Beginnings of a test suite for the bignum code. The output of
[u/mdw/putty] / sshbn.c
CommitLineData
e5574168 1/*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5#include <stdio.h>
ed953b91 6#include <assert.h>
e5574168 7#include <stdlib.h>
8#include <string.h>
9
5c72ca61 10#include "misc.h"
98ba26b9 11
819a22b3 12/*
13 * Usage notes:
14 * * Do not call the DIVMOD_WORD macro with expressions such as array
15 * subscripts, as some implementations object to this (see below).
16 * * Note that none of the division methods below will cope if the
17 * quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
18 * to avoid this case.
19 * If this condition occurs, in the case of the x86 DIV instruction,
20 * an overflow exception will occur, which (according to a correspondent)
21 * will manifest on Windows as something like
22 * 0xC0000095: Integer overflow
23 * The C variant won't give the right answer, either.
24 */
25
a3412f52 26#if defined __GNUC__ && defined __i386__
27typedef unsigned long BignumInt;
28typedef unsigned long long BignumDblInt;
29#define BIGNUM_INT_MASK 0xFFFFFFFFUL
30#define BIGNUM_TOP_BIT 0x80000000UL
31#define BIGNUM_INT_BITS 32
32#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
a47e8bba 33#define DIVMOD_WORD(q, r, hi, lo, w) \
34 __asm__("div %2" : \
35 "=d" (r), "=a" (q) : \
36 "r" (w), "d" (hi), "a" (lo))
036eddfb 37#elif defined _MSC_VER && defined _M_IX86
38typedef unsigned __int32 BignumInt;
39typedef unsigned __int64 BignumDblInt;
40#define BIGNUM_INT_MASK 0xFFFFFFFFUL
41#define BIGNUM_TOP_BIT 0x80000000UL
42#define BIGNUM_INT_BITS 32
43#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
819a22b3 44/* Note: MASM interprets array subscripts in the macro arguments as
45 * assembler syntax, which gives the wrong answer. Don't supply them.
46 * <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */
036eddfb 47#define DIVMOD_WORD(q, r, hi, lo, w) do { \
819a22b3 48 __asm mov edx, hi \
49 __asm mov eax, lo \
50 __asm div w \
51 __asm mov r, edx \
52 __asm mov q, eax \
53} while(0)
32e51f76 54#elif defined _LP64
55/* 64-bit architectures can do 32x32->64 chunks at a time */
56typedef unsigned int BignumInt;
57typedef unsigned long BignumDblInt;
58#define BIGNUM_INT_MASK 0xFFFFFFFFU
59#define BIGNUM_TOP_BIT 0x80000000U
60#define BIGNUM_INT_BITS 32
61#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
62#define DIVMOD_WORD(q, r, hi, lo, w) do { \
63 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
64 q = n / w; \
65 r = n % w; \
66} while (0)
67#elif defined _LLP64
68/* 64-bit architectures in which unsigned long is 32 bits, not 64 */
69typedef unsigned long BignumInt;
70typedef unsigned long long BignumDblInt;
71#define BIGNUM_INT_MASK 0xFFFFFFFFUL
72#define BIGNUM_TOP_BIT 0x80000000UL
73#define BIGNUM_INT_BITS 32
74#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
75#define DIVMOD_WORD(q, r, hi, lo, w) do { \
76 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
77 q = n / w; \
78 r = n % w; \
79} while (0)
a3412f52 80#else
32e51f76 81/* Fallback for all other cases */
a3412f52 82typedef unsigned short BignumInt;
83typedef unsigned long BignumDblInt;
84#define BIGNUM_INT_MASK 0xFFFFU
85#define BIGNUM_TOP_BIT 0x8000U
86#define BIGNUM_INT_BITS 16
87#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
a47e8bba 88#define DIVMOD_WORD(q, r, hi, lo, w) do { \
89 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
90 q = n / w; \
91 r = n % w; \
92} while (0)
a3412f52 93#endif
94
95#define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
96
3709bfe9 97#define BIGNUM_INTERNAL
a3412f52 98typedef BignumInt *Bignum;
3709bfe9 99
e5574168 100#include "ssh.h"
101
a3412f52 102BignumInt bnZero[1] = { 0 };
103BignumInt bnOne[2] = { 1, 1 };
e5574168 104
7d6ee6ff 105/*
a3412f52 106 * The Bignum format is an array of `BignumInt'. The first
7d6ee6ff 107 * element of the array counts the remaining elements. The
a3412f52 108 * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
7d6ee6ff 109 * significant digit first. (So it's trivial to extract the bit
110 * with value 2^n for any n.)
111 *
112 * All Bignums in this module are positive. Negative numbers must
113 * be dealt with outside it.
114 *
115 * INVARIANT: the most significant word of any Bignum must be
116 * nonzero.
117 */
118
7cca0d81 119Bignum Zero = bnZero, One = bnOne;
e5574168 120
32874aea 121static Bignum newbn(int length)
122{
a3412f52 123 Bignum b = snewn(length + 1, BignumInt);
e5574168 124 if (!b)
125 abort(); /* FIXME */
32874aea 126 memset(b, 0, (length + 1) * sizeof(*b));
e5574168 127 b[0] = length;
128 return b;
129}
130
32874aea 131void bn_restore_invariant(Bignum b)
132{
133 while (b[0] > 1 && b[b[0]] == 0)
134 b[0]--;
3709bfe9 135}
136
32874aea 137Bignum copybn(Bignum orig)
138{
a3412f52 139 Bignum b = snewn(orig[0] + 1, BignumInt);
7cca0d81 140 if (!b)
141 abort(); /* FIXME */
32874aea 142 memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
7cca0d81 143 return b;
144}
145
32874aea 146void freebn(Bignum b)
147{
e5574168 148 /*
149 * Burn the evidence, just in case.
150 */
151 memset(b, 0, sizeof(b[0]) * (b[0] + 1));
dcbde236 152 sfree(b);
e5574168 153}
154
32874aea 155Bignum bn_power_2(int n)
156{
a3412f52 157 Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
3709bfe9 158 bignum_set_bit(ret, n, 1);
159 return ret;
160}
161
e5574168 162/*
0c431b2f 163 * Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
164 * big-endian arrays of 'len' BignumInts. Returns a BignumInt carried
165 * off the top.
166 */
167static BignumInt internal_add(const BignumInt *a, const BignumInt *b,
168 BignumInt *c, int len)
169{
170 int i;
171 BignumDblInt carry = 0;
172
173 for (i = len-1; i >= 0; i--) {
174 carry += (BignumDblInt)a[i] + b[i];
175 c[i] = (BignumInt)carry;
176 carry >>= BIGNUM_INT_BITS;
177 }
178
179 return (BignumInt)carry;
180}
181
182/*
183 * Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
184 * all big-endian arrays of 'len' BignumInts. Any borrow from the top
185 * is ignored.
186 */
187static void internal_sub(const BignumInt *a, const BignumInt *b,
188 BignumInt *c, int len)
189{
190 int i;
191 BignumDblInt carry = 1;
192
193 for (i = len-1; i >= 0; i--) {
194 carry += (BignumDblInt)a[i] + (b[i] ^ BIGNUM_INT_MASK);
195 c[i] = (BignumInt)carry;
196 carry >>= BIGNUM_INT_BITS;
197 }
198}
199
200/*
e5574168 201 * Compute c = a * b.
202 * Input is in the first len words of a and b.
203 * Result is returned in the first 2*len words of c.
204 */
0c431b2f 205#define KARATSUBA_THRESHOLD 50
132c534f 206static void internal_mul(const BignumInt *a, const BignumInt *b,
a3412f52 207 BignumInt *c, int len)
e5574168 208{
209 int i, j;
a3412f52 210 BignumDblInt t;
e5574168 211
0c431b2f 212 if (len > KARATSUBA_THRESHOLD) {
213
214 /*
215 * Karatsuba divide-and-conquer algorithm. Cut each input in
216 * half, so that it's expressed as two big 'digits' in a giant
217 * base D:
218 *
219 * a = a_1 D + a_0
220 * b = b_1 D + b_0
221 *
222 * Then the product is of course
223 *
224 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
225 *
226 * and we compute the three coefficients by recursively
227 * calling ourself to do half-length multiplications.
228 *
229 * The clever bit that makes this worth doing is that we only
230 * need _one_ half-length multiplication for the central
231 * coefficient rather than the two that it obviouly looks
232 * like, because we can use a single multiplication to compute
233 *
234 * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
235 *
236 * and then we subtract the other two coefficients (a_1 b_1
237 * and a_0 b_0) which we were computing anyway.
238 *
239 * Hence we get to multiply two numbers of length N in about
240 * three times as much work as it takes to multiply numbers of
241 * length N/2, which is obviously better than the four times
242 * as much work it would take if we just did a long
243 * conventional multiply.
244 */
245
246 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
247 int midlen = botlen + 1;
248 BignumInt *scratch;
249 BignumDblInt carry;
f3c29e34 250#ifdef KARA_DEBUG
251 int i;
252#endif
0c431b2f 253
254 /*
255 * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
256 * in the output array, so we can compute them immediately in
257 * place.
258 */
259
f3c29e34 260#ifdef KARA_DEBUG
261 printf("a1,a0 = 0x");
262 for (i = 0; i < len; i++) {
263 if (i == toplen) printf(", 0x");
264 printf("%0*x", BIGNUM_INT_BITS/4, a[i]);
265 }
266 printf("\n");
267 printf("b1,b0 = 0x");
268 for (i = 0; i < len; i++) {
269 if (i == toplen) printf(", 0x");
270 printf("%0*x", BIGNUM_INT_BITS/4, b[i]);
271 }
272 printf("\n");
273#endif
274
0c431b2f 275 /* a_1 b_1 */
276 internal_mul(a, b, c, toplen);
f3c29e34 277#ifdef KARA_DEBUG
278 printf("a1b1 = 0x");
279 for (i = 0; i < 2*toplen; i++) {
280 printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
281 }
282 printf("\n");
283#endif
0c431b2f 284
285 /* a_0 b_0 */
286 internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen);
f3c29e34 287#ifdef KARA_DEBUG
288 printf("a0b0 = 0x");
289 for (i = 0; i < 2*botlen; i++) {
290 printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);
291 }
292 printf("\n");
293#endif
0c431b2f 294
295 /*
296 * We must allocate scratch space for the central coefficient,
297 * and also for the two input values that we multiply when
298 * computing it. Since either or both may carry into the
299 * (botlen+1)th word, we must use a slightly longer length
300 * 'midlen'.
301 */
302 scratch = snewn(4 * midlen, BignumInt);
303
304 /* Zero padding. midlen exceeds toplen by at most 2, so just
305 * zero the first two words of each input and the rest will be
306 * copied over. */
307 scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;
308
309 for (j = 0; j < toplen; j++) {
310 scratch[midlen - toplen + j] = a[j]; /* a_1 */
311 scratch[2*midlen - toplen + j] = b[j]; /* b_1 */
312 }
313
314 /* compute a_1 + a_0 */
315 scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
f3c29e34 316#ifdef KARA_DEBUG
317 printf("a1plusa0 = 0x");
318 for (i = 0; i < midlen; i++) {
319 printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
320 }
321 printf("\n");
322#endif
0c431b2f 323 /* compute b_1 + b_0 */
324 scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
325 scratch+midlen+1, botlen);
f3c29e34 326#ifdef KARA_DEBUG
327 printf("b1plusb0 = 0x");
328 for (i = 0; i < midlen; i++) {
329 printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);
330 }
331 printf("\n");
332#endif
0c431b2f 333
334 /*
335 * Now we can do the third multiplication.
336 */
337 internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen);
f3c29e34 338#ifdef KARA_DEBUG
339 printf("a1plusa0timesb1plusb0 = 0x");
340 for (i = 0; i < 2*midlen; i++) {
341 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
342 }
343 printf("\n");
344#endif
0c431b2f 345
346 /*
347 * Now we can reuse the first half of 'scratch' to compute the
348 * sum of the outer two coefficients, to subtract from that
349 * product to obtain the middle one.
350 */
351 scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;
352 for (j = 0; j < 2*toplen; j++)
353 scratch[2*midlen - 2*toplen + j] = c[j];
354 scratch[1] = internal_add(scratch+2, c + 2*toplen,
355 scratch+2, 2*botlen);
f3c29e34 356#ifdef KARA_DEBUG
357 printf("a1b1plusa0b0 = 0x");
358 for (i = 0; i < 2*midlen; i++) {
359 printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
360 }
361 printf("\n");
362#endif
0c431b2f 363
364 internal_sub(scratch + 2*midlen, scratch,
365 scratch + 2*midlen, 2*midlen);
f3c29e34 366#ifdef KARA_DEBUG
367 printf("a1b0plusa0b1 = 0x");
368 for (i = 0; i < 2*midlen; i++) {
369 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
370 }
371 printf("\n");
372#endif
0c431b2f 373
374 /*
375 * And now all we need to do is to add that middle coefficient
376 * back into the output. We may have to propagate a carry
377 * further up the output, but we can be sure it won't
378 * propagate right the way off the top.
379 */
380 carry = internal_add(c + 2*len - botlen - 2*midlen,
381 scratch + 2*midlen,
382 c + 2*len - botlen - 2*midlen, 2*midlen);
383 j = 2*len - botlen - 2*midlen - 1;
384 while (carry) {
385 assert(j >= 0);
386 carry += c[j];
387 c[j] = (BignumInt)carry;
388 carry >>= BIGNUM_INT_BITS;
389 }
f3c29e34 390#ifdef KARA_DEBUG
391 printf("ab = 0x");
392 for (i = 0; i < 2*len; i++) {
393 printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
394 }
395 printf("\n");
396#endif
0c431b2f 397
398 /* Free scratch. */
399 for (j = 0; j < 4 * midlen; j++)
400 scratch[j] = 0;
401 sfree(scratch);
402
403 } else {
404
405 /*
406 * Multiply in the ordinary O(N^2) way.
407 */
408
409 for (j = 0; j < 2 * len; j++)
410 c[j] = 0;
411
412 for (i = len - 1; i >= 0; i--) {
413 t = 0;
414 for (j = len - 1; j >= 0; j--) {
415 t += MUL_WORD(a[i], (BignumDblInt) b[j]);
416 t += (BignumDblInt) c[i + j + 1];
417 c[i + j + 1] = (BignumInt) t;
418 t = t >> BIGNUM_INT_BITS;
419 }
420 c[i] = (BignumInt) t;
421 }
e5574168 422 }
423}
424
132c534f 425/*
426 * Variant form of internal_mul used for the initial step of
427 * Montgomery reduction. Only bothers outputting 'len' words
428 * (everything above that is thrown away).
429 */
430static void internal_mul_low(const BignumInt *a, const BignumInt *b,
431 BignumInt *c, int len)
432{
433 int i, j;
434 BignumDblInt t;
435
436 if (len > KARATSUBA_THRESHOLD) {
437
438 /*
439 * Karatsuba-aware version of internal_mul_low. As before, we
440 * express each input value as a shifted combination of two
441 * halves:
442 *
443 * a = a_1 D + a_0
444 * b = b_1 D + b_0
445 *
446 * Then the full product is, as before,
447 *
448 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
449 *
450 * Provided we choose D on the large side (so that a_0 and b_0
451 * are _at least_ as long as a_1 and b_1), we don't need the
452 * topmost term at all, and we only need half of the middle
453 * term. So there's no point in doing the proper Karatsuba
454 * optimisation which computes the middle term using the top
455 * one, because we'd take as long computing the top one as
456 * just computing the middle one directly.
457 *
458 * So instead, we do a much more obvious thing: we call the
459 * fully optimised internal_mul to compute a_0 b_0, and we
460 * recursively call ourself to compute the _bottom halves_ of
461 * a_1 b_0 and a_0 b_1, each of which we add into the result
462 * in the obvious way.
463 *
464 * In other words, there's no actual Karatsuba _optimisation_
465 * in this function; the only benefit in doing it this way is
466 * that we call internal_mul proper for a large part of the
467 * work, and _that_ can optimise its operation.
468 */
469
470 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
471 BignumInt *scratch;
472
473 /*
474 * Allocate scratch space for the various bits and pieces
475 * we're going to be adding together. We need botlen*2 words
476 * for a_0 b_0 (though we may end up throwing away its topmost
477 * word), and toplen words for each of a_1 b_0 and a_0 b_1.
478 * That adds up to exactly 2*len.
479 */
480 scratch = snewn(len*2, BignumInt);
481
482 /* a_0 b_0 */
483 internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen);
484
485 /* a_1 b_0 */
486 internal_mul_low(a, b + len - toplen, scratch + toplen, toplen);
487
488 /* a_0 b_1 */
489 internal_mul_low(a + len - toplen, b, scratch, toplen);
490
491 /* Copy the bottom half of the big coefficient into place */
492 for (j = 0; j < botlen; j++)
493 c[toplen + j] = scratch[2*toplen + botlen + j];
494
495 /* Add the two small coefficients, throwing away the returned carry */
496 internal_add(scratch, scratch + toplen, scratch, toplen);
497
498 /* And add that to the large coefficient, leaving the result in c. */
499 internal_add(scratch, scratch + 2*toplen + botlen - toplen,
500 c, toplen);
501
502 /* Free scratch. */
503 for (j = 0; j < len*2; j++)
504 scratch[j] = 0;
505 sfree(scratch);
506
507 } else {
508
509 for (j = 0; j < len; j++)
510 c[j] = 0;
511
512 for (i = len - 1; i >= 0; i--) {
513 t = 0;
514 for (j = len - 1; j >= len - i - 1; j--) {
515 t += MUL_WORD(a[i], (BignumDblInt) b[j]);
516 t += (BignumDblInt) c[i + j + 1 - len];
517 c[i + j + 1 - len] = (BignumInt) t;
518 t = t >> BIGNUM_INT_BITS;
519 }
520 }
521
522 }
523}
524
525/*
526 * Montgomery reduction. Expects x to be a big-endian array of 2*len
527 * BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
528 * BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
529 * a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
530 * x' < n.
531 *
532 * 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts
533 * each, containing respectively n and the multiplicative inverse of
534 * -n mod r.
535 *
536 * 'tmp' is an array of at least '3*len' BignumInts used as scratch
537 * space.
538 */
539static void monty_reduce(BignumInt *x, const BignumInt *n,
540 const BignumInt *mninv, BignumInt *tmp, int len)
541{
542 int i;
543 BignumInt carry;
544
545 /*
546 * Multiply x by (-n)^{-1} mod r. This gives us a value m such
547 * that mn is congruent to -x mod r. Hence, mn+x is an exact
548 * multiple of r, and is also (obviously) congruent to x mod n.
549 */
550 internal_mul_low(x + len, mninv, tmp, len);
551
552 /*
553 * Compute t = (mn+x)/r in ordinary, non-modular, integer
554 * arithmetic. By construction this is exact, and is congruent mod
555 * n to x * r^{-1}, i.e. the answer we want.
556 *
557 * The following multiply leaves that answer in the _most_
558 * significant half of the 'x' array, so then we must shift it
559 * down.
560 */
561 internal_mul(tmp, n, tmp+len, len);
562 carry = internal_add(x, tmp+len, x, 2*len);
563 for (i = 0; i < len; i++)
564 x[len + i] = x[i], x[i] = 0;
565
566 /*
567 * Reduce t mod n. This doesn't require a full-on division by n,
568 * but merely a test and single optional subtraction, since we can
569 * show that 0 <= t < 2n.
570 *
571 * Proof:
572 * + we computed m mod r, so 0 <= m < r.
573 * + so 0 <= mn < rn, obviously
574 * + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
575 * + yielding 0 <= (mn+x)/r < 2n as required.
576 */
577 if (!carry) {
578 for (i = 0; i < len; i++)
579 if (x[len + i] != n[i])
580 break;
581 }
582 if (carry || i >= len || x[len + i] > n[i])
583 internal_sub(x+len, n, x+len, len);
584}
585
a3412f52 586static void internal_add_shifted(BignumInt *number,
32874aea 587 unsigned n, int shift)
588{
a3412f52 589 int word = 1 + (shift / BIGNUM_INT_BITS);
590 int bshift = shift % BIGNUM_INT_BITS;
591 BignumDblInt addend;
9400cf6f 592
3014da2b 593 addend = (BignumDblInt)n << bshift;
9400cf6f 594
595 while (addend) {
32874aea 596 addend += number[word];
a3412f52 597 number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
598 addend >>= BIGNUM_INT_BITS;
32874aea 599 word++;
9400cf6f 600 }
601}
602
e5574168 603/*
604 * Compute a = a % m.
9400cf6f 605 * Input in first alen words of a and first mlen words of m.
606 * Output in first alen words of a
607 * (of which first alen-mlen words will be zero).
e5574168 608 * The MSW of m MUST have its high bit set.
9400cf6f 609 * Quotient is accumulated in the `quotient' array, which is a Bignum
610 * rather than the internal bigendian format. Quotient parts are shifted
611 * left by `qshift' before adding into quot.
e5574168 612 */
a3412f52 613static void internal_mod(BignumInt *a, int alen,
614 BignumInt *m, int mlen,
615 BignumInt *quot, int qshift)
e5574168 616{
a3412f52 617 BignumInt m0, m1;
e5574168 618 unsigned int h;
619 int i, k;
620
e5574168 621 m0 = m[0];
9400cf6f 622 if (mlen > 1)
32874aea 623 m1 = m[1];
9400cf6f 624 else
32874aea 625 m1 = 0;
e5574168 626
32874aea 627 for (i = 0; i <= alen - mlen; i++) {
a3412f52 628 BignumDblInt t;
9400cf6f 629 unsigned int q, r, c, ai1;
e5574168 630
631 if (i == 0) {
632 h = 0;
633 } else {
32874aea 634 h = a[i - 1];
635 a[i - 1] = 0;
e5574168 636 }
637
32874aea 638 if (i == alen - 1)
639 ai1 = 0;
640 else
641 ai1 = a[i + 1];
9400cf6f 642
e5574168 643 /* Find q = h:a[i] / m0 */
62ef3d44 644 if (h >= m0) {
645 /*
646 * Special case.
647 *
648 * To illustrate it, suppose a BignumInt is 8 bits, and
649 * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
650 * our initial division will be 0xA123 / 0xA1, which
651 * will give a quotient of 0x100 and a divide overflow.
652 * However, the invariants in this division algorithm
653 * are not violated, since the full number A1:23:... is
654 * _less_ than the quotient prefix A1:B2:... and so the
655 * following correction loop would have sorted it out.
656 *
657 * In this situation we set q to be the largest
658 * quotient we _can_ stomach (0xFF, of course).
659 */
660 q = BIGNUM_INT_MASK;
661 } else {
819a22b3 662 /* Macro doesn't want an array subscript expression passed
663 * into it (see definition), so use a temporary. */
664 BignumInt tmplo = a[i];
665 DIVMOD_WORD(q, r, h, tmplo, m0);
62ef3d44 666
667 /* Refine our estimate of q by looking at
668 h:a[i]:a[i+1] / m0:m1 */
669 t = MUL_WORD(m1, q);
670 if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
671 q--;
672 t -= m1;
673 r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
674 if (r >= (BignumDblInt) m0 &&
675 t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
676 }
e5574168 677 }
678
9400cf6f 679 /* Subtract q * m from a[i...] */
e5574168 680 c = 0;
9400cf6f 681 for (k = mlen - 1; k >= 0; k--) {
a47e8bba 682 t = MUL_WORD(q, m[k]);
e5574168 683 t += c;
62ddb51e 684 c = (unsigned)(t >> BIGNUM_INT_BITS);
a3412f52 685 if ((BignumInt) t > a[i + k])
32874aea 686 c++;
a3412f52 687 a[i + k] -= (BignumInt) t;
e5574168 688 }
689
690 /* Add back m in case of borrow */
691 if (c != h) {
692 t = 0;
9400cf6f 693 for (k = mlen - 1; k >= 0; k--) {
e5574168 694 t += m[k];
32874aea 695 t += a[i + k];
a3412f52 696 a[i + k] = (BignumInt) t;
697 t = t >> BIGNUM_INT_BITS;
e5574168 698 }
32874aea 699 q--;
e5574168 700 }
32874aea 701 if (quot)
a3412f52 702 internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
e5574168 703 }
704}
705
706/*
132c534f 707 * Compute (base ^ exp) % mod. Uses the Montgomery multiplication
708 * technique.
e5574168 709 */
ed953b91 710Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
e5574168 711{
132c534f 712 BignumInt *a, *b, *x, *n, *mninv, *tmp;
713 int len, i, j;
714 Bignum base, base2, r, rn, inv, result;
ed953b91 715
716 /*
717 * The most significant word of mod needs to be non-zero. It
718 * should already be, but let's make sure.
719 */
720 assert(mod[mod[0]] != 0);
721
722 /*
723 * Make sure the base is smaller than the modulus, by reducing
724 * it modulo the modulus if not.
725 */
726 base = bigmod(base_in, mod);
e5574168 727
132c534f 728 /*
729 * mod had better be odd, or we can't do Montgomery multiplication
730 * using a power of two at all.
731 */
732 assert(mod[1] & 1);
e5574168 733
132c534f 734 /*
735 * Compute the inverse of n mod r, for monty_reduce. (In fact we
736 * want the inverse of _minus_ n mod r, but we'll sort that out
737 * below.)
738 */
739 len = mod[0];
740 r = bn_power_2(BIGNUM_INT_BITS * len);
741 inv = modinv(mod, r);
e5574168 742
132c534f 743 /*
744 * Multiply the base by r mod n, to get it into Montgomery
745 * representation.
746 */
747 base2 = modmul(base, r, mod);
748 freebn(base);
749 base = base2;
750
751 rn = bigmod(r, mod); /* r mod n, i.e. Montgomerified 1 */
752
753 freebn(r); /* won't need this any more */
754
755 /*
756 * Set up internal arrays of the right lengths, in big-endian
757 * format, containing the base, the modulus, and the modulus's
758 * inverse.
759 */
760 n = snewn(len, BignumInt);
761 for (j = 0; j < len; j++)
762 n[len - 1 - j] = mod[j + 1];
763
764 mninv = snewn(len, BignumInt);
765 for (j = 0; j < len; j++)
766 mninv[len - 1 - j] = (j < inv[0] ? inv[j + 1] : 0);
767 freebn(inv); /* we don't need this copy of it any more */
768 /* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
769 x = snewn(len, BignumInt);
770 for (j = 0; j < len; j++)
771 x[j] = 0;
772 internal_sub(x, mninv, mninv, len);
773
774 /* x = snewn(len, BignumInt); */ /* already done above */
775 for (j = 0; j < len; j++)
776 x[len - 1 - j] = (j < base[0] ? base[j + 1] : 0);
777 freebn(base); /* we don't need this copy of it any more */
778
779 a = snewn(2*len, BignumInt);
780 b = snewn(2*len, BignumInt);
781 for (j = 0; j < len; j++)
782 a[2*len - 1 - j] = (j < rn[0] ? rn[j + 1] : 0);
783 freebn(rn);
784
785 tmp = snewn(3*len, BignumInt);
e5574168 786
787 /* Skip leading zero bits of exp. */
32874aea 788 i = 0;
a3412f52 789 j = BIGNUM_INT_BITS-1;
62ddb51e 790 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
e5574168 791 j--;
32874aea 792 if (j < 0) {
793 i++;
a3412f52 794 j = BIGNUM_INT_BITS-1;
32874aea 795 }
e5574168 796 }
797
798 /* Main computation */
62ddb51e 799 while (i < (int)exp[0]) {
e5574168 800 while (j >= 0) {
132c534f 801 internal_mul(a + len, a + len, b, len);
802 monty_reduce(b, n, mninv, tmp, len);
e5574168 803 if ((exp[exp[0] - i] & (1 << j)) != 0) {
132c534f 804 internal_mul(b + len, x, a, len);
805 monty_reduce(a, n, mninv, tmp, len);
e5574168 806 } else {
a3412f52 807 BignumInt *t;
32874aea 808 t = a;
809 a = b;
810 b = t;
e5574168 811 }
812 j--;
813 }
32874aea 814 i++;
a3412f52 815 j = BIGNUM_INT_BITS-1;
e5574168 816 }
817
132c534f 818 /*
819 * Final monty_reduce to get back from the adjusted Montgomery
820 * representation.
821 */
822 monty_reduce(a, n, mninv, tmp, len);
e5574168 823
824 /* Copy result to buffer */
59600f67 825 result = newbn(mod[0]);
132c534f 826 for (i = 0; i < len; i++)
827 result[result[0] - i] = a[i + len];
32874aea 828 while (result[0] > 1 && result[result[0]] == 0)
829 result[0]--;
e5574168 830
831 /* Free temporary arrays */
132c534f 832 for (i = 0; i < 3 * len; i++)
833 tmp[i] = 0;
834 sfree(tmp);
835 for (i = 0; i < 2 * len; i++)
32874aea 836 a[i] = 0;
837 sfree(a);
132c534f 838 for (i = 0; i < 2 * len; i++)
32874aea 839 b[i] = 0;
840 sfree(b);
132c534f 841 for (i = 0; i < len; i++)
842 mninv[i] = 0;
843 sfree(mninv);
844 for (i = 0; i < len; i++)
32874aea 845 n[i] = 0;
846 sfree(n);
132c534f 847 for (i = 0; i < len; i++)
848 x[i] = 0;
849 sfree(x);
ed953b91 850
59600f67 851 return result;
e5574168 852}
7cca0d81 853
854/*
855 * Compute (p * q) % mod.
856 * The most significant word of mod MUST be non-zero.
857 * We assume that the result array is the same size as the mod array.
858 */
59600f67 859Bignum modmul(Bignum p, Bignum q, Bignum mod)
7cca0d81 860{
a3412f52 861 BignumInt *a, *n, *m, *o;
7cca0d81 862 int mshift;
80b10571 863 int pqlen, mlen, rlen, i, j;
59600f67 864 Bignum result;
7cca0d81 865
866 /* Allocate m of size mlen, copy mod to m */
867 /* We use big endian internally */
868 mlen = mod[0];
a3412f52 869 m = snewn(mlen, BignumInt);
32874aea 870 for (j = 0; j < mlen; j++)
871 m[j] = mod[mod[0] - j];
7cca0d81 872
873 /* Shift m left to make msb bit set */
a3412f52 874 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
875 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
32874aea 876 break;
7cca0d81 877 if (mshift) {
878 for (i = 0; i < mlen - 1; i++)
a3412f52 879 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 880 m[mlen - 1] = m[mlen - 1] << mshift;
7cca0d81 881 }
882
883 pqlen = (p[0] > q[0] ? p[0] : q[0]);
884
885 /* Allocate n of size pqlen, copy p to n */
a3412f52 886 n = snewn(pqlen, BignumInt);
7cca0d81 887 i = pqlen - p[0];
32874aea 888 for (j = 0; j < i; j++)
889 n[j] = 0;
62ddb51e 890 for (j = 0; j < (int)p[0]; j++)
32874aea 891 n[i + j] = p[p[0] - j];
7cca0d81 892
893 /* Allocate o of size pqlen, copy q to o */
a3412f52 894 o = snewn(pqlen, BignumInt);
7cca0d81 895 i = pqlen - q[0];
32874aea 896 for (j = 0; j < i; j++)
897 o[j] = 0;
62ddb51e 898 for (j = 0; j < (int)q[0]; j++)
32874aea 899 o[i + j] = q[q[0] - j];
7cca0d81 900
901 /* Allocate a of size 2*pqlen for result */
a3412f52 902 a = snewn(2 * pqlen, BignumInt);
7cca0d81 903
904 /* Main computation */
9400cf6f 905 internal_mul(n, o, a, pqlen);
32874aea 906 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
7cca0d81 907
908 /* Fixup result in case the modulus was shifted */
909 if (mshift) {
32874aea 910 for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
a3412f52 911 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 912 a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
913 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
914 for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
a3412f52 915 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
7cca0d81 916 }
917
918 /* Copy result to buffer */
32874aea 919 rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
80b10571 920 result = newbn(rlen);
921 for (i = 0; i < rlen; i++)
32874aea 922 result[result[0] - i] = a[i + 2 * pqlen - rlen];
923 while (result[0] > 1 && result[result[0]] == 0)
924 result[0]--;
7cca0d81 925
926 /* Free temporary arrays */
32874aea 927 for (i = 0; i < 2 * pqlen; i++)
928 a[i] = 0;
929 sfree(a);
930 for (i = 0; i < mlen; i++)
931 m[i] = 0;
932 sfree(m);
933 for (i = 0; i < pqlen; i++)
934 n[i] = 0;
935 sfree(n);
936 for (i = 0; i < pqlen; i++)
937 o[i] = 0;
938 sfree(o);
59600f67 939
940 return result;
7cca0d81 941}
942
943/*
9400cf6f 944 * Compute p % mod.
945 * The most significant word of mod MUST be non-zero.
946 * We assume that the result array is the same size as the mod array.
5c72ca61 947 * We optionally write out a quotient if `quotient' is non-NULL.
948 * We can avoid writing out the result if `result' is NULL.
9400cf6f 949 */
f28753ab 950static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
9400cf6f 951{
a3412f52 952 BignumInt *n, *m;
9400cf6f 953 int mshift;
954 int plen, mlen, i, j;
955
956 /* Allocate m of size mlen, copy mod to m */
957 /* We use big endian internally */
958 mlen = mod[0];
a3412f52 959 m = snewn(mlen, BignumInt);
32874aea 960 for (j = 0; j < mlen; j++)
961 m[j] = mod[mod[0] - j];
9400cf6f 962
963 /* Shift m left to make msb bit set */
a3412f52 964 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
965 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
32874aea 966 break;
9400cf6f 967 if (mshift) {
968 for (i = 0; i < mlen - 1; i++)
a3412f52 969 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 970 m[mlen - 1] = m[mlen - 1] << mshift;
9400cf6f 971 }
972
973 plen = p[0];
974 /* Ensure plen > mlen */
32874aea 975 if (plen <= mlen)
976 plen = mlen + 1;
9400cf6f 977
978 /* Allocate n of size plen, copy p to n */
a3412f52 979 n = snewn(plen, BignumInt);
32874aea 980 for (j = 0; j < plen; j++)
981 n[j] = 0;
62ddb51e 982 for (j = 1; j <= (int)p[0]; j++)
32874aea 983 n[plen - j] = p[j];
9400cf6f 984
985 /* Main computation */
986 internal_mod(n, plen, m, mlen, quotient, mshift);
987
988 /* Fixup result in case the modulus was shifted */
989 if (mshift) {
990 for (i = plen - mlen - 1; i < plen - 1; i++)
a3412f52 991 n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
32874aea 992 n[plen - 1] = n[plen - 1] << mshift;
9400cf6f 993 internal_mod(n, plen, m, mlen, quotient, 0);
994 for (i = plen - 1; i >= plen - mlen; i--)
a3412f52 995 n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
9400cf6f 996 }
997
998 /* Copy result to buffer */
5c72ca61 999 if (result) {
62ddb51e 1000 for (i = 1; i <= (int)result[0]; i++) {
5c72ca61 1001 int j = plen - i;
1002 result[i] = j >= 0 ? n[j] : 0;
1003 }
9400cf6f 1004 }
1005
1006 /* Free temporary arrays */
32874aea 1007 for (i = 0; i < mlen; i++)
1008 m[i] = 0;
1009 sfree(m);
1010 for (i = 0; i < plen; i++)
1011 n[i] = 0;
1012 sfree(n);
9400cf6f 1013}
1014
1015/*
7cca0d81 1016 * Decrement a number.
1017 */
32874aea 1018void decbn(Bignum bn)
1019{
7cca0d81 1020 int i = 1;
62ddb51e 1021 while (i < (int)bn[0] && bn[i] == 0)
a3412f52 1022 bn[i++] = BIGNUM_INT_MASK;
7cca0d81 1023 bn[i]--;
1024}
1025
27cd7fc2 1026Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
32874aea 1027{
3709bfe9 1028 Bignum result;
1029 int w, i;
1030
a3412f52 1031 w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
3709bfe9 1032
1033 result = newbn(w);
32874aea 1034 for (i = 1; i <= w; i++)
1035 result[i] = 0;
1036 for (i = nbytes; i--;) {
1037 unsigned char byte = *data++;
a3412f52 1038 result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
3709bfe9 1039 }
1040
32874aea 1041 while (result[0] > 1 && result[result[0]] == 0)
1042 result[0]--;
3709bfe9 1043 return result;
1044}
1045
7cca0d81 1046/*
2e85c969 1047 * Read an SSH-1-format bignum from a data buffer. Return the number
0016d70b 1048 * of bytes consumed, or -1 if there wasn't enough data.
7cca0d81 1049 */
0016d70b 1050int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
32874aea 1051{
27cd7fc2 1052 const unsigned char *p = data;
7cca0d81 1053 int i;
1054 int w, b;
1055
0016d70b 1056 if (len < 2)
1057 return -1;
1058
7cca0d81 1059 w = 0;
32874aea 1060 for (i = 0; i < 2; i++)
1061 w = (w << 8) + *p++;
1062 b = (w + 7) / 8; /* bits -> bytes */
7cca0d81 1063
0016d70b 1064 if (len < b+2)
1065 return -1;
1066
32874aea 1067 if (!result) /* just return length */
1068 return b + 2;
a52f067e 1069
3709bfe9 1070 *result = bignum_from_bytes(p, b);
7cca0d81 1071
3709bfe9 1072 return p + b - data;
7cca0d81 1073}
5c58ad2d 1074
1075/*
2e85c969 1076 * Return the bit count of a bignum, for SSH-1 encoding.
5c58ad2d 1077 */
32874aea 1078int bignum_bitcount(Bignum bn)
1079{
a3412f52 1080 int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
32874aea 1081 while (bitcount >= 0
a3412f52 1082 && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
5c58ad2d 1083 return bitcount + 1;
1084}
1085
1086/*
2e85c969 1087 * Return the byte length of a bignum when SSH-1 encoded.
5c58ad2d 1088 */
32874aea 1089int ssh1_bignum_length(Bignum bn)
1090{
1091 return 2 + (bignum_bitcount(bn) + 7) / 8;
ddecd643 1092}
1093
1094/*
2e85c969 1095 * Return the byte length of a bignum when SSH-2 encoded.
ddecd643 1096 */
32874aea 1097int ssh2_bignum_length(Bignum bn)
1098{
1099 return 4 + (bignum_bitcount(bn) + 8) / 8;
5c58ad2d 1100}
1101
1102/*
1103 * Return a byte from a bignum; 0 is least significant, etc.
1104 */
32874aea 1105int bignum_byte(Bignum bn, int i)
1106{
62ddb51e 1107 if (i >= (int)(BIGNUM_INT_BYTES * bn[0]))
32874aea 1108 return 0; /* beyond the end */
5c58ad2d 1109 else
a3412f52 1110 return (bn[i / BIGNUM_INT_BYTES + 1] >>
1111 ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
5c58ad2d 1112}
1113
1114/*
9400cf6f 1115 * Return a bit from a bignum; 0 is least significant, etc.
1116 */
32874aea 1117int bignum_bit(Bignum bn, int i)
1118{
62ddb51e 1119 if (i >= (int)(BIGNUM_INT_BITS * bn[0]))
32874aea 1120 return 0; /* beyond the end */
9400cf6f 1121 else
a3412f52 1122 return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
9400cf6f 1123}
1124
1125/*
1126 * Set a bit in a bignum; 0 is least significant, etc.
1127 */
32874aea 1128void bignum_set_bit(Bignum bn, int bitnum, int value)
1129{
62ddb51e 1130 if (bitnum >= (int)(BIGNUM_INT_BITS * bn[0]))
32874aea 1131 abort(); /* beyond the end */
9400cf6f 1132 else {
a3412f52 1133 int v = bitnum / BIGNUM_INT_BITS + 1;
1134 int mask = 1 << (bitnum % BIGNUM_INT_BITS);
32874aea 1135 if (value)
1136 bn[v] |= mask;
1137 else
1138 bn[v] &= ~mask;
9400cf6f 1139 }
1140}
1141
1142/*
2e85c969 1143 * Write a SSH-1-format bignum into a buffer. It is assumed the
5c58ad2d 1144 * buffer is big enough. Returns the number of bytes used.
1145 */
32874aea 1146int ssh1_write_bignum(void *data, Bignum bn)
1147{
5c58ad2d 1148 unsigned char *p = data;
1149 int len = ssh1_bignum_length(bn);
1150 int i;
ddecd643 1151 int bitc = bignum_bitcount(bn);
5c58ad2d 1152
1153 *p++ = (bitc >> 8) & 0xFF;
32874aea 1154 *p++ = (bitc) & 0xFF;
1155 for (i = len - 2; i--;)
1156 *p++ = bignum_byte(bn, i);
5c58ad2d 1157 return len;
1158}
9400cf6f 1159
1160/*
1161 * Compare two bignums. Returns like strcmp.
1162 */
32874aea 1163int bignum_cmp(Bignum a, Bignum b)
1164{
9400cf6f 1165 int amax = a[0], bmax = b[0];
1166 int i = (amax > bmax ? amax : bmax);
1167 while (i) {
a3412f52 1168 BignumInt aval = (i > amax ? 0 : a[i]);
1169 BignumInt bval = (i > bmax ? 0 : b[i]);
32874aea 1170 if (aval < bval)
1171 return -1;
1172 if (aval > bval)
1173 return +1;
1174 i--;
9400cf6f 1175 }
1176 return 0;
1177}
1178
1179/*
1180 * Right-shift one bignum to form another.
1181 */
32874aea 1182Bignum bignum_rshift(Bignum a, int shift)
1183{
9400cf6f 1184 Bignum ret;
1185 int i, shiftw, shiftb, shiftbb, bits;
a3412f52 1186 BignumInt ai, ai1;
9400cf6f 1187
ddecd643 1188 bits = bignum_bitcount(a) - shift;
a3412f52 1189 ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
9400cf6f 1190
1191 if (ret) {
a3412f52 1192 shiftw = shift / BIGNUM_INT_BITS;
1193 shiftb = shift % BIGNUM_INT_BITS;
1194 shiftbb = BIGNUM_INT_BITS - shiftb;
32874aea 1195
1196 ai1 = a[shiftw + 1];
62ddb51e 1197 for (i = 1; i <= (int)ret[0]; i++) {
32874aea 1198 ai = ai1;
62ddb51e 1199 ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
a3412f52 1200 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
32874aea 1201 }
9400cf6f 1202 }
1203
1204 return ret;
1205}
1206
1207/*
1208 * Non-modular multiplication and addition.
1209 */
32874aea 1210Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
1211{
9400cf6f 1212 int alen = a[0], blen = b[0];
1213 int mlen = (alen > blen ? alen : blen);
1214 int rlen, i, maxspot;
a3412f52 1215 BignumInt *workspace;
9400cf6f 1216 Bignum ret;
1217
1218 /* mlen space for a, mlen space for b, 2*mlen for result */
a3412f52 1219 workspace = snewn(mlen * 4, BignumInt);
9400cf6f 1220 for (i = 0; i < mlen; i++) {
62ddb51e 1221 workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
1222 workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
9400cf6f 1223 }
1224
32874aea 1225 internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
1226 workspace + 2 * mlen, mlen);
9400cf6f 1227
1228 /* now just copy the result back */
1229 rlen = alen + blen + 1;
62ddb51e 1230 if (addend && rlen <= (int)addend[0])
32874aea 1231 rlen = addend[0] + 1;
9400cf6f 1232 ret = newbn(rlen);
1233 maxspot = 0;
62ddb51e 1234 for (i = 1; i <= (int)ret[0]; i++) {
32874aea 1235 ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
1236 if (ret[i] != 0)
1237 maxspot = i;
9400cf6f 1238 }
1239 ret[0] = maxspot;
1240
1241 /* now add in the addend, if any */
1242 if (addend) {
a3412f52 1243 BignumDblInt carry = 0;
32874aea 1244 for (i = 1; i <= rlen; i++) {
62ddb51e 1245 carry += (i <= (int)ret[0] ? ret[i] : 0);
1246 carry += (i <= (int)addend[0] ? addend[i] : 0);
a3412f52 1247 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1248 carry >>= BIGNUM_INT_BITS;
32874aea 1249 if (ret[i] != 0 && i > maxspot)
1250 maxspot = i;
1251 }
9400cf6f 1252 }
1253 ret[0] = maxspot;
1254
c523f55f 1255 sfree(workspace);
9400cf6f 1256 return ret;
1257}
1258
1259/*
1260 * Non-modular multiplication.
1261 */
32874aea 1262Bignum bigmul(Bignum a, Bignum b)
1263{
9400cf6f 1264 return bigmuladd(a, b, NULL);
1265}
1266
1267/*
d737853b 1268 * Simple addition.
1269 */
1270Bignum bigadd(Bignum a, Bignum b)
1271{
1272 int alen = a[0], blen = b[0];
1273 int rlen = (alen > blen ? alen : blen) + 1;
1274 int i, maxspot;
1275 Bignum ret;
1276 BignumDblInt carry;
1277
1278 ret = newbn(rlen);
1279
1280 carry = 0;
1281 maxspot = 0;
1282 for (i = 1; i <= rlen; i++) {
1283 carry += (i <= (int)a[0] ? a[i] : 0);
1284 carry += (i <= (int)b[0] ? b[i] : 0);
1285 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1286 carry >>= BIGNUM_INT_BITS;
1287 if (ret[i] != 0 && i > maxspot)
1288 maxspot = i;
1289 }
1290 ret[0] = maxspot;
1291
1292 return ret;
1293}
1294
1295/*
1296 * Subtraction. Returns a-b, or NULL if the result would come out
1297 * negative (recall that this entire bignum module only handles
1298 * positive numbers).
1299 */
1300Bignum bigsub(Bignum a, Bignum b)
1301{
1302 int alen = a[0], blen = b[0];
1303 int rlen = (alen > blen ? alen : blen);
1304 int i, maxspot;
1305 Bignum ret;
1306 BignumDblInt carry;
1307
1308 ret = newbn(rlen);
1309
1310 carry = 1;
1311 maxspot = 0;
1312 for (i = 1; i <= rlen; i++) {
1313 carry += (i <= (int)a[0] ? a[i] : 0);
1314 carry += (i <= (int)b[0] ? b[i] ^ BIGNUM_INT_MASK : BIGNUM_INT_MASK);
1315 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1316 carry >>= BIGNUM_INT_BITS;
1317 if (ret[i] != 0 && i > maxspot)
1318 maxspot = i;
1319 }
1320 ret[0] = maxspot;
1321
1322 if (!carry) {
1323 freebn(ret);
1324 return NULL;
1325 }
1326
1327 return ret;
1328}
1329
1330/*
3709bfe9 1331 * Create a bignum which is the bitmask covering another one. That
1332 * is, the smallest integer which is >= N and is also one less than
1333 * a power of two.
1334 */
32874aea 1335Bignum bignum_bitmask(Bignum n)
1336{
3709bfe9 1337 Bignum ret = copybn(n);
1338 int i;
a3412f52 1339 BignumInt j;
3709bfe9 1340
1341 i = ret[0];
1342 while (n[i] == 0 && i > 0)
32874aea 1343 i--;
3709bfe9 1344 if (i <= 0)
32874aea 1345 return ret; /* input was zero */
3709bfe9 1346 j = 1;
1347 while (j < n[i])
32874aea 1348 j = 2 * j + 1;
3709bfe9 1349 ret[i] = j;
1350 while (--i > 0)
a3412f52 1351 ret[i] = BIGNUM_INT_MASK;
3709bfe9 1352 return ret;
1353}
1354
1355/*
5c72ca61 1356 * Convert a (max 32-bit) long into a bignum.
9400cf6f 1357 */
a3412f52 1358Bignum bignum_from_long(unsigned long nn)
32874aea 1359{
9400cf6f 1360 Bignum ret;
a3412f52 1361 BignumDblInt n = nn;
9400cf6f 1362
5c72ca61 1363 ret = newbn(3);
a3412f52 1364 ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
1365 ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
5c72ca61 1366 ret[3] = 0;
1367 ret[0] = (ret[2] ? 2 : 1);
32874aea 1368 return ret;
9400cf6f 1369}
1370
1371/*
1372 * Add a long to a bignum.
1373 */
a3412f52 1374Bignum bignum_add_long(Bignum number, unsigned long addendx)
32874aea 1375{
1376 Bignum ret = newbn(number[0] + 1);
9400cf6f 1377 int i, maxspot = 0;
a3412f52 1378 BignumDblInt carry = 0, addend = addendx;
9400cf6f 1379
62ddb51e 1380 for (i = 1; i <= (int)ret[0]; i++) {
a3412f52 1381 carry += addend & BIGNUM_INT_MASK;
62ddb51e 1382 carry += (i <= (int)number[0] ? number[i] : 0);
a3412f52 1383 addend >>= BIGNUM_INT_BITS;
1384 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1385 carry >>= BIGNUM_INT_BITS;
32874aea 1386 if (ret[i] != 0)
1387 maxspot = i;
9400cf6f 1388 }
1389 ret[0] = maxspot;
1390 return ret;
1391}
1392
1393/*
1394 * Compute the residue of a bignum, modulo a (max 16-bit) short.
1395 */
32874aea 1396unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
1397{
a3412f52 1398 BignumDblInt mod, r;
9400cf6f 1399 int i;
1400
1401 r = 0;
1402 mod = modulus;
1403 for (i = number[0]; i > 0; i--)
736cc6d1 1404 r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
6e522441 1405 return (unsigned short) r;
9400cf6f 1406}
1407
a3412f52 1408#ifdef DEBUG
32874aea 1409void diagbn(char *prefix, Bignum md)
1410{
9400cf6f 1411 int i, nibbles, morenibbles;
1412 static const char hex[] = "0123456789ABCDEF";
1413
5c72ca61 1414 debug(("%s0x", prefix ? prefix : ""));
9400cf6f 1415
32874aea 1416 nibbles = (3 + bignum_bitcount(md)) / 4;
1417 if (nibbles < 1)
1418 nibbles = 1;
1419 morenibbles = 4 * md[0] - nibbles;
1420 for (i = 0; i < morenibbles; i++)
5c72ca61 1421 debug(("-"));
32874aea 1422 for (i = nibbles; i--;)
5c72ca61 1423 debug(("%c",
1424 hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
9400cf6f 1425
32874aea 1426 if (prefix)
5c72ca61 1427 debug(("\n"));
1428}
f28753ab 1429#endif
5c72ca61 1430
1431/*
1432 * Simple division.
1433 */
1434Bignum bigdiv(Bignum a, Bignum b)
1435{
1436 Bignum q = newbn(a[0]);
1437 bigdivmod(a, b, NULL, q);
1438 return q;
1439}
1440
1441/*
1442 * Simple remainder.
1443 */
1444Bignum bigmod(Bignum a, Bignum b)
1445{
1446 Bignum r = newbn(b[0]);
1447 bigdivmod(a, b, r, NULL);
1448 return r;
9400cf6f 1449}
1450
1451/*
1452 * Greatest common divisor.
1453 */
32874aea 1454Bignum biggcd(Bignum av, Bignum bv)
1455{
9400cf6f 1456 Bignum a = copybn(av);
1457 Bignum b = copybn(bv);
1458
9400cf6f 1459 while (bignum_cmp(b, Zero) != 0) {
32874aea 1460 Bignum t = newbn(b[0]);
5c72ca61 1461 bigdivmod(a, b, t, NULL);
32874aea 1462 while (t[0] > 1 && t[t[0]] == 0)
1463 t[0]--;
1464 freebn(a);
1465 a = b;
1466 b = t;
9400cf6f 1467 }
1468
1469 freebn(b);
1470 return a;
1471}
1472
1473/*
1474 * Modular inverse, using Euclid's extended algorithm.
1475 */
32874aea 1476Bignum modinv(Bignum number, Bignum modulus)
1477{
9400cf6f 1478 Bignum a = copybn(modulus);
1479 Bignum b = copybn(number);
1480 Bignum xp = copybn(Zero);
1481 Bignum x = copybn(One);
1482 int sign = +1;
1483
1484 while (bignum_cmp(b, One) != 0) {
32874aea 1485 Bignum t = newbn(b[0]);
1486 Bignum q = newbn(a[0]);
5c72ca61 1487 bigdivmod(a, b, t, q);
32874aea 1488 while (t[0] > 1 && t[t[0]] == 0)
1489 t[0]--;
1490 freebn(a);
1491 a = b;
1492 b = t;
1493 t = xp;
1494 xp = x;
1495 x = bigmuladd(q, xp, t);
1496 sign = -sign;
1497 freebn(t);
75374b2f 1498 freebn(q);
9400cf6f 1499 }
1500
1501 freebn(b);
1502 freebn(a);
1503 freebn(xp);
1504
1505 /* now we know that sign * x == 1, and that x < modulus */
1506 if (sign < 0) {
32874aea 1507 /* set a new x to be modulus - x */
1508 Bignum newx = newbn(modulus[0]);
a3412f52 1509 BignumInt carry = 0;
32874aea 1510 int maxspot = 1;
1511 int i;
1512
62ddb51e 1513 for (i = 1; i <= (int)newx[0]; i++) {
1514 BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
1515 BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
32874aea 1516 newx[i] = aword - bword - carry;
1517 bword = ~bword;
1518 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
1519 if (newx[i] != 0)
1520 maxspot = i;
1521 }
1522 newx[0] = maxspot;
1523 freebn(x);
1524 x = newx;
9400cf6f 1525 }
1526
1527 /* and return. */
1528 return x;
1529}
6e522441 1530
1531/*
1532 * Render a bignum into decimal. Return a malloced string holding
1533 * the decimal representation.
1534 */
32874aea 1535char *bignum_decimal(Bignum x)
1536{
6e522441 1537 int ndigits, ndigit;
1538 int i, iszero;
a3412f52 1539 BignumDblInt carry;
6e522441 1540 char *ret;
a3412f52 1541 BignumInt *workspace;
6e522441 1542
1543 /*
1544 * First, estimate the number of digits. Since log(10)/log(2)
1545 * is just greater than 93/28 (the joys of continued fraction
1546 * approximations...) we know that for every 93 bits, we need
1547 * at most 28 digits. This will tell us how much to malloc.
1548 *
1549 * Formally: if x has i bits, that means x is strictly less
1550 * than 2^i. Since 2 is less than 10^(28/93), this is less than
1551 * 10^(28i/93). We need an integer power of ten, so we must
1552 * round up (rounding down might make it less than x again).
1553 * Therefore if we multiply the bit count by 28/93, rounding
1554 * up, we will have enough digits.
74c79ce8 1555 *
1556 * i=0 (i.e., x=0) is an irritating special case.
6e522441 1557 */
ddecd643 1558 i = bignum_bitcount(x);
74c79ce8 1559 if (!i)
1560 ndigits = 1; /* x = 0 */
1561 else
1562 ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
32874aea 1563 ndigits++; /* allow for trailing \0 */
3d88e64d 1564 ret = snewn(ndigits, char);
6e522441 1565
1566 /*
1567 * Now allocate some workspace to hold the binary form as we
1568 * repeatedly divide it by ten. Initialise this to the
1569 * big-endian form of the number.
1570 */
a3412f52 1571 workspace = snewn(x[0], BignumInt);
62ddb51e 1572 for (i = 0; i < (int)x[0]; i++)
32874aea 1573 workspace[i] = x[x[0] - i];
6e522441 1574
1575 /*
1576 * Next, write the decimal number starting with the last digit.
1577 * We use ordinary short division, dividing 10 into the
1578 * workspace.
1579 */
32874aea 1580 ndigit = ndigits - 1;
6e522441 1581 ret[ndigit] = '\0';
1582 do {
32874aea 1583 iszero = 1;
1584 carry = 0;
62ddb51e 1585 for (i = 0; i < (int)x[0]; i++) {
a3412f52 1586 carry = (carry << BIGNUM_INT_BITS) + workspace[i];
1587 workspace[i] = (BignumInt) (carry / 10);
32874aea 1588 if (workspace[i])
1589 iszero = 0;
1590 carry %= 10;
1591 }
1592 ret[--ndigit] = (char) (carry + '0');
6e522441 1593 } while (!iszero);
1594
1595 /*
1596 * There's a chance we've fallen short of the start of the
1597 * string. Correct if so.
1598 */
1599 if (ndigit > 0)
32874aea 1600 memmove(ret, ret + ndigit, ndigits - ndigit);
6e522441 1601
1602 /*
1603 * Done.
1604 */
c523f55f 1605 sfree(workspace);
6e522441 1606 return ret;
1607}
f3c29e34 1608
1609#ifdef TESTBN
1610
1611#include <stdio.h>
1612#include <stdlib.h>
1613#include <ctype.h>
1614
1615/*
1616 * gcc -g -O0 -DTESTBN -o testbn sshbn.c misc.c -I unix -I charset
1617 */
1618
1619void modalfatalbox(char *p, ...)
1620{
1621 va_list ap;
1622 fprintf(stderr, "FATAL ERROR: ");
1623 va_start(ap, p);
1624 vfprintf(stderr, p, ap);
1625 va_end(ap);
1626 fputc('\n', stderr);
1627 exit(1);
1628}
1629
1630#define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' )
1631
1632int main(int argc, char **argv)
1633{
1634 char *buf;
1635 int line = 0;
1636 int passes = 0, fails = 0;
1637
1638 while ((buf = fgetline(stdin)) != NULL) {
1639 int maxlen = strlen(buf);
1640 unsigned char *data = snewn(maxlen, unsigned char);
1641 unsigned char *ptrs[4], *q;
1642 int ptrnum;
1643 char *bufp = buf;
1644
1645 line++;
1646
1647 q = data;
1648 ptrnum = 0;
1649
1650 while (*bufp) {
1651 char *start, *end;
1652 int i;
1653
1654 while (*bufp && !isxdigit((unsigned char)*bufp))
1655 bufp++;
1656 start = bufp;
1657
1658 if (!*bufp)
1659 break;
1660
1661 while (*bufp && isxdigit((unsigned char)*bufp))
1662 bufp++;
1663 end = bufp;
1664
1665 if (ptrnum >= lenof(ptrs))
1666 break;
1667 ptrs[ptrnum++] = q;
1668
1669 for (i = -((end - start) & 1); i < end-start; i += 2) {
1670 unsigned char val = (i < 0 ? 0 : fromxdigit(start[i]));
1671 val = val * 16 + fromxdigit(start[i+1]);
1672 *q++ = val;
1673 }
1674
1675 ptrs[ptrnum] = q;
1676 }
1677
1678 if (ptrnum == 3) {
1679 Bignum a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1680 Bignum b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1681 Bignum c = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1682 Bignum p = bigmul(a, b);
1683
1684 if (bignum_cmp(c, p) == 0) {
1685 passes++;
1686 } else {
1687 char *as = bignum_decimal(a);
1688 char *bs = bignum_decimal(b);
1689 char *cs = bignum_decimal(c);
1690 char *ps = bignum_decimal(p);
1691
1692 printf("%d: fail: %s * %s gave %s expected %s\n",
1693 line, as, bs, ps, cs);
1694 fails++;
1695
1696 sfree(as);
1697 sfree(bs);
1698 sfree(cs);
1699 sfree(ps);
1700 }
1701 freebn(a);
1702 freebn(b);
1703 freebn(c);
1704 freebn(p);
1705 }
1706 sfree(buf);
1707 sfree(data);
1708 }
1709
1710 printf("passed %d failed %d total %d\n", passes, fails, passes+fails);
1711 return fails != 0;
1712}
1713
1714#endif