Make bignum.py self-contained, by importing versions of the two
[u/mdw/putty] / sshbn.c
CommitLineData
e5574168 1/*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5#include <stdio.h>
ed953b91 6#include <assert.h>
e5574168 7#include <stdlib.h>
8#include <string.h>
9
5c72ca61 10#include "misc.h"
98ba26b9 11
819a22b3 12/*
13 * Usage notes:
14 * * Do not call the DIVMOD_WORD macro with expressions such as array
15 * subscripts, as some implementations object to this (see below).
16 * * Note that none of the division methods below will cope if the
17 * quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
18 * to avoid this case.
19 * If this condition occurs, in the case of the x86 DIV instruction,
20 * an overflow exception will occur, which (according to a correspondent)
21 * will manifest on Windows as something like
22 * 0xC0000095: Integer overflow
23 * The C variant won't give the right answer, either.
24 */
25
a3412f52 26#if defined __GNUC__ && defined __i386__
27typedef unsigned long BignumInt;
28typedef unsigned long long BignumDblInt;
29#define BIGNUM_INT_MASK 0xFFFFFFFFUL
30#define BIGNUM_TOP_BIT 0x80000000UL
31#define BIGNUM_INT_BITS 32
32#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
a47e8bba 33#define DIVMOD_WORD(q, r, hi, lo, w) \
34 __asm__("div %2" : \
35 "=d" (r), "=a" (q) : \
36 "r" (w), "d" (hi), "a" (lo))
036eddfb 37#elif defined _MSC_VER && defined _M_IX86
38typedef unsigned __int32 BignumInt;
39typedef unsigned __int64 BignumDblInt;
40#define BIGNUM_INT_MASK 0xFFFFFFFFUL
41#define BIGNUM_TOP_BIT 0x80000000UL
42#define BIGNUM_INT_BITS 32
43#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
819a22b3 44/* Note: MASM interprets array subscripts in the macro arguments as
45 * assembler syntax, which gives the wrong answer. Don't supply them.
46 * <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */
036eddfb 47#define DIVMOD_WORD(q, r, hi, lo, w) do { \
819a22b3 48 __asm mov edx, hi \
49 __asm mov eax, lo \
50 __asm div w \
51 __asm mov r, edx \
52 __asm mov q, eax \
53} while(0)
32e51f76 54#elif defined _LP64
55/* 64-bit architectures can do 32x32->64 chunks at a time */
56typedef unsigned int BignumInt;
57typedef unsigned long BignumDblInt;
58#define BIGNUM_INT_MASK 0xFFFFFFFFU
59#define BIGNUM_TOP_BIT 0x80000000U
60#define BIGNUM_INT_BITS 32
61#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
62#define DIVMOD_WORD(q, r, hi, lo, w) do { \
63 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
64 q = n / w; \
65 r = n % w; \
66} while (0)
67#elif defined _LLP64
68/* 64-bit architectures in which unsigned long is 32 bits, not 64 */
69typedef unsigned long BignumInt;
70typedef unsigned long long BignumDblInt;
71#define BIGNUM_INT_MASK 0xFFFFFFFFUL
72#define BIGNUM_TOP_BIT 0x80000000UL
73#define BIGNUM_INT_BITS 32
74#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
75#define DIVMOD_WORD(q, r, hi, lo, w) do { \
76 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
77 q = n / w; \
78 r = n % w; \
79} while (0)
a3412f52 80#else
32e51f76 81/* Fallback for all other cases */
a3412f52 82typedef unsigned short BignumInt;
83typedef unsigned long BignumDblInt;
84#define BIGNUM_INT_MASK 0xFFFFU
85#define BIGNUM_TOP_BIT 0x8000U
86#define BIGNUM_INT_BITS 16
87#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
a47e8bba 88#define DIVMOD_WORD(q, r, hi, lo, w) do { \
89 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
90 q = n / w; \
91 r = n % w; \
92} while (0)
a3412f52 93#endif
94
95#define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
96
3709bfe9 97#define BIGNUM_INTERNAL
a3412f52 98typedef BignumInt *Bignum;
3709bfe9 99
e5574168 100#include "ssh.h"
101
a3412f52 102BignumInt bnZero[1] = { 0 };
103BignumInt bnOne[2] = { 1, 1 };
e5574168 104
7d6ee6ff 105/*
a3412f52 106 * The Bignum format is an array of `BignumInt'. The first
7d6ee6ff 107 * element of the array counts the remaining elements. The
a3412f52 108 * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
7d6ee6ff 109 * significant digit first. (So it's trivial to extract the bit
110 * with value 2^n for any n.)
111 *
112 * All Bignums in this module are positive. Negative numbers must
113 * be dealt with outside it.
114 *
115 * INVARIANT: the most significant word of any Bignum must be
116 * nonzero.
117 */
118
7cca0d81 119Bignum Zero = bnZero, One = bnOne;
e5574168 120
32874aea 121static Bignum newbn(int length)
122{
a3412f52 123 Bignum b = snewn(length + 1, BignumInt);
e5574168 124 if (!b)
125 abort(); /* FIXME */
32874aea 126 memset(b, 0, (length + 1) * sizeof(*b));
e5574168 127 b[0] = length;
128 return b;
129}
130
32874aea 131void bn_restore_invariant(Bignum b)
132{
133 while (b[0] > 1 && b[b[0]] == 0)
134 b[0]--;
3709bfe9 135}
136
32874aea 137Bignum copybn(Bignum orig)
138{
a3412f52 139 Bignum b = snewn(orig[0] + 1, BignumInt);
7cca0d81 140 if (!b)
141 abort(); /* FIXME */
32874aea 142 memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
7cca0d81 143 return b;
144}
145
32874aea 146void freebn(Bignum b)
147{
e5574168 148 /*
149 * Burn the evidence, just in case.
150 */
151 memset(b, 0, sizeof(b[0]) * (b[0] + 1));
dcbde236 152 sfree(b);
e5574168 153}
154
32874aea 155Bignum bn_power_2(int n)
156{
a3412f52 157 Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
3709bfe9 158 bignum_set_bit(ret, n, 1);
159 return ret;
160}
161
e5574168 162/*
0c431b2f 163 * Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
164 * big-endian arrays of 'len' BignumInts. Returns a BignumInt carried
165 * off the top.
166 */
167static BignumInt internal_add(const BignumInt *a, const BignumInt *b,
168 BignumInt *c, int len)
169{
170 int i;
171 BignumDblInt carry = 0;
172
173 for (i = len-1; i >= 0; i--) {
174 carry += (BignumDblInt)a[i] + b[i];
175 c[i] = (BignumInt)carry;
176 carry >>= BIGNUM_INT_BITS;
177 }
178
179 return (BignumInt)carry;
180}
181
182/*
183 * Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
184 * all big-endian arrays of 'len' BignumInts. Any borrow from the top
185 * is ignored.
186 */
187static void internal_sub(const BignumInt *a, const BignumInt *b,
188 BignumInt *c, int len)
189{
190 int i;
191 BignumDblInt carry = 1;
192
193 for (i = len-1; i >= 0; i--) {
194 carry += (BignumDblInt)a[i] + (b[i] ^ BIGNUM_INT_MASK);
195 c[i] = (BignumInt)carry;
196 carry >>= BIGNUM_INT_BITS;
197 }
198}
199
200/*
e5574168 201 * Compute c = a * b.
202 * Input is in the first len words of a and b.
203 * Result is returned in the first 2*len words of c.
5a502a19 204 *
205 * 'scratch' must point to an array of BignumInt of size at least
206 * mul_compute_scratch(len). (This covers the needs of internal_mul
207 * and all its recursive calls to itself.)
e5574168 208 */
0c431b2f 209#define KARATSUBA_THRESHOLD 50
5a502a19 210static int mul_compute_scratch(int len)
211{
212 int ret = 0;
213 while (len > KARATSUBA_THRESHOLD) {
214 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
215 int midlen = botlen + 1;
216 ret += 4*midlen;
217 len = midlen;
218 }
219 return ret;
220}
132c534f 221static void internal_mul(const BignumInt *a, const BignumInt *b,
5a502a19 222 BignumInt *c, int len, BignumInt *scratch)
e5574168 223{
224 int i, j;
a3412f52 225 BignumDblInt t;
e5574168 226
0c431b2f 227 if (len > KARATSUBA_THRESHOLD) {
228
229 /*
230 * Karatsuba divide-and-conquer algorithm. Cut each input in
231 * half, so that it's expressed as two big 'digits' in a giant
232 * base D:
233 *
234 * a = a_1 D + a_0
235 * b = b_1 D + b_0
236 *
237 * Then the product is of course
238 *
239 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
240 *
241 * and we compute the three coefficients by recursively
242 * calling ourself to do half-length multiplications.
243 *
244 * The clever bit that makes this worth doing is that we only
245 * need _one_ half-length multiplication for the central
246 * coefficient rather than the two that it obviouly looks
247 * like, because we can use a single multiplication to compute
248 *
249 * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
250 *
251 * and then we subtract the other two coefficients (a_1 b_1
252 * and a_0 b_0) which we were computing anyway.
253 *
254 * Hence we get to multiply two numbers of length N in about
255 * three times as much work as it takes to multiply numbers of
256 * length N/2, which is obviously better than the four times
257 * as much work it would take if we just did a long
258 * conventional multiply.
259 */
260
261 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
262 int midlen = botlen + 1;
0c431b2f 263 BignumDblInt carry;
f3c29e34 264#ifdef KARA_DEBUG
265 int i;
266#endif
0c431b2f 267
268 /*
269 * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
270 * in the output array, so we can compute them immediately in
271 * place.
272 */
273
f3c29e34 274#ifdef KARA_DEBUG
275 printf("a1,a0 = 0x");
276 for (i = 0; i < len; i++) {
277 if (i == toplen) printf(", 0x");
278 printf("%0*x", BIGNUM_INT_BITS/4, a[i]);
279 }
280 printf("\n");
281 printf("b1,b0 = 0x");
282 for (i = 0; i < len; i++) {
283 if (i == toplen) printf(", 0x");
284 printf("%0*x", BIGNUM_INT_BITS/4, b[i]);
285 }
286 printf("\n");
287#endif
288
0c431b2f 289 /* a_1 b_1 */
5a502a19 290 internal_mul(a, b, c, toplen, scratch);
f3c29e34 291#ifdef KARA_DEBUG
292 printf("a1b1 = 0x");
293 for (i = 0; i < 2*toplen; i++) {
294 printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
295 }
296 printf("\n");
297#endif
0c431b2f 298
299 /* a_0 b_0 */
5a502a19 300 internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen, scratch);
f3c29e34 301#ifdef KARA_DEBUG
302 printf("a0b0 = 0x");
303 for (i = 0; i < 2*botlen; i++) {
304 printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);
305 }
306 printf("\n");
307#endif
0c431b2f 308
0c431b2f 309 /* Zero padding. midlen exceeds toplen by at most 2, so just
310 * zero the first two words of each input and the rest will be
311 * copied over. */
312 scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;
313
314 for (j = 0; j < toplen; j++) {
315 scratch[midlen - toplen + j] = a[j]; /* a_1 */
316 scratch[2*midlen - toplen + j] = b[j]; /* b_1 */
317 }
318
319 /* compute a_1 + a_0 */
320 scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
f3c29e34 321#ifdef KARA_DEBUG
322 printf("a1plusa0 = 0x");
323 for (i = 0; i < midlen; i++) {
324 printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
325 }
326 printf("\n");
327#endif
0c431b2f 328 /* compute b_1 + b_0 */
329 scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
330 scratch+midlen+1, botlen);
f3c29e34 331#ifdef KARA_DEBUG
332 printf("b1plusb0 = 0x");
333 for (i = 0; i < midlen; i++) {
334 printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);
335 }
336 printf("\n");
337#endif
0c431b2f 338
339 /*
340 * Now we can do the third multiplication.
341 */
5a502a19 342 internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen,
343 scratch + 4*midlen);
f3c29e34 344#ifdef KARA_DEBUG
345 printf("a1plusa0timesb1plusb0 = 0x");
346 for (i = 0; i < 2*midlen; i++) {
347 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
348 }
349 printf("\n");
350#endif
0c431b2f 351
352 /*
353 * Now we can reuse the first half of 'scratch' to compute the
354 * sum of the outer two coefficients, to subtract from that
355 * product to obtain the middle one.
356 */
357 scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;
358 for (j = 0; j < 2*toplen; j++)
359 scratch[2*midlen - 2*toplen + j] = c[j];
360 scratch[1] = internal_add(scratch+2, c + 2*toplen,
361 scratch+2, 2*botlen);
f3c29e34 362#ifdef KARA_DEBUG
363 printf("a1b1plusa0b0 = 0x");
364 for (i = 0; i < 2*midlen; i++) {
365 printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
366 }
367 printf("\n");
368#endif
0c431b2f 369
370 internal_sub(scratch + 2*midlen, scratch,
371 scratch + 2*midlen, 2*midlen);
f3c29e34 372#ifdef KARA_DEBUG
373 printf("a1b0plusa0b1 = 0x");
374 for (i = 0; i < 2*midlen; i++) {
375 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
376 }
377 printf("\n");
378#endif
0c431b2f 379
380 /*
381 * And now all we need to do is to add that middle coefficient
382 * back into the output. We may have to propagate a carry
383 * further up the output, but we can be sure it won't
384 * propagate right the way off the top.
385 */
386 carry = internal_add(c + 2*len - botlen - 2*midlen,
387 scratch + 2*midlen,
388 c + 2*len - botlen - 2*midlen, 2*midlen);
389 j = 2*len - botlen - 2*midlen - 1;
390 while (carry) {
391 assert(j >= 0);
392 carry += c[j];
393 c[j] = (BignumInt)carry;
394 carry >>= BIGNUM_INT_BITS;
134a1ab5 395 j--;
0c431b2f 396 }
f3c29e34 397#ifdef KARA_DEBUG
398 printf("ab = 0x");
399 for (i = 0; i < 2*len; i++) {
400 printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
401 }
402 printf("\n");
403#endif
0c431b2f 404
0c431b2f 405 } else {
406
407 /*
408 * Multiply in the ordinary O(N^2) way.
409 */
410
411 for (j = 0; j < 2 * len; j++)
412 c[j] = 0;
413
414 for (i = len - 1; i >= 0; i--) {
415 t = 0;
416 for (j = len - 1; j >= 0; j--) {
417 t += MUL_WORD(a[i], (BignumDblInt) b[j]);
418 t += (BignumDblInt) c[i + j + 1];
419 c[i + j + 1] = (BignumInt) t;
420 t = t >> BIGNUM_INT_BITS;
421 }
422 c[i] = (BignumInt) t;
423 }
e5574168 424 }
425}
426
132c534f 427/*
428 * Variant form of internal_mul used for the initial step of
429 * Montgomery reduction. Only bothers outputting 'len' words
430 * (everything above that is thrown away).
431 */
432static void internal_mul_low(const BignumInt *a, const BignumInt *b,
5a502a19 433 BignumInt *c, int len, BignumInt *scratch)
132c534f 434{
435 int i, j;
436 BignumDblInt t;
437
438 if (len > KARATSUBA_THRESHOLD) {
439
440 /*
441 * Karatsuba-aware version of internal_mul_low. As before, we
442 * express each input value as a shifted combination of two
443 * halves:
444 *
445 * a = a_1 D + a_0
446 * b = b_1 D + b_0
447 *
448 * Then the full product is, as before,
449 *
450 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
451 *
452 * Provided we choose D on the large side (so that a_0 and b_0
453 * are _at least_ as long as a_1 and b_1), we don't need the
454 * topmost term at all, and we only need half of the middle
455 * term. So there's no point in doing the proper Karatsuba
456 * optimisation which computes the middle term using the top
457 * one, because we'd take as long computing the top one as
458 * just computing the middle one directly.
459 *
460 * So instead, we do a much more obvious thing: we call the
461 * fully optimised internal_mul to compute a_0 b_0, and we
462 * recursively call ourself to compute the _bottom halves_ of
463 * a_1 b_0 and a_0 b_1, each of which we add into the result
464 * in the obvious way.
465 *
466 * In other words, there's no actual Karatsuba _optimisation_
467 * in this function; the only benefit in doing it this way is
468 * that we call internal_mul proper for a large part of the
469 * work, and _that_ can optimise its operation.
470 */
471
472 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
132c534f 473
474 /*
5a502a19 475 * Scratch space for the various bits and pieces we're going
476 * to be adding together: we need botlen*2 words for a_0 b_0
477 * (though we may end up throwing away its topmost word), and
478 * toplen words for each of a_1 b_0 and a_0 b_1. That adds up
479 * to exactly 2*len.
132c534f 480 */
132c534f 481
482 /* a_0 b_0 */
5a502a19 483 internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen,
484 scratch + 2*len);
132c534f 485
486 /* a_1 b_0 */
5a502a19 487 internal_mul_low(a, b + len - toplen, scratch + toplen, toplen,
488 scratch + 2*len);
132c534f 489
490 /* a_0 b_1 */
5a502a19 491 internal_mul_low(a + len - toplen, b, scratch, toplen,
492 scratch + 2*len);
132c534f 493
494 /* Copy the bottom half of the big coefficient into place */
495 for (j = 0; j < botlen; j++)
496 c[toplen + j] = scratch[2*toplen + botlen + j];
497
498 /* Add the two small coefficients, throwing away the returned carry */
499 internal_add(scratch, scratch + toplen, scratch, toplen);
500
501 /* And add that to the large coefficient, leaving the result in c. */
502 internal_add(scratch, scratch + 2*toplen + botlen - toplen,
503 c, toplen);
504
132c534f 505 } else {
506
507 for (j = 0; j < len; j++)
508 c[j] = 0;
509
510 for (i = len - 1; i >= 0; i--) {
511 t = 0;
512 for (j = len - 1; j >= len - i - 1; j--) {
513 t += MUL_WORD(a[i], (BignumDblInt) b[j]);
514 t += (BignumDblInt) c[i + j + 1 - len];
515 c[i + j + 1 - len] = (BignumInt) t;
516 t = t >> BIGNUM_INT_BITS;
517 }
518 }
519
520 }
521}
522
523/*
524 * Montgomery reduction. Expects x to be a big-endian array of 2*len
525 * BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
526 * BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
527 * a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
528 * x' < n.
529 *
530 * 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts
531 * each, containing respectively n and the multiplicative inverse of
532 * -n mod r.
533 *
5a502a19 534 * 'tmp' is an array of BignumInt used as scratch space, of length at
535 * least 3*len + mul_compute_scratch(len).
132c534f 536 */
537static void monty_reduce(BignumInt *x, const BignumInt *n,
538 const BignumInt *mninv, BignumInt *tmp, int len)
539{
540 int i;
541 BignumInt carry;
542
543 /*
544 * Multiply x by (-n)^{-1} mod r. This gives us a value m such
545 * that mn is congruent to -x mod r. Hence, mn+x is an exact
546 * multiple of r, and is also (obviously) congruent to x mod n.
547 */
5a502a19 548 internal_mul_low(x + len, mninv, tmp, len, tmp + 3*len);
132c534f 549
550 /*
551 * Compute t = (mn+x)/r in ordinary, non-modular, integer
552 * arithmetic. By construction this is exact, and is congruent mod
553 * n to x * r^{-1}, i.e. the answer we want.
554 *
555 * The following multiply leaves that answer in the _most_
556 * significant half of the 'x' array, so then we must shift it
557 * down.
558 */
5a502a19 559 internal_mul(tmp, n, tmp+len, len, tmp + 3*len);
132c534f 560 carry = internal_add(x, tmp+len, x, 2*len);
561 for (i = 0; i < len; i++)
562 x[len + i] = x[i], x[i] = 0;
563
564 /*
565 * Reduce t mod n. This doesn't require a full-on division by n,
566 * but merely a test and single optional subtraction, since we can
567 * show that 0 <= t < 2n.
568 *
569 * Proof:
570 * + we computed m mod r, so 0 <= m < r.
571 * + so 0 <= mn < rn, obviously
572 * + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
573 * + yielding 0 <= (mn+x)/r < 2n as required.
574 */
575 if (!carry) {
576 for (i = 0; i < len; i++)
577 if (x[len + i] != n[i])
578 break;
579 }
580 if (carry || i >= len || x[len + i] > n[i])
581 internal_sub(x+len, n, x+len, len);
582}
583
a3412f52 584static void internal_add_shifted(BignumInt *number,
32874aea 585 unsigned n, int shift)
586{
a3412f52 587 int word = 1 + (shift / BIGNUM_INT_BITS);
588 int bshift = shift % BIGNUM_INT_BITS;
589 BignumDblInt addend;
9400cf6f 590
3014da2b 591 addend = (BignumDblInt)n << bshift;
9400cf6f 592
593 while (addend) {
32874aea 594 addend += number[word];
a3412f52 595 number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
596 addend >>= BIGNUM_INT_BITS;
32874aea 597 word++;
9400cf6f 598 }
599}
600
e5574168 601/*
602 * Compute a = a % m.
9400cf6f 603 * Input in first alen words of a and first mlen words of m.
604 * Output in first alen words of a
605 * (of which first alen-mlen words will be zero).
e5574168 606 * The MSW of m MUST have its high bit set.
9400cf6f 607 * Quotient is accumulated in the `quotient' array, which is a Bignum
608 * rather than the internal bigendian format. Quotient parts are shifted
609 * left by `qshift' before adding into quot.
e5574168 610 */
a3412f52 611static void internal_mod(BignumInt *a, int alen,
612 BignumInt *m, int mlen,
613 BignumInt *quot, int qshift)
e5574168 614{
a3412f52 615 BignumInt m0, m1;
e5574168 616 unsigned int h;
617 int i, k;
618
e5574168 619 m0 = m[0];
9400cf6f 620 if (mlen > 1)
32874aea 621 m1 = m[1];
9400cf6f 622 else
32874aea 623 m1 = 0;
e5574168 624
32874aea 625 for (i = 0; i <= alen - mlen; i++) {
a3412f52 626 BignumDblInt t;
9400cf6f 627 unsigned int q, r, c, ai1;
e5574168 628
629 if (i == 0) {
630 h = 0;
631 } else {
32874aea 632 h = a[i - 1];
633 a[i - 1] = 0;
e5574168 634 }
635
32874aea 636 if (i == alen - 1)
637 ai1 = 0;
638 else
639 ai1 = a[i + 1];
9400cf6f 640
e5574168 641 /* Find q = h:a[i] / m0 */
62ef3d44 642 if (h >= m0) {
643 /*
644 * Special case.
645 *
646 * To illustrate it, suppose a BignumInt is 8 bits, and
647 * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
648 * our initial division will be 0xA123 / 0xA1, which
649 * will give a quotient of 0x100 and a divide overflow.
650 * However, the invariants in this division algorithm
651 * are not violated, since the full number A1:23:... is
652 * _less_ than the quotient prefix A1:B2:... and so the
653 * following correction loop would have sorted it out.
654 *
655 * In this situation we set q to be the largest
656 * quotient we _can_ stomach (0xFF, of course).
657 */
658 q = BIGNUM_INT_MASK;
659 } else {
819a22b3 660 /* Macro doesn't want an array subscript expression passed
661 * into it (see definition), so use a temporary. */
662 BignumInt tmplo = a[i];
663 DIVMOD_WORD(q, r, h, tmplo, m0);
62ef3d44 664
665 /* Refine our estimate of q by looking at
666 h:a[i]:a[i+1] / m0:m1 */
667 t = MUL_WORD(m1, q);
668 if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
669 q--;
670 t -= m1;
671 r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
672 if (r >= (BignumDblInt) m0 &&
673 t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
674 }
e5574168 675 }
676
9400cf6f 677 /* Subtract q * m from a[i...] */
e5574168 678 c = 0;
9400cf6f 679 for (k = mlen - 1; k >= 0; k--) {
a47e8bba 680 t = MUL_WORD(q, m[k]);
e5574168 681 t += c;
62ddb51e 682 c = (unsigned)(t >> BIGNUM_INT_BITS);
a3412f52 683 if ((BignumInt) t > a[i + k])
32874aea 684 c++;
a3412f52 685 a[i + k] -= (BignumInt) t;
e5574168 686 }
687
688 /* Add back m in case of borrow */
689 if (c != h) {
690 t = 0;
9400cf6f 691 for (k = mlen - 1; k >= 0; k--) {
e5574168 692 t += m[k];
32874aea 693 t += a[i + k];
a3412f52 694 a[i + k] = (BignumInt) t;
695 t = t >> BIGNUM_INT_BITS;
e5574168 696 }
32874aea 697 q--;
e5574168 698 }
32874aea 699 if (quot)
a3412f52 700 internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
e5574168 701 }
702}
703
704/*
09095ac5 705 * Compute (base ^ exp) % mod, the pedestrian way.
e5574168 706 */
09095ac5 707Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod)
e5574168 708{
5a502a19 709 BignumInt *a, *b, *n, *m, *scratch;
09095ac5 710 int mshift;
5a502a19 711 int mlen, scratchlen, i, j;
09095ac5 712 Bignum base, result;
ed953b91 713
714 /*
715 * The most significant word of mod needs to be non-zero. It
716 * should already be, but let's make sure.
717 */
718 assert(mod[mod[0]] != 0);
719
720 /*
721 * Make sure the base is smaller than the modulus, by reducing
722 * it modulo the modulus if not.
723 */
724 base = bigmod(base_in, mod);
e5574168 725
09095ac5 726 /* Allocate m of size mlen, copy mod to m */
727 /* We use big endian internally */
728 mlen = mod[0];
729 m = snewn(mlen, BignumInt);
730 for (j = 0; j < mlen; j++)
731 m[j] = mod[mod[0] - j];
732
733 /* Shift m left to make msb bit set */
734 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
735 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
736 break;
737 if (mshift) {
738 for (i = 0; i < mlen - 1; i++)
739 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
740 m[mlen - 1] = m[mlen - 1] << mshift;
741 }
742
743 /* Allocate n of size mlen, copy base to n */
744 n = snewn(mlen, BignumInt);
745 i = mlen - base[0];
746 for (j = 0; j < i; j++)
747 n[j] = 0;
748 for (j = 0; j < (int)base[0]; j++)
749 n[i + j] = base[base[0] - j];
750
751 /* Allocate a and b of size 2*mlen. Set a = 1 */
752 a = snewn(2 * mlen, BignumInt);
753 b = snewn(2 * mlen, BignumInt);
754 for (i = 0; i < 2 * mlen; i++)
755 a[i] = 0;
756 a[2 * mlen - 1] = 1;
757
5a502a19 758 /* Scratch space for multiplies */
759 scratchlen = mul_compute_scratch(mlen);
760 scratch = snewn(scratchlen, BignumInt);
761
09095ac5 762 /* Skip leading zero bits of exp. */
763 i = 0;
764 j = BIGNUM_INT_BITS-1;
765 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
766 j--;
767 if (j < 0) {
768 i++;
769 j = BIGNUM_INT_BITS-1;
770 }
771 }
772
773 /* Main computation */
774 while (i < (int)exp[0]) {
775 while (j >= 0) {
5a502a19 776 internal_mul(a + mlen, a + mlen, b, mlen, scratch);
09095ac5 777 internal_mod(b, mlen * 2, m, mlen, NULL, 0);
778 if ((exp[exp[0] - i] & (1 << j)) != 0) {
5a502a19 779 internal_mul(b + mlen, n, a, mlen, scratch);
09095ac5 780 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
781 } else {
782 BignumInt *t;
783 t = a;
784 a = b;
785 b = t;
786 }
787 j--;
788 }
789 i++;
790 j = BIGNUM_INT_BITS-1;
791 }
792
793 /* Fixup result in case the modulus was shifted */
794 if (mshift) {
795 for (i = mlen - 1; i < 2 * mlen - 1; i++)
796 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
797 a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
798 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
799 for (i = 2 * mlen - 1; i >= mlen; i--)
800 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
801 }
802
803 /* Copy result to buffer */
804 result = newbn(mod[0]);
805 for (i = 0; i < mlen; i++)
806 result[result[0] - i] = a[i + mlen];
807 while (result[0] > 1 && result[result[0]] == 0)
808 result[0]--;
809
810 /* Free temporary arrays */
811 for (i = 0; i < 2 * mlen; i++)
812 a[i] = 0;
813 sfree(a);
5a502a19 814 for (i = 0; i < scratchlen; i++)
815 scratch[i] = 0;
816 sfree(scratch);
09095ac5 817 for (i = 0; i < 2 * mlen; i++)
818 b[i] = 0;
819 sfree(b);
820 for (i = 0; i < mlen; i++)
821 m[i] = 0;
822 sfree(m);
823 for (i = 0; i < mlen; i++)
824 n[i] = 0;
825 sfree(n);
826
827 freebn(base);
828
829 return result;
830}
831
832/*
833 * Compute (base ^ exp) % mod. Uses the Montgomery multiplication
834 * technique where possible, falling back to modpow_simple otherwise.
835 */
836Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
837{
5a502a19 838 BignumInt *a, *b, *x, *n, *mninv, *scratch;
839 int len, scratchlen, i, j;
09095ac5 840 Bignum base, base2, r, rn, inv, result;
841
842 /*
843 * The most significant word of mod needs to be non-zero. It
844 * should already be, but let's make sure.
845 */
846 assert(mod[mod[0]] != 0);
847
132c534f 848 /*
849 * mod had better be odd, or we can't do Montgomery multiplication
850 * using a power of two at all.
851 */
09095ac5 852 if (!(mod[1] & 1))
853 return modpow_simple(base_in, exp, mod);
854
855 /*
856 * Make sure the base is smaller than the modulus, by reducing
857 * it modulo the modulus if not.
858 */
859 base = bigmod(base_in, mod);
e5574168 860
132c534f 861 /*
862 * Compute the inverse of n mod r, for monty_reduce. (In fact we
863 * want the inverse of _minus_ n mod r, but we'll sort that out
864 * below.)
865 */
866 len = mod[0];
867 r = bn_power_2(BIGNUM_INT_BITS * len);
868 inv = modinv(mod, r);
e5574168 869
132c534f 870 /*
871 * Multiply the base by r mod n, to get it into Montgomery
872 * representation.
873 */
874 base2 = modmul(base, r, mod);
875 freebn(base);
876 base = base2;
877
878 rn = bigmod(r, mod); /* r mod n, i.e. Montgomerified 1 */
879
880 freebn(r); /* won't need this any more */
881
882 /*
883 * Set up internal arrays of the right lengths, in big-endian
884 * format, containing the base, the modulus, and the modulus's
885 * inverse.
886 */
887 n = snewn(len, BignumInt);
888 for (j = 0; j < len; j++)
889 n[len - 1 - j] = mod[j + 1];
890
891 mninv = snewn(len, BignumInt);
892 for (j = 0; j < len; j++)
893 mninv[len - 1 - j] = (j < inv[0] ? inv[j + 1] : 0);
894 freebn(inv); /* we don't need this copy of it any more */
895 /* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
896 x = snewn(len, BignumInt);
897 for (j = 0; j < len; j++)
898 x[j] = 0;
899 internal_sub(x, mninv, mninv, len);
900
901 /* x = snewn(len, BignumInt); */ /* already done above */
902 for (j = 0; j < len; j++)
903 x[len - 1 - j] = (j < base[0] ? base[j + 1] : 0);
904 freebn(base); /* we don't need this copy of it any more */
905
906 a = snewn(2*len, BignumInt);
907 b = snewn(2*len, BignumInt);
908 for (j = 0; j < len; j++)
909 a[2*len - 1 - j] = (j < rn[0] ? rn[j + 1] : 0);
910 freebn(rn);
911
5a502a19 912 /* Scratch space for multiplies */
913 scratchlen = 3*len + mul_compute_scratch(len);
914 scratch = snewn(scratchlen, BignumInt);
e5574168 915
916 /* Skip leading zero bits of exp. */
32874aea 917 i = 0;
a3412f52 918 j = BIGNUM_INT_BITS-1;
62ddb51e 919 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
e5574168 920 j--;
32874aea 921 if (j < 0) {
922 i++;
a3412f52 923 j = BIGNUM_INT_BITS-1;
32874aea 924 }
e5574168 925 }
926
927 /* Main computation */
62ddb51e 928 while (i < (int)exp[0]) {
e5574168 929 while (j >= 0) {
5a502a19 930 internal_mul(a + len, a + len, b, len, scratch);
931 monty_reduce(b, n, mninv, scratch, len);
e5574168 932 if ((exp[exp[0] - i] & (1 << j)) != 0) {
5a502a19 933 internal_mul(b + len, x, a, len, scratch);
934 monty_reduce(a, n, mninv, scratch, len);
e5574168 935 } else {
a3412f52 936 BignumInt *t;
32874aea 937 t = a;
938 a = b;
939 b = t;
e5574168 940 }
941 j--;
942 }
32874aea 943 i++;
a3412f52 944 j = BIGNUM_INT_BITS-1;
e5574168 945 }
946
132c534f 947 /*
948 * Final monty_reduce to get back from the adjusted Montgomery
949 * representation.
950 */
5a502a19 951 monty_reduce(a, n, mninv, scratch, len);
e5574168 952
953 /* Copy result to buffer */
59600f67 954 result = newbn(mod[0]);
132c534f 955 for (i = 0; i < len; i++)
956 result[result[0] - i] = a[i + len];
32874aea 957 while (result[0] > 1 && result[result[0]] == 0)
958 result[0]--;
e5574168 959
960 /* Free temporary arrays */
5a502a19 961 for (i = 0; i < scratchlen; i++)
962 scratch[i] = 0;
963 sfree(scratch);
132c534f 964 for (i = 0; i < 2 * len; i++)
32874aea 965 a[i] = 0;
966 sfree(a);
132c534f 967 for (i = 0; i < 2 * len; i++)
32874aea 968 b[i] = 0;
969 sfree(b);
132c534f 970 for (i = 0; i < len; i++)
971 mninv[i] = 0;
972 sfree(mninv);
973 for (i = 0; i < len; i++)
32874aea 974 n[i] = 0;
975 sfree(n);
132c534f 976 for (i = 0; i < len; i++)
977 x[i] = 0;
978 sfree(x);
ed953b91 979
59600f67 980 return result;
e5574168 981}
7cca0d81 982
983/*
984 * Compute (p * q) % mod.
985 * The most significant word of mod MUST be non-zero.
986 * We assume that the result array is the same size as the mod array.
987 */
59600f67 988Bignum modmul(Bignum p, Bignum q, Bignum mod)
7cca0d81 989{
5a502a19 990 BignumInt *a, *n, *m, *o, *scratch;
991 int mshift, scratchlen;
80b10571 992 int pqlen, mlen, rlen, i, j;
59600f67 993 Bignum result;
7cca0d81 994
995 /* Allocate m of size mlen, copy mod to m */
996 /* We use big endian internally */
997 mlen = mod[0];
a3412f52 998 m = snewn(mlen, BignumInt);
32874aea 999 for (j = 0; j < mlen; j++)
1000 m[j] = mod[mod[0] - j];
7cca0d81 1001
1002 /* Shift m left to make msb bit set */
a3412f52 1003 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
1004 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
32874aea 1005 break;
7cca0d81 1006 if (mshift) {
1007 for (i = 0; i < mlen - 1; i++)
a3412f52 1008 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 1009 m[mlen - 1] = m[mlen - 1] << mshift;
7cca0d81 1010 }
1011
1012 pqlen = (p[0] > q[0] ? p[0] : q[0]);
1013
1014 /* Allocate n of size pqlen, copy p to n */
a3412f52 1015 n = snewn(pqlen, BignumInt);
7cca0d81 1016 i = pqlen - p[0];
32874aea 1017 for (j = 0; j < i; j++)
1018 n[j] = 0;
62ddb51e 1019 for (j = 0; j < (int)p[0]; j++)
32874aea 1020 n[i + j] = p[p[0] - j];
7cca0d81 1021
1022 /* Allocate o of size pqlen, copy q to o */
a3412f52 1023 o = snewn(pqlen, BignumInt);
7cca0d81 1024 i = pqlen - q[0];
32874aea 1025 for (j = 0; j < i; j++)
1026 o[j] = 0;
62ddb51e 1027 for (j = 0; j < (int)q[0]; j++)
32874aea 1028 o[i + j] = q[q[0] - j];
7cca0d81 1029
1030 /* Allocate a of size 2*pqlen for result */
a3412f52 1031 a = snewn(2 * pqlen, BignumInt);
7cca0d81 1032
5a502a19 1033 /* Scratch space for multiplies */
1034 scratchlen = mul_compute_scratch(pqlen);
1035 scratch = snewn(scratchlen, BignumInt);
1036
7cca0d81 1037 /* Main computation */
5a502a19 1038 internal_mul(n, o, a, pqlen, scratch);
32874aea 1039 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
7cca0d81 1040
1041 /* Fixup result in case the modulus was shifted */
1042 if (mshift) {
32874aea 1043 for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
a3412f52 1044 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 1045 a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
1046 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
1047 for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
a3412f52 1048 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
7cca0d81 1049 }
1050
1051 /* Copy result to buffer */
32874aea 1052 rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
80b10571 1053 result = newbn(rlen);
1054 for (i = 0; i < rlen; i++)
32874aea 1055 result[result[0] - i] = a[i + 2 * pqlen - rlen];
1056 while (result[0] > 1 && result[result[0]] == 0)
1057 result[0]--;
7cca0d81 1058
1059 /* Free temporary arrays */
5a502a19 1060 for (i = 0; i < scratchlen; i++)
1061 scratch[i] = 0;
1062 sfree(scratch);
32874aea 1063 for (i = 0; i < 2 * pqlen; i++)
1064 a[i] = 0;
1065 sfree(a);
1066 for (i = 0; i < mlen; i++)
1067 m[i] = 0;
1068 sfree(m);
1069 for (i = 0; i < pqlen; i++)
1070 n[i] = 0;
1071 sfree(n);
1072 for (i = 0; i < pqlen; i++)
1073 o[i] = 0;
1074 sfree(o);
59600f67 1075
1076 return result;
7cca0d81 1077}
1078
1079/*
9400cf6f 1080 * Compute p % mod.
1081 * The most significant word of mod MUST be non-zero.
1082 * We assume that the result array is the same size as the mod array.
5c72ca61 1083 * We optionally write out a quotient if `quotient' is non-NULL.
1084 * We can avoid writing out the result if `result' is NULL.
9400cf6f 1085 */
f28753ab 1086static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
9400cf6f 1087{
a3412f52 1088 BignumInt *n, *m;
9400cf6f 1089 int mshift;
1090 int plen, mlen, i, j;
1091
1092 /* Allocate m of size mlen, copy mod to m */
1093 /* We use big endian internally */
1094 mlen = mod[0];
a3412f52 1095 m = snewn(mlen, BignumInt);
32874aea 1096 for (j = 0; j < mlen; j++)
1097 m[j] = mod[mod[0] - j];
9400cf6f 1098
1099 /* Shift m left to make msb bit set */
a3412f52 1100 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
1101 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
32874aea 1102 break;
9400cf6f 1103 if (mshift) {
1104 for (i = 0; i < mlen - 1; i++)
a3412f52 1105 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 1106 m[mlen - 1] = m[mlen - 1] << mshift;
9400cf6f 1107 }
1108
1109 plen = p[0];
1110 /* Ensure plen > mlen */
32874aea 1111 if (plen <= mlen)
1112 plen = mlen + 1;
9400cf6f 1113
1114 /* Allocate n of size plen, copy p to n */
a3412f52 1115 n = snewn(plen, BignumInt);
32874aea 1116 for (j = 0; j < plen; j++)
1117 n[j] = 0;
62ddb51e 1118 for (j = 1; j <= (int)p[0]; j++)
32874aea 1119 n[plen - j] = p[j];
9400cf6f 1120
1121 /* Main computation */
1122 internal_mod(n, plen, m, mlen, quotient, mshift);
1123
1124 /* Fixup result in case the modulus was shifted */
1125 if (mshift) {
1126 for (i = plen - mlen - 1; i < plen - 1; i++)
a3412f52 1127 n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 1128 n[plen - 1] = n[plen - 1] << mshift;
9400cf6f 1129 internal_mod(n, plen, m, mlen, quotient, 0);
1130 for (i = plen - 1; i >= plen - mlen; i--)
a3412f52 1131 n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
9400cf6f 1132 }
1133
1134 /* Copy result to buffer */
5c72ca61 1135 if (result) {
62ddb51e 1136 for (i = 1; i <= (int)result[0]; i++) {
5c72ca61 1137 int j = plen - i;
1138 result[i] = j >= 0 ? n[j] : 0;
1139 }
9400cf6f 1140 }
1141
1142 /* Free temporary arrays */
32874aea 1143 for (i = 0; i < mlen; i++)
1144 m[i] = 0;
1145 sfree(m);
1146 for (i = 0; i < plen; i++)
1147 n[i] = 0;
1148 sfree(n);
9400cf6f 1149}
1150
1151/*
7cca0d81 1152 * Decrement a number.
1153 */
32874aea 1154void decbn(Bignum bn)
1155{
7cca0d81 1156 int i = 1;
62ddb51e 1157 while (i < (int)bn[0] && bn[i] == 0)
a3412f52 1158 bn[i++] = BIGNUM_INT_MASK;
7cca0d81 1159 bn[i]--;
1160}
1161
27cd7fc2 1162Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
32874aea 1163{
3709bfe9 1164 Bignum result;
1165 int w, i;
1166
a3412f52 1167 w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
3709bfe9 1168
1169 result = newbn(w);
32874aea 1170 for (i = 1; i <= w; i++)
1171 result[i] = 0;
1172 for (i = nbytes; i--;) {
1173 unsigned char byte = *data++;
a3412f52 1174 result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
3709bfe9 1175 }
1176
32874aea 1177 while (result[0] > 1 && result[result[0]] == 0)
1178 result[0]--;
3709bfe9 1179 return result;
1180}
1181
7cca0d81 1182/*
2e85c969 1183 * Read an SSH-1-format bignum from a data buffer. Return the number
0016d70b 1184 * of bytes consumed, or -1 if there wasn't enough data.
7cca0d81 1185 */
0016d70b 1186int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
32874aea 1187{
27cd7fc2 1188 const unsigned char *p = data;
7cca0d81 1189 int i;
1190 int w, b;
1191
0016d70b 1192 if (len < 2)
1193 return -1;
1194
7cca0d81 1195 w = 0;
32874aea 1196 for (i = 0; i < 2; i++)
1197 w = (w << 8) + *p++;
1198 b = (w + 7) / 8; /* bits -> bytes */
7cca0d81 1199
0016d70b 1200 if (len < b+2)
1201 return -1;
1202
32874aea 1203 if (!result) /* just return length */
1204 return b + 2;
a52f067e 1205
3709bfe9 1206 *result = bignum_from_bytes(p, b);
7cca0d81 1207
3709bfe9 1208 return p + b - data;
7cca0d81 1209}
5c58ad2d 1210
1211/*
2e85c969 1212 * Return the bit count of a bignum, for SSH-1 encoding.
5c58ad2d 1213 */
32874aea 1214int bignum_bitcount(Bignum bn)
1215{
a3412f52 1216 int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
32874aea 1217 while (bitcount >= 0
a3412f52 1218 && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
5c58ad2d 1219 return bitcount + 1;
1220}
1221
1222/*
2e85c969 1223 * Return the byte length of a bignum when SSH-1 encoded.
5c58ad2d 1224 */
32874aea 1225int ssh1_bignum_length(Bignum bn)
1226{
1227 return 2 + (bignum_bitcount(bn) + 7) / 8;
ddecd643 1228}
1229
1230/*
2e85c969 1231 * Return the byte length of a bignum when SSH-2 encoded.
ddecd643 1232 */
32874aea 1233int ssh2_bignum_length(Bignum bn)
1234{
1235 return 4 + (bignum_bitcount(bn) + 8) / 8;
5c58ad2d 1236}
1237
1238/*
1239 * Return a byte from a bignum; 0 is least significant, etc.
1240 */
32874aea 1241int bignum_byte(Bignum bn, int i)
1242{
62ddb51e 1243 if (i >= (int)(BIGNUM_INT_BYTES * bn[0]))
32874aea 1244 return 0; /* beyond the end */
5c58ad2d 1245 else
a3412f52 1246 return (bn[i / BIGNUM_INT_BYTES + 1] >>
1247 ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
5c58ad2d 1248}
1249
1250/*
9400cf6f 1251 * Return a bit from a bignum; 0 is least significant, etc.
1252 */
32874aea 1253int bignum_bit(Bignum bn, int i)
1254{
62ddb51e 1255 if (i >= (int)(BIGNUM_INT_BITS * bn[0]))
32874aea 1256 return 0; /* beyond the end */
9400cf6f 1257 else
a3412f52 1258 return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
9400cf6f 1259}
1260
1261/*
1262 * Set a bit in a bignum; 0 is least significant, etc.
1263 */
32874aea 1264void bignum_set_bit(Bignum bn, int bitnum, int value)
1265{
62ddb51e 1266 if (bitnum >= (int)(BIGNUM_INT_BITS * bn[0]))
32874aea 1267 abort(); /* beyond the end */
9400cf6f 1268 else {
a3412f52 1269 int v = bitnum / BIGNUM_INT_BITS + 1;
1270 int mask = 1 << (bitnum % BIGNUM_INT_BITS);
32874aea 1271 if (value)
1272 bn[v] |= mask;
1273 else
1274 bn[v] &= ~mask;
9400cf6f 1275 }
1276}
1277
1278/*
2e85c969 1279 * Write a SSH-1-format bignum into a buffer. It is assumed the
5c58ad2d 1280 * buffer is big enough. Returns the number of bytes used.
1281 */
32874aea 1282int ssh1_write_bignum(void *data, Bignum bn)
1283{
5c58ad2d 1284 unsigned char *p = data;
1285 int len = ssh1_bignum_length(bn);
1286 int i;
ddecd643 1287 int bitc = bignum_bitcount(bn);
5c58ad2d 1288
1289 *p++ = (bitc >> 8) & 0xFF;
32874aea 1290 *p++ = (bitc) & 0xFF;
1291 for (i = len - 2; i--;)
1292 *p++ = bignum_byte(bn, i);
5c58ad2d 1293 return len;
1294}
9400cf6f 1295
1296/*
1297 * Compare two bignums. Returns like strcmp.
1298 */
32874aea 1299int bignum_cmp(Bignum a, Bignum b)
1300{
9400cf6f 1301 int amax = a[0], bmax = b[0];
1302 int i = (amax > bmax ? amax : bmax);
1303 while (i) {
a3412f52 1304 BignumInt aval = (i > amax ? 0 : a[i]);
1305 BignumInt bval = (i > bmax ? 0 : b[i]);
32874aea 1306 if (aval < bval)
1307 return -1;
1308 if (aval > bval)
1309 return +1;
1310 i--;
9400cf6f 1311 }
1312 return 0;
1313}
1314
1315/*
1316 * Right-shift one bignum to form another.
1317 */
32874aea 1318Bignum bignum_rshift(Bignum a, int shift)
1319{
9400cf6f 1320 Bignum ret;
1321 int i, shiftw, shiftb, shiftbb, bits;
a3412f52 1322 BignumInt ai, ai1;
9400cf6f 1323
ddecd643 1324 bits = bignum_bitcount(a) - shift;
a3412f52 1325 ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
9400cf6f 1326
1327 if (ret) {
a3412f52 1328 shiftw = shift / BIGNUM_INT_BITS;
1329 shiftb = shift % BIGNUM_INT_BITS;
1330 shiftbb = BIGNUM_INT_BITS - shiftb;
32874aea 1331
1332 ai1 = a[shiftw + 1];
62ddb51e 1333 for (i = 1; i <= (int)ret[0]; i++) {
32874aea 1334 ai = ai1;
62ddb51e 1335 ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
a3412f52 1336 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
32874aea 1337 }
9400cf6f 1338 }
1339
1340 return ret;
1341}
1342
1343/*
1344 * Non-modular multiplication and addition.
1345 */
32874aea 1346Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
1347{
9400cf6f 1348 int alen = a[0], blen = b[0];
1349 int mlen = (alen > blen ? alen : blen);
1350 int rlen, i, maxspot;
5a502a19 1351 int wslen;
a3412f52 1352 BignumInt *workspace;
9400cf6f 1353 Bignum ret;
1354
5a502a19 1355 /* mlen space for a, mlen space for b, 2*mlen for result,
1356 * plus scratch space for multiplication */
1357 wslen = mlen * 4 + mul_compute_scratch(mlen);
1358 workspace = snewn(wslen, BignumInt);
9400cf6f 1359 for (i = 0; i < mlen; i++) {
62ddb51e 1360 workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
1361 workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
9400cf6f 1362 }
1363
32874aea 1364 internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
5a502a19 1365 workspace + 2 * mlen, mlen, workspace + 4 * mlen);
9400cf6f 1366
1367 /* now just copy the result back */
1368 rlen = alen + blen + 1;
62ddb51e 1369 if (addend && rlen <= (int)addend[0])
32874aea 1370 rlen = addend[0] + 1;
9400cf6f 1371 ret = newbn(rlen);
1372 maxspot = 0;
62ddb51e 1373 for (i = 1; i <= (int)ret[0]; i++) {
32874aea 1374 ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
1375 if (ret[i] != 0)
1376 maxspot = i;
9400cf6f 1377 }
1378 ret[0] = maxspot;
1379
1380 /* now add in the addend, if any */
1381 if (addend) {
a3412f52 1382 BignumDblInt carry = 0;
32874aea 1383 for (i = 1; i <= rlen; i++) {
62ddb51e 1384 carry += (i <= (int)ret[0] ? ret[i] : 0);
1385 carry += (i <= (int)addend[0] ? addend[i] : 0);
a3412f52 1386 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1387 carry >>= BIGNUM_INT_BITS;
32874aea 1388 if (ret[i] != 0 && i > maxspot)
1389 maxspot = i;
1390 }
9400cf6f 1391 }
1392 ret[0] = maxspot;
1393
5a502a19 1394 for (i = 0; i < wslen; i++)
1395 workspace[i] = 0;
c523f55f 1396 sfree(workspace);
9400cf6f 1397 return ret;
1398}
1399
1400/*
1401 * Non-modular multiplication.
1402 */
32874aea 1403Bignum bigmul(Bignum a, Bignum b)
1404{
9400cf6f 1405 return bigmuladd(a, b, NULL);
1406}
1407
1408/*
d737853b 1409 * Simple addition.
1410 */
1411Bignum bigadd(Bignum a, Bignum b)
1412{
1413 int alen = a[0], blen = b[0];
1414 int rlen = (alen > blen ? alen : blen) + 1;
1415 int i, maxspot;
1416 Bignum ret;
1417 BignumDblInt carry;
1418
1419 ret = newbn(rlen);
1420
1421 carry = 0;
1422 maxspot = 0;
1423 for (i = 1; i <= rlen; i++) {
1424 carry += (i <= (int)a[0] ? a[i] : 0);
1425 carry += (i <= (int)b[0] ? b[i] : 0);
1426 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1427 carry >>= BIGNUM_INT_BITS;
1428 if (ret[i] != 0 && i > maxspot)
1429 maxspot = i;
1430 }
1431 ret[0] = maxspot;
1432
1433 return ret;
1434}
1435
1436/*
1437 * Subtraction. Returns a-b, or NULL if the result would come out
1438 * negative (recall that this entire bignum module only handles
1439 * positive numbers).
1440 */
1441Bignum bigsub(Bignum a, Bignum b)
1442{
1443 int alen = a[0], blen = b[0];
1444 int rlen = (alen > blen ? alen : blen);
1445 int i, maxspot;
1446 Bignum ret;
1447 BignumDblInt carry;
1448
1449 ret = newbn(rlen);
1450
1451 carry = 1;
1452 maxspot = 0;
1453 for (i = 1; i <= rlen; i++) {
1454 carry += (i <= (int)a[0] ? a[i] : 0);
1455 carry += (i <= (int)b[0] ? b[i] ^ BIGNUM_INT_MASK : BIGNUM_INT_MASK);
1456 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1457 carry >>= BIGNUM_INT_BITS;
1458 if (ret[i] != 0 && i > maxspot)
1459 maxspot = i;
1460 }
1461 ret[0] = maxspot;
1462
1463 if (!carry) {
1464 freebn(ret);
1465 return NULL;
1466 }
1467
1468 return ret;
1469}
1470
1471/*
3709bfe9 1472 * Create a bignum which is the bitmask covering another one. That
1473 * is, the smallest integer which is >= N and is also one less than
1474 * a power of two.
1475 */
32874aea 1476Bignum bignum_bitmask(Bignum n)
1477{
3709bfe9 1478 Bignum ret = copybn(n);
1479 int i;
a3412f52 1480 BignumInt j;
3709bfe9 1481
1482 i = ret[0];
1483 while (n[i] == 0 && i > 0)
32874aea 1484 i--;
3709bfe9 1485 if (i <= 0)
32874aea 1486 return ret; /* input was zero */
3709bfe9 1487 j = 1;
1488 while (j < n[i])
32874aea 1489 j = 2 * j + 1;
3709bfe9 1490 ret[i] = j;
1491 while (--i > 0)
a3412f52 1492 ret[i] = BIGNUM_INT_MASK;
3709bfe9 1493 return ret;
1494}
1495
1496/*
5c72ca61 1497 * Convert a (max 32-bit) long into a bignum.
9400cf6f 1498 */
a3412f52 1499Bignum bignum_from_long(unsigned long nn)
32874aea 1500{
9400cf6f 1501 Bignum ret;
a3412f52 1502 BignumDblInt n = nn;
9400cf6f 1503
5c72ca61 1504 ret = newbn(3);
a3412f52 1505 ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
1506 ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
5c72ca61 1507 ret[3] = 0;
1508 ret[0] = (ret[2] ? 2 : 1);
32874aea 1509 return ret;
9400cf6f 1510}
1511
1512/*
1513 * Add a long to a bignum.
1514 */
a3412f52 1515Bignum bignum_add_long(Bignum number, unsigned long addendx)
32874aea 1516{
1517 Bignum ret = newbn(number[0] + 1);
9400cf6f 1518 int i, maxspot = 0;
a3412f52 1519 BignumDblInt carry = 0, addend = addendx;
9400cf6f 1520
62ddb51e 1521 for (i = 1; i <= (int)ret[0]; i++) {
a3412f52 1522 carry += addend & BIGNUM_INT_MASK;
62ddb51e 1523 carry += (i <= (int)number[0] ? number[i] : 0);
a3412f52 1524 addend >>= BIGNUM_INT_BITS;
1525 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1526 carry >>= BIGNUM_INT_BITS;
32874aea 1527 if (ret[i] != 0)
1528 maxspot = i;
9400cf6f 1529 }
1530 ret[0] = maxspot;
1531 return ret;
1532}
1533
1534/*
1535 * Compute the residue of a bignum, modulo a (max 16-bit) short.
1536 */
32874aea 1537unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
1538{
a3412f52 1539 BignumDblInt mod, r;
9400cf6f 1540 int i;
1541
1542 r = 0;
1543 mod = modulus;
1544 for (i = number[0]; i > 0; i--)
736cc6d1 1545 r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
6e522441 1546 return (unsigned short) r;
9400cf6f 1547}
1548
a3412f52 1549#ifdef DEBUG
32874aea 1550void diagbn(char *prefix, Bignum md)
1551{
9400cf6f 1552 int i, nibbles, morenibbles;
1553 static const char hex[] = "0123456789ABCDEF";
1554
5c72ca61 1555 debug(("%s0x", prefix ? prefix : ""));
9400cf6f 1556
32874aea 1557 nibbles = (3 + bignum_bitcount(md)) / 4;
1558 if (nibbles < 1)
1559 nibbles = 1;
1560 morenibbles = 4 * md[0] - nibbles;
1561 for (i = 0; i < morenibbles; i++)
5c72ca61 1562 debug(("-"));
32874aea 1563 for (i = nibbles; i--;)
5c72ca61 1564 debug(("%c",
1565 hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
9400cf6f 1566
32874aea 1567 if (prefix)
5c72ca61 1568 debug(("\n"));
1569}
f28753ab 1570#endif
5c72ca61 1571
1572/*
1573 * Simple division.
1574 */
1575Bignum bigdiv(Bignum a, Bignum b)
1576{
1577 Bignum q = newbn(a[0]);
1578 bigdivmod(a, b, NULL, q);
1579 return q;
1580}
1581
1582/*
1583 * Simple remainder.
1584 */
1585Bignum bigmod(Bignum a, Bignum b)
1586{
1587 Bignum r = newbn(b[0]);
1588 bigdivmod(a, b, r, NULL);
1589 return r;
9400cf6f 1590}
1591
1592/*
1593 * Greatest common divisor.
1594 */
32874aea 1595Bignum biggcd(Bignum av, Bignum bv)
1596{
9400cf6f 1597 Bignum a = copybn(av);
1598 Bignum b = copybn(bv);
1599
9400cf6f 1600 while (bignum_cmp(b, Zero) != 0) {
32874aea 1601 Bignum t = newbn(b[0]);
5c72ca61 1602 bigdivmod(a, b, t, NULL);
32874aea 1603 while (t[0] > 1 && t[t[0]] == 0)
1604 t[0]--;
1605 freebn(a);
1606 a = b;
1607 b = t;
9400cf6f 1608 }
1609
1610 freebn(b);
1611 return a;
1612}
1613
1614/*
1615 * Modular inverse, using Euclid's extended algorithm.
1616 */
32874aea 1617Bignum modinv(Bignum number, Bignum modulus)
1618{
9400cf6f 1619 Bignum a = copybn(modulus);
1620 Bignum b = copybn(number);
1621 Bignum xp = copybn(Zero);
1622 Bignum x = copybn(One);
1623 int sign = +1;
1624
1625 while (bignum_cmp(b, One) != 0) {
32874aea 1626 Bignum t = newbn(b[0]);
1627 Bignum q = newbn(a[0]);
5c72ca61 1628 bigdivmod(a, b, t, q);
32874aea 1629 while (t[0] > 1 && t[t[0]] == 0)
1630 t[0]--;
1631 freebn(a);
1632 a = b;
1633 b = t;
1634 t = xp;
1635 xp = x;
1636 x = bigmuladd(q, xp, t);
1637 sign = -sign;
1638 freebn(t);
75374b2f 1639 freebn(q);
9400cf6f 1640 }
1641
1642 freebn(b);
1643 freebn(a);
1644 freebn(xp);
1645
1646 /* now we know that sign * x == 1, and that x < modulus */
1647 if (sign < 0) {
32874aea 1648 /* set a new x to be modulus - x */
1649 Bignum newx = newbn(modulus[0]);
a3412f52 1650 BignumInt carry = 0;
32874aea 1651 int maxspot = 1;
1652 int i;
1653
62ddb51e 1654 for (i = 1; i <= (int)newx[0]; i++) {
1655 BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
1656 BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
32874aea 1657 newx[i] = aword - bword - carry;
1658 bword = ~bword;
1659 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
1660 if (newx[i] != 0)
1661 maxspot = i;
1662 }
1663 newx[0] = maxspot;
1664 freebn(x);
1665 x = newx;
9400cf6f 1666 }
1667
1668 /* and return. */
1669 return x;
1670}
6e522441 1671
1672/*
1673 * Render a bignum into decimal. Return a malloced string holding
1674 * the decimal representation.
1675 */
32874aea 1676char *bignum_decimal(Bignum x)
1677{
6e522441 1678 int ndigits, ndigit;
1679 int i, iszero;
a3412f52 1680 BignumDblInt carry;
6e522441 1681 char *ret;
a3412f52 1682 BignumInt *workspace;
6e522441 1683
1684 /*
1685 * First, estimate the number of digits. Since log(10)/log(2)
1686 * is just greater than 93/28 (the joys of continued fraction
1687 * approximations...) we know that for every 93 bits, we need
1688 * at most 28 digits. This will tell us how much to malloc.
1689 *
1690 * Formally: if x has i bits, that means x is strictly less
1691 * than 2^i. Since 2 is less than 10^(28/93), this is less than
1692 * 10^(28i/93). We need an integer power of ten, so we must
1693 * round up (rounding down might make it less than x again).
1694 * Therefore if we multiply the bit count by 28/93, rounding
1695 * up, we will have enough digits.
74c79ce8 1696 *
1697 * i=0 (i.e., x=0) is an irritating special case.
6e522441 1698 */
ddecd643 1699 i = bignum_bitcount(x);
74c79ce8 1700 if (!i)
1701 ndigits = 1; /* x = 0 */
1702 else
1703 ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
32874aea 1704 ndigits++; /* allow for trailing \0 */
3d88e64d 1705 ret = snewn(ndigits, char);
6e522441 1706
1707 /*
1708 * Now allocate some workspace to hold the binary form as we
1709 * repeatedly divide it by ten. Initialise this to the
1710 * big-endian form of the number.
1711 */
a3412f52 1712 workspace = snewn(x[0], BignumInt);
62ddb51e 1713 for (i = 0; i < (int)x[0]; i++)
32874aea 1714 workspace[i] = x[x[0] - i];
6e522441 1715
1716 /*
1717 * Next, write the decimal number starting with the last digit.
1718 * We use ordinary short division, dividing 10 into the
1719 * workspace.
1720 */
32874aea 1721 ndigit = ndigits - 1;
6e522441 1722 ret[ndigit] = '\0';
1723 do {
32874aea 1724 iszero = 1;
1725 carry = 0;
62ddb51e 1726 for (i = 0; i < (int)x[0]; i++) {
a3412f52 1727 carry = (carry << BIGNUM_INT_BITS) + workspace[i];
1728 workspace[i] = (BignumInt) (carry / 10);
32874aea 1729 if (workspace[i])
1730 iszero = 0;
1731 carry %= 10;
1732 }
1733 ret[--ndigit] = (char) (carry + '0');
6e522441 1734 } while (!iszero);
1735
1736 /*
1737 * There's a chance we've fallen short of the start of the
1738 * string. Correct if so.
1739 */
1740 if (ndigit > 0)
32874aea 1741 memmove(ret, ret + ndigit, ndigits - ndigit);
6e522441 1742
1743 /*
1744 * Done.
1745 */
c523f55f 1746 sfree(workspace);
6e522441 1747 return ret;
1748}
f3c29e34 1749
1750#ifdef TESTBN
1751
1752#include <stdio.h>
1753#include <stdlib.h>
1754#include <ctype.h>
1755
1756/*
1757 * gcc -g -O0 -DTESTBN -o testbn sshbn.c misc.c -I unix -I charset
f84f1e46 1758 *
1759 * Then feed to this program's standard input the output of
1760 * testdata/bignum.py .
f3c29e34 1761 */
1762
1763void modalfatalbox(char *p, ...)
1764{
1765 va_list ap;
1766 fprintf(stderr, "FATAL ERROR: ");
1767 va_start(ap, p);
1768 vfprintf(stderr, p, ap);
1769 va_end(ap);
1770 fputc('\n', stderr);
1771 exit(1);
1772}
1773
1774#define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' )
1775
1776int main(int argc, char **argv)
1777{
1778 char *buf;
1779 int line = 0;
1780 int passes = 0, fails = 0;
1781
1782 while ((buf = fgetline(stdin)) != NULL) {
1783 int maxlen = strlen(buf);
1784 unsigned char *data = snewn(maxlen, unsigned char);
f84f1e46 1785 unsigned char *ptrs[5], *q;
f3c29e34 1786 int ptrnum;
1787 char *bufp = buf;
1788
1789 line++;
1790
1791 q = data;
1792 ptrnum = 0;
1793
f84f1e46 1794 while (*bufp && !isspace((unsigned char)*bufp))
1795 bufp++;
1796 if (bufp)
1797 *bufp++ = '\0';
1798
f3c29e34 1799 while (*bufp) {
1800 char *start, *end;
1801 int i;
1802
1803 while (*bufp && !isxdigit((unsigned char)*bufp))
1804 bufp++;
1805 start = bufp;
1806
1807 if (!*bufp)
1808 break;
1809
1810 while (*bufp && isxdigit((unsigned char)*bufp))
1811 bufp++;
1812 end = bufp;
1813
1814 if (ptrnum >= lenof(ptrs))
1815 break;
1816 ptrs[ptrnum++] = q;
1817
1818 for (i = -((end - start) & 1); i < end-start; i += 2) {
1819 unsigned char val = (i < 0 ? 0 : fromxdigit(start[i]));
1820 val = val * 16 + fromxdigit(start[i+1]);
1821 *q++ = val;
1822 }
1823
1824 ptrs[ptrnum] = q;
1825 }
1826
f84f1e46 1827 if (!strcmp(buf, "mul")) {
1828 Bignum a, b, c, p;
1829
1830 if (ptrnum != 3) {
1831 printf("%d: mul with %d parameters, expected 3\n", line);
1832 exit(1);
1833 }
1834 a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1835 b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1836 c = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1837 p = bigmul(a, b);
f3c29e34 1838
1839 if (bignum_cmp(c, p) == 0) {
1840 passes++;
1841 } else {
1842 char *as = bignum_decimal(a);
1843 char *bs = bignum_decimal(b);
1844 char *cs = bignum_decimal(c);
1845 char *ps = bignum_decimal(p);
1846
1847 printf("%d: fail: %s * %s gave %s expected %s\n",
1848 line, as, bs, ps, cs);
1849 fails++;
1850
1851 sfree(as);
1852 sfree(bs);
1853 sfree(cs);
1854 sfree(ps);
1855 }
1856 freebn(a);
1857 freebn(b);
1858 freebn(c);
1859 freebn(p);
f84f1e46 1860 } else if (!strcmp(buf, "pow")) {
1861 Bignum base, expt, modulus, expected, answer;
1862
1863 if (ptrnum != 4) {
1864 printf("%d: mul with %d parameters, expected 3\n", line);
1865 exit(1);
1866 }
1867
1868 base = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1869 expt = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1870 modulus = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1871 expected = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
1872 answer = modpow(base, expt, modulus);
1873
1874 if (bignum_cmp(expected, answer) == 0) {
1875 passes++;
1876 } else {
1877 char *as = bignum_decimal(base);
1878 char *bs = bignum_decimal(expt);
1879 char *cs = bignum_decimal(modulus);
1880 char *ds = bignum_decimal(answer);
1881 char *ps = bignum_decimal(expected);
1882
1883 printf("%d: fail: %s ^ %s mod %s gave %s expected %s\n",
1884 line, as, bs, cs, ds, ps);
1885 fails++;
1886
1887 sfree(as);
1888 sfree(bs);
1889 sfree(cs);
1890 sfree(ds);
1891 sfree(ps);
1892 }
1893 freebn(base);
1894 freebn(expt);
1895 freebn(modulus);
1896 freebn(expected);
1897 freebn(answer);
1898 } else {
1899 printf("%d: unrecognised test keyword: '%s'\n", line, buf);
1900 exit(1);
f3c29e34 1901 }
f84f1e46 1902
f3c29e34 1903 sfree(buf);
1904 sfree(data);
1905 }
1906
1907 printf("passed %d failed %d total %d\n", passes, fails, passes+fails);
1908 return fails != 0;
1909}
1910
1911#endif