Basic configurability for client-initiated rekeys.
[u/mdw/putty] / sshbn.c
CommitLineData
e5574168 1/*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5#include <stdio.h>
ed953b91 6#include <assert.h>
e5574168 7#include <stdlib.h>
8#include <string.h>
9
5c72ca61 10#include "misc.h"
98ba26b9 11
a3412f52 12#if defined __GNUC__ && defined __i386__
13typedef unsigned long BignumInt;
14typedef unsigned long long BignumDblInt;
15#define BIGNUM_INT_MASK 0xFFFFFFFFUL
16#define BIGNUM_TOP_BIT 0x80000000UL
17#define BIGNUM_INT_BITS 32
18#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
a47e8bba 19#define DIVMOD_WORD(q, r, hi, lo, w) \
20 __asm__("div %2" : \
21 "=d" (r), "=a" (q) : \
22 "r" (w), "d" (hi), "a" (lo))
a3412f52 23#else
24typedef unsigned short BignumInt;
25typedef unsigned long BignumDblInt;
26#define BIGNUM_INT_MASK 0xFFFFU
27#define BIGNUM_TOP_BIT 0x8000U
28#define BIGNUM_INT_BITS 16
29#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
a47e8bba 30#define DIVMOD_WORD(q, r, hi, lo, w) do { \
31 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
32 q = n / w; \
33 r = n % w; \
34} while (0)
a3412f52 35#endif
36
37#define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
38
3709bfe9 39#define BIGNUM_INTERNAL
a3412f52 40typedef BignumInt *Bignum;
3709bfe9 41
e5574168 42#include "ssh.h"
43
a3412f52 44BignumInt bnZero[1] = { 0 };
45BignumInt bnOne[2] = { 1, 1 };
e5574168 46
7d6ee6ff 47/*
a3412f52 48 * The Bignum format is an array of `BignumInt'. The first
7d6ee6ff 49 * element of the array counts the remaining elements. The
a3412f52 50 * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
7d6ee6ff 51 * significant digit first. (So it's trivial to extract the bit
52 * with value 2^n for any n.)
53 *
54 * All Bignums in this module are positive. Negative numbers must
55 * be dealt with outside it.
56 *
57 * INVARIANT: the most significant word of any Bignum must be
58 * nonzero.
59 */
60
7cca0d81 61Bignum Zero = bnZero, One = bnOne;
e5574168 62
32874aea 63static Bignum newbn(int length)
64{
a3412f52 65 Bignum b = snewn(length + 1, BignumInt);
e5574168 66 if (!b)
67 abort(); /* FIXME */
32874aea 68 memset(b, 0, (length + 1) * sizeof(*b));
e5574168 69 b[0] = length;
70 return b;
71}
72
32874aea 73void bn_restore_invariant(Bignum b)
74{
75 while (b[0] > 1 && b[b[0]] == 0)
76 b[0]--;
3709bfe9 77}
78
32874aea 79Bignum copybn(Bignum orig)
80{
a3412f52 81 Bignum b = snewn(orig[0] + 1, BignumInt);
7cca0d81 82 if (!b)
83 abort(); /* FIXME */
32874aea 84 memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
7cca0d81 85 return b;
86}
87
32874aea 88void freebn(Bignum b)
89{
e5574168 90 /*
91 * Burn the evidence, just in case.
92 */
93 memset(b, 0, sizeof(b[0]) * (b[0] + 1));
dcbde236 94 sfree(b);
e5574168 95}
96
32874aea 97Bignum bn_power_2(int n)
98{
a3412f52 99 Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
3709bfe9 100 bignum_set_bit(ret, n, 1);
101 return ret;
102}
103
e5574168 104/*
105 * Compute c = a * b.
106 * Input is in the first len words of a and b.
107 * Result is returned in the first 2*len words of c.
108 */
a3412f52 109static void internal_mul(BignumInt *a, BignumInt *b,
110 BignumInt *c, int len)
e5574168 111{
112 int i, j;
a3412f52 113 BignumDblInt t;
e5574168 114
32874aea 115 for (j = 0; j < 2 * len; j++)
9400cf6f 116 c[j] = 0;
e5574168 117
118 for (i = len - 1; i >= 0; i--) {
e5574168 119 t = 0;
120 for (j = len - 1; j >= 0; j--) {
a3412f52 121 t += MUL_WORD(a[i], (BignumDblInt) b[j]);
122 t += (BignumDblInt) c[i + j + 1];
123 c[i + j + 1] = (BignumInt) t;
124 t = t >> BIGNUM_INT_BITS;
e5574168 125 }
a3412f52 126 c[i] = (BignumInt) t;
e5574168 127 }
128}
129
a3412f52 130static void internal_add_shifted(BignumInt *number,
32874aea 131 unsigned n, int shift)
132{
a3412f52 133 int word = 1 + (shift / BIGNUM_INT_BITS);
134 int bshift = shift % BIGNUM_INT_BITS;
135 BignumDblInt addend;
9400cf6f 136
3014da2b 137 addend = (BignumDblInt)n << bshift;
9400cf6f 138
139 while (addend) {
32874aea 140 addend += number[word];
a3412f52 141 number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
142 addend >>= BIGNUM_INT_BITS;
32874aea 143 word++;
9400cf6f 144 }
145}
146
e5574168 147/*
148 * Compute a = a % m.
9400cf6f 149 * Input in first alen words of a and first mlen words of m.
150 * Output in first alen words of a
151 * (of which first alen-mlen words will be zero).
e5574168 152 * The MSW of m MUST have its high bit set.
9400cf6f 153 * Quotient is accumulated in the `quotient' array, which is a Bignum
154 * rather than the internal bigendian format. Quotient parts are shifted
155 * left by `qshift' before adding into quot.
e5574168 156 */
a3412f52 157static void internal_mod(BignumInt *a, int alen,
158 BignumInt *m, int mlen,
159 BignumInt *quot, int qshift)
e5574168 160{
a3412f52 161 BignumInt m0, m1;
e5574168 162 unsigned int h;
163 int i, k;
164
e5574168 165 m0 = m[0];
9400cf6f 166 if (mlen > 1)
32874aea 167 m1 = m[1];
9400cf6f 168 else
32874aea 169 m1 = 0;
e5574168 170
32874aea 171 for (i = 0; i <= alen - mlen; i++) {
a3412f52 172 BignumDblInt t;
9400cf6f 173 unsigned int q, r, c, ai1;
e5574168 174
175 if (i == 0) {
176 h = 0;
177 } else {
32874aea 178 h = a[i - 1];
179 a[i - 1] = 0;
e5574168 180 }
181
32874aea 182 if (i == alen - 1)
183 ai1 = 0;
184 else
185 ai1 = a[i + 1];
9400cf6f 186
e5574168 187 /* Find q = h:a[i] / m0 */
a47e8bba 188 DIVMOD_WORD(q, r, h, a[i], m0);
e5574168 189
190 /* Refine our estimate of q by looking at
32874aea 191 h:a[i]:a[i+1] / m0:m1 */
a47e8bba 192 t = MUL_WORD(m1, q);
a3412f52 193 if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
e5574168 194 q--;
195 t -= m1;
a3412f52 196 r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
197 if (r >= (BignumDblInt) m0 &&
198 t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
e5574168 199 }
200
9400cf6f 201 /* Subtract q * m from a[i...] */
e5574168 202 c = 0;
9400cf6f 203 for (k = mlen - 1; k >= 0; k--) {
a47e8bba 204 t = MUL_WORD(q, m[k]);
e5574168 205 t += c;
a3412f52 206 c = t >> BIGNUM_INT_BITS;
207 if ((BignumInt) t > a[i + k])
32874aea 208 c++;
a3412f52 209 a[i + k] -= (BignumInt) t;
e5574168 210 }
211
212 /* Add back m in case of borrow */
213 if (c != h) {
214 t = 0;
9400cf6f 215 for (k = mlen - 1; k >= 0; k--) {
e5574168 216 t += m[k];
32874aea 217 t += a[i + k];
a3412f52 218 a[i + k] = (BignumInt) t;
219 t = t >> BIGNUM_INT_BITS;
e5574168 220 }
32874aea 221 q--;
e5574168 222 }
32874aea 223 if (quot)
a3412f52 224 internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
e5574168 225 }
226}
227
228/*
229 * Compute (base ^ exp) % mod.
e5574168 230 */
ed953b91 231Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
e5574168 232{
a3412f52 233 BignumInt *a, *b, *n, *m;
e5574168 234 int mshift;
235 int mlen, i, j;
ed953b91 236 Bignum base, result;
237
238 /*
239 * The most significant word of mod needs to be non-zero. It
240 * should already be, but let's make sure.
241 */
242 assert(mod[mod[0]] != 0);
243
244 /*
245 * Make sure the base is smaller than the modulus, by reducing
246 * it modulo the modulus if not.
247 */
248 base = bigmod(base_in, mod);
e5574168 249
250 /* Allocate m of size mlen, copy mod to m */
251 /* We use big endian internally */
252 mlen = mod[0];
a3412f52 253 m = snewn(mlen, BignumInt);
32874aea 254 for (j = 0; j < mlen; j++)
255 m[j] = mod[mod[0] - j];
e5574168 256
257 /* Shift m left to make msb bit set */
a3412f52 258 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
259 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
32874aea 260 break;
e5574168 261 if (mshift) {
262 for (i = 0; i < mlen - 1; i++)
a3412f52 263 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 264 m[mlen - 1] = m[mlen - 1] << mshift;
e5574168 265 }
266
267 /* Allocate n of size mlen, copy base to n */
a3412f52 268 n = snewn(mlen, BignumInt);
e5574168 269 i = mlen - base[0];
32874aea 270 for (j = 0; j < i; j++)
271 n[j] = 0;
272 for (j = 0; j < base[0]; j++)
273 n[i + j] = base[base[0] - j];
e5574168 274
275 /* Allocate a and b of size 2*mlen. Set a = 1 */
a3412f52 276 a = snewn(2 * mlen, BignumInt);
277 b = snewn(2 * mlen, BignumInt);
32874aea 278 for (i = 0; i < 2 * mlen; i++)
279 a[i] = 0;
280 a[2 * mlen - 1] = 1;
e5574168 281
282 /* Skip leading zero bits of exp. */
32874aea 283 i = 0;
a3412f52 284 j = BIGNUM_INT_BITS-1;
e5574168 285 while (i < exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
286 j--;
32874aea 287 if (j < 0) {
288 i++;
a3412f52 289 j = BIGNUM_INT_BITS-1;
32874aea 290 }
e5574168 291 }
292
293 /* Main computation */
294 while (i < exp[0]) {
295 while (j >= 0) {
9400cf6f 296 internal_mul(a + mlen, a + mlen, b, mlen);
32874aea 297 internal_mod(b, mlen * 2, m, mlen, NULL, 0);
e5574168 298 if ((exp[exp[0] - i] & (1 << j)) != 0) {
9400cf6f 299 internal_mul(b + mlen, n, a, mlen);
32874aea 300 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
e5574168 301 } else {
a3412f52 302 BignumInt *t;
32874aea 303 t = a;
304 a = b;
305 b = t;
e5574168 306 }
307 j--;
308 }
32874aea 309 i++;
a3412f52 310 j = BIGNUM_INT_BITS-1;
e5574168 311 }
312
313 /* Fixup result in case the modulus was shifted */
314 if (mshift) {
32874aea 315 for (i = mlen - 1; i < 2 * mlen - 1; i++)
a3412f52 316 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 317 a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
318 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
319 for (i = 2 * mlen - 1; i >= mlen; i--)
a3412f52 320 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
e5574168 321 }
322
323 /* Copy result to buffer */
59600f67 324 result = newbn(mod[0]);
e5574168 325 for (i = 0; i < mlen; i++)
32874aea 326 result[result[0] - i] = a[i + mlen];
327 while (result[0] > 1 && result[result[0]] == 0)
328 result[0]--;
e5574168 329
330 /* Free temporary arrays */
32874aea 331 for (i = 0; i < 2 * mlen; i++)
332 a[i] = 0;
333 sfree(a);
334 for (i = 0; i < 2 * mlen; i++)
335 b[i] = 0;
336 sfree(b);
337 for (i = 0; i < mlen; i++)
338 m[i] = 0;
339 sfree(m);
340 for (i = 0; i < mlen; i++)
341 n[i] = 0;
342 sfree(n);
59600f67 343
ed953b91 344 freebn(base);
345
59600f67 346 return result;
e5574168 347}
7cca0d81 348
349/*
350 * Compute (p * q) % mod.
351 * The most significant word of mod MUST be non-zero.
352 * We assume that the result array is the same size as the mod array.
353 */
59600f67 354Bignum modmul(Bignum p, Bignum q, Bignum mod)
7cca0d81 355{
a3412f52 356 BignumInt *a, *n, *m, *o;
7cca0d81 357 int mshift;
80b10571 358 int pqlen, mlen, rlen, i, j;
59600f67 359 Bignum result;
7cca0d81 360
361 /* Allocate m of size mlen, copy mod to m */
362 /* We use big endian internally */
363 mlen = mod[0];
a3412f52 364 m = snewn(mlen, BignumInt);
32874aea 365 for (j = 0; j < mlen; j++)
366 m[j] = mod[mod[0] - j];
7cca0d81 367
368 /* Shift m left to make msb bit set */
a3412f52 369 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
370 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
32874aea 371 break;
7cca0d81 372 if (mshift) {
373 for (i = 0; i < mlen - 1; i++)
a3412f52 374 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 375 m[mlen - 1] = m[mlen - 1] << mshift;
7cca0d81 376 }
377
378 pqlen = (p[0] > q[0] ? p[0] : q[0]);
379
380 /* Allocate n of size pqlen, copy p to n */
a3412f52 381 n = snewn(pqlen, BignumInt);
7cca0d81 382 i = pqlen - p[0];
32874aea 383 for (j = 0; j < i; j++)
384 n[j] = 0;
385 for (j = 0; j < p[0]; j++)
386 n[i + j] = p[p[0] - j];
7cca0d81 387
388 /* Allocate o of size pqlen, copy q to o */
a3412f52 389 o = snewn(pqlen, BignumInt);
7cca0d81 390 i = pqlen - q[0];
32874aea 391 for (j = 0; j < i; j++)
392 o[j] = 0;
393 for (j = 0; j < q[0]; j++)
394 o[i + j] = q[q[0] - j];
7cca0d81 395
396 /* Allocate a of size 2*pqlen for result */
a3412f52 397 a = snewn(2 * pqlen, BignumInt);
7cca0d81 398
399 /* Main computation */
9400cf6f 400 internal_mul(n, o, a, pqlen);
32874aea 401 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
7cca0d81 402
403 /* Fixup result in case the modulus was shifted */
404 if (mshift) {
32874aea 405 for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
a3412f52 406 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 407 a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
408 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
409 for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
a3412f52 410 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
7cca0d81 411 }
412
413 /* Copy result to buffer */
32874aea 414 rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
80b10571 415 result = newbn(rlen);
416 for (i = 0; i < rlen; i++)
32874aea 417 result[result[0] - i] = a[i + 2 * pqlen - rlen];
418 while (result[0] > 1 && result[result[0]] == 0)
419 result[0]--;
7cca0d81 420
421 /* Free temporary arrays */
32874aea 422 for (i = 0; i < 2 * pqlen; i++)
423 a[i] = 0;
424 sfree(a);
425 for (i = 0; i < mlen; i++)
426 m[i] = 0;
427 sfree(m);
428 for (i = 0; i < pqlen; i++)
429 n[i] = 0;
430 sfree(n);
431 for (i = 0; i < pqlen; i++)
432 o[i] = 0;
433 sfree(o);
59600f67 434
435 return result;
7cca0d81 436}
437
438/*
9400cf6f 439 * Compute p % mod.
440 * The most significant word of mod MUST be non-zero.
441 * We assume that the result array is the same size as the mod array.
5c72ca61 442 * We optionally write out a quotient if `quotient' is non-NULL.
443 * We can avoid writing out the result if `result' is NULL.
9400cf6f 444 */
f28753ab 445static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
9400cf6f 446{
a3412f52 447 BignumInt *n, *m;
9400cf6f 448 int mshift;
449 int plen, mlen, i, j;
450
451 /* Allocate m of size mlen, copy mod to m */
452 /* We use big endian internally */
453 mlen = mod[0];
a3412f52 454 m = snewn(mlen, BignumInt);
32874aea 455 for (j = 0; j < mlen; j++)
456 m[j] = mod[mod[0] - j];
9400cf6f 457
458 /* Shift m left to make msb bit set */
a3412f52 459 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
460 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
32874aea 461 break;
9400cf6f 462 if (mshift) {
463 for (i = 0; i < mlen - 1; i++)
a3412f52 464 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 465 m[mlen - 1] = m[mlen - 1] << mshift;
9400cf6f 466 }
467
468 plen = p[0];
469 /* Ensure plen > mlen */
32874aea 470 if (plen <= mlen)
471 plen = mlen + 1;
9400cf6f 472
473 /* Allocate n of size plen, copy p to n */
a3412f52 474 n = snewn(plen, BignumInt);
32874aea 475 for (j = 0; j < plen; j++)
476 n[j] = 0;
477 for (j = 1; j <= p[0]; j++)
478 n[plen - j] = p[j];
9400cf6f 479
480 /* Main computation */
481 internal_mod(n, plen, m, mlen, quotient, mshift);
482
483 /* Fixup result in case the modulus was shifted */
484 if (mshift) {
485 for (i = plen - mlen - 1; i < plen - 1; i++)
a3412f52 486 n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 487 n[plen - 1] = n[plen - 1] << mshift;
9400cf6f 488 internal_mod(n, plen, m, mlen, quotient, 0);
489 for (i = plen - 1; i >= plen - mlen; i--)
a3412f52 490 n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
9400cf6f 491 }
492
493 /* Copy result to buffer */
5c72ca61 494 if (result) {
495 for (i = 1; i <= result[0]; i++) {
496 int j = plen - i;
497 result[i] = j >= 0 ? n[j] : 0;
498 }
9400cf6f 499 }
500
501 /* Free temporary arrays */
32874aea 502 for (i = 0; i < mlen; i++)
503 m[i] = 0;
504 sfree(m);
505 for (i = 0; i < plen; i++)
506 n[i] = 0;
507 sfree(n);
9400cf6f 508}
509
510/*
7cca0d81 511 * Decrement a number.
512 */
32874aea 513void decbn(Bignum bn)
514{
7cca0d81 515 int i = 1;
516 while (i < bn[0] && bn[i] == 0)
a3412f52 517 bn[i++] = BIGNUM_INT_MASK;
7cca0d81 518 bn[i]--;
519}
520
27cd7fc2 521Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
32874aea 522{
3709bfe9 523 Bignum result;
524 int w, i;
525
a3412f52 526 w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
3709bfe9 527
528 result = newbn(w);
32874aea 529 for (i = 1; i <= w; i++)
530 result[i] = 0;
531 for (i = nbytes; i--;) {
532 unsigned char byte = *data++;
a3412f52 533 result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
3709bfe9 534 }
535
32874aea 536 while (result[0] > 1 && result[result[0]] == 0)
537 result[0]--;
3709bfe9 538 return result;
539}
540
7cca0d81 541/*
542 * Read an ssh1-format bignum from a data buffer. Return the number
0016d70b 543 * of bytes consumed, or -1 if there wasn't enough data.
7cca0d81 544 */
0016d70b 545int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
32874aea 546{
27cd7fc2 547 const unsigned char *p = data;
7cca0d81 548 int i;
549 int w, b;
550
0016d70b 551 if (len < 2)
552 return -1;
553
7cca0d81 554 w = 0;
32874aea 555 for (i = 0; i < 2; i++)
556 w = (w << 8) + *p++;
557 b = (w + 7) / 8; /* bits -> bytes */
7cca0d81 558
0016d70b 559 if (len < b+2)
560 return -1;
561
32874aea 562 if (!result) /* just return length */
563 return b + 2;
a52f067e 564
3709bfe9 565 *result = bignum_from_bytes(p, b);
7cca0d81 566
3709bfe9 567 return p + b - data;
7cca0d81 568}
5c58ad2d 569
570/*
571 * Return the bit count of a bignum, for ssh1 encoding.
572 */
32874aea 573int bignum_bitcount(Bignum bn)
574{
a3412f52 575 int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
32874aea 576 while (bitcount >= 0
a3412f52 577 && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
5c58ad2d 578 return bitcount + 1;
579}
580
581/*
582 * Return the byte length of a bignum when ssh1 encoded.
583 */
32874aea 584int ssh1_bignum_length(Bignum bn)
585{
586 return 2 + (bignum_bitcount(bn) + 7) / 8;
ddecd643 587}
588
589/*
590 * Return the byte length of a bignum when ssh2 encoded.
591 */
32874aea 592int ssh2_bignum_length(Bignum bn)
593{
594 return 4 + (bignum_bitcount(bn) + 8) / 8;
5c58ad2d 595}
596
597/*
598 * Return a byte from a bignum; 0 is least significant, etc.
599 */
32874aea 600int bignum_byte(Bignum bn, int i)
601{
a3412f52 602 if (i >= BIGNUM_INT_BYTES * bn[0])
32874aea 603 return 0; /* beyond the end */
5c58ad2d 604 else
a3412f52 605 return (bn[i / BIGNUM_INT_BYTES + 1] >>
606 ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
5c58ad2d 607}
608
609/*
9400cf6f 610 * Return a bit from a bignum; 0 is least significant, etc.
611 */
32874aea 612int bignum_bit(Bignum bn, int i)
613{
a3412f52 614 if (i >= BIGNUM_INT_BITS * bn[0])
32874aea 615 return 0; /* beyond the end */
9400cf6f 616 else
a3412f52 617 return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
9400cf6f 618}
619
620/*
621 * Set a bit in a bignum; 0 is least significant, etc.
622 */
32874aea 623void bignum_set_bit(Bignum bn, int bitnum, int value)
624{
a3412f52 625 if (bitnum >= BIGNUM_INT_BITS * bn[0])
32874aea 626 abort(); /* beyond the end */
9400cf6f 627 else {
a3412f52 628 int v = bitnum / BIGNUM_INT_BITS + 1;
629 int mask = 1 << (bitnum % BIGNUM_INT_BITS);
32874aea 630 if (value)
631 bn[v] |= mask;
632 else
633 bn[v] &= ~mask;
9400cf6f 634 }
635}
636
637/*
5c58ad2d 638 * Write a ssh1-format bignum into a buffer. It is assumed the
639 * buffer is big enough. Returns the number of bytes used.
640 */
32874aea 641int ssh1_write_bignum(void *data, Bignum bn)
642{
5c58ad2d 643 unsigned char *p = data;
644 int len = ssh1_bignum_length(bn);
645 int i;
ddecd643 646 int bitc = bignum_bitcount(bn);
5c58ad2d 647
648 *p++ = (bitc >> 8) & 0xFF;
32874aea 649 *p++ = (bitc) & 0xFF;
650 for (i = len - 2; i--;)
651 *p++ = bignum_byte(bn, i);
5c58ad2d 652 return len;
653}
9400cf6f 654
655/*
656 * Compare two bignums. Returns like strcmp.
657 */
32874aea 658int bignum_cmp(Bignum a, Bignum b)
659{
9400cf6f 660 int amax = a[0], bmax = b[0];
661 int i = (amax > bmax ? amax : bmax);
662 while (i) {
a3412f52 663 BignumInt aval = (i > amax ? 0 : a[i]);
664 BignumInt bval = (i > bmax ? 0 : b[i]);
32874aea 665 if (aval < bval)
666 return -1;
667 if (aval > bval)
668 return +1;
669 i--;
9400cf6f 670 }
671 return 0;
672}
673
674/*
675 * Right-shift one bignum to form another.
676 */
32874aea 677Bignum bignum_rshift(Bignum a, int shift)
678{
9400cf6f 679 Bignum ret;
680 int i, shiftw, shiftb, shiftbb, bits;
a3412f52 681 BignumInt ai, ai1;
9400cf6f 682
ddecd643 683 bits = bignum_bitcount(a) - shift;
a3412f52 684 ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
9400cf6f 685
686 if (ret) {
a3412f52 687 shiftw = shift / BIGNUM_INT_BITS;
688 shiftb = shift % BIGNUM_INT_BITS;
689 shiftbb = BIGNUM_INT_BITS - shiftb;
32874aea 690
691 ai1 = a[shiftw + 1];
692 for (i = 1; i <= ret[0]; i++) {
693 ai = ai1;
694 ai1 = (i + shiftw + 1 <= a[0] ? a[i + shiftw + 1] : 0);
a3412f52 695 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
32874aea 696 }
9400cf6f 697 }
698
699 return ret;
700}
701
702/*
703 * Non-modular multiplication and addition.
704 */
32874aea 705Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
706{
9400cf6f 707 int alen = a[0], blen = b[0];
708 int mlen = (alen > blen ? alen : blen);
709 int rlen, i, maxspot;
a3412f52 710 BignumInt *workspace;
9400cf6f 711 Bignum ret;
712
713 /* mlen space for a, mlen space for b, 2*mlen for result */
a3412f52 714 workspace = snewn(mlen * 4, BignumInt);
9400cf6f 715 for (i = 0; i < mlen; i++) {
32874aea 716 workspace[0 * mlen + i] = (mlen - i <= a[0] ? a[mlen - i] : 0);
717 workspace[1 * mlen + i] = (mlen - i <= b[0] ? b[mlen - i] : 0);
9400cf6f 718 }
719
32874aea 720 internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
721 workspace + 2 * mlen, mlen);
9400cf6f 722
723 /* now just copy the result back */
724 rlen = alen + blen + 1;
725 if (addend && rlen <= addend[0])
32874aea 726 rlen = addend[0] + 1;
9400cf6f 727 ret = newbn(rlen);
728 maxspot = 0;
729 for (i = 1; i <= ret[0]; i++) {
32874aea 730 ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
731 if (ret[i] != 0)
732 maxspot = i;
9400cf6f 733 }
734 ret[0] = maxspot;
735
736 /* now add in the addend, if any */
737 if (addend) {
a3412f52 738 BignumDblInt carry = 0;
32874aea 739 for (i = 1; i <= rlen; i++) {
740 carry += (i <= ret[0] ? ret[i] : 0);
741 carry += (i <= addend[0] ? addend[i] : 0);
a3412f52 742 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
743 carry >>= BIGNUM_INT_BITS;
32874aea 744 if (ret[i] != 0 && i > maxspot)
745 maxspot = i;
746 }
9400cf6f 747 }
748 ret[0] = maxspot;
749
c523f55f 750 sfree(workspace);
9400cf6f 751 return ret;
752}
753
754/*
755 * Non-modular multiplication.
756 */
32874aea 757Bignum bigmul(Bignum a, Bignum b)
758{
9400cf6f 759 return bigmuladd(a, b, NULL);
760}
761
762/*
3709bfe9 763 * Create a bignum which is the bitmask covering another one. That
764 * is, the smallest integer which is >= N and is also one less than
765 * a power of two.
766 */
32874aea 767Bignum bignum_bitmask(Bignum n)
768{
3709bfe9 769 Bignum ret = copybn(n);
770 int i;
a3412f52 771 BignumInt j;
3709bfe9 772
773 i = ret[0];
774 while (n[i] == 0 && i > 0)
32874aea 775 i--;
3709bfe9 776 if (i <= 0)
32874aea 777 return ret; /* input was zero */
3709bfe9 778 j = 1;
779 while (j < n[i])
32874aea 780 j = 2 * j + 1;
3709bfe9 781 ret[i] = j;
782 while (--i > 0)
a3412f52 783 ret[i] = BIGNUM_INT_MASK;
3709bfe9 784 return ret;
785}
786
787/*
5c72ca61 788 * Convert a (max 32-bit) long into a bignum.
9400cf6f 789 */
a3412f52 790Bignum bignum_from_long(unsigned long nn)
32874aea 791{
9400cf6f 792 Bignum ret;
a3412f52 793 BignumDblInt n = nn;
9400cf6f 794
5c72ca61 795 ret = newbn(3);
a3412f52 796 ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
797 ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
5c72ca61 798 ret[3] = 0;
799 ret[0] = (ret[2] ? 2 : 1);
32874aea 800 return ret;
9400cf6f 801}
802
803/*
804 * Add a long to a bignum.
805 */
a3412f52 806Bignum bignum_add_long(Bignum number, unsigned long addendx)
32874aea 807{
808 Bignum ret = newbn(number[0] + 1);
9400cf6f 809 int i, maxspot = 0;
a3412f52 810 BignumDblInt carry = 0, addend = addendx;
9400cf6f 811
812 for (i = 1; i <= ret[0]; i++) {
a3412f52 813 carry += addend & BIGNUM_INT_MASK;
32874aea 814 carry += (i <= number[0] ? number[i] : 0);
a3412f52 815 addend >>= BIGNUM_INT_BITS;
816 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
817 carry >>= BIGNUM_INT_BITS;
32874aea 818 if (ret[i] != 0)
819 maxspot = i;
9400cf6f 820 }
821 ret[0] = maxspot;
822 return ret;
823}
824
825/*
826 * Compute the residue of a bignum, modulo a (max 16-bit) short.
827 */
32874aea 828unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
829{
a3412f52 830 BignumDblInt mod, r;
9400cf6f 831 int i;
832
833 r = 0;
834 mod = modulus;
835 for (i = number[0]; i > 0; i--)
736cc6d1 836 r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
6e522441 837 return (unsigned short) r;
9400cf6f 838}
839
a3412f52 840#ifdef DEBUG
32874aea 841void diagbn(char *prefix, Bignum md)
842{
9400cf6f 843 int i, nibbles, morenibbles;
844 static const char hex[] = "0123456789ABCDEF";
845
5c72ca61 846 debug(("%s0x", prefix ? prefix : ""));
9400cf6f 847
32874aea 848 nibbles = (3 + bignum_bitcount(md)) / 4;
849 if (nibbles < 1)
850 nibbles = 1;
851 morenibbles = 4 * md[0] - nibbles;
852 for (i = 0; i < morenibbles; i++)
5c72ca61 853 debug(("-"));
32874aea 854 for (i = nibbles; i--;)
5c72ca61 855 debug(("%c",
856 hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
9400cf6f 857
32874aea 858 if (prefix)
5c72ca61 859 debug(("\n"));
860}
f28753ab 861#endif
5c72ca61 862
863/*
864 * Simple division.
865 */
866Bignum bigdiv(Bignum a, Bignum b)
867{
868 Bignum q = newbn(a[0]);
869 bigdivmod(a, b, NULL, q);
870 return q;
871}
872
873/*
874 * Simple remainder.
875 */
876Bignum bigmod(Bignum a, Bignum b)
877{
878 Bignum r = newbn(b[0]);
879 bigdivmod(a, b, r, NULL);
880 return r;
9400cf6f 881}
882
883/*
884 * Greatest common divisor.
885 */
32874aea 886Bignum biggcd(Bignum av, Bignum bv)
887{
9400cf6f 888 Bignum a = copybn(av);
889 Bignum b = copybn(bv);
890
9400cf6f 891 while (bignum_cmp(b, Zero) != 0) {
32874aea 892 Bignum t = newbn(b[0]);
5c72ca61 893 bigdivmod(a, b, t, NULL);
32874aea 894 while (t[0] > 1 && t[t[0]] == 0)
895 t[0]--;
896 freebn(a);
897 a = b;
898 b = t;
9400cf6f 899 }
900
901 freebn(b);
902 return a;
903}
904
905/*
906 * Modular inverse, using Euclid's extended algorithm.
907 */
32874aea 908Bignum modinv(Bignum number, Bignum modulus)
909{
9400cf6f 910 Bignum a = copybn(modulus);
911 Bignum b = copybn(number);
912 Bignum xp = copybn(Zero);
913 Bignum x = copybn(One);
914 int sign = +1;
915
916 while (bignum_cmp(b, One) != 0) {
32874aea 917 Bignum t = newbn(b[0]);
918 Bignum q = newbn(a[0]);
5c72ca61 919 bigdivmod(a, b, t, q);
32874aea 920 while (t[0] > 1 && t[t[0]] == 0)
921 t[0]--;
922 freebn(a);
923 a = b;
924 b = t;
925 t = xp;
926 xp = x;
927 x = bigmuladd(q, xp, t);
928 sign = -sign;
929 freebn(t);
75374b2f 930 freebn(q);
9400cf6f 931 }
932
933 freebn(b);
934 freebn(a);
935 freebn(xp);
936
937 /* now we know that sign * x == 1, and that x < modulus */
938 if (sign < 0) {
32874aea 939 /* set a new x to be modulus - x */
940 Bignum newx = newbn(modulus[0]);
a3412f52 941 BignumInt carry = 0;
32874aea 942 int maxspot = 1;
943 int i;
944
945 for (i = 1; i <= newx[0]; i++) {
a3412f52 946 BignumInt aword = (i <= modulus[0] ? modulus[i] : 0);
947 BignumInt bword = (i <= x[0] ? x[i] : 0);
32874aea 948 newx[i] = aword - bword - carry;
949 bword = ~bword;
950 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
951 if (newx[i] != 0)
952 maxspot = i;
953 }
954 newx[0] = maxspot;
955 freebn(x);
956 x = newx;
9400cf6f 957 }
958
959 /* and return. */
960 return x;
961}
6e522441 962
963/*
964 * Render a bignum into decimal. Return a malloced string holding
965 * the decimal representation.
966 */
32874aea 967char *bignum_decimal(Bignum x)
968{
6e522441 969 int ndigits, ndigit;
970 int i, iszero;
a3412f52 971 BignumDblInt carry;
6e522441 972 char *ret;
a3412f52 973 BignumInt *workspace;
6e522441 974
975 /*
976 * First, estimate the number of digits. Since log(10)/log(2)
977 * is just greater than 93/28 (the joys of continued fraction
978 * approximations...) we know that for every 93 bits, we need
979 * at most 28 digits. This will tell us how much to malloc.
980 *
981 * Formally: if x has i bits, that means x is strictly less
982 * than 2^i. Since 2 is less than 10^(28/93), this is less than
983 * 10^(28i/93). We need an integer power of ten, so we must
984 * round up (rounding down might make it less than x again).
985 * Therefore if we multiply the bit count by 28/93, rounding
986 * up, we will have enough digits.
987 */
ddecd643 988 i = bignum_bitcount(x);
32874aea 989 ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
990 ndigits++; /* allow for trailing \0 */
3d88e64d 991 ret = snewn(ndigits, char);
6e522441 992
993 /*
994 * Now allocate some workspace to hold the binary form as we
995 * repeatedly divide it by ten. Initialise this to the
996 * big-endian form of the number.
997 */
a3412f52 998 workspace = snewn(x[0], BignumInt);
6e522441 999 for (i = 0; i < x[0]; i++)
32874aea 1000 workspace[i] = x[x[0] - i];
6e522441 1001
1002 /*
1003 * Next, write the decimal number starting with the last digit.
1004 * We use ordinary short division, dividing 10 into the
1005 * workspace.
1006 */
32874aea 1007 ndigit = ndigits - 1;
6e522441 1008 ret[ndigit] = '\0';
1009 do {
32874aea 1010 iszero = 1;
1011 carry = 0;
1012 for (i = 0; i < x[0]; i++) {
a3412f52 1013 carry = (carry << BIGNUM_INT_BITS) + workspace[i];
1014 workspace[i] = (BignumInt) (carry / 10);
32874aea 1015 if (workspace[i])
1016 iszero = 0;
1017 carry %= 10;
1018 }
1019 ret[--ndigit] = (char) (carry + '0');
6e522441 1020 } while (!iszero);
1021
1022 /*
1023 * There's a chance we've fallen short of the start of the
1024 * string. Correct if so.
1025 */
1026 if (ndigit > 0)
32874aea 1027 memmove(ret, ret + ndigit, ndigits - ndigit);
6e522441 1028
1029 /*
1030 * Done.
1031 */
c523f55f 1032 sfree(workspace);
6e522441 1033 return ret;
1034}