Update DSS implementation to use new bignum routines
[u/mdw/putty] / sshbn.c
CommitLineData
e5574168 1/*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
8
9#include "ssh.h"
10
7cca0d81 11unsigned short bnZero[1] = { 0 };
12unsigned short bnOne[2] = { 1, 1 };
e5574168 13
7d6ee6ff 14/*
15 * The Bignum format is an array of `unsigned short'. The first
16 * element of the array counts the remaining elements. The
17 * remaining elements express the actual number, base 2^16, _least_
18 * significant digit first. (So it's trivial to extract the bit
19 * with value 2^n for any n.)
20 *
21 * All Bignums in this module are positive. Negative numbers must
22 * be dealt with outside it.
23 *
24 * INVARIANT: the most significant word of any Bignum must be
25 * nonzero.
26 */
27
7cca0d81 28Bignum Zero = bnZero, One = bnOne;
e5574168 29
30Bignum newbn(int length) {
31 Bignum b = malloc((length+1)*sizeof(unsigned short));
32 if (!b)
33 abort(); /* FIXME */
34 memset(b, 0, (length+1)*sizeof(*b));
35 b[0] = length;
36 return b;
37}
38
7cca0d81 39Bignum copybn(Bignum orig) {
40 Bignum b = malloc((orig[0]+1)*sizeof(unsigned short));
41 if (!b)
42 abort(); /* FIXME */
43 memcpy(b, orig, (orig[0]+1)*sizeof(*b));
44 return b;
45}
46
e5574168 47void freebn(Bignum b) {
48 /*
49 * Burn the evidence, just in case.
50 */
51 memset(b, 0, sizeof(b[0]) * (b[0] + 1));
52 free(b);
53}
54
55/*
56 * Compute c = a * b.
57 * Input is in the first len words of a and b.
58 * Result is returned in the first 2*len words of c.
59 */
9400cf6f 60static void internal_mul(unsigned short *a, unsigned short *b,
61 unsigned short *c, int len)
e5574168 62{
63 int i, j;
64 unsigned long ai, t;
65
9400cf6f 66 for (j = 0; j < 2*len; j++)
67 c[j] = 0;
e5574168 68
69 for (i = len - 1; i >= 0; i--) {
70 ai = a[i];
71 t = 0;
72 for (j = len - 1; j >= 0; j--) {
73 t += ai * (unsigned long) b[j];
74 t += (unsigned long) c[i+j+1];
75 c[i+j+1] = (unsigned short)t;
76 t = t >> 16;
77 }
78 c[i] = (unsigned short)t;
79 }
80}
81
6e522441 82static void internal_add_shifted(unsigned short *number,
83 unsigned n, int shift) {
9400cf6f 84 int word = 1 + (shift / 16);
85 int bshift = shift % 16;
6e522441 86 unsigned long addend;
9400cf6f 87
88 addend = n << bshift;
89
90 while (addend) {
91 addend += number[word];
6e522441 92 number[word] = (unsigned short) addend & 0xFFFF;
9400cf6f 93 addend >>= 16;
94 word++;
95 }
96}
97
e5574168 98/*
99 * Compute a = a % m.
9400cf6f 100 * Input in first alen words of a and first mlen words of m.
101 * Output in first alen words of a
102 * (of which first alen-mlen words will be zero).
e5574168 103 * The MSW of m MUST have its high bit set.
9400cf6f 104 * Quotient is accumulated in the `quotient' array, which is a Bignum
105 * rather than the internal bigendian format. Quotient parts are shifted
106 * left by `qshift' before adding into quot.
e5574168 107 */
9400cf6f 108static void internal_mod(unsigned short *a, int alen,
109 unsigned short *m, int mlen,
110 unsigned short *quot, int qshift)
e5574168 111{
112 unsigned short m0, m1;
113 unsigned int h;
114 int i, k;
115
e5574168 116 m0 = m[0];
9400cf6f 117 if (mlen > 1)
118 m1 = m[1];
119 else
120 m1 = 0;
e5574168 121
9400cf6f 122 for (i = 0; i <= alen-mlen; i++) {
e5574168 123 unsigned long t;
9400cf6f 124 unsigned int q, r, c, ai1;
e5574168 125
126 if (i == 0) {
127 h = 0;
128 } else {
129 h = a[i-1];
130 a[i-1] = 0;
131 }
132
9400cf6f 133 if (i == alen-1)
134 ai1 = 0;
135 else
136 ai1 = a[i+1];
137
e5574168 138 /* Find q = h:a[i] / m0 */
139 t = ((unsigned long) h << 16) + a[i];
140 q = t / m0;
141 r = t % m0;
142
143 /* Refine our estimate of q by looking at
144 h:a[i]:a[i+1] / m0:m1 */
145 t = (long) m1 * (long) q;
9400cf6f 146 if (t > ((unsigned long) r << 16) + ai1) {
e5574168 147 q--;
148 t -= m1;
149 r = (r + m0) & 0xffff; /* overflow? */
150 if (r >= (unsigned long)m0 &&
9400cf6f 151 t > ((unsigned long) r << 16) + ai1)
e5574168 152 q--;
153 }
154
9400cf6f 155 /* Subtract q * m from a[i...] */
e5574168 156 c = 0;
9400cf6f 157 for (k = mlen - 1; k >= 0; k--) {
e5574168 158 t = (long) q * (long) m[k];
159 t += c;
160 c = t >> 16;
161 if ((unsigned short) t > a[i+k]) c++;
162 a[i+k] -= (unsigned short) t;
163 }
164
165 /* Add back m in case of borrow */
166 if (c != h) {
167 t = 0;
9400cf6f 168 for (k = mlen - 1; k >= 0; k--) {
e5574168 169 t += m[k];
170 t += a[i+k];
171 a[i+k] = (unsigned short)t;
172 t = t >> 16;
173 }
9400cf6f 174 q--;
e5574168 175 }
9400cf6f 176 if (quot)
177 internal_add_shifted(quot, q, qshift + 16 * (alen-mlen-i));
e5574168 178 }
179}
180
181/*
182 * Compute (base ^ exp) % mod.
183 * The base MUST be smaller than the modulus.
184 * The most significant word of mod MUST be non-zero.
185 * We assume that the result array is the same size as the mod array.
186 */
187void modpow(Bignum base, Bignum exp, Bignum mod, Bignum result)
188{
189 unsigned short *a, *b, *n, *m;
190 int mshift;
191 int mlen, i, j;
192
193 /* Allocate m of size mlen, copy mod to m */
194 /* We use big endian internally */
195 mlen = mod[0];
196 m = malloc(mlen * sizeof(unsigned short));
197 for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j];
198
199 /* Shift m left to make msb bit set */
200 for (mshift = 0; mshift < 15; mshift++)
201 if ((m[0] << mshift) & 0x8000) break;
202 if (mshift) {
203 for (i = 0; i < mlen - 1; i++)
204 m[i] = (m[i] << mshift) | (m[i+1] >> (16-mshift));
205 m[mlen-1] = m[mlen-1] << mshift;
206 }
207
208 /* Allocate n of size mlen, copy base to n */
209 n = malloc(mlen * sizeof(unsigned short));
210 i = mlen - base[0];
211 for (j = 0; j < i; j++) n[j] = 0;
212 for (j = 0; j < base[0]; j++) n[i+j] = base[base[0] - j];
213
214 /* Allocate a and b of size 2*mlen. Set a = 1 */
215 a = malloc(2 * mlen * sizeof(unsigned short));
216 b = malloc(2 * mlen * sizeof(unsigned short));
217 for (i = 0; i < 2*mlen; i++) a[i] = 0;
218 a[2*mlen-1] = 1;
219
220 /* Skip leading zero bits of exp. */
221 i = 0; j = 15;
222 while (i < exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
223 j--;
224 if (j < 0) { i++; j = 15; }
225 }
226
227 /* Main computation */
228 while (i < exp[0]) {
229 while (j >= 0) {
9400cf6f 230 internal_mul(a + mlen, a + mlen, b, mlen);
231 internal_mod(b, mlen*2, m, mlen, NULL, 0);
e5574168 232 if ((exp[exp[0] - i] & (1 << j)) != 0) {
9400cf6f 233 internal_mul(b + mlen, n, a, mlen);
234 internal_mod(a, mlen*2, m, mlen, NULL, 0);
e5574168 235 } else {
236 unsigned short *t;
237 t = a; a = b; b = t;
238 }
239 j--;
240 }
241 i++; j = 15;
242 }
243
244 /* Fixup result in case the modulus was shifted */
245 if (mshift) {
246 for (i = mlen - 1; i < 2*mlen - 1; i++)
247 a[i] = (a[i] << mshift) | (a[i+1] >> (16-mshift));
248 a[2*mlen-1] = a[2*mlen-1] << mshift;
9400cf6f 249 internal_mod(a, mlen*2, m, mlen, NULL, 0);
e5574168 250 for (i = 2*mlen - 1; i >= mlen; i--)
251 a[i] = (a[i] >> mshift) | (a[i-1] << (16-mshift));
252 }
253
254 /* Copy result to buffer */
255 for (i = 0; i < mlen; i++)
256 result[result[0] - i] = a[i+mlen];
257
258 /* Free temporary arrays */
259 for (i = 0; i < 2*mlen; i++) a[i] = 0; free(a);
260 for (i = 0; i < 2*mlen; i++) b[i] = 0; free(b);
261 for (i = 0; i < mlen; i++) m[i] = 0; free(m);
262 for (i = 0; i < mlen; i++) n[i] = 0; free(n);
263}
7cca0d81 264
265/*
266 * Compute (p * q) % mod.
267 * The most significant word of mod MUST be non-zero.
268 * We assume that the result array is the same size as the mod array.
269 */
270void modmul(Bignum p, Bignum q, Bignum mod, Bignum result)
271{
272 unsigned short *a, *n, *m, *o;
273 int mshift;
274 int pqlen, mlen, i, j;
275
276 /* Allocate m of size mlen, copy mod to m */
277 /* We use big endian internally */
278 mlen = mod[0];
279 m = malloc(mlen * sizeof(unsigned short));
280 for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j];
281
282 /* Shift m left to make msb bit set */
283 for (mshift = 0; mshift < 15; mshift++)
284 if ((m[0] << mshift) & 0x8000) break;
285 if (mshift) {
286 for (i = 0; i < mlen - 1; i++)
287 m[i] = (m[i] << mshift) | (m[i+1] >> (16-mshift));
288 m[mlen-1] = m[mlen-1] << mshift;
289 }
290
291 pqlen = (p[0] > q[0] ? p[0] : q[0]);
292
293 /* Allocate n of size pqlen, copy p to n */
294 n = malloc(pqlen * sizeof(unsigned short));
295 i = pqlen - p[0];
296 for (j = 0; j < i; j++) n[j] = 0;
297 for (j = 0; j < p[0]; j++) n[i+j] = p[p[0] - j];
298
299 /* Allocate o of size pqlen, copy q to o */
300 o = malloc(pqlen * sizeof(unsigned short));
301 i = pqlen - q[0];
302 for (j = 0; j < i; j++) o[j] = 0;
303 for (j = 0; j < q[0]; j++) o[i+j] = q[q[0] - j];
304
305 /* Allocate a of size 2*pqlen for result */
306 a = malloc(2 * pqlen * sizeof(unsigned short));
307
308 /* Main computation */
9400cf6f 309 internal_mul(n, o, a, pqlen);
310 internal_mod(a, pqlen*2, m, mlen, NULL, 0);
7cca0d81 311
312 /* Fixup result in case the modulus was shifted */
313 if (mshift) {
314 for (i = 2*pqlen - mlen - 1; i < 2*pqlen - 1; i++)
315 a[i] = (a[i] << mshift) | (a[i+1] >> (16-mshift));
316 a[2*pqlen-1] = a[2*pqlen-1] << mshift;
9400cf6f 317 internal_mod(a, pqlen*2, m, mlen, NULL, 0);
7cca0d81 318 for (i = 2*pqlen - 1; i >= 2*pqlen - mlen; i--)
319 a[i] = (a[i] >> mshift) | (a[i-1] << (16-mshift));
320 }
321
322 /* Copy result to buffer */
323 for (i = 0; i < mlen; i++)
324 result[result[0] - i] = a[i+2*pqlen-mlen];
325
326 /* Free temporary arrays */
327 for (i = 0; i < 2*pqlen; i++) a[i] = 0; free(a);
328 for (i = 0; i < mlen; i++) m[i] = 0; free(m);
329 for (i = 0; i < pqlen; i++) n[i] = 0; free(n);
330 for (i = 0; i < pqlen; i++) o[i] = 0; free(o);
331}
332
333/*
9400cf6f 334 * Compute p % mod.
335 * The most significant word of mod MUST be non-zero.
336 * We assume that the result array is the same size as the mod array.
337 * We optionally write out a quotient.
338 */
339void bigmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
340{
341 unsigned short *n, *m;
342 int mshift;
343 int plen, mlen, i, j;
344
345 /* Allocate m of size mlen, copy mod to m */
346 /* We use big endian internally */
347 mlen = mod[0];
348 m = malloc(mlen * sizeof(unsigned short));
349 for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j];
350
351 /* Shift m left to make msb bit set */
352 for (mshift = 0; mshift < 15; mshift++)
353 if ((m[0] << mshift) & 0x8000) break;
354 if (mshift) {
355 for (i = 0; i < mlen - 1; i++)
356 m[i] = (m[i] << mshift) | (m[i+1] >> (16-mshift));
357 m[mlen-1] = m[mlen-1] << mshift;
358 }
359
360 plen = p[0];
361 /* Ensure plen > mlen */
362 if (plen <= mlen) plen = mlen+1;
363
364 /* Allocate n of size plen, copy p to n */
365 n = malloc(plen * sizeof(unsigned short));
366 for (j = 0; j < plen; j++) n[j] = 0;
367 for (j = 1; j <= p[0]; j++) n[plen-j] = p[j];
368
369 /* Main computation */
370 internal_mod(n, plen, m, mlen, quotient, mshift);
371
372 /* Fixup result in case the modulus was shifted */
373 if (mshift) {
374 for (i = plen - mlen - 1; i < plen - 1; i++)
375 n[i] = (n[i] << mshift) | (n[i+1] >> (16-mshift));
376 n[plen-1] = n[plen-1] << mshift;
377 internal_mod(n, plen, m, mlen, quotient, 0);
378 for (i = plen - 1; i >= plen - mlen; i--)
379 n[i] = (n[i] >> mshift) | (n[i-1] << (16-mshift));
380 }
381
382 /* Copy result to buffer */
383 for (i = 1; i <= result[0]; i++) {
384 int j = plen-i;
385 result[i] = j>=0 ? n[j] : 0;
386 }
387
388 /* Free temporary arrays */
389 for (i = 0; i < mlen; i++) m[i] = 0; free(m);
390 for (i = 0; i < plen; i++) n[i] = 0; free(n);
391}
392
393/*
7cca0d81 394 * Decrement a number.
395 */
396void decbn(Bignum bn) {
397 int i = 1;
398 while (i < bn[0] && bn[i] == 0)
399 bn[i++] = 0xFFFF;
400 bn[i]--;
401}
402
403/*
404 * Read an ssh1-format bignum from a data buffer. Return the number
405 * of bytes consumed.
406 */
407int ssh1_read_bignum(unsigned char *data, Bignum *result) {
408 unsigned char *p = data;
409 Bignum bn;
410 int i;
411 int w, b;
412
413 w = 0;
414 for (i=0; i<2; i++)
415 w = (w << 8) + *p++;
416
417 b = (w+7)/8; /* bits -> bytes */
418 w = (w+15)/16; /* bits -> words */
419
a52f067e 420 if (!result) /* just return length */
421 return b + 2;
422
7cca0d81 423 bn = newbn(w);
424
425 for (i=1; i<=w; i++)
426 bn[i] = 0;
427 for (i=b; i-- ;) {
428 unsigned char byte = *p++;
429 if (i & 1)
430 bn[1+i/2] |= byte<<8;
431 else
432 bn[1+i/2] |= byte;
433 }
434
435 *result = bn;
436
437 return p - data;
438}
5c58ad2d 439
440/*
441 * Return the bit count of a bignum, for ssh1 encoding.
442 */
443int ssh1_bignum_bitcount(Bignum bn) {
444 int bitcount = bn[0] * 16 - 1;
445
446 while (bitcount >= 0 && (bn[bitcount/16+1] >> (bitcount % 16)) == 0)
447 bitcount--;
448 return bitcount + 1;
449}
450
451/*
452 * Return the byte length of a bignum when ssh1 encoded.
453 */
454int ssh1_bignum_length(Bignum bn) {
455 return 2 + (ssh1_bignum_bitcount(bn)+7)/8;
456}
457
458/*
459 * Return a byte from a bignum; 0 is least significant, etc.
460 */
461int bignum_byte(Bignum bn, int i) {
462 if (i >= 2*bn[0])
463 return 0; /* beyond the end */
464 else if (i & 1)
465 return (bn[i/2+1] >> 8) & 0xFF;
466 else
467 return (bn[i/2+1] ) & 0xFF;
468}
469
470/*
9400cf6f 471 * Return a bit from a bignum; 0 is least significant, etc.
472 */
473int bignum_bit(Bignum bn, int i) {
474 if (i >= 16*bn[0])
475 return 0; /* beyond the end */
476 else
477 return (bn[i/16+1] >> (i%16)) & 1;
478}
479
480/*
481 * Set a bit in a bignum; 0 is least significant, etc.
482 */
483void bignum_set_bit(Bignum bn, int bitnum, int value) {
484 if (bitnum >= 16*bn[0])
485 abort(); /* beyond the end */
486 else {
487 int v = bitnum/16+1;
488 int mask = 1 << (bitnum%16);
489 if (value)
490 bn[v] |= mask;
491 else
492 bn[v] &= ~mask;
493 }
494}
495
496/*
5c58ad2d 497 * Write a ssh1-format bignum into a buffer. It is assumed the
498 * buffer is big enough. Returns the number of bytes used.
499 */
500int ssh1_write_bignum(void *data, Bignum bn) {
501 unsigned char *p = data;
502 int len = ssh1_bignum_length(bn);
503 int i;
504 int bitc = ssh1_bignum_bitcount(bn);
505
506 *p++ = (bitc >> 8) & 0xFF;
507 *p++ = (bitc ) & 0xFF;
508 for (i = len-2; i-- ;)
509 *p++ = bignum_byte(bn, i);
510 return len;
511}
9400cf6f 512
513/*
514 * Compare two bignums. Returns like strcmp.
515 */
516int bignum_cmp(Bignum a, Bignum b) {
517 int amax = a[0], bmax = b[0];
518 int i = (amax > bmax ? amax : bmax);
519 while (i) {
520 unsigned short aval = (i > amax ? 0 : a[i]);
521 unsigned short bval = (i > bmax ? 0 : b[i]);
522 if (aval < bval) return -1;
523 if (aval > bval) return +1;
524 i--;
525 }
526 return 0;
527}
528
529/*
530 * Right-shift one bignum to form another.
531 */
532Bignum bignum_rshift(Bignum a, int shift) {
533 Bignum ret;
534 int i, shiftw, shiftb, shiftbb, bits;
535 unsigned short ai, ai1;
536
537 bits = ssh1_bignum_bitcount(a) - shift;
538 ret = newbn((bits+15)/16);
539
540 if (ret) {
541 shiftw = shift / 16;
542 shiftb = shift % 16;
543 shiftbb = 16 - shiftb;
544
545 ai1 = a[shiftw+1];
546 for (i = 1; i <= ret[0]; i++) {
547 ai = ai1;
548 ai1 = (i+shiftw+1 <= a[0] ? a[i+shiftw+1] : 0);
549 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & 0xFFFF;
550 }
551 }
552
553 return ret;
554}
555
556/*
557 * Non-modular multiplication and addition.
558 */
559Bignum bigmuladd(Bignum a, Bignum b, Bignum addend) {
560 int alen = a[0], blen = b[0];
561 int mlen = (alen > blen ? alen : blen);
562 int rlen, i, maxspot;
563 unsigned short *workspace;
564 Bignum ret;
565
566 /* mlen space for a, mlen space for b, 2*mlen for result */
567 workspace = malloc(mlen * 4 * sizeof(unsigned short));
568 for (i = 0; i < mlen; i++) {
569 workspace[0*mlen + i] = (mlen-i <= a[0] ? a[mlen-i] : 0);
570 workspace[1*mlen + i] = (mlen-i <= b[0] ? b[mlen-i] : 0);
571 }
572
573 internal_mul(workspace+0*mlen, workspace+1*mlen, workspace+2*mlen, mlen);
574
575 /* now just copy the result back */
576 rlen = alen + blen + 1;
577 if (addend && rlen <= addend[0])
578 rlen = addend[0] + 1;
579 ret = newbn(rlen);
580 maxspot = 0;
581 for (i = 1; i <= ret[0]; i++) {
582 ret[i] = (i <= 2*mlen ? workspace[4*mlen - i] : 0);
583 if (ret[i] != 0)
584 maxspot = i;
585 }
586 ret[0] = maxspot;
587
588 /* now add in the addend, if any */
589 if (addend) {
590 unsigned long carry = 0;
591 for (i = 1; i <= rlen; i++) {
592 carry += (i <= ret[0] ? ret[i] : 0);
593 carry += (i <= addend[0] ? addend[i] : 0);
6e522441 594 ret[i] = (unsigned short) carry & 0xFFFF;
9400cf6f 595 carry >>= 16;
596 if (ret[i] != 0 && i > maxspot)
597 maxspot = i;
598 }
599 }
600 ret[0] = maxspot;
601
602 return ret;
603}
604
605/*
606 * Non-modular multiplication.
607 */
608Bignum bigmul(Bignum a, Bignum b) {
609 return bigmuladd(a, b, NULL);
610}
611
612/*
613 * Convert a (max 16-bit) short into a bignum.
614 */
615Bignum bignum_from_short(unsigned short n) {
616 Bignum ret;
617
618 ret = newbn(2);
619 ret[1] = n & 0xFFFF;
620 ret[2] = (n >> 16) & 0xFFFF;
621 ret[0] = (ret[2] ? 2 : 1);
622 return ret;
623}
624
625/*
626 * Add a long to a bignum.
627 */
628Bignum bignum_add_long(Bignum number, unsigned long addend) {
629 Bignum ret = newbn(number[0]+1);
630 int i, maxspot = 0;
631 unsigned long carry = 0;
632
633 for (i = 1; i <= ret[0]; i++) {
634 carry += addend & 0xFFFF;
635 carry += (i <= number[0] ? number[i] : 0);
636 addend >>= 16;
6e522441 637 ret[i] = (unsigned short) carry & 0xFFFF;
9400cf6f 638 carry >>= 16;
639 if (ret[i] != 0)
640 maxspot = i;
641 }
642 ret[0] = maxspot;
643 return ret;
644}
645
646/*
647 * Compute the residue of a bignum, modulo a (max 16-bit) short.
648 */
649unsigned short bignum_mod_short(Bignum number, unsigned short modulus) {
9400cf6f 650 unsigned long mod, r;
651 int i;
652
653 r = 0;
654 mod = modulus;
655 for (i = number[0]; i > 0; i--)
656 r = (r * 65536 + number[i]) % mod;
6e522441 657 return (unsigned short) r;
9400cf6f 658}
659
660static void diagbn(char *prefix, Bignum md) {
661 int i, nibbles, morenibbles;
662 static const char hex[] = "0123456789ABCDEF";
663
664 printf("%s0x", prefix ? prefix : "");
665
666 nibbles = (3 + ssh1_bignum_bitcount(md))/4; if (nibbles<1) nibbles=1;
667 morenibbles = 4*md[0] - nibbles;
668 for (i=0; i<morenibbles; i++) putchar('-');
669 for (i=nibbles; i-- ;)
670 putchar(hex[(bignum_byte(md, i/2) >> (4*(i%2))) & 0xF]);
671
672 if (prefix) putchar('\n');
673}
674
675/*
676 * Greatest common divisor.
677 */
678Bignum biggcd(Bignum av, Bignum bv) {
679 Bignum a = copybn(av);
680 Bignum b = copybn(bv);
681
682 diagbn("a = ", a);
683 diagbn("b = ", b);
684 while (bignum_cmp(b, Zero) != 0) {
685 Bignum t = newbn(b[0]);
686 bigmod(a, b, t, NULL);
687 diagbn("t = ", t);
688 while (t[0] > 1 && t[t[0]] == 0) t[0]--;
689 freebn(a);
690 a = b;
691 b = t;
692 }
693
694 freebn(b);
695 return a;
696}
697
698/*
699 * Modular inverse, using Euclid's extended algorithm.
700 */
701Bignum modinv(Bignum number, Bignum modulus) {
702 Bignum a = copybn(modulus);
703 Bignum b = copybn(number);
704 Bignum xp = copybn(Zero);
705 Bignum x = copybn(One);
706 int sign = +1;
707
708 while (bignum_cmp(b, One) != 0) {
709 Bignum t = newbn(b[0]);
710 Bignum q = newbn(a[0]);
711 bigmod(a, b, t, q);
712 while (t[0] > 1 && t[t[0]] == 0) t[0]--;
713 freebn(a);
714 a = b;
715 b = t;
716 t = xp;
717 xp = x;
718 x = bigmuladd(q, xp, t);
719 sign = -sign;
720 freebn(t);
721 }
722
723 freebn(b);
724 freebn(a);
725 freebn(xp);
726
727 /* now we know that sign * x == 1, and that x < modulus */
728 if (sign < 0) {
729 /* set a new x to be modulus - x */
730 Bignum newx = newbn(modulus[0]);
731 unsigned short carry = 0;
732 int maxspot = 1;
733 int i;
734
735 for (i = 1; i <= newx[0]; i++) {
736 unsigned short aword = (i <= modulus[0] ? modulus[i] : 0);
737 unsigned short bword = (i <= x[0] ? x[i] : 0);
738 newx[i] = aword - bword - carry;
739 bword = ~bword;
740 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
741 if (newx[i] != 0)
742 maxspot = i;
743 }
744 newx[0] = maxspot;
745 freebn(x);
746 x = newx;
747 }
748
749 /* and return. */
750 return x;
751}
6e522441 752
753/*
754 * Render a bignum into decimal. Return a malloced string holding
755 * the decimal representation.
756 */
757char *bignum_decimal(Bignum x) {
758 int ndigits, ndigit;
759 int i, iszero;
760 unsigned long carry;
761 char *ret;
762 unsigned short *workspace;
763
764 /*
765 * First, estimate the number of digits. Since log(10)/log(2)
766 * is just greater than 93/28 (the joys of continued fraction
767 * approximations...) we know that for every 93 bits, we need
768 * at most 28 digits. This will tell us how much to malloc.
769 *
770 * Formally: if x has i bits, that means x is strictly less
771 * than 2^i. Since 2 is less than 10^(28/93), this is less than
772 * 10^(28i/93). We need an integer power of ten, so we must
773 * round up (rounding down might make it less than x again).
774 * Therefore if we multiply the bit count by 28/93, rounding
775 * up, we will have enough digits.
776 */
777 i = ssh1_bignum_bitcount(x);
778 ndigits = (28*i + 92)/93; /* multiply by 28/93 and round up */
779 ndigits++; /* allow for trailing \0 */
780 ret = malloc(ndigits);
781
782 /*
783 * Now allocate some workspace to hold the binary form as we
784 * repeatedly divide it by ten. Initialise this to the
785 * big-endian form of the number.
786 */
787 workspace = malloc(sizeof(unsigned short) * x[0]);
788 for (i = 0; i < x[0]; i++)
789 workspace[i] = x[x[0] - i];
790
791 /*
792 * Next, write the decimal number starting with the last digit.
793 * We use ordinary short division, dividing 10 into the
794 * workspace.
795 */
796 ndigit = ndigits-1;
797 ret[ndigit] = '\0';
798 do {
799 iszero = 1;
800 carry = 0;
801 for (i = 0; i < x[0]; i++) {
802 carry = (carry << 16) + workspace[i];
803 workspace[i] = (unsigned short) (carry / 10);
804 if (workspace[i])
805 iszero = 0;
806 carry %= 10;
807 }
808 ret[--ndigit] = (char)(carry + '0');
809 } while (!iszero);
810
811 /*
812 * There's a chance we've fallen short of the start of the
813 * string. Correct if so.
814 */
815 if (ndigit > 0)
816 memmove(ret, ret+ndigit, ndigits-ndigit);
817
818 /*
819 * Done.
820 */
821 return ret;
822}