) * r + (2*x+3)] = 1;
1085 if (y == 0 || index(params, grid, x, y-1) != i)
1086 egrid[(2*y+1) * r + (2*x+2)] = 1;
1087 if (y == params->h-1 || index(params, grid, x, y+1) != i)
1088 egrid[(2*y+3) * r + (2*x+2)] = 1;
1089 }
1090
1091 for (y = 1; y < 2*params->h+2; y++) {
1092 for (x = 1; x < 2*params->w+2; x++) {
1093 if (!((y|x)&1)) {
aea3ed9a 1094 int k = numbers ? index(params, numbers, x/2-1, y/2-1) : 0;
1095 if (k || (all && numbers)) printf("%2d", k); else printf(" ");
3870c4d8 1096 } else if (!((y&x)&1)) {
1097 int v = egrid[y*r+x];
1098 if ((y&1) && v) v = '-';
1099 if ((x&1) && v) v = '|';
1100 if (!v) v = ' ';
1101 putchar(v);
1102 if (!(x&1)) putchar(v);
1103 } else {
1104 int c, d = 0;
1105 if (egrid[y*r+(x+1)]) d |= 1;
1106 if (egrid[(y-1)*r+x]) d |= 2;
1107 if (egrid[y*r+(x-1)]) d |= 4;
1108 if (egrid[(y+1)*r+x]) d |= 8;
1109 c = " ??+?-++?+|+++++"[d];
1110 putchar(c);
1111 if (!(x&1)) putchar(c);
1112 }
1113 }
1114 putchar('\n');
1115 }
1116
1117 sfree(egrid);
1118}
1119#endif
1120
1185e3c5 1121static char *new_game_desc(game_params *params, random_state *rs,
c566778e 1122 char **aux, int interactive)
3870c4d8 1123{
26801d29 1124 int *grid, *numbers = NULL;
738d2f61 1125 int x, y, y2, y2last, yx, run, i, nsquares;
1185e3c5 1126 char *desc, *p;
738d2f61 1127 int *enum_rects_scratch;
aea3ed9a 1128 game_params params2real, *params2 = &params2real;
3870c4d8 1129
26801d29 1130 while (1) {
1131 /*
1132 * Set up the smaller width and height which we will use to
1133 * generate the base grid.
1134 */
1135 params2->w = params->w / (1.0F + params->expandfactor);
1136 if (params2->w < 2 && params->w >= 2) params2->w = 2;
1137 params2->h = params->h / (1.0F + params->expandfactor);
1138 if (params2->h < 2 && params->h >= 2) params2->h = 2;
aea3ed9a 1139
26801d29 1140 grid = snewn(params2->w * params2->h, int);
3870c4d8 1141
738d2f61 1142 enum_rects_scratch = snewn(2 * params2->w, int);
1143
1144 nsquares = 0;
26801d29 1145 for (y = 0; y < params2->h; y++)
1146 for (x = 0; x < params2->w; x++) {
1147 index(params2, grid, x, y) = -1;
738d2f61 1148 nsquares++;
26801d29 1149 }
3870c4d8 1150
3870c4d8 1151 /*
738d2f61 1152 * Place rectangles until we can't any more. We do this by
1153 * finding a square we haven't yet covered, and randomly
1154 * choosing a rectangle to cover it.
3870c4d8 1155 */
738d2f61 1156
1157 while (nsquares > 0) {
1158 int square = random_upto(rs, nsquares);
1159 int n;
26801d29 1160 struct rect r;
1161
738d2f61 1162 x = params2->w;
1163 y = params2->h;
1164 for (y = 0; y < params2->h; y++) {
1165 for (x = 0; x < params2->w; x++) {
1166 if (index(params2, grid, x, y) == -1 && square-- == 0)
1167 break;
1168 }
1169 if (x < params2->w)
1170 break;
1171 }
1172 assert(x < params2->w && y < params2->h);
26801d29 1173
1174 /*
738d2f61 1175 * Now see how many rectangles fit around this one.
26801d29 1176 */
738d2f61 1177 enum_rects(params2, grid, NULL, &n, x, y, enum_rects_scratch);
26801d29 1178
738d2f61 1179 if (!n) {
1180 /*
1181 * There are no possible rectangles covering this
1182 * square, meaning it must be a singleton. Mark it
1183 * -2 so we know not to keep trying.
1184 */
1185 index(params2, grid, x, y) = -2;
1186 nsquares--;
1187 } else {
1188 /*
1189 * Pick one at random.
1190 */
1191 n = random_upto(rs, n);
1192 enum_rects(params2, grid, &r, &n, x, y, enum_rects_scratch);
1193
1194 /*
1195 * Place it.
1196 */
1197 place_rect(params2, grid, r);
1198 nsquares -= r.w * r.h;
26801d29 1199 }
26801d29 1200 }
3870c4d8 1201
738d2f61 1202 sfree(enum_rects_scratch);
3870c4d8 1203
1204 /*
26801d29 1205 * Deal with singleton spaces remaining in the grid, one by
1206 * one.
1207 *
1208 * We do this by making a local change to the layout. There are
1209 * several possibilities:
1210 *
1211 * +-----+-----+ Here, we can remove the singleton by
1212 * | | | extending the 1x2 rectangle below it
1213 * +--+--+-----+ into a 1x3.
1214 * | | | |
1215 * | +--+ |
1216 * | | | |
1217 * | | | |
1218 * | | | |
1219 * +--+--+-----+
1220 *
1221 * +--+--+--+ Here, that trick doesn't work: there's no
1222 * | | | 1 x n rectangle with the singleton at one
1223 * | | | end. Instead, we extend a 1 x n rectangle
1224 * | | | _out_ from the singleton, shaving a layer
1225 * +--+--+ | off the end of another rectangle. So if we
1226 * | | | | extended up, we'd make our singleton part
1227 * | +--+--+ of a 1x3 and generate a 1x2 where the 2x2
1228 * | | | used to be; or we could extend right into
1229 * +--+-----+ a 2x1, turning the 1x3 into a 1x2.
1230 *
1231 * +-----+--+ Here, we can't even do _that_, since any
1232 * | | | direction we choose to extend the singleton
1233 * +--+--+ | will produce a new singleton as a result of
1234 * | | | | truncating one of the size-2 rectangles.
1235 * | +--+--+ Fortunately, this case can _only_ occur when
1236 * | | | a singleton is surrounded by four size-2s
1237 * +--+-----+ in this fashion; so instead we can simply
1238 * replace the whole section with a single 3x3.
3870c4d8 1239 */
26801d29 1240 for (x = 0; x < params2->w; x++) {
1241 for (y = 0; y < params2->h; y++) {
1242 if (index(params2, grid, x, y) < 0) {
1243 int dirs[4], ndirs;
3870c4d8 1244
1245#ifdef GENERATION_DIAGNOSTICS
26801d29 1246 display_grid(params2, grid, NULL, FALSE);
1247 printf("singleton at %d,%d\n", x, y);
3870c4d8 1248#endif
1249
26801d29 1250 /*
1251 * Check in which directions we can feasibly extend
1252 * the singleton. We can extend in a particular
1253 * direction iff either:
1254 *
1255 * - the rectangle on that side of the singleton
1256 * is not 2x1, and we are at one end of the edge
1257 * of it we are touching
1258 *
1259 * - it is 2x1 but we are on its short side.
1260 *
1261 * FIXME: we could plausibly choose between these
1262 * based on the sizes of the rectangles they would
1263 * create?
1264 */
1265 ndirs = 0;
1266 if (x < params2->w-1) {
1267 struct rect r = find_rect(params2, grid, x+1, y);
1268 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1269 dirs[ndirs++] = 1; /* right */
1270 }
1271 if (y > 0) {
1272 struct rect r = find_rect(params2, grid, x, y-1);
1273 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1274 dirs[ndirs++] = 2; /* up */
1275 }
1276 if (x > 0) {
1277 struct rect r = find_rect(params2, grid, x-1, y);
1278 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1279 dirs[ndirs++] = 4; /* left */
1280 }
1281 if (y < params2->h-1) {
1282 struct rect r = find_rect(params2, grid, x, y+1);
1283 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1284 dirs[ndirs++] = 8; /* down */
1285 }
3870c4d8 1286
26801d29 1287 if (ndirs > 0) {
1288 int which, dir;
1289 struct rect r1, r2;
3870c4d8 1290
26801d29 1291 which = random_upto(rs, ndirs);
1292 dir = dirs[which];
3870c4d8 1293
26801d29 1294 switch (dir) {
1295 case 1: /* right */
1296 assert(x < params2->w+1);
3870c4d8 1297#ifdef GENERATION_DIAGNOSTICS
26801d29 1298 printf("extending right\n");
3870c4d8 1299#endif
26801d29 1300 r1 = find_rect(params2, grid, x+1, y);
1301 r2.x = x;
1302 r2.y = y;
1303 r2.w = 1 + r1.w;
1304 r2.h = 1;
1305 if (r1.y == y)
1306 r1.y++;
1307 r1.h--;
1308 break;
1309 case 2: /* up */
1310 assert(y > 0);
3870c4d8 1311#ifdef GENERATION_DIAGNOSTICS
26801d29 1312 printf("extending up\n");
3870c4d8 1313#endif
26801d29 1314 r1 = find_rect(params2, grid, x, y-1);
1315 r2.x = x;
1316 r2.y = r1.y;
1317 r2.w = 1;
1318 r2.h = 1 + r1.h;
1319 if (r1.x == x)
1320 r1.x++;
1321 r1.w--;
1322 break;
1323 case 4: /* left */
1324 assert(x > 0);
3870c4d8 1325#ifdef GENERATION_DIAGNOSTICS
26801d29 1326 printf("extending left\n");
3870c4d8 1327#endif
26801d29 1328 r1 = find_rect(params2, grid, x-1, y);
1329 r2.x = r1.x;
1330 r2.y = y;
1331 r2.w = 1 + r1.w;
1332 r2.h = 1;
1333 if (r1.y == y)
1334 r1.y++;
1335 r1.h--;
1336 break;
1337 case 8: /* down */
1338 assert(y < params2->h+1);
3870c4d8 1339#ifdef GENERATION_DIAGNOSTICS
26801d29 1340 printf("extending down\n");
3870c4d8 1341#endif
26801d29 1342 r1 = find_rect(params2, grid, x, y+1);
1343 r2.x = x;
1344 r2.y = y;
1345 r2.w = 1;
1346 r2.h = 1 + r1.h;
1347 if (r1.x == x)
1348 r1.x++;
1349 r1.w--;
1350 break;
1351 }
1352 if (r1.h > 0 && r1.w > 0)
1353 place_rect(params2, grid, r1);
1354 place_rect(params2, grid, r2);
1355 } else {
3870c4d8 1356#ifndef NDEBUG
26801d29 1357 /*
1358 * Sanity-check that there really is a 3x3
1359 * rectangle surrounding this singleton and it
1360 * contains absolutely everything we could
1361 * possibly need.
1362 */
1363 {
1364 int xx, yy;
1365 assert(x > 0 && x < params2->w-1);
1366 assert(y > 0 && y < params2->h-1);
1367
1368 for (xx = x-1; xx <= x+1; xx++)
1369 for (yy = y-1; yy <= y+1; yy++) {
1370 struct rect r = find_rect(params2,grid,xx,yy);
1371 assert(r.x >= x-1);
1372 assert(r.y >= y-1);
1373 assert(r.x+r.w-1 <= x+1);
1374 assert(r.y+r.h-1 <= y+1);
1375 }
1376 }
3870c4d8 1377#endif
26801d29 1378
3870c4d8 1379#ifdef GENERATION_DIAGNOSTICS
26801d29 1380 printf("need the 3x3 trick\n");
3870c4d8 1381#endif
1382
26801d29 1383 /*
1384 * FIXME: If the maximum rectangle area for
1385 * this grid is less than 9, we ought to
1386 * subdivide the 3x3 in some fashion. There are
1387 * five other possibilities:
1388 *
1389 * - a 6 and a 3
1390 * - a 4, a 3 and a 2
1391 * - three 3s
1392 * - a 3 and three 2s (two different arrangements).
1393 */
1394
1395 {
1396 struct rect r;
1397 r.x = x-1;
1398 r.y = y-1;
1399 r.w = r.h = 3;
1400 place_rect(params2, grid, r);
1401 }
3870c4d8 1402 }
1403 }
1404 }
1405 }
3870c4d8 1406
26801d29 1407 /*
1408 * We have now constructed a grid of the size specified in
1409 * params2. Now we extend it into a grid of the size specified
1410 * in params. We do this in two passes: we extend it vertically
1411 * until it's the right height, then we transpose it, then
1412 * extend it vertically again (getting it effectively the right
1413 * width), then finally transpose again.
1414 */
1415 for (i = 0; i < 2; i++) {
1416 int *grid2, *expand, *where;
1417 game_params params3real, *params3 = &params3real;
aea3ed9a 1418
1419#ifdef GENERATION_DIAGNOSTICS
26801d29 1420 printf("before expansion:\n");
1421 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1422#endif
1423
26801d29 1424 /*
1425 * Set up the new grid.
1426 */
1427 grid2 = snewn(params2->w * params->h, int);
1428 expand = snewn(params2->h-1, int);
1429 where = snewn(params2->w, int);
1430 params3->w = params2->w;
1431 params3->h = params->h;
1432
1433 /*
1434 * Decide which horizontal edges are going to get expanded,
1435 * and by how much.
1436 */
1437 for (y = 0; y < params2->h-1; y++)
1438 expand[y] = 0;
1439 for (y = params2->h; y < params->h; y++) {
1440 x = random_upto(rs, params2->h-1);
1441 expand[x]++;
1442 }
aea3ed9a 1443
1444#ifdef GENERATION_DIAGNOSTICS
26801d29 1445 printf("expand[] = {");
1446 for (y = 0; y < params2->h-1; y++)
1447 printf(" %d", expand[y]);
1448 printf(" }\n");
aea3ed9a 1449#endif
1450
26801d29 1451 /*
1452 * Perform the expansion. The way this works is that we
1453 * alternately:
1454 *
1455 * - copy a row from grid into grid2
1456 *
1457 * - invent some number of additional rows in grid2 where
1458 * there was previously only a horizontal line between
1459 * rows in grid, and make random decisions about where
1460 * among these to place each rectangle edge that ran
1461 * along this line.
1462 */
1463 for (y = y2 = y2last = 0; y < params2->h; y++) {
1464 /*
1465 * Copy a single line from row y of grid into row y2 of
1466 * grid2.
1467 */
1468 for (x = 0; x < params2->w; x++) {
1469 int val = index(params2, grid, x, y);
1470 if (val / params2->w == y && /* rect starts on this line */
1471 (y2 == 0 || /* we're at the very top, or... */
1472 index(params3, grid2, x, y2-1) / params3->w < y2last
1473 /* this rect isn't already started */))
1474 index(params3, grid2, x, y2) =
1475 INDEX(params3, val % params2->w, y2);
1476 else
1477 index(params3, grid2, x, y2) =
1478 index(params3, grid2, x, y2-1);
1479 }
1480
1481 /*
1482 * If that was the last line, terminate the loop early.
1483 */
1484 if (++y2 == params3->h)
1485 break;
1486
1487 y2last = y2;
1488
1489 /*
1490 * Invent some number of additional lines. First walk
1491 * along this line working out where to put all the
1492 * edges that coincide with it.
1493 */
1494 yx = -1;
1495 for (x = 0; x < params2->w; x++) {
1496 if (index(params2, grid, x, y) !=
1497 index(params2, grid, x, y+1)) {
1498 /*
1499 * This is a horizontal edge, so it needs
1500 * placing.
1501 */
1502 if (x == 0 ||
1503 (index(params2, grid, x-1, y) !=
1504 index(params2, grid, x, y) &&
1505 index(params2, grid, x-1, y+1) !=
1506 index(params2, grid, x, y+1))) {
1507 /*
1508 * Here we have the chance to make a new
1509 * decision.
1510 */
1511 yx = random_upto(rs, expand[y]+1);
1512 } else {
1513 /*
1514 * Here we just reuse the previous value of
1515 * yx.
1516 */
1517 }
1518 } else
1519 yx = -1;
1520 where[x] = yx;
1521 }
1522
1523 for (yx = 0; yx < expand[y]; yx++) {
1524 /*
1525 * Invent a single row. For each square in the row,
1526 * we copy the grid entry from the square above it,
1527 * unless we're starting the new rectangle here.
1528 */
1529 for (x = 0; x < params2->w; x++) {
1530 if (yx == where[x]) {
1531 int val = index(params2, grid, x, y+1);
1532 val %= params2->w;
1533 val = INDEX(params3, val, y2);
1534 index(params3, grid2, x, y2) = val;
1535 } else
1536 index(params3, grid2, x, y2) =
1537 index(params3, grid2, x, y2-1);
1538 }
1539
1540 y2++;
1541 }
1542 }
1543
1544 sfree(expand);
1545 sfree(where);
aea3ed9a 1546
1547#ifdef GENERATION_DIAGNOSTICS
26801d29 1548 printf("after expansion:\n");
1549 display_grid(params3, grid2, NULL, TRUE);
aea3ed9a 1550#endif
26801d29 1551 /*
1552 * Transpose.
1553 */
1554 params2->w = params3->h;
1555 params2->h = params3->w;
1556 sfree(grid);
1557 grid = snewn(params2->w * params2->h, int);
1558 for (x = 0; x < params2->w; x++)
1559 for (y = 0; y < params2->h; y++) {
1560 int idx1 = INDEX(params2, x, y);
1561 int idx2 = INDEX(params3, y, x);
1562 int tmp;
1563
1564 tmp = grid2[idx2];
1565 tmp = (tmp % params3->w) * params2->w + (tmp / params3->w);
1566 grid[idx1] = tmp;
1567 }
1568
1569 sfree(grid2);
1570
1571 {
1572 int tmp;
1573 tmp = params->w;
1574 params->w = params->h;
1575 params->h = tmp;
1576 }
aea3ed9a 1577
1578#ifdef GENERATION_DIAGNOSTICS
26801d29 1579 printf("after transposition:\n");
1580 display_grid(params2, grid, NULL, TRUE);
aea3ed9a 1581#endif
26801d29 1582 }
aea3ed9a 1583
26801d29 1584 /*
1585 * Run the solver to narrow down the possible number
1586 * placements.
1587 */
1588 {
1589 struct numberdata *nd;
1590 int nnumbers, i, ret;
1591
1592 /* Count the rectangles. */
1593 nnumbers = 0;
1594 for (y = 0; y < params->h; y++) {
1595 for (x = 0; x < params->w; x++) {
1596 int idx = INDEX(params, x, y);
1597 if (index(params, grid, x, y) == idx)
1598 nnumbers++;
1599 }
1600 }
2ac6d24e 1601
26801d29 1602 nd = snewn(nnumbers, struct numberdata);
1603
1604 /* Now set up each number's candidate position list. */
1605 i = 0;
1606 for (y = 0; y < params->h; y++) {
1607 for (x = 0; x < params->w; x++) {
1608 int idx = INDEX(params, x, y);
1609 if (index(params, grid, x, y) == idx) {
1610 struct rect r = find_rect(params, grid, x, y);
1611 int j, k, m;
1612
1613 nd[i].area = r.w * r.h;
1614 nd[i].npoints = nd[i].area;
1615 nd[i].points = snewn(nd[i].npoints, struct point);
1616 m = 0;
1617 for (j = 0; j < r.h; j++)
1618 for (k = 0; k < r.w; k++) {
1619 nd[i].points[m].x = k + r.x;
1620 nd[i].points[m].y = j + r.y;
1621 m++;
1622 }
1623 assert(m == nd[i].npoints);
aea3ed9a 1624
26801d29 1625 i++;
1626 }
1627 }
1628 }
aea3ed9a 1629
40fde884 1630 if (params->unique)
1507058f 1631 ret = rect_solver(params->w, params->h, nnumbers, nd,
df11cd4e 1632 NULL, NULL, rs);
40fde884 1633 else
1634 ret = TRUE; /* allow any number placement at all */
3870c4d8 1635
26801d29 1636 if (ret) {
3870c4d8 1637 /*
26801d29 1638 * Now place the numbers according to the solver's
1639 * recommendations.
3870c4d8 1640 */
26801d29 1641 numbers = snewn(params->w * params->h, int);
1642
1643 for (y = 0; y < params->h; y++)
1644 for (x = 0; x < params->w; x++) {
1645 index(params, numbers, x, y) = 0;
1646 }
1647
1648 for (i = 0; i < nnumbers; i++) {
1649 int idx = random_upto(rs, nd[i].npoints);
1650 int x = nd[i].points[idx].x;
1651 int y = nd[i].points[idx].y;
1652 index(params,numbers,x,y) = nd[i].area;
1653 }
3870c4d8 1654 }
26801d29 1655
1656 /*
1657 * Clean up.
1658 */
1659 for (i = 0; i < nnumbers; i++)
1660 sfree(nd[i].points);
1661 sfree(nd);
1662
1663 /*
1664 * If we've succeeded, then terminate the loop.
1665 */
1666 if (ret)
1667 break;
3870c4d8 1668 }
26801d29 1669
1670 /*
1671 * Give up and go round again.
1672 */
1673 sfree(grid);
1674 }
1675
1676 /*
c566778e 1677 * Store the solution in aux.
26801d29 1678 */
1679 {
c566778e 1680 char *ai;
1681 int len;
1682
1683 len = 2 + (params->w-1)*params->h + (params->h-1)*params->w;
1684 ai = snewn(len, char);
1685
1686 ai[0] = 'S';
26801d29 1687
c566778e 1688 p = ai+1;
26801d29 1689
1690 for (y = 0; y < params->h; y++)
c566778e 1691 for (x = 1; x < params->w; x++)
1692 *p++ = (index(params, grid, x, y) !=
1693 index(params, grid, x-1, y) ? '1' : '0');
1694
26801d29 1695 for (y = 1; y < params->h; y++)
c566778e 1696 for (x = 0; x < params->w; x++)
1697 *p++ = (index(params, grid, x, y) !=
1698 index(params, grid, x, y-1) ? '1' : '0');
1699
1700 assert(p - ai == len-1);
1701 *p = '\0';
26801d29 1702
1703 *aux = ai;
3870c4d8 1704 }
1705
1706#ifdef GENERATION_DIAGNOSTICS
aea3ed9a 1707 display_grid(params, grid, numbers, FALSE);
3870c4d8 1708#endif
1709
1185e3c5 1710 desc = snewn(11 * params->w * params->h, char);
1711 p = desc;
3870c4d8 1712 run = 0;
1713 for (i = 0; i <= params->w * params->h; i++) {
1714 int n = (i < params->w * params->h ? numbers[i] : -1);
1715
1716 if (!n)
1717 run++;
1718 else {
1719 if (run) {
1720 while (run > 0) {
1721 int c = 'a' - 1 + run;
1722 if (run > 26)
1723 c = 'z';
1724 *p++ = c;
1725 run -= c - ('a' - 1);
1726 }
1727 } else {
0e87eedc 1728 /*
1729 * If there's a number in the very top left or
1730 * bottom right, there's no point putting an
1731 * unnecessary _ before or after it.
1732 */
1185e3c5 1733 if (p > desc && n > 0)
0e87eedc 1734 *p++ = '_';
3870c4d8 1735 }
1736 if (n > 0)
1737 p += sprintf(p, "%d", n);
1738 run = 0;
1739 }
1740 }
1741 *p = '\0';
1742
1743 sfree(grid);
1744 sfree(numbers);
1745
1185e3c5 1746 return desc;
3870c4d8 1747}
1748
1185e3c5 1749static char *validate_desc(game_params *params, char *desc)
3870c4d8 1750{
1751 int area = params->w * params->h;
1752 int squares = 0;
1753
1185e3c5 1754 while (*desc) {
1755 int n = *desc++;
3870c4d8 1756 if (n >= 'a' && n <= 'z') {
1757 squares += n - 'a' + 1;
1758 } else if (n == '_') {
1759 /* do nothing */;
1760 } else if (n > '0' && n <= '9') {
9bb5bf60 1761 squares++;
1185e3c5 1762 while (*desc >= '0' && *desc <= '9')
1763 desc++;
3870c4d8 1764 } else
1185e3c5 1765 return "Invalid character in game description";
3870c4d8 1766 }
1767
1768 if (squares < area)
1769 return "Not enough data to fill grid";
1770
1771 if (squares > area)
1772 return "Too much data to fit in grid";
1773
1774 return NULL;
1775}
1776
9bb4a9a0 1777static unsigned char *get_correct(game_state *state)
1778{
1779 unsigned char *ret;
1780 int x, y;
1781
1782 ret = snewn(state->w * state->h, unsigned char);
1783 memset(ret, 0xFF, state->w * state->h);
1784
1785 for (x = 0; x < state->w; x++)
1786 for (y = 0; y < state->h; y++)
1787 if (index(state,ret,x,y) == 0xFF) {
1788 int rw, rh;
1789 int xx, yy;
1790 int num, area, valid;
1791
1792 /*
1793 * Find a rectangle starting at this point.
1794 */
1795 rw = 1;
1796 while (x+rw < state->w && !vedge(state,x+rw,y))
1797 rw++;
1798 rh = 1;
1799 while (y+rh < state->h && !hedge(state,x,y+rh))
1800 rh++;
1801
1802 /*
1803 * We know what the dimensions of the rectangle
1804 * should be if it's there at all. Find out if we
1805 * really have a valid rectangle.
1806 */
1807 valid = TRUE;
1808 /* Check the horizontal edges. */
1809 for (xx = x; xx < x+rw; xx++) {
1810 for (yy = y; yy <= y+rh; yy++) {
1811 int e = !HRANGE(state,xx,yy) || hedge(state,xx,yy);
1812 int ec = (yy == y || yy == y+rh);
1813 if (e != ec)
1814 valid = FALSE;
1815 }
1816 }
1817 /* Check the vertical edges. */
1818 for (yy = y; yy < y+rh; yy++) {
1819 for (xx = x; xx <= x+rw; xx++) {
1820 int e = !VRANGE(state,xx,yy) || vedge(state,xx,yy);
1821 int ec = (xx == x || xx == x+rw);
1822 if (e != ec)
1823 valid = FALSE;
1824 }
1825 }
1826
1827 /*
1828 * If this is not a valid rectangle with no other
1829 * edges inside it, we just mark this square as not
1830 * complete and proceed to the next square.
1831 */
1832 if (!valid) {
1833 index(state, ret, x, y) = 0;
1834 continue;
1835 }
1836
1837 /*
1838 * We have a rectangle. Now see what its area is,
1839 * and how many numbers are in it.
1840 */
1841 num = 0;
1842 area = 0;
1843 for (xx = x; xx < x+rw; xx++) {
1844 for (yy = y; yy < y+rh; yy++) {
1845 area++;
1846 if (grid(state,xx,yy)) {
1847 if (num > 0)
1848 valid = FALSE; /* two numbers */
1849 num = grid(state,xx,yy);
1850 }
1851 }
1852 }
1853 if (num != area)
1854 valid = FALSE;
1855
1856 /*
1857 * Now fill in the whole rectangle based on the
1858 * value of `valid'.
1859 */
1860 for (xx = x; xx < x+rw; xx++) {
1861 for (yy = y; yy < y+rh; yy++) {
1862 index(state, ret, xx, yy) = valid;
1863 }
1864 }
1865 }
1866
1867 return ret;
1868}
1869
c380832d 1870static game_state *new_game(midend_data *me, game_params *params, char *desc)
3870c4d8 1871{
1872 game_state *state = snew(game_state);
1873 int x, y, i, area;
1874
1875 state->w = params->w;
1876 state->h = params->h;
1877
1878 area = state->w * state->h;
1879
1880 state->grid = snewn(area, int);
1881 state->vedge = snewn(area, unsigned char);
1882 state->hedge = snewn(area, unsigned char);
2ac6d24e 1883 state->completed = state->cheated = FALSE;
3870c4d8 1884
1885 i = 0;
1185e3c5 1886 while (*desc) {
1887 int n = *desc++;
3870c4d8 1888 if (n >= 'a' && n <= 'z') {
1889 int run = n - 'a' + 1;
1890 assert(i + run <= area);
1891 while (run-- > 0)
1892 state->grid[i++] = 0;
1893 } else if (n == '_') {
1894 /* do nothing */;
1895 } else if (n > '0' && n <= '9') {
1896 assert(i < area);
1185e3c5 1897 state->grid[i++] = atoi(desc-1);
1898 while (*desc >= '0' && *desc <= '9')
1899 desc++;
3870c4d8 1900 } else {
1901 assert(!"We can't get here");
1902 }
1903 }
1904 assert(i == area);
1905
1906 for (y = 0; y < state->h; y++)
1907 for (x = 0; x < state->w; x++)
1908 vedge(state,x,y) = hedge(state,x,y) = 0;
1909
9bb4a9a0 1910 state->correct = get_correct(state);
1911
3870c4d8 1912 return state;
1913}
1914
be8d5aa1 1915static game_state *dup_game(game_state *state)
3870c4d8 1916{
1917 game_state *ret = snew(game_state);
1918
1919 ret->w = state->w;
1920 ret->h = state->h;
1921
1922 ret->vedge = snewn(state->w * state->h, unsigned char);
1923 ret->hedge = snewn(state->w * state->h, unsigned char);
1924 ret->grid = snewn(state->w * state->h, int);
9bb4a9a0 1925 ret->correct = snewn(ret->w * ret->h, unsigned char);
3870c4d8 1926
ef29354c 1927 ret->completed = state->completed;
2ac6d24e 1928 ret->cheated = state->cheated;
ef29354c 1929
3870c4d8 1930 memcpy(ret->grid, state->grid, state->w * state->h * sizeof(int));
1931 memcpy(ret->vedge, state->vedge, state->w*state->h*sizeof(unsigned char));
1932 memcpy(ret->hedge, state->hedge, state->w*state->h*sizeof(unsigned char));
1933
9bb4a9a0 1934 memcpy(ret->correct, state->correct, state->w*state->h*sizeof(unsigned char));
1935
3870c4d8 1936 return ret;
1937}
1938
be8d5aa1 1939static void free_game(game_state *state)
3870c4d8 1940{
1941 sfree(state->grid);
1942 sfree(state->vedge);
1943 sfree(state->hedge);
9bb4a9a0 1944 sfree(state->correct);
3870c4d8 1945 sfree(state);
1946}
1947
df11cd4e 1948static char *solve_game(game_state *state, game_state *currstate,
c566778e 1949 char *ai, char **error)
2ac6d24e 1950{
df11cd4e 1951 unsigned char *vedge, *hedge;
df11cd4e 1952 int x, y, len;
1953 char *ret, *p;
c566778e 1954 int i, j, n;
1955 struct numberdata *nd;
2ac6d24e 1956
c566778e 1957 if (ai)
1958 return dupstr(ai);
1507058f 1959
c566778e 1960 /*
1961 * Attempt the in-built solver.
1962 */
1507058f 1963
c566778e 1964 /* Set up each number's (very short) candidate position list. */
1965 for (i = n = 0; i < state->h * state->w; i++)
1966 if (state->grid[i])
1967 n++;
1968
1969 nd = snewn(n, struct numberdata);
1970
1971 for (i = j = 0; i < state->h * state->w; i++)
1972 if (state->grid[i]) {
1973 nd[j].area = state->grid[i];
1974 nd[j].npoints = 1;
1975 nd[j].points = snewn(1, struct point);
1976 nd[j].points[0].x = i % state->w;
1977 nd[j].points[0].y = i / state->w;
1978 j++;
1979 }
1507058f 1980
c566778e 1981 assert(j == n);
1507058f 1982
c566778e 1983 vedge = snewn(state->w * state->h, unsigned char);
1984 hedge = snewn(state->w * state->h, unsigned char);
1985 memset(vedge, 0, state->w * state->h);
1986 memset(hedge, 0, state->w * state->h);
1987
1988 rect_solver(state->w, state->h, n, nd, hedge, vedge, NULL);
1989
1990 /*
1991 * Clean up.
1992 */
1993 for (i = 0; i < n; i++)
1994 sfree(nd[i].points);
1995 sfree(nd);
2ac6d24e 1996
df11cd4e 1997 len = 2 + (state->w-1)*state->h + (state->h-1)*state->w;
1998 ret = snewn(len, char);
1999
2000 p = ret;
2001 *p++ = 'S';
2002 for (y = 0; y < state->h; y++)
c566778e 2003 for (x = 1; x < state->w; x++)
2004 *p++ = vedge[y*state->w+x] ? '1' : '0';
df11cd4e 2005 for (y = 1; y < state->h; y++)
2006 for (x = 0; x < state->w; x++)
2007 *p++ = hedge[y*state->w+x] ? '1' : '0';
2008 *p++ = '\0';
2009 assert(p - ret == len);
2ac6d24e 2010
c566778e 2011 sfree(vedge);
2012 sfree(hedge);
2ac6d24e 2013
2014 return ret;
2015}
2016
9b4b03d3 2017static char *game_text_format(game_state *state)
2018{
6ad5ed74 2019 char *ret, *p, buf[80];
2020 int i, x, y, col, maxlen;
2021
2022 /*
2023 * First determine the number of spaces required to display a
2024 * number. We'll use at least two, because one looks a bit
2025 * silly.
2026 */
2027 col = 2;
2028 for (i = 0; i < state->w * state->h; i++) {
2029 x = sprintf(buf, "%d", state->grid[i]);
2030 if (col < x) col = x;
2031 }
2032
2033 /*
2034 * Now we know the exact total size of the grid we're going to
2035 * produce: it's got 2*h+1 rows, each containing w lots of col,
2036 * w+1 boundary characters and a trailing newline.
2037 */
2038 maxlen = (2*state->h+1) * (state->w * (col+1) + 2);
2039
48a10826 2040 ret = snewn(maxlen+1, char);
6ad5ed74 2041 p = ret;
2042
2043 for (y = 0; y <= 2*state->h; y++) {
2044 for (x = 0; x <= 2*state->w; x++) {
2045 if (x & y & 1) {
2046 /*
2047 * Display a number.
2048 */
2049 int v = grid(state, x/2, y/2);
2050 if (v)
2051 sprintf(buf, "%*d", col, v);
2052 else
2053 sprintf(buf, "%*s", col, "");
2054 memcpy(p, buf, col);
2055 p += col;
2056 } else if (x & 1) {
2057 /*
2058 * Display a horizontal edge or nothing.
2059 */
2060 int h = (y==0 || y==2*state->h ? 1 :
2061 HRANGE(state, x/2, y/2) && hedge(state, x/2, y/2));
2062 int i;
2063 if (h)
2064 h = '-';
2065 else
2066 h = ' ';
2067 for (i = 0; i < col; i++)
2068 *p++ = h;
2069 } else if (y & 1) {
2070 /*
2071 * Display a vertical edge or nothing.
2072 */
2073 int v = (x==0 || x==2*state->w ? 1 :
2074 VRANGE(state, x/2, y/2) && vedge(state, x/2, y/2));
2075 if (v)
2076 *p++ = '|';
2077 else
2078 *p++ = ' ';
2079 } else {
2080 /*
2081 * Display a corner, or a vertical edge, or a
2082 * horizontal edge, or nothing.
2083 */
2084 int hl = (y==0 || y==2*state->h ? 1 :
2085 HRANGE(state, (x-1)/2, y/2) && hedge(state, (x-1)/2, y/2));
2086 int hr = (y==0 || y==2*state->h ? 1 :
2087 HRANGE(state, (x+1)/2, y/2) && hedge(state, (x+1)/2, y/2));
2088 int vu = (x==0 || x==2*state->w ? 1 :
2089 VRANGE(state, x/2, (y-1)/2) && vedge(state, x/2, (y-1)/2));
2090 int vd = (x==0 || x==2*state->w ? 1 :
2091 VRANGE(state, x/2, (y+1)/2) && vedge(state, x/2, (y+1)/2));
2092 if (!hl && !hr && !vu && !vd)
2093 *p++ = ' ';
2094 else if (hl && hr && !vu && !vd)
2095 *p++ = '-';
2096 else if (!hl && !hr && vu && vd)
2097 *p++ = '|';
2098 else
2099 *p++ = '+';
2100 }
2101 }
2102 *p++ = '\n';
2103 }
2104
2105 assert(p - ret == maxlen);
2106 *p = '\0';
2107 return ret;
9b4b03d3 2108}
2109
08dd70c3 2110struct game_ui {
2111 /*
2112 * These coordinates are 2 times the obvious grid coordinates.
2113 * Hence, the top left of the grid is (0,0), the grid point to
2114 * the right of that is (2,0), the one _below that_ is (2,2)
2115 * and so on. This is so that we can specify a drag start point
2116 * on an edge (one odd coordinate) or in the middle of a square
2117 * (two odd coordinates) rather than always at a corner.
2118 *
2119 * -1,-1 means no drag is in progress.
2120 */
2121 int drag_start_x;
2122 int drag_start_y;
2123 int drag_end_x;
2124 int drag_end_y;
2125 /*
2126 * This flag is set as soon as a dragging action moves the
2127 * mouse pointer away from its starting point, so that even if
2128 * the pointer _returns_ to its starting point the action is
2129 * treated as a small drag rather than a click.
2130 */
2131 int dragged;
375c9b4d 2132 /*
2133 * These are the co-ordinates of the top-left and bottom-right squares
2134 * in the drag box, respectively, or -1 otherwise.
2135 */
2136 int x1;
2137 int y1;
2138 int x2;
2139 int y2;
08dd70c3 2140};
2141
be8d5aa1 2142static game_ui *new_ui(game_state *state)
74a4e547 2143{
08dd70c3 2144 game_ui *ui = snew(game_ui);
2145 ui->drag_start_x = -1;
2146 ui->drag_start_y = -1;
2147 ui->drag_end_x = -1;
2148 ui->drag_end_y = -1;
2149 ui->dragged = FALSE;
375c9b4d 2150 ui->x1 = -1;
2151 ui->y1 = -1;
2152 ui->x2 = -1;
2153 ui->y2 = -1;
08dd70c3 2154 return ui;
74a4e547 2155}
2156
be8d5aa1 2157static void free_ui(game_ui *ui)
74a4e547 2158{
08dd70c3 2159 sfree(ui);
2160}
2161
844f605f 2162static char *encode_ui(game_ui *ui)
ae8290c6 2163{
2164 return NULL;
2165}
2166
844f605f 2167static void decode_ui(game_ui *ui, char *encoding)
ae8290c6 2168{
2169}
2170
be8d5aa1 2171static void coord_round(float x, float y, int *xr, int *yr)
08dd70c3 2172{
d4e7900f 2173 float xs, ys, xv, yv, dx, dy, dist;
08dd70c3 2174
2175 /*
d4e7900f 2176 * Find the nearest square-centre.
08dd70c3 2177 */
d4e7900f 2178 xs = (float)floor(x) + 0.5F;
2179 ys = (float)floor(y) + 0.5F;
08dd70c3 2180
2181 /*
d4e7900f 2182 * And find the nearest grid vertex.
08dd70c3 2183 */
d4e7900f 2184 xv = (float)floor(x + 0.5F);
2185 yv = (float)floor(y + 0.5F);
08dd70c3 2186
2187 /*
d4e7900f 2188 * We allocate clicks in parts of the grid square to either
2189 * corners, edges or square centres, as follows:
2190 *
2191 * +--+--------+--+
2192 * | | | |
2193 * +--+ +--+
2194 * | `. ,' |
2195 * | +--+ |
2196 * | | | |
2197 * | +--+ |
2198 * | ,' `. |
2199 * +--+ +--+
2200 * | | | |
2201 * +--+--------+--+
2202 *
2203 * (Not to scale!)
2204 *
2205 * In other words: we measure the square distance (i.e.
2206 * max(dx,dy)) from the click to the nearest corner, and if
2207 * it's within CORNER_TOLERANCE then we return a corner click.
2208 * We measure the square distance from the click to the nearest
2209 * centre, and if that's within CENTRE_TOLERANCE we return a
2210 * centre click. Failing that, we find which of the two edge
2211 * centres is nearer to the click and return that edge.
08dd70c3 2212 */
d4e7900f 2213
2214 /*
2215 * Check for corner click.
2216 */
2217 dx = (float)fabs(x - xv);
2218 dy = (float)fabs(y - yv);
2219 dist = (dx > dy ? dx : dy);
2220 if (dist < CORNER_TOLERANCE) {
2221 *xr = 2 * (int)xv;
2222 *yr = 2 * (int)yv;
2223 } else {
2224 /*
2225 * Check for centre click.
2226 */
2227 dx = (float)fabs(x - xs);
2228 dy = (float)fabs(y - ys);
2229 dist = (dx > dy ? dx : dy);
2230 if (dist < CENTRE_TOLERANCE) {
2231 *xr = 1 + 2 * (int)xs;
2232 *yr = 1 + 2 * (int)ys;
2233 } else {
2234 /*
2235 * Failing both of those, see which edge we're closer to.
2236 * Conveniently, this is simply done by testing the relative
2237 * magnitude of dx and dy (which are currently distances from
2238 * the square centre).
2239 */
2240 if (dx > dy) {
2241 /* Vertical edge: x-coord of corner,
2242 * y-coord of square centre. */
2243 *xr = 2 * (int)xv;
ee03cb5f 2244 *yr = 1 + 2 * (int)floor(ys);
d4e7900f 2245 } else {
2246 /* Horizontal edge: x-coord of square centre,
2247 * y-coord of corner. */
ee03cb5f 2248 *xr = 1 + 2 * (int)floor(xs);
d4e7900f 2249 *yr = 2 * (int)yv;
2250 }
2251 }
2252 }
08dd70c3 2253}
2254
df11cd4e 2255/*
2256 * Returns TRUE if it has made any change to the grid.
2257 */
2258static int grid_draw_rect(game_state *state,
2259 unsigned char *hedge, unsigned char *vedge,
2260 int c, int really,
2261 int x1, int y1, int x2, int y2)
08dd70c3 2262{
375c9b4d 2263 int x, y;
df11cd4e 2264 int changed = FALSE;
08dd70c3 2265
2266 /*
2267 * Draw horizontal edges of rectangles.
2268 */
2269 for (x = x1; x < x2; x++)
2270 for (y = y1; y <= y2; y++)
2271 if (HRANGE(state,x,y)) {
2272 int val = index(state,hedge,x,y);
2273 if (y == y1 || y == y2)
2274 val = c;
2275 else if (c == 1)
2276 val = 0;
df11cd4e 2277 changed = changed || (index(state,hedge,x,y) != val);
2278 if (really)
2279 index(state,hedge,x,y) = val;
08dd70c3 2280 }
2281
2282 /*
2283 * Draw vertical edges of rectangles.
2284 */
2285 for (y = y1; y < y2; y++)
2286 for (x = x1; x <= x2; x++)
2287 if (VRANGE(state,x,y)) {
2288 int val = index(state,vedge,x,y);
2289 if (x == x1 || x == x2)
2290 val = c;
2291 else if (c == 1)
2292 val = 0;
df11cd4e 2293 changed = changed || (index(state,vedge,x,y) != val);
2294 if (really)
2295 index(state,vedge,x,y) = val;
08dd70c3 2296 }
df11cd4e 2297
2298 return changed;
2299}
2300
2301static int ui_draw_rect(game_state *state, game_ui *ui,
2302 unsigned char *hedge, unsigned char *vedge, int c,
2303 int really)
2304{
2305 return grid_draw_rect(state, hedge, vedge, c, really,
2306 ui->x1, ui->y1, ui->x2, ui->y2);
74a4e547 2307}
2308
07dfb697 2309static void game_changed_state(game_ui *ui, game_state *oldstate,
2310 game_state *newstate)
2311{
2312}
2313
1e3e152d 2314struct game_drawstate {
2315 int started;
2316 int w, h, tilesize;
2317 unsigned long *visible;
2318};
2319
df11cd4e 2320static char *interpret_move(game_state *from, game_ui *ui, game_drawstate *ds,
2321 int x, int y, int button)
2322{
08dd70c3 2323 int xc, yc;
2324 int startdrag = FALSE, enddrag = FALSE, active = FALSE;
df11cd4e 2325 char buf[80], *ret;
3870c4d8 2326
f0ee053c 2327 button &= ~MOD_MASK;
2328
08dd70c3 2329 if (button == LEFT_BUTTON) {
2330 startdrag = TRUE;
2331 } else if (button == LEFT_RELEASE) {
2332 enddrag = TRUE;
2333 } else if (button != LEFT_DRAG) {
2334 return NULL;
2335 }
2336
d4e7900f 2337 coord_round(FROMCOORD((float)x), FROMCOORD((float)y), &xc, &yc);
08dd70c3 2338
e35b546f 2339 if (startdrag &&
2340 xc >= 0 && xc <= 2*from->w &&
2341 yc >= 0 && yc <= 2*from->h) {
2342
08dd70c3 2343 ui->drag_start_x = xc;
2344 ui->drag_start_y = yc;
2345 ui->drag_end_x = xc;
2346 ui->drag_end_y = yc;
2347 ui->dragged = FALSE;
2348 active = TRUE;
2349 }
3870c4d8 2350
e35b546f 2351 if (ui->drag_start_x >= 0 &&
2352 (xc != ui->drag_end_x || yc != ui->drag_end_y)) {
375c9b4d 2353 int t;
2354
08dd70c3 2355 ui->drag_end_x = xc;
2356 ui->drag_end_y = yc;
2357 ui->dragged = TRUE;
2358 active = TRUE;
375c9b4d 2359
ee03cb5f 2360 if (xc >= 0 && xc <= 2*from->w &&
2361 yc >= 0 && yc <= 2*from->h) {
2362 ui->x1 = ui->drag_start_x;
2363 ui->x2 = ui->drag_end_x;
2364 if (ui->x2 < ui->x1) { t = ui->x1; ui->x1 = ui->x2; ui->x2 = t; }
2365
2366 ui->y1 = ui->drag_start_y;
2367 ui->y2 = ui->drag_end_y;
2368 if (ui->y2 < ui->y1) { t = ui->y1; ui->y1 = ui->y2; ui->y2 = t; }
2369
2370 ui->x1 = ui->x1 / 2; /* rounds down */
2371 ui->x2 = (ui->x2+1) / 2; /* rounds up */
2372 ui->y1 = ui->y1 / 2; /* rounds down */
2373 ui->y2 = (ui->y2+1) / 2; /* rounds up */
2374 } else {
2375 ui->x1 = -1;
2376 ui->y1 = -1;
2377 ui->x2 = -1;
2378 ui->y2 = -1;
2379 }
08dd70c3 2380 }
3870c4d8 2381
934797c7 2382 ret = NULL;
2383
e35b546f 2384 if (enddrag && (ui->drag_start_x >= 0)) {
934797c7 2385 if (xc >= 0 && xc <= 2*from->w &&
2386 yc >= 0 && yc <= 2*from->h) {
934797c7 2387
2388 if (ui->dragged) {
df11cd4e 2389 if (ui_draw_rect(from, ui, from->hedge,
2390 from->vedge, 1, FALSE)) {
2391 sprintf(buf, "R%d,%d,%d,%d",
2392 ui->x1, ui->y1, ui->x2 - ui->x1, ui->y2 - ui->y1);
2393 ret = dupstr(buf);
2394 }
934797c7 2395 } else {
2396 if ((xc & 1) && !(yc & 1) && HRANGE(from,xc/2,yc/2)) {
df11cd4e 2397 sprintf(buf, "H%d,%d", xc/2, yc/2);
2398 ret = dupstr(buf);
934797c7 2399 }
2400 if ((yc & 1) && !(xc & 1) && VRANGE(from,xc/2,yc/2)) {
df11cd4e 2401 sprintf(buf, "V%d,%d", xc/2, yc/2);
2402 ret = dupstr(buf);
934797c7 2403 }
2404 }
934797c7 2405 }
2406
2407 ui->drag_start_x = -1;
2408 ui->drag_start_y = -1;
2409 ui->drag_end_x = -1;
2410 ui->drag_end_y = -1;
375c9b4d 2411 ui->x1 = -1;
2412 ui->y1 = -1;
2413 ui->x2 = -1;
2414 ui->y2 = -1;
934797c7 2415 ui->dragged = FALSE;
2416 active = TRUE;
3870c4d8 2417 }
2418
934797c7 2419 if (ret)
2420 return ret; /* a move has been made */
2421 else if (active)
df11cd4e 2422 return ""; /* UI activity has occurred */
934797c7 2423 else
2424 return NULL;
3870c4d8 2425}
2426
df11cd4e 2427static game_state *execute_move(game_state *from, char *move)
2428{
2429 game_state *ret;
2430 int x1, y1, x2, y2, mode;
2431
2432 if (move[0] == 'S') {
2433 char *p = move+1;
2434 int x, y;
2435
2436 ret = dup_game(from);
2437 ret->cheated = TRUE;
2438
2439 for (y = 0; y < ret->h; y++)
2440 for (x = 1; x < ret->w; x++) {
2441 vedge(ret, x, y) = (*p == '1');
2442 if (*p) p++;
2443 }
2444 for (y = 1; y < ret->h; y++)
2445 for (x = 0; x < ret->w; x++) {
2446 hedge(ret, x, y) = (*p == '1');
2447 if (*p) p++;
2448 }
2449
9bb4a9a0 2450 sfree(ret->correct);
2451 ret->correct = get_correct(ret);
2452
df11cd4e 2453 return ret;
2454
2455 } else if (move[0] == 'R' &&
2456 sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 &&
2457 x1 >= 0 && x2 >= 0 && x1+x2 <= from->w &&
2458 y1 >= 0 && y2 >= 0 && y1+y2 <= from->h) {
2459 x2 += x1;
2460 y2 += y1;
2461 mode = move[0];
2462 } else if ((move[0] == 'H' || move[0] == 'V') &&
2463 sscanf(move+1, "%d,%d", &x1, &y1) == 2 &&
2464 (move[0] == 'H' ? HRANGE(from, x1, y1) :
2465 VRANGE(from, x1, y1))) {
2466 mode = move[0];
2467 } else
2468 return NULL; /* can't parse move string */
2469
2470 ret = dup_game(from);
2471
2472 if (mode == 'R') {
2473 grid_draw_rect(ret, ret->hedge, ret->vedge, 1, TRUE, x1, y1, x2, y2);
2474 } else if (mode == 'H') {
2475 hedge(ret,x1,y1) = !hedge(ret,x1,y1);
2476 } else if (mode == 'V') {
2477 vedge(ret,x1,y1) = !vedge(ret,x1,y1);
2478 }
2479
2480 /*
2481 * We've made a real change to the grid. Check to see
2482 * if the game has been completed.
2483 */
2484 if (!ret->completed) {
2485 int x, y, ok;
df11cd4e 2486
2487 ok = TRUE;
2488 for (x = 0; x < ret->w; x++)
2489 for (y = 0; y < ret->h; y++)
9bb4a9a0 2490 if (!index(ret, ret->correct, x, y))
df11cd4e 2491 ok = FALSE;
2492
df11cd4e 2493 if (ok)
2494 ret->completed = TRUE;
2495 }
2496
9bb4a9a0 2497 sfree(ret->correct);
2498 ret->correct = get_correct(ret);
2499
df11cd4e 2500 return ret;
2501}
2502
3870c4d8 2503/* ----------------------------------------------------------------------
2504 * Drawing routines.
2505 */
2506
ab53eb64 2507#define CORRECT (1L<<16)
08dd70c3 2508
2509#define COLOUR(k) ( (k)==1 ? COL_LINE : COL_DRAG )
ab53eb64 2510#define MAX4(x,y,z,w) ( max(max(x,y),max(z,w)) )
3870c4d8 2511
1f3ee4ee 2512static void game_compute_size(game_params *params, int tilesize,
2513 int *x, int *y)
3870c4d8 2514{
1f3ee4ee 2515 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2516 struct { int tilesize; } ads, *ds = &ads;
2517 ads.tilesize = tilesize;
1e3e152d 2518
3870c4d8 2519 *x = params->w * TILE_SIZE + 2*BORDER + 1;
2520 *y = params->h * TILE_SIZE + 2*BORDER + 1;
2521}
2522
1f3ee4ee 2523static void game_set_size(game_drawstate *ds, game_params *params,
2524 int tilesize)
2525{
2526 ds->tilesize = tilesize;
2527}
2528
be8d5aa1 2529static float *game_colours(frontend *fe, game_state *state, int *ncolours)
3870c4d8 2530{
2531 float *ret = snewn(3 * NCOLOURS, float);
2532
2533 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2534
2535 ret[COL_GRID * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2536 ret[COL_GRID * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2537 ret[COL_GRID * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2538
08dd70c3 2539 ret[COL_DRAG * 3 + 0] = 1.0F;
2540 ret[COL_DRAG * 3 + 1] = 0.0F;
2541 ret[COL_DRAG * 3 + 2] = 0.0F;
2542
3870c4d8 2543 ret[COL_CORRECT * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2544 ret[COL_CORRECT * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2545 ret[COL_CORRECT * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2546
2547 ret[COL_LINE * 3 + 0] = 0.0F;
2548 ret[COL_LINE * 3 + 1] = 0.0F;
2549 ret[COL_LINE * 3 + 2] = 0.0F;
2550
2551 ret[COL_TEXT * 3 + 0] = 0.0F;
2552 ret[COL_TEXT * 3 + 1] = 0.0F;
2553 ret[COL_TEXT * 3 + 2] = 0.0F;
2554
2555 *ncolours = NCOLOURS;
2556 return ret;
2557}
2558
be8d5aa1 2559static game_drawstate *game_new_drawstate(game_state *state)
3870c4d8 2560{
2561 struct game_drawstate *ds = snew(struct game_drawstate);
08dd70c3 2562 int i;
3870c4d8 2563
2564 ds->started = FALSE;
2565 ds->w = state->w;
2566 ds->h = state->h;
ab53eb64 2567 ds->visible = snewn(ds->w * ds->h, unsigned long);
1e3e152d 2568 ds->tilesize = 0; /* not decided yet */
08dd70c3 2569 for (i = 0; i < ds->w * ds->h; i++)
2570 ds->visible[i] = 0xFFFF;
3870c4d8 2571
2572 return ds;
2573}
2574
be8d5aa1 2575static void game_free_drawstate(game_drawstate *ds)
3870c4d8 2576{
2577 sfree(ds->visible);
2578 sfree(ds);
2579}
2580
1e3e152d 2581static void draw_tile(frontend *fe, game_drawstate *ds, game_state *state,
2582 int x, int y, unsigned char *hedge, unsigned char *vedge,
2583 unsigned char *corners, int correct)
3870c4d8 2584{
2585 int cx = COORD(x), cy = COORD(y);
2586 char str[80];
2587
2588 draw_rect(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1, COL_GRID);
2589 draw_rect(fe, cx+1, cy+1, TILE_SIZE-1, TILE_SIZE-1,
2590 correct ? COL_CORRECT : COL_BACKGROUND);
2591
2592 if (grid(state,x,y)) {
2593 sprintf(str, "%d", grid(state,x,y));
2594 draw_text(fe, cx+TILE_SIZE/2, cy+TILE_SIZE/2, FONT_VARIABLE,
105a00d0 2595 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_TEXT, str);
3870c4d8 2596 }
2597
2598 /*
2599 * Draw edges.
2600 */
08dd70c3 2601 if (!HRANGE(state,x,y) || index(state,hedge,x,y))
2602 draw_rect(fe, cx, cy, TILE_SIZE+1, 2,
2603 HRANGE(state,x,y) ? COLOUR(index(state,hedge,x,y)) :
2604 COL_LINE);
2605 if (!HRANGE(state,x,y+1) || index(state,hedge,x,y+1))
2606 draw_rect(fe, cx, cy+TILE_SIZE-1, TILE_SIZE+1, 2,
2607 HRANGE(state,x,y+1) ? COLOUR(index(state,hedge,x,y+1)) :
2608 COL_LINE);
2609 if (!VRANGE(state,x,y) || index(state,vedge,x,y))
2610 draw_rect(fe, cx, cy, 2, TILE_SIZE+1,
2611 VRANGE(state,x,y) ? COLOUR(index(state,vedge,x,y)) :
2612 COL_LINE);
2613 if (!VRANGE(state,x+1,y) || index(state,vedge,x+1,y))
2614 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, TILE_SIZE+1,
2615 VRANGE(state,x+1,y) ? COLOUR(index(state,vedge,x+1,y)) :
2616 COL_LINE);
3870c4d8 2617
2618 /*
2619 * Draw corners.
2620 */
ec9a0f09 2621 if (index(state,corners,x,y))
08dd70c3 2622 draw_rect(fe, cx, cy, 2, 2,
ec9a0f09 2623 COLOUR(index(state,corners,x,y)));
2624 if (x+1 < state->w && index(state,corners,x+1,y))
08dd70c3 2625 draw_rect(fe, cx+TILE_SIZE-1, cy, 2, 2,
ec9a0f09 2626 COLOUR(index(state,corners,x+1,y)));
2627 if (y+1 < state->h && index(state,corners,x,y+1))
08dd70c3 2628 draw_rect(fe, cx, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2629 COLOUR(index(state,corners,x,y+1)));
2630 if (x+1 < state->w && y+1 < state->h && index(state,corners,x+1,y+1))
08dd70c3 2631 draw_rect(fe, cx+TILE_SIZE-1, cy+TILE_SIZE-1, 2, 2,
ec9a0f09 2632 COLOUR(index(state,corners,x+1,y+1)));
3870c4d8 2633
2634 draw_update(fe, cx, cy, TILE_SIZE+1, TILE_SIZE+1);
2635}
2636
be8d5aa1 2637static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
c822de4a 2638 game_state *state, int dir, game_ui *ui,
74a4e547 2639 float animtime, float flashtime)
3870c4d8 2640{
2641 int x, y;
ec9a0f09 2642 unsigned char *hedge, *vedge, *corners;
3870c4d8 2643
08dd70c3 2644 if (ui->dragged) {
2645 hedge = snewn(state->w*state->h, unsigned char);
2646 vedge = snewn(state->w*state->h, unsigned char);
2647 memcpy(hedge, state->hedge, state->w*state->h);
2648 memcpy(vedge, state->vedge, state->w*state->h);
df11cd4e 2649 ui_draw_rect(state, ui, hedge, vedge, 2, TRUE);
08dd70c3 2650 } else {
2651 hedge = state->hedge;
2652 vedge = state->vedge;
2653 }
2654
ec9a0f09 2655 corners = snewn(state->w * state->h, unsigned char);
2656 memset(corners, 0, state->w * state->h);
2657 for (x = 0; x < state->w; x++)
2658 for (y = 0; y < state->h; y++) {
2659 if (x > 0) {
2660 int e = index(state, vedge, x, y);
2661 if (index(state,corners,x,y) < e)
2662 index(state,corners,x,y) = e;
2663 if (y+1 < state->h &&
2664 index(state,corners,x,y+1) < e)
2665 index(state,corners,x,y+1) = e;
2666 }
2667 if (y > 0) {
2668 int e = index(state, hedge, x, y);
2669 if (index(state,corners,x,y) < e)
2670 index(state,corners,x,y) = e;
2671 if (x+1 < state->w &&
2672 index(state,corners,x+1,y) < e)
2673 index(state,corners,x+1,y) = e;
2674 }
2675 }
2676
3870c4d8 2677 if (!ds->started) {
105a00d0 2678 draw_rect(fe, 0, 0,
2679 state->w * TILE_SIZE + 2*BORDER + 1,
2680 state->h * TILE_SIZE + 2*BORDER + 1, COL_BACKGROUND);
3870c4d8 2681 draw_rect(fe, COORD(0)-1, COORD(0)-1,
2682 ds->w*TILE_SIZE+3, ds->h*TILE_SIZE+3, COL_LINE);
2683 ds->started = TRUE;
863c3945 2684 draw_update(fe, 0, 0,
2685 state->w * TILE_SIZE + 2*BORDER + 1,
2686 state->h * TILE_SIZE + 2*BORDER + 1);
3870c4d8 2687 }
2688
2689 for (x = 0; x < state->w; x++)
2690 for (y = 0; y < state->h; y++) {
ab53eb64 2691 unsigned long c = 0;
08dd70c3 2692
2693 if (HRANGE(state,x,y))
2694 c |= index(state,hedge,x,y);
eddb22e8 2695 if (HRANGE(state,x,y+1))
2696 c |= index(state,hedge,x,y+1) << 2;
08dd70c3 2697 if (VRANGE(state,x,y))
2698 c |= index(state,vedge,x,y) << 4;
eddb22e8 2699 if (VRANGE(state,x+1,y))
2700 c |= index(state,vedge,x+1,y) << 6;
ec9a0f09 2701 c |= index(state,corners,x,y) << 8;
2702 if (x+1 < state->w)
2703 c |= index(state,corners,x+1,y) << 10;
2704 if (y+1 < state->h)
2705 c |= index(state,corners,x,y+1) << 12;
2706 if (x+1 < state->w && y+1 < state->h)
ab53eb64 2707 /* cast to prevent 2<<14 sign-extending on promotion to long */
2708 c |= (unsigned long)index(state,corners,x+1,y+1) << 14;
9bb4a9a0 2709 if (index(state, state->correct, x, y) && !flashtime)
3870c4d8 2710 c |= CORRECT;
2711
2712 if (index(ds,ds->visible,x,y) != c) {
1e3e152d 2713 draw_tile(fe, ds, state, x, y, hedge, vedge, corners,
ab53eb64 2714 (c & CORRECT) ? 1 : 0);
ec9a0f09 2715 index(ds,ds->visible,x,y) = c;
3870c4d8 2716 }
2717 }
2718
375c9b4d 2719 {
2720 char buf[256];
2721
2722 if (ui->x1 >= 0 && ui->y1 >= 0 &&
2723 ui->x2 >= 0 && ui->y2 >= 0) {
2724 sprintf(buf, "%dx%d ",
2725 ui->x2-ui->x1,
2726 ui->y2-ui->y1);
2727 } else {
2728 buf[0] = '\0';
2729 }
2730
2731 if (state->cheated)
2732 strcat(buf, "Auto-solved.");
2733 else if (state->completed)
2734 strcat(buf, "COMPLETED!");
2735
2736 status_bar(fe, buf);
2737 }
2738
08dd70c3 2739 if (hedge != state->hedge) {
2740 sfree(hedge);
2741 sfree(vedge);
375c9b4d 2742 }
08dd70c3 2743
11c44cf5 2744 sfree(corners);
3870c4d8 2745}
2746
be8d5aa1 2747static float game_anim_length(game_state *oldstate,
e3f21163 2748 game_state *newstate, int dir, game_ui *ui)
3870c4d8 2749{
2750 return 0.0F;
2751}
2752
be8d5aa1 2753static float game_flash_length(game_state *oldstate,
e3f21163 2754 game_state *newstate, int dir, game_ui *ui)
3870c4d8 2755{
2ac6d24e 2756 if (!oldstate->completed && newstate->completed &&
2757 !oldstate->cheated && !newstate->cheated)
ef29354c 2758 return FLASH_TIME;
3870c4d8 2759 return 0.0F;
2760}
2761
be8d5aa1 2762static int game_wants_statusbar(void)
3870c4d8 2763{
375c9b4d 2764 return TRUE;
3870c4d8 2765}
be8d5aa1 2766
4d08de49 2767static int game_timing_state(game_state *state, game_ui *ui)
48dcdd62 2768{
2769 return TRUE;
2770}
2771
be8d5aa1 2772#ifdef COMBINED
2773#define thegame rect
2774#endif
2775
2776const struct game thegame = {
1d228b10 2777 "Rectangles", "games.rectangles",
be8d5aa1 2778 default_params,
2779 game_fetch_preset,
2780 decode_params,
2781 encode_params,
2782 free_params,
2783 dup_params,
1d228b10 2784 TRUE, game_configure, custom_params,
be8d5aa1 2785 validate_params,
1185e3c5 2786 new_game_desc,
1185e3c5 2787 validate_desc,
be8d5aa1 2788 new_game,
2789 dup_game,
2790 free_game,
2ac6d24e 2791 TRUE, solve_game,
6ad5ed74 2792 TRUE, game_text_format,
be8d5aa1 2793 new_ui,
2794 free_ui,
ae8290c6 2795 encode_ui,
2796 decode_ui,
07dfb697 2797 game_changed_state,
df11cd4e 2798 interpret_move,
2799 execute_move,
1f3ee4ee 2800 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
be8d5aa1 2801 game_colours,
2802 game_new_drawstate,
2803 game_free_drawstate,
2804 game_redraw,
2805 game_anim_length,
2806 game_flash_length,
2807 game_wants_statusbar,
48dcdd62 2808 FALSE, game_timing_state,
93b1da3d 2809 0, /* mouse_priorities */
be8d5aa1 2810};