Update status of our PocketPC port.
[u/mdw/putty] / sshbn.c
CommitLineData
e5574168 1/*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5#include <stdio.h>
ed953b91 6#include <assert.h>
e5574168 7#include <stdlib.h>
8#include <string.h>
9
5c72ca61 10#include "misc.h"
98ba26b9 11
819a22b3 12/*
13 * Usage notes:
14 * * Do not call the DIVMOD_WORD macro with expressions such as array
15 * subscripts, as some implementations object to this (see below).
16 * * Note that none of the division methods below will cope if the
17 * quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
18 * to avoid this case.
19 * If this condition occurs, in the case of the x86 DIV instruction,
20 * an overflow exception will occur, which (according to a correspondent)
21 * will manifest on Windows as something like
22 * 0xC0000095: Integer overflow
23 * The C variant won't give the right answer, either.
24 */
25
a3412f52 26#if defined __GNUC__ && defined __i386__
27typedef unsigned long BignumInt;
28typedef unsigned long long BignumDblInt;
29#define BIGNUM_INT_MASK 0xFFFFFFFFUL
30#define BIGNUM_TOP_BIT 0x80000000UL
31#define BIGNUM_INT_BITS 32
32#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
a47e8bba 33#define DIVMOD_WORD(q, r, hi, lo, w) \
34 __asm__("div %2" : \
35 "=d" (r), "=a" (q) : \
36 "r" (w), "d" (hi), "a" (lo))
036eddfb 37#elif defined _MSC_VER && defined _M_IX86
38typedef unsigned __int32 BignumInt;
39typedef unsigned __int64 BignumDblInt;
40#define BIGNUM_INT_MASK 0xFFFFFFFFUL
41#define BIGNUM_TOP_BIT 0x80000000UL
42#define BIGNUM_INT_BITS 32
43#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
819a22b3 44/* Note: MASM interprets array subscripts in the macro arguments as
45 * assembler syntax, which gives the wrong answer. Don't supply them.
46 * <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */
036eddfb 47#define DIVMOD_WORD(q, r, hi, lo, w) do { \
819a22b3 48 __asm mov edx, hi \
49 __asm mov eax, lo \
50 __asm div w \
51 __asm mov r, edx \
52 __asm mov q, eax \
53} while(0)
a3412f52 54#else
55typedef unsigned short BignumInt;
56typedef unsigned long BignumDblInt;
57#define BIGNUM_INT_MASK 0xFFFFU
58#define BIGNUM_TOP_BIT 0x8000U
59#define BIGNUM_INT_BITS 16
60#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
a47e8bba 61#define DIVMOD_WORD(q, r, hi, lo, w) do { \
62 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
63 q = n / w; \
64 r = n % w; \
65} while (0)
a3412f52 66#endif
67
68#define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
69
3709bfe9 70#define BIGNUM_INTERNAL
a3412f52 71typedef BignumInt *Bignum;
3709bfe9 72
e5574168 73#include "ssh.h"
74
a3412f52 75BignumInt bnZero[1] = { 0 };
76BignumInt bnOne[2] = { 1, 1 };
e5574168 77
7d6ee6ff 78/*
a3412f52 79 * The Bignum format is an array of `BignumInt'. The first
7d6ee6ff 80 * element of the array counts the remaining elements. The
a3412f52 81 * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
7d6ee6ff 82 * significant digit first. (So it's trivial to extract the bit
83 * with value 2^n for any n.)
84 *
85 * All Bignums in this module are positive. Negative numbers must
86 * be dealt with outside it.
87 *
88 * INVARIANT: the most significant word of any Bignum must be
89 * nonzero.
90 */
91
7cca0d81 92Bignum Zero = bnZero, One = bnOne;
e5574168 93
32874aea 94static Bignum newbn(int length)
95{
a3412f52 96 Bignum b = snewn(length + 1, BignumInt);
e5574168 97 if (!b)
98 abort(); /* FIXME */
32874aea 99 memset(b, 0, (length + 1) * sizeof(*b));
e5574168 100 b[0] = length;
101 return b;
102}
103
32874aea 104void bn_restore_invariant(Bignum b)
105{
106 while (b[0] > 1 && b[b[0]] == 0)
107 b[0]--;
3709bfe9 108}
109
32874aea 110Bignum copybn(Bignum orig)
111{
a3412f52 112 Bignum b = snewn(orig[0] + 1, BignumInt);
7cca0d81 113 if (!b)
114 abort(); /* FIXME */
32874aea 115 memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
7cca0d81 116 return b;
117}
118
32874aea 119void freebn(Bignum b)
120{
e5574168 121 /*
122 * Burn the evidence, just in case.
123 */
124 memset(b, 0, sizeof(b[0]) * (b[0] + 1));
dcbde236 125 sfree(b);
e5574168 126}
127
32874aea 128Bignum bn_power_2(int n)
129{
a3412f52 130 Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
3709bfe9 131 bignum_set_bit(ret, n, 1);
132 return ret;
133}
134
e5574168 135/*
136 * Compute c = a * b.
137 * Input is in the first len words of a and b.
138 * Result is returned in the first 2*len words of c.
139 */
a3412f52 140static void internal_mul(BignumInt *a, BignumInt *b,
141 BignumInt *c, int len)
e5574168 142{
143 int i, j;
a3412f52 144 BignumDblInt t;
e5574168 145
32874aea 146 for (j = 0; j < 2 * len; j++)
9400cf6f 147 c[j] = 0;
e5574168 148
149 for (i = len - 1; i >= 0; i--) {
e5574168 150 t = 0;
151 for (j = len - 1; j >= 0; j--) {
a3412f52 152 t += MUL_WORD(a[i], (BignumDblInt) b[j]);
153 t += (BignumDblInt) c[i + j + 1];
154 c[i + j + 1] = (BignumInt) t;
155 t = t >> BIGNUM_INT_BITS;
e5574168 156 }
a3412f52 157 c[i] = (BignumInt) t;
e5574168 158 }
159}
160
a3412f52 161static void internal_add_shifted(BignumInt *number,
32874aea 162 unsigned n, int shift)
163{
a3412f52 164 int word = 1 + (shift / BIGNUM_INT_BITS);
165 int bshift = shift % BIGNUM_INT_BITS;
166 BignumDblInt addend;
9400cf6f 167
3014da2b 168 addend = (BignumDblInt)n << bshift;
9400cf6f 169
170 while (addend) {
32874aea 171 addend += number[word];
a3412f52 172 number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
173 addend >>= BIGNUM_INT_BITS;
32874aea 174 word++;
9400cf6f 175 }
176}
177
e5574168 178/*
179 * Compute a = a % m.
9400cf6f 180 * Input in first alen words of a and first mlen words of m.
181 * Output in first alen words of a
182 * (of which first alen-mlen words will be zero).
e5574168 183 * The MSW of m MUST have its high bit set.
9400cf6f 184 * Quotient is accumulated in the `quotient' array, which is a Bignum
185 * rather than the internal bigendian format. Quotient parts are shifted
186 * left by `qshift' before adding into quot.
e5574168 187 */
a3412f52 188static void internal_mod(BignumInt *a, int alen,
189 BignumInt *m, int mlen,
190 BignumInt *quot, int qshift)
e5574168 191{
a3412f52 192 BignumInt m0, m1;
e5574168 193 unsigned int h;
194 int i, k;
195
e5574168 196 m0 = m[0];
9400cf6f 197 if (mlen > 1)
32874aea 198 m1 = m[1];
9400cf6f 199 else
32874aea 200 m1 = 0;
e5574168 201
32874aea 202 for (i = 0; i <= alen - mlen; i++) {
a3412f52 203 BignumDblInt t;
9400cf6f 204 unsigned int q, r, c, ai1;
e5574168 205
206 if (i == 0) {
207 h = 0;
208 } else {
32874aea 209 h = a[i - 1];
210 a[i - 1] = 0;
e5574168 211 }
212
32874aea 213 if (i == alen - 1)
214 ai1 = 0;
215 else
216 ai1 = a[i + 1];
9400cf6f 217
e5574168 218 /* Find q = h:a[i] / m0 */
62ef3d44 219 if (h >= m0) {
220 /*
221 * Special case.
222 *
223 * To illustrate it, suppose a BignumInt is 8 bits, and
224 * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
225 * our initial division will be 0xA123 / 0xA1, which
226 * will give a quotient of 0x100 and a divide overflow.
227 * However, the invariants in this division algorithm
228 * are not violated, since the full number A1:23:... is
229 * _less_ than the quotient prefix A1:B2:... and so the
230 * following correction loop would have sorted it out.
231 *
232 * In this situation we set q to be the largest
233 * quotient we _can_ stomach (0xFF, of course).
234 */
235 q = BIGNUM_INT_MASK;
236 } else {
819a22b3 237 /* Macro doesn't want an array subscript expression passed
238 * into it (see definition), so use a temporary. */
239 BignumInt tmplo = a[i];
240 DIVMOD_WORD(q, r, h, tmplo, m0);
62ef3d44 241
242 /* Refine our estimate of q by looking at
243 h:a[i]:a[i+1] / m0:m1 */
244 t = MUL_WORD(m1, q);
245 if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
246 q--;
247 t -= m1;
248 r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
249 if (r >= (BignumDblInt) m0 &&
250 t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
251 }
e5574168 252 }
253
9400cf6f 254 /* Subtract q * m from a[i...] */
e5574168 255 c = 0;
9400cf6f 256 for (k = mlen - 1; k >= 0; k--) {
a47e8bba 257 t = MUL_WORD(q, m[k]);
e5574168 258 t += c;
a3412f52 259 c = t >> BIGNUM_INT_BITS;
260 if ((BignumInt) t > a[i + k])
32874aea 261 c++;
a3412f52 262 a[i + k] -= (BignumInt) t;
e5574168 263 }
264
265 /* Add back m in case of borrow */
266 if (c != h) {
267 t = 0;
9400cf6f 268 for (k = mlen - 1; k >= 0; k--) {
e5574168 269 t += m[k];
32874aea 270 t += a[i + k];
a3412f52 271 a[i + k] = (BignumInt) t;
272 t = t >> BIGNUM_INT_BITS;
e5574168 273 }
32874aea 274 q--;
e5574168 275 }
32874aea 276 if (quot)
a3412f52 277 internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
e5574168 278 }
279}
280
281/*
282 * Compute (base ^ exp) % mod.
e5574168 283 */
ed953b91 284Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
e5574168 285{
a3412f52 286 BignumInt *a, *b, *n, *m;
e5574168 287 int mshift;
288 int mlen, i, j;
ed953b91 289 Bignum base, result;
290
291 /*
292 * The most significant word of mod needs to be non-zero. It
293 * should already be, but let's make sure.
294 */
295 assert(mod[mod[0]] != 0);
296
297 /*
298 * Make sure the base is smaller than the modulus, by reducing
299 * it modulo the modulus if not.
300 */
301 base = bigmod(base_in, mod);
e5574168 302
303 /* Allocate m of size mlen, copy mod to m */
304 /* We use big endian internally */
305 mlen = mod[0];
a3412f52 306 m = snewn(mlen, BignumInt);
32874aea 307 for (j = 0; j < mlen; j++)
308 m[j] = mod[mod[0] - j];
e5574168 309
310 /* Shift m left to make msb bit set */
a3412f52 311 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
312 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
32874aea 313 break;
e5574168 314 if (mshift) {
315 for (i = 0; i < mlen - 1; i++)
a3412f52 316 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 317 m[mlen - 1] = m[mlen - 1] << mshift;
e5574168 318 }
319
320 /* Allocate n of size mlen, copy base to n */
a3412f52 321 n = snewn(mlen, BignumInt);
e5574168 322 i = mlen - base[0];
32874aea 323 for (j = 0; j < i; j++)
324 n[j] = 0;
325 for (j = 0; j < base[0]; j++)
326 n[i + j] = base[base[0] - j];
e5574168 327
328 /* Allocate a and b of size 2*mlen. Set a = 1 */
a3412f52 329 a = snewn(2 * mlen, BignumInt);
330 b = snewn(2 * mlen, BignumInt);
32874aea 331 for (i = 0; i < 2 * mlen; i++)
332 a[i] = 0;
333 a[2 * mlen - 1] = 1;
e5574168 334
335 /* Skip leading zero bits of exp. */
32874aea 336 i = 0;
a3412f52 337 j = BIGNUM_INT_BITS-1;
e5574168 338 while (i < exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
339 j--;
32874aea 340 if (j < 0) {
341 i++;
a3412f52 342 j = BIGNUM_INT_BITS-1;
32874aea 343 }
e5574168 344 }
345
346 /* Main computation */
347 while (i < exp[0]) {
348 while (j >= 0) {
9400cf6f 349 internal_mul(a + mlen, a + mlen, b, mlen);
32874aea 350 internal_mod(b, mlen * 2, m, mlen, NULL, 0);
e5574168 351 if ((exp[exp[0] - i] & (1 << j)) != 0) {
9400cf6f 352 internal_mul(b + mlen, n, a, mlen);
32874aea 353 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
e5574168 354 } else {
a3412f52 355 BignumInt *t;
32874aea 356 t = a;
357 a = b;
358 b = t;
e5574168 359 }
360 j--;
361 }
32874aea 362 i++;
a3412f52 363 j = BIGNUM_INT_BITS-1;
e5574168 364 }
365
366 /* Fixup result in case the modulus was shifted */
367 if (mshift) {
32874aea 368 for (i = mlen - 1; i < 2 * mlen - 1; i++)
a3412f52 369 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 370 a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
371 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
372 for (i = 2 * mlen - 1; i >= mlen; i--)
a3412f52 373 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
e5574168 374 }
375
376 /* Copy result to buffer */
59600f67 377 result = newbn(mod[0]);
e5574168 378 for (i = 0; i < mlen; i++)
32874aea 379 result[result[0] - i] = a[i + mlen];
380 while (result[0] > 1 && result[result[0]] == 0)
381 result[0]--;
e5574168 382
383 /* Free temporary arrays */
32874aea 384 for (i = 0; i < 2 * mlen; i++)
385 a[i] = 0;
386 sfree(a);
387 for (i = 0; i < 2 * mlen; i++)
388 b[i] = 0;
389 sfree(b);
390 for (i = 0; i < mlen; i++)
391 m[i] = 0;
392 sfree(m);
393 for (i = 0; i < mlen; i++)
394 n[i] = 0;
395 sfree(n);
59600f67 396
ed953b91 397 freebn(base);
398
59600f67 399 return result;
e5574168 400}
7cca0d81 401
402/*
403 * Compute (p * q) % mod.
404 * The most significant word of mod MUST be non-zero.
405 * We assume that the result array is the same size as the mod array.
406 */
59600f67 407Bignum modmul(Bignum p, Bignum q, Bignum mod)
7cca0d81 408{
a3412f52 409 BignumInt *a, *n, *m, *o;
7cca0d81 410 int mshift;
80b10571 411 int pqlen, mlen, rlen, i, j;
59600f67 412 Bignum result;
7cca0d81 413
414 /* Allocate m of size mlen, copy mod to m */
415 /* We use big endian internally */
416 mlen = mod[0];
a3412f52 417 m = snewn(mlen, BignumInt);
32874aea 418 for (j = 0; j < mlen; j++)
419 m[j] = mod[mod[0] - j];
7cca0d81 420
421 /* Shift m left to make msb bit set */
a3412f52 422 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
423 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
32874aea 424 break;
7cca0d81 425 if (mshift) {
426 for (i = 0; i < mlen - 1; i++)
a3412f52 427 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 428 m[mlen - 1] = m[mlen - 1] << mshift;
7cca0d81 429 }
430
431 pqlen = (p[0] > q[0] ? p[0] : q[0]);
432
433 /* Allocate n of size pqlen, copy p to n */
a3412f52 434 n = snewn(pqlen, BignumInt);
7cca0d81 435 i = pqlen - p[0];
32874aea 436 for (j = 0; j < i; j++)
437 n[j] = 0;
438 for (j = 0; j < p[0]; j++)
439 n[i + j] = p[p[0] - j];
7cca0d81 440
441 /* Allocate o of size pqlen, copy q to o */
a3412f52 442 o = snewn(pqlen, BignumInt);
7cca0d81 443 i = pqlen - q[0];
32874aea 444 for (j = 0; j < i; j++)
445 o[j] = 0;
446 for (j = 0; j < q[0]; j++)
447 o[i + j] = q[q[0] - j];
7cca0d81 448
449 /* Allocate a of size 2*pqlen for result */
a3412f52 450 a = snewn(2 * pqlen, BignumInt);
7cca0d81 451
452 /* Main computation */
9400cf6f 453 internal_mul(n, o, a, pqlen);
32874aea 454 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
7cca0d81 455
456 /* Fixup result in case the modulus was shifted */
457 if (mshift) {
32874aea 458 for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
a3412f52 459 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 460 a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
461 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
462 for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
a3412f52 463 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
7cca0d81 464 }
465
466 /* Copy result to buffer */
32874aea 467 rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
80b10571 468 result = newbn(rlen);
469 for (i = 0; i < rlen; i++)
32874aea 470 result[result[0] - i] = a[i + 2 * pqlen - rlen];
471 while (result[0] > 1 && result[result[0]] == 0)
472 result[0]--;
7cca0d81 473
474 /* Free temporary arrays */
32874aea 475 for (i = 0; i < 2 * pqlen; i++)
476 a[i] = 0;
477 sfree(a);
478 for (i = 0; i < mlen; i++)
479 m[i] = 0;
480 sfree(m);
481 for (i = 0; i < pqlen; i++)
482 n[i] = 0;
483 sfree(n);
484 for (i = 0; i < pqlen; i++)
485 o[i] = 0;
486 sfree(o);
59600f67 487
488 return result;
7cca0d81 489}
490
491/*
9400cf6f 492 * Compute p % mod.
493 * The most significant word of mod MUST be non-zero.
494 * We assume that the result array is the same size as the mod array.
5c72ca61 495 * We optionally write out a quotient if `quotient' is non-NULL.
496 * We can avoid writing out the result if `result' is NULL.
9400cf6f 497 */
f28753ab 498static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
9400cf6f 499{
a3412f52 500 BignumInt *n, *m;
9400cf6f 501 int mshift;
502 int plen, mlen, i, j;
503
504 /* Allocate m of size mlen, copy mod to m */
505 /* We use big endian internally */
506 mlen = mod[0];
a3412f52 507 m = snewn(mlen, BignumInt);
32874aea 508 for (j = 0; j < mlen; j++)
509 m[j] = mod[mod[0] - j];
9400cf6f 510
511 /* Shift m left to make msb bit set */
a3412f52 512 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
513 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
32874aea 514 break;
9400cf6f 515 if (mshift) {
516 for (i = 0; i < mlen - 1; i++)
a3412f52 517 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 518 m[mlen - 1] = m[mlen - 1] << mshift;
9400cf6f 519 }
520
521 plen = p[0];
522 /* Ensure plen > mlen */
32874aea 523 if (plen <= mlen)
524 plen = mlen + 1;
9400cf6f 525
526 /* Allocate n of size plen, copy p to n */
a3412f52 527 n = snewn(plen, BignumInt);
32874aea 528 for (j = 0; j < plen; j++)
529 n[j] = 0;
530 for (j = 1; j <= p[0]; j++)
531 n[plen - j] = p[j];
9400cf6f 532
533 /* Main computation */
534 internal_mod(n, plen, m, mlen, quotient, mshift);
535
536 /* Fixup result in case the modulus was shifted */
537 if (mshift) {
538 for (i = plen - mlen - 1; i < plen - 1; i++)
a3412f52 539 n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 540 n[plen - 1] = n[plen - 1] << mshift;
9400cf6f 541 internal_mod(n, plen, m, mlen, quotient, 0);
542 for (i = plen - 1; i >= plen - mlen; i--)
a3412f52 543 n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
9400cf6f 544 }
545
546 /* Copy result to buffer */
5c72ca61 547 if (result) {
548 for (i = 1; i <= result[0]; i++) {
549 int j = plen - i;
550 result[i] = j >= 0 ? n[j] : 0;
551 }
9400cf6f 552 }
553
554 /* Free temporary arrays */
32874aea 555 for (i = 0; i < mlen; i++)
556 m[i] = 0;
557 sfree(m);
558 for (i = 0; i < plen; i++)
559 n[i] = 0;
560 sfree(n);
9400cf6f 561}
562
563/*
7cca0d81 564 * Decrement a number.
565 */
32874aea 566void decbn(Bignum bn)
567{
7cca0d81 568 int i = 1;
569 while (i < bn[0] && bn[i] == 0)
a3412f52 570 bn[i++] = BIGNUM_INT_MASK;
7cca0d81 571 bn[i]--;
572}
573
27cd7fc2 574Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
32874aea 575{
3709bfe9 576 Bignum result;
577 int w, i;
578
a3412f52 579 w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
3709bfe9 580
581 result = newbn(w);
32874aea 582 for (i = 1; i <= w; i++)
583 result[i] = 0;
584 for (i = nbytes; i--;) {
585 unsigned char byte = *data++;
a3412f52 586 result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
3709bfe9 587 }
588
32874aea 589 while (result[0] > 1 && result[result[0]] == 0)
590 result[0]--;
3709bfe9 591 return result;
592}
593
7cca0d81 594/*
2e85c969 595 * Read an SSH-1-format bignum from a data buffer. Return the number
0016d70b 596 * of bytes consumed, or -1 if there wasn't enough data.
7cca0d81 597 */
0016d70b 598int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
32874aea 599{
27cd7fc2 600 const unsigned char *p = data;
7cca0d81 601 int i;
602 int w, b;
603
0016d70b 604 if (len < 2)
605 return -1;
606
7cca0d81 607 w = 0;
32874aea 608 for (i = 0; i < 2; i++)
609 w = (w << 8) + *p++;
610 b = (w + 7) / 8; /* bits -> bytes */
7cca0d81 611
0016d70b 612 if (len < b+2)
613 return -1;
614
32874aea 615 if (!result) /* just return length */
616 return b + 2;
a52f067e 617
3709bfe9 618 *result = bignum_from_bytes(p, b);
7cca0d81 619
3709bfe9 620 return p + b - data;
7cca0d81 621}
5c58ad2d 622
623/*
2e85c969 624 * Return the bit count of a bignum, for SSH-1 encoding.
5c58ad2d 625 */
32874aea 626int bignum_bitcount(Bignum bn)
627{
a3412f52 628 int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
32874aea 629 while (bitcount >= 0
a3412f52 630 && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
5c58ad2d 631 return bitcount + 1;
632}
633
634/*
2e85c969 635 * Return the byte length of a bignum when SSH-1 encoded.
5c58ad2d 636 */
32874aea 637int ssh1_bignum_length(Bignum bn)
638{
639 return 2 + (bignum_bitcount(bn) + 7) / 8;
ddecd643 640}
641
642/*
2e85c969 643 * Return the byte length of a bignum when SSH-2 encoded.
ddecd643 644 */
32874aea 645int ssh2_bignum_length(Bignum bn)
646{
647 return 4 + (bignum_bitcount(bn) + 8) / 8;
5c58ad2d 648}
649
650/*
651 * Return a byte from a bignum; 0 is least significant, etc.
652 */
32874aea 653int bignum_byte(Bignum bn, int i)
654{
a3412f52 655 if (i >= BIGNUM_INT_BYTES * bn[0])
32874aea 656 return 0; /* beyond the end */
5c58ad2d 657 else
a3412f52 658 return (bn[i / BIGNUM_INT_BYTES + 1] >>
659 ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
5c58ad2d 660}
661
662/*
9400cf6f 663 * Return a bit from a bignum; 0 is least significant, etc.
664 */
32874aea 665int bignum_bit(Bignum bn, int i)
666{
a3412f52 667 if (i >= BIGNUM_INT_BITS * bn[0])
32874aea 668 return 0; /* beyond the end */
9400cf6f 669 else
a3412f52 670 return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
9400cf6f 671}
672
673/*
674 * Set a bit in a bignum; 0 is least significant, etc.
675 */
32874aea 676void bignum_set_bit(Bignum bn, int bitnum, int value)
677{
a3412f52 678 if (bitnum >= BIGNUM_INT_BITS * bn[0])
32874aea 679 abort(); /* beyond the end */
9400cf6f 680 else {
a3412f52 681 int v = bitnum / BIGNUM_INT_BITS + 1;
682 int mask = 1 << (bitnum % BIGNUM_INT_BITS);
32874aea 683 if (value)
684 bn[v] |= mask;
685 else
686 bn[v] &= ~mask;
9400cf6f 687 }
688}
689
690/*
2e85c969 691 * Write a SSH-1-format bignum into a buffer. It is assumed the
5c58ad2d 692 * buffer is big enough. Returns the number of bytes used.
693 */
32874aea 694int ssh1_write_bignum(void *data, Bignum bn)
695{
5c58ad2d 696 unsigned char *p = data;
697 int len = ssh1_bignum_length(bn);
698 int i;
ddecd643 699 int bitc = bignum_bitcount(bn);
5c58ad2d 700
701 *p++ = (bitc >> 8) & 0xFF;
32874aea 702 *p++ = (bitc) & 0xFF;
703 for (i = len - 2; i--;)
704 *p++ = bignum_byte(bn, i);
5c58ad2d 705 return len;
706}
9400cf6f 707
708/*
709 * Compare two bignums. Returns like strcmp.
710 */
32874aea 711int bignum_cmp(Bignum a, Bignum b)
712{
9400cf6f 713 int amax = a[0], bmax = b[0];
714 int i = (amax > bmax ? amax : bmax);
715 while (i) {
a3412f52 716 BignumInt aval = (i > amax ? 0 : a[i]);
717 BignumInt bval = (i > bmax ? 0 : b[i]);
32874aea 718 if (aval < bval)
719 return -1;
720 if (aval > bval)
721 return +1;
722 i--;
9400cf6f 723 }
724 return 0;
725}
726
727/*
728 * Right-shift one bignum to form another.
729 */
32874aea 730Bignum bignum_rshift(Bignum a, int shift)
731{
9400cf6f 732 Bignum ret;
733 int i, shiftw, shiftb, shiftbb, bits;
a3412f52 734 BignumInt ai, ai1;
9400cf6f 735
ddecd643 736 bits = bignum_bitcount(a) - shift;
a3412f52 737 ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
9400cf6f 738
739 if (ret) {
a3412f52 740 shiftw = shift / BIGNUM_INT_BITS;
741 shiftb = shift % BIGNUM_INT_BITS;
742 shiftbb = BIGNUM_INT_BITS - shiftb;
32874aea 743
744 ai1 = a[shiftw + 1];
745 for (i = 1; i <= ret[0]; i++) {
746 ai = ai1;
747 ai1 = (i + shiftw + 1 <= a[0] ? a[i + shiftw + 1] : 0);
a3412f52 748 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
32874aea 749 }
9400cf6f 750 }
751
752 return ret;
753}
754
755/*
756 * Non-modular multiplication and addition.
757 */
32874aea 758Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
759{
9400cf6f 760 int alen = a[0], blen = b[0];
761 int mlen = (alen > blen ? alen : blen);
762 int rlen, i, maxspot;
a3412f52 763 BignumInt *workspace;
9400cf6f 764 Bignum ret;
765
766 /* mlen space for a, mlen space for b, 2*mlen for result */
a3412f52 767 workspace = snewn(mlen * 4, BignumInt);
9400cf6f 768 for (i = 0; i < mlen; i++) {
32874aea 769 workspace[0 * mlen + i] = (mlen - i <= a[0] ? a[mlen - i] : 0);
770 workspace[1 * mlen + i] = (mlen - i <= b[0] ? b[mlen - i] : 0);
9400cf6f 771 }
772
32874aea 773 internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
774 workspace + 2 * mlen, mlen);
9400cf6f 775
776 /* now just copy the result back */
777 rlen = alen + blen + 1;
778 if (addend && rlen <= addend[0])
32874aea 779 rlen = addend[0] + 1;
9400cf6f 780 ret = newbn(rlen);
781 maxspot = 0;
782 for (i = 1; i <= ret[0]; i++) {
32874aea 783 ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
784 if (ret[i] != 0)
785 maxspot = i;
9400cf6f 786 }
787 ret[0] = maxspot;
788
789 /* now add in the addend, if any */
790 if (addend) {
a3412f52 791 BignumDblInt carry = 0;
32874aea 792 for (i = 1; i <= rlen; i++) {
793 carry += (i <= ret[0] ? ret[i] : 0);
794 carry += (i <= addend[0] ? addend[i] : 0);
a3412f52 795 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
796 carry >>= BIGNUM_INT_BITS;
32874aea 797 if (ret[i] != 0 && i > maxspot)
798 maxspot = i;
799 }
9400cf6f 800 }
801 ret[0] = maxspot;
802
c523f55f 803 sfree(workspace);
9400cf6f 804 return ret;
805}
806
807/*
808 * Non-modular multiplication.
809 */
32874aea 810Bignum bigmul(Bignum a, Bignum b)
811{
9400cf6f 812 return bigmuladd(a, b, NULL);
813}
814
815/*
3709bfe9 816 * Create a bignum which is the bitmask covering another one. That
817 * is, the smallest integer which is >= N and is also one less than
818 * a power of two.
819 */
32874aea 820Bignum bignum_bitmask(Bignum n)
821{
3709bfe9 822 Bignum ret = copybn(n);
823 int i;
a3412f52 824 BignumInt j;
3709bfe9 825
826 i = ret[0];
827 while (n[i] == 0 && i > 0)
32874aea 828 i--;
3709bfe9 829 if (i <= 0)
32874aea 830 return ret; /* input was zero */
3709bfe9 831 j = 1;
832 while (j < n[i])
32874aea 833 j = 2 * j + 1;
3709bfe9 834 ret[i] = j;
835 while (--i > 0)
a3412f52 836 ret[i] = BIGNUM_INT_MASK;
3709bfe9 837 return ret;
838}
839
840/*
5c72ca61 841 * Convert a (max 32-bit) long into a bignum.
9400cf6f 842 */
a3412f52 843Bignum bignum_from_long(unsigned long nn)
32874aea 844{
9400cf6f 845 Bignum ret;
a3412f52 846 BignumDblInt n = nn;
9400cf6f 847
5c72ca61 848 ret = newbn(3);
a3412f52 849 ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
850 ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
5c72ca61 851 ret[3] = 0;
852 ret[0] = (ret[2] ? 2 : 1);
32874aea 853 return ret;
9400cf6f 854}
855
856/*
857 * Add a long to a bignum.
858 */
a3412f52 859Bignum bignum_add_long(Bignum number, unsigned long addendx)
32874aea 860{
861 Bignum ret = newbn(number[0] + 1);
9400cf6f 862 int i, maxspot = 0;
a3412f52 863 BignumDblInt carry = 0, addend = addendx;
9400cf6f 864
865 for (i = 1; i <= ret[0]; i++) {
a3412f52 866 carry += addend & BIGNUM_INT_MASK;
32874aea 867 carry += (i <= number[0] ? number[i] : 0);
a3412f52 868 addend >>= BIGNUM_INT_BITS;
869 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
870 carry >>= BIGNUM_INT_BITS;
32874aea 871 if (ret[i] != 0)
872 maxspot = i;
9400cf6f 873 }
874 ret[0] = maxspot;
875 return ret;
876}
877
878/*
879 * Compute the residue of a bignum, modulo a (max 16-bit) short.
880 */
32874aea 881unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
882{
a3412f52 883 BignumDblInt mod, r;
9400cf6f 884 int i;
885
886 r = 0;
887 mod = modulus;
888 for (i = number[0]; i > 0; i--)
736cc6d1 889 r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
6e522441 890 return (unsigned short) r;
9400cf6f 891}
892
a3412f52 893#ifdef DEBUG
32874aea 894void diagbn(char *prefix, Bignum md)
895{
9400cf6f 896 int i, nibbles, morenibbles;
897 static const char hex[] = "0123456789ABCDEF";
898
5c72ca61 899 debug(("%s0x", prefix ? prefix : ""));
9400cf6f 900
32874aea 901 nibbles = (3 + bignum_bitcount(md)) / 4;
902 if (nibbles < 1)
903 nibbles = 1;
904 morenibbles = 4 * md[0] - nibbles;
905 for (i = 0; i < morenibbles; i++)
5c72ca61 906 debug(("-"));
32874aea 907 for (i = nibbles; i--;)
5c72ca61 908 debug(("%c",
909 hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
9400cf6f 910
32874aea 911 if (prefix)
5c72ca61 912 debug(("\n"));
913}
f28753ab 914#endif
5c72ca61 915
916/*
917 * Simple division.
918 */
919Bignum bigdiv(Bignum a, Bignum b)
920{
921 Bignum q = newbn(a[0]);
922 bigdivmod(a, b, NULL, q);
923 return q;
924}
925
926/*
927 * Simple remainder.
928 */
929Bignum bigmod(Bignum a, Bignum b)
930{
931 Bignum r = newbn(b[0]);
932 bigdivmod(a, b, r, NULL);
933 return r;
9400cf6f 934}
935
936/*
937 * Greatest common divisor.
938 */
32874aea 939Bignum biggcd(Bignum av, Bignum bv)
940{
9400cf6f 941 Bignum a = copybn(av);
942 Bignum b = copybn(bv);
943
9400cf6f 944 while (bignum_cmp(b, Zero) != 0) {
32874aea 945 Bignum t = newbn(b[0]);
5c72ca61 946 bigdivmod(a, b, t, NULL);
32874aea 947 while (t[0] > 1 && t[t[0]] == 0)
948 t[0]--;
949 freebn(a);
950 a = b;
951 b = t;
9400cf6f 952 }
953
954 freebn(b);
955 return a;
956}
957
958/*
959 * Modular inverse, using Euclid's extended algorithm.
960 */
32874aea 961Bignum modinv(Bignum number, Bignum modulus)
962{
9400cf6f 963 Bignum a = copybn(modulus);
964 Bignum b = copybn(number);
965 Bignum xp = copybn(Zero);
966 Bignum x = copybn(One);
967 int sign = +1;
968
969 while (bignum_cmp(b, One) != 0) {
32874aea 970 Bignum t = newbn(b[0]);
971 Bignum q = newbn(a[0]);
5c72ca61 972 bigdivmod(a, b, t, q);
32874aea 973 while (t[0] > 1 && t[t[0]] == 0)
974 t[0]--;
975 freebn(a);
976 a = b;
977 b = t;
978 t = xp;
979 xp = x;
980 x = bigmuladd(q, xp, t);
981 sign = -sign;
982 freebn(t);
75374b2f 983 freebn(q);
9400cf6f 984 }
985
986 freebn(b);
987 freebn(a);
988 freebn(xp);
989
990 /* now we know that sign * x == 1, and that x < modulus */
991 if (sign < 0) {
32874aea 992 /* set a new x to be modulus - x */
993 Bignum newx = newbn(modulus[0]);
a3412f52 994 BignumInt carry = 0;
32874aea 995 int maxspot = 1;
996 int i;
997
998 for (i = 1; i <= newx[0]; i++) {
a3412f52 999 BignumInt aword = (i <= modulus[0] ? modulus[i] : 0);
1000 BignumInt bword = (i <= x[0] ? x[i] : 0);
32874aea 1001 newx[i] = aword - bword - carry;
1002 bword = ~bword;
1003 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
1004 if (newx[i] != 0)
1005 maxspot = i;
1006 }
1007 newx[0] = maxspot;
1008 freebn(x);
1009 x = newx;
9400cf6f 1010 }
1011
1012 /* and return. */
1013 return x;
1014}
6e522441 1015
1016/*
1017 * Render a bignum into decimal. Return a malloced string holding
1018 * the decimal representation.
1019 */
32874aea 1020char *bignum_decimal(Bignum x)
1021{
6e522441 1022 int ndigits, ndigit;
1023 int i, iszero;
a3412f52 1024 BignumDblInt carry;
6e522441 1025 char *ret;
a3412f52 1026 BignumInt *workspace;
6e522441 1027
1028 /*
1029 * First, estimate the number of digits. Since log(10)/log(2)
1030 * is just greater than 93/28 (the joys of continued fraction
1031 * approximations...) we know that for every 93 bits, we need
1032 * at most 28 digits. This will tell us how much to malloc.
1033 *
1034 * Formally: if x has i bits, that means x is strictly less
1035 * than 2^i. Since 2 is less than 10^(28/93), this is less than
1036 * 10^(28i/93). We need an integer power of ten, so we must
1037 * round up (rounding down might make it less than x again).
1038 * Therefore if we multiply the bit count by 28/93, rounding
1039 * up, we will have enough digits.
1040 */
ddecd643 1041 i = bignum_bitcount(x);
32874aea 1042 ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
1043 ndigits++; /* allow for trailing \0 */
3d88e64d 1044 ret = snewn(ndigits, char);
6e522441 1045
1046 /*
1047 * Now allocate some workspace to hold the binary form as we
1048 * repeatedly divide it by ten. Initialise this to the
1049 * big-endian form of the number.
1050 */
a3412f52 1051 workspace = snewn(x[0], BignumInt);
6e522441 1052 for (i = 0; i < x[0]; i++)
32874aea 1053 workspace[i] = x[x[0] - i];
6e522441 1054
1055 /*
1056 * Next, write the decimal number starting with the last digit.
1057 * We use ordinary short division, dividing 10 into the
1058 * workspace.
1059 */
32874aea 1060 ndigit = ndigits - 1;
6e522441 1061 ret[ndigit] = '\0';
1062 do {
32874aea 1063 iszero = 1;
1064 carry = 0;
1065 for (i = 0; i < x[0]; i++) {
a3412f52 1066 carry = (carry << BIGNUM_INT_BITS) + workspace[i];
1067 workspace[i] = (BignumInt) (carry / 10);
32874aea 1068 if (workspace[i])
1069 iszero = 0;
1070 carry %= 10;
1071 }
1072 ret[--ndigit] = (char) (carry + '0');
6e522441 1073 } while (!iszero);
1074
1075 /*
1076 * There's a chance we've fallen short of the start of the
1077 * string. Correct if so.
1078 */
1079 if (ndigit > 0)
32874aea 1080 memmove(ret, ret + ndigit, ndigits - ndigit);
6e522441 1081
1082 /*
1083 * Done.
1084 */
c523f55f 1085 sfree(workspace);
6e522441 1086 return ret;
1087}