I've dithered a bit in the past about whether or not it's allowable
[sgt/puzzles] / pegs.c
1 /*
2 * pegs.c: the classic Peg Solitaire game.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13 #include "tree234.h"
14
15 #define GRID_HOLE 0
16 #define GRID_PEG 1
17 #define GRID_OBST 2
18
19 enum {
20 COL_BACKGROUND,
21 COL_HIGHLIGHT,
22 COL_LOWLIGHT,
23 COL_PEG,
24 NCOLOURS
25 };
26
27 /*
28 * Grid shapes. I do some macro ickery here to ensure that my enum
29 * and the various forms of my name list always match up.
30 */
31 #define TYPELIST(A) \
32 A(CROSS,Cross,cross) \
33 A(OCTAGON,Octagon,octagon) \
34 A(RANDOM,Random,random)
35 #define ENUM(upper,title,lower) TYPE_ ## upper,
36 #define TITLE(upper,title,lower) #title,
37 #define LOWER(upper,title,lower) #lower,
38 #define CONFIG(upper,title,lower) ":" #title
39
40 enum { TYPELIST(ENUM) TYPECOUNT };
41 static char const *const pegs_titletypes[] = { TYPELIST(TITLE) };
42 static char const *const pegs_lowertypes[] = { TYPELIST(LOWER) };
43 #define TYPECONFIG TYPELIST(CONFIG)
44
45 #define FLASH_FRAME 0.13F
46
47 struct game_params {
48 int w, h;
49 int type;
50 };
51
52 struct game_state {
53 int w, h;
54 int completed;
55 unsigned char *grid;
56 };
57
58 static game_params *default_params(void)
59 {
60 game_params *ret = snew(game_params);
61
62 ret->w = ret->h = 7;
63 ret->type = TYPE_CROSS;
64
65 return ret;
66 }
67
68 static const struct game_params pegs_presets[] = {
69 {7, 7, TYPE_CROSS},
70 {7, 7, TYPE_OCTAGON},
71 {5, 5, TYPE_RANDOM},
72 {7, 7, TYPE_RANDOM},
73 {9, 9, TYPE_RANDOM},
74 };
75
76 static int game_fetch_preset(int i, char **name, game_params **params)
77 {
78 game_params *ret;
79 char str[80];
80
81 if (i < 0 || i >= lenof(pegs_presets))
82 return FALSE;
83
84 ret = snew(game_params);
85 *ret = pegs_presets[i];
86
87 strcpy(str, pegs_titletypes[ret->type]);
88 if (ret->type == TYPE_RANDOM)
89 sprintf(str + strlen(str), " %dx%d", ret->w, ret->h);
90
91 *name = dupstr(str);
92 *params = ret;
93 return TRUE;
94 }
95
96 static void free_params(game_params *params)
97 {
98 sfree(params);
99 }
100
101 static game_params *dup_params(game_params *params)
102 {
103 game_params *ret = snew(game_params);
104 *ret = *params; /* structure copy */
105 return ret;
106 }
107
108 static void decode_params(game_params *params, char const *string)
109 {
110 char const *p = string;
111 int i;
112
113 params->w = atoi(p);
114 while (*p && isdigit((unsigned char)*p)) p++;
115 if (*p == 'x') {
116 p++;
117 params->h = atoi(p);
118 while (*p && isdigit((unsigned char)*p)) p++;
119 } else {
120 params->h = params->w;
121 }
122
123 for (i = 0; i < lenof(pegs_lowertypes); i++)
124 if (!strcmp(p, pegs_lowertypes[i]))
125 params->type = i;
126 }
127
128 static char *encode_params(game_params *params, int full)
129 {
130 char str[80];
131
132 sprintf(str, "%dx%d", params->w, params->h);
133 if (full) {
134 assert(params->type >= 0 && params->type < lenof(pegs_lowertypes));
135 strcat(str, pegs_lowertypes[params->type]);
136 }
137 return dupstr(str);
138 }
139
140 static config_item *game_configure(game_params *params)
141 {
142 config_item *ret = snewn(4, config_item);
143 char buf[80];
144
145 ret[0].name = "Width";
146 ret[0].type = C_STRING;
147 sprintf(buf, "%d", params->w);
148 ret[0].sval = dupstr(buf);
149 ret[0].ival = 0;
150
151 ret[1].name = "Height";
152 ret[1].type = C_STRING;
153 sprintf(buf, "%d", params->h);
154 ret[1].sval = dupstr(buf);
155 ret[1].ival = 0;
156
157 ret[2].name = "Board type";
158 ret[2].type = C_CHOICES;
159 ret[2].sval = TYPECONFIG;
160 ret[2].ival = params->type;
161
162 ret[3].name = NULL;
163 ret[3].type = C_END;
164 ret[3].sval = NULL;
165 ret[3].ival = 0;
166
167 return ret;
168 }
169
170 static game_params *custom_params(config_item *cfg)
171 {
172 game_params *ret = snew(game_params);
173
174 ret->w = atoi(cfg[0].sval);
175 ret->h = atoi(cfg[1].sval);
176 ret->type = cfg[2].ival;
177
178 return ret;
179 }
180
181 static char *validate_params(game_params *params, int full)
182 {
183 if (full && (params->w <= 3 || params->h <= 3))
184 return "Width and height must both be greater than three";
185
186 /*
187 * It might be possible to implement generalisations of Cross
188 * and Octagon, but only if I can find a proof that they're all
189 * soluble. For the moment, therefore, I'm going to disallow
190 * them at any size other than the standard one.
191 */
192 if (full && (params->type == TYPE_CROSS || params->type == TYPE_OCTAGON)) {
193 if (params->w != 7 || params->h != 7)
194 return "This board type is only supported at 7x7";
195 }
196 return NULL;
197 }
198
199 /* ----------------------------------------------------------------------
200 * Beginning of code to generate random Peg Solitaire boards.
201 *
202 * This procedure is done with no aesthetic judgment, no effort at
203 * symmetry, no difficulty grading and generally no finesse
204 * whatsoever. We simply begin with an empty board containing a
205 * single peg, and repeatedly make random reverse moves until it's
206 * plausibly full. This typically yields a scrappy haphazard mess
207 * with several holes, an uneven shape, and no redeeming features
208 * except guaranteed solubility.
209 *
210 * My only concessions to sophistication are (a) to repeat the
211 * generation process until I at least get a grid that touches
212 * every edge of the specified board size, and (b) to try when
213 * selecting moves to reuse existing space rather than expanding
214 * into new space (so that non-rectangular board shape becomes a
215 * factor during play).
216 */
217
218 struct move {
219 /*
220 * x,y are the start point of the move during generation (hence
221 * its endpoint during normal play).
222 *
223 * dx,dy are the direction of the move during generation.
224 * Absolute value 1. Hence, for example, x=3,y=5,dx=1,dy=0
225 * means that the move during generation starts at (3,5) and
226 * ends at (5,5), and vice versa during normal play.
227 */
228 int x, y, dx, dy;
229 /*
230 * cost is 0, 1 or 2, depending on how many GRID_OBSTs we must
231 * turn into GRID_HOLEs to play this move.
232 */
233 int cost;
234 };
235
236 static int movecmp(void *av, void *bv)
237 {
238 struct move *a = (struct move *)av;
239 struct move *b = (struct move *)bv;
240
241 if (a->y < b->y)
242 return -1;
243 else if (a->y > b->y)
244 return +1;
245
246 if (a->x < b->x)
247 return -1;
248 else if (a->x > b->x)
249 return +1;
250
251 if (a->dy < b->dy)
252 return -1;
253 else if (a->dy > b->dy)
254 return +1;
255
256 if (a->dx < b->dx)
257 return -1;
258 else if (a->dx > b->dx)
259 return +1;
260
261 return 0;
262 }
263
264 static int movecmpcost(void *av, void *bv)
265 {
266 struct move *a = (struct move *)av;
267 struct move *b = (struct move *)bv;
268
269 if (a->cost < b->cost)
270 return -1;
271 else if (a->cost > b->cost)
272 return +1;
273
274 return movecmp(av, bv);
275 }
276
277 struct movetrees {
278 tree234 *bymove, *bycost;
279 };
280
281 static void update_moves(unsigned char *grid, int w, int h, int x, int y,
282 struct movetrees *trees)
283 {
284 struct move move;
285 int dir, pos;
286
287 /*
288 * There are twelve moves that can include (x,y): three in each
289 * of four directions. Check each one to see if it's possible.
290 */
291 for (dir = 0; dir < 4; dir++) {
292 int dx, dy;
293
294 if (dir & 1)
295 dx = 0, dy = dir - 2;
296 else
297 dy = 0, dx = dir - 1;
298
299 assert(abs(dx) + abs(dy) == 1);
300
301 for (pos = 0; pos < 3; pos++) {
302 int v1, v2, v3;
303
304 move.dx = dx;
305 move.dy = dy;
306 move.x = x - pos*dx;
307 move.y = y - pos*dy;
308
309 if (move.x < 0 || move.x >= w || move.y < 0 || move.y >= h)
310 continue; /* completely invalid move */
311 if (move.x+2*move.dx < 0 || move.x+2*move.dx >= w ||
312 move.y+2*move.dy < 0 || move.y+2*move.dy >= h)
313 continue; /* completely invalid move */
314
315 v1 = grid[move.y * w + move.x];
316 v2 = grid[(move.y+move.dy) * w + (move.x+move.dx)];
317 v3 = grid[(move.y+2*move.dy)*w + (move.x+2*move.dx)];
318 if (v1 == GRID_PEG && v2 != GRID_PEG && v3 != GRID_PEG) {
319 struct move *m;
320
321 move.cost = (v2 == GRID_OBST) + (v3 == GRID_OBST);
322
323 /*
324 * This move is possible. See if it's already in
325 * the tree.
326 */
327 m = find234(trees->bymove, &move, NULL);
328 if (m && m->cost != move.cost) {
329 /*
330 * It's in the tree but listed with the wrong
331 * cost. Remove the old version.
332 */
333 #ifdef GENERATION_DIAGNOSTICS
334 printf("correcting %d%+d,%d%+d at cost %d\n",
335 m->x, m->dx, m->y, m->dy, m->cost);
336 #endif
337 del234(trees->bymove, m);
338 del234(trees->bycost, m);
339 sfree(m);
340 m = NULL;
341 }
342 if (!m) {
343 struct move *m, *m2;
344 m = snew(struct move);
345 *m = move;
346 m2 = add234(trees->bymove, m);
347 m2 = add234(trees->bycost, m);
348 assert(m2 == m);
349 #ifdef GENERATION_DIAGNOSTICS
350 printf("adding %d%+d,%d%+d at cost %d\n",
351 move.x, move.dx, move.y, move.dy, move.cost);
352 #endif
353 } else {
354 #ifdef GENERATION_DIAGNOSTICS
355 printf("not adding %d%+d,%d%+d at cost %d\n",
356 move.x, move.dx, move.y, move.dy, move.cost);
357 #endif
358 }
359 } else {
360 /*
361 * This move is impossible. If it is already in the
362 * tree, delete it.
363 *
364 * (We make use here of the fact that del234
365 * doesn't have to be passed a pointer to the
366 * _actual_ element it's deleting: it merely needs
367 * one that compares equal to it, and it will
368 * return the one it deletes.)
369 */
370 struct move *m = del234(trees->bymove, &move);
371 #ifdef GENERATION_DIAGNOSTICS
372 printf("%sdeleting %d%+d,%d%+d\n", m ? "" : "not ",
373 move.x, move.dx, move.y, move.dy);
374 #endif
375 if (m) {
376 del234(trees->bycost, m);
377 sfree(m);
378 }
379 }
380 }
381 }
382 }
383
384 static void pegs_genmoves(unsigned char *grid, int w, int h, random_state *rs)
385 {
386 struct movetrees atrees, *trees = &atrees;
387 struct move *m;
388 int x, y, i, nmoves;
389
390 trees->bymove = newtree234(movecmp);
391 trees->bycost = newtree234(movecmpcost);
392
393 for (y = 0; y < h; y++)
394 for (x = 0; x < w; x++)
395 if (grid[y*w+x] == GRID_PEG)
396 update_moves(grid, w, h, x, y, trees);
397
398 nmoves = 0;
399
400 while (1) {
401 int limit, maxcost, index;
402 struct move mtmp, move, *m;
403
404 /*
405 * See how many moves we can make at zero cost. Make one,
406 * if possible. Failing that, make a one-cost move, and
407 * then a two-cost one.
408 *
409 * After filling at least half the input grid, we no longer
410 * accept cost-2 moves: if that's our only option, we give
411 * up and finish.
412 */
413 mtmp.y = h+1;
414 maxcost = (nmoves < w*h/2 ? 2 : 1);
415 m = NULL; /* placate optimiser */
416 for (mtmp.cost = 0; mtmp.cost <= maxcost; mtmp.cost++) {
417 limit = -1;
418 m = findrelpos234(trees->bycost, &mtmp, NULL, REL234_LT, &limit);
419 #ifdef GENERATION_DIAGNOSTICS
420 printf("%d moves available with cost %d\n", limit+1, mtmp.cost);
421 #endif
422 if (m)
423 break;
424 }
425 if (!m)
426 break;
427
428 index = random_upto(rs, limit+1);
429 move = *(struct move *)index234(trees->bycost, index);
430
431 #ifdef GENERATION_DIAGNOSTICS
432 printf("selecting move %d%+d,%d%+d at cost %d\n",
433 move.x, move.dx, move.y, move.dy, move.cost);
434 #endif
435
436 grid[move.y * w + move.x] = GRID_HOLE;
437 grid[(move.y+move.dy) * w + (move.x+move.dx)] = GRID_PEG;
438 grid[(move.y+2*move.dy)*w + (move.x+2*move.dx)] = GRID_PEG;
439
440 for (i = 0; i <= 2; i++) {
441 int tx = move.x + i*move.dx;
442 int ty = move.y + i*move.dy;
443 update_moves(grid, w, h, tx, ty, trees);
444 }
445
446 nmoves++;
447 }
448
449 while ((m = delpos234(trees->bymove, 0)) != NULL) {
450 del234(trees->bycost, m);
451 sfree(m);
452 }
453 freetree234(trees->bymove);
454 freetree234(trees->bycost);
455 }
456
457 static void pegs_generate(unsigned char *grid, int w, int h, random_state *rs)
458 {
459 while (1) {
460 int x, y, extremes;
461
462 memset(grid, GRID_OBST, w*h);
463 grid[(h/2) * w + (w/2)] = GRID_PEG;
464 #ifdef GENERATION_DIAGNOSTICS
465 printf("beginning move selection\n");
466 #endif
467 pegs_genmoves(grid, w, h, rs);
468 #ifdef GENERATION_DIAGNOSTICS
469 printf("finished move selection\n");
470 #endif
471
472 extremes = 0;
473 for (y = 0; y < h; y++) {
474 if (grid[y*w+0] != GRID_OBST)
475 extremes |= 1;
476 if (grid[y*w+w-1] != GRID_OBST)
477 extremes |= 2;
478 }
479 for (x = 0; x < w; x++) {
480 if (grid[0*w+x] != GRID_OBST)
481 extremes |= 4;
482 if (grid[(h-1)*w+x] != GRID_OBST)
483 extremes |= 8;
484 }
485
486 if (extremes == 15)
487 break;
488 #ifdef GENERATION_DIAGNOSTICS
489 printf("insufficient extent; trying again\n");
490 #endif
491 }
492 #ifdef GENERATION_DIAGNOSTICS
493 fflush(stdout);
494 #endif
495 }
496
497 /* ----------------------------------------------------------------------
498 * End of board generation code. Now for the client code which uses
499 * it as part of the puzzle.
500 */
501
502 static char *new_game_desc(game_params *params, random_state *rs,
503 char **aux, int interactive)
504 {
505 int w = params->w, h = params->h;
506 unsigned char *grid;
507 char *ret;
508 int i;
509
510 grid = snewn(w*h, unsigned char);
511 if (params->type == TYPE_RANDOM) {
512 pegs_generate(grid, w, h, rs);
513 } else {
514 int x, y, cx, cy, v;
515
516 for (y = 0; y < h; y++)
517 for (x = 0; x < w; x++) {
518 v = GRID_OBST; /* placate optimiser */
519 switch (params->type) {
520 case TYPE_CROSS:
521 cx = abs(x - w/2);
522 cy = abs(y - h/2);
523 if (cx == 0 && cy == 0)
524 v = GRID_HOLE;
525 else if (cx > 1 && cy > 1)
526 v = GRID_OBST;
527 else
528 v = GRID_PEG;
529 break;
530 case TYPE_OCTAGON:
531 cx = abs(x - w/2);
532 cy = abs(y - h/2);
533 if (cx + cy > 1 + max(w,h)/2)
534 v = GRID_OBST;
535 else
536 v = GRID_PEG;
537 break;
538 }
539 grid[y*w+x] = v;
540 }
541
542 if (params->type == TYPE_OCTAGON) {
543 /*
544 * The octagonal (European) solitaire layout is
545 * actually _insoluble_ with the starting hole at the
546 * centre. Here's a proof:
547 *
548 * Colour the squares of the board diagonally in
549 * stripes of three different colours, which I'll call
550 * A, B and C. So the board looks like this:
551 *
552 * A B C
553 * A B C A B
554 * A B C A B C A
555 * B C A B C A B
556 * C A B C A B C
557 * B C A B C
558 * A B C
559 *
560 * Suppose we keep running track of the number of pegs
561 * occuping each colour of square. This colouring has
562 * the property that any valid move whatsoever changes
563 * all three of those counts by one (two of them go
564 * down and one goes up), which means that the _parity_
565 * of every count flips on every move.
566 *
567 * If the centre square starts off unoccupied, then
568 * there are twelve pegs on each colour and all three
569 * counts start off even; therefore, after 35 moves all
570 * three counts would have to be odd, which isn't
571 * possible if there's only one peg left. []
572 *
573 * This proof works just as well if the starting hole
574 * is _any_ of the thirteen positions labelled B. Also,
575 * we can stripe the board in the opposite direction
576 * and rule out any square labelled B in that colouring
577 * as well. This leaves:
578 *
579 * Y n Y
580 * n n Y n n
581 * Y n n Y n n Y
582 * n Y Y n Y Y n
583 * Y n n Y n n Y
584 * n n Y n n
585 * Y n Y
586 *
587 * where the ns are squares we've proved insoluble, and
588 * the Ys are the ones remaining.
589 *
590 * That doesn't prove all those starting positions to
591 * be soluble, of course; they're merely the ones we
592 * _haven't_ proved to be impossible. Nevertheless, it
593 * turns out that they are all soluble, so when the
594 * user requests an Octagon board the simplest thing is
595 * to pick one of these at random.
596 *
597 * Rather than picking equiprobably from those twelve
598 * positions, we'll pick equiprobably from the three
599 * equivalence classes
600 */
601 switch (random_upto(rs, 3)) {
602 case 0:
603 /* Remove a random corner piece. */
604 {
605 int dx, dy;
606
607 dx = random_upto(rs, 2) * 2 - 1; /* +1 or -1 */
608 dy = random_upto(rs, 2) * 2 - 1; /* +1 or -1 */
609 if (random_upto(rs, 2))
610 dy *= 3;
611 else
612 dx *= 3;
613 grid[(3+dy)*w+(3+dx)] = GRID_HOLE;
614 }
615 break;
616 case 1:
617 /* Remove a random piece two from the centre. */
618 {
619 int dx, dy;
620 dx = 2 * (random_upto(rs, 2) * 2 - 1);
621 if (random_upto(rs, 2))
622 dy = 0;
623 else
624 dy = dx, dx = 0;
625 grid[(3+dy)*w+(3+dx)] = GRID_HOLE;
626 }
627 break;
628 default /* case 2 */:
629 /* Remove a random piece one from the centre. */
630 {
631 int dx, dy;
632 dx = random_upto(rs, 2) * 2 - 1;
633 if (random_upto(rs, 2))
634 dy = 0;
635 else
636 dy = dx, dx = 0;
637 grid[(3+dy)*w+(3+dx)] = GRID_HOLE;
638 }
639 break;
640 }
641 }
642 }
643
644 /*
645 * Encode a game description which is simply a long list of P
646 * for peg, H for hole or O for obstacle.
647 */
648 ret = snewn(w*h+1, char);
649 for (i = 0; i < w*h; i++)
650 ret[i] = (grid[i] == GRID_PEG ? 'P' :
651 grid[i] == GRID_HOLE ? 'H' : 'O');
652 ret[w*h] = '\0';
653
654 sfree(grid);
655
656 return ret;
657 }
658
659 static char *validate_desc(game_params *params, char *desc)
660 {
661 int len = params->w * params->h;
662
663 if (len != strlen(desc))
664 return "Game description is wrong length";
665 if (len != strspn(desc, "PHO"))
666 return "Invalid character in game description";
667
668 return NULL;
669 }
670
671 static game_state *new_game(midend *me, game_params *params, char *desc)
672 {
673 int w = params->w, h = params->h;
674 game_state *state = snew(game_state);
675 int i;
676
677 state->w = w;
678 state->h = h;
679 state->completed = 0;
680 state->grid = snewn(w*h, unsigned char);
681 for (i = 0; i < w*h; i++)
682 state->grid[i] = (desc[i] == 'P' ? GRID_PEG :
683 desc[i] == 'H' ? GRID_HOLE : GRID_OBST);
684
685 return state;
686 }
687
688 static game_state *dup_game(game_state *state)
689 {
690 int w = state->w, h = state->h;
691 game_state *ret = snew(game_state);
692
693 ret->w = state->w;
694 ret->h = state->h;
695 ret->completed = state->completed;
696 ret->grid = snewn(w*h, unsigned char);
697 memcpy(ret->grid, state->grid, w*h);
698
699 return ret;
700 }
701
702 static void free_game(game_state *state)
703 {
704 sfree(state->grid);
705 sfree(state);
706 }
707
708 static char *solve_game(game_state *state, game_state *currstate,
709 char *aux, char **error)
710 {
711 return NULL;
712 }
713
714 static char *game_text_format(game_state *state)
715 {
716 int w = state->w, h = state->h;
717 int x, y;
718 char *ret;
719
720 ret = snewn((w+1)*h + 1, char);
721
722 for (y = 0; y < h; y++) {
723 for (x = 0; x < w; x++)
724 ret[y*(w+1)+x] = (state->grid[y*w+x] == GRID_HOLE ? '-' :
725 state->grid[y*w+x] == GRID_PEG ? '*' : ' ');
726 ret[y*(w+1)+w] = '\n';
727 }
728 ret[h*(w+1)] = '\0';
729
730 return ret;
731 }
732
733 struct game_ui {
734 int dragging; /* boolean: is a drag in progress? */
735 int sx, sy; /* grid coords of drag start cell */
736 int dx, dy; /* pixel coords of current drag posn */
737 };
738
739 static game_ui *new_ui(game_state *state)
740 {
741 game_ui *ui = snew(game_ui);
742
743 ui->sx = ui->sy = ui->dx = ui->dy = 0;
744 ui->dragging = FALSE;
745
746 return ui;
747 }
748
749 static void free_ui(game_ui *ui)
750 {
751 sfree(ui);
752 }
753
754 static char *encode_ui(game_ui *ui)
755 {
756 return NULL;
757 }
758
759 static void decode_ui(game_ui *ui, char *encoding)
760 {
761 }
762
763 static void game_changed_state(game_ui *ui, game_state *oldstate,
764 game_state *newstate)
765 {
766 /*
767 * Cancel a drag, in case the source square has become
768 * unoccupied.
769 */
770 ui->dragging = FALSE;
771 }
772
773 #define PREFERRED_TILE_SIZE 33
774 #define TILESIZE (ds->tilesize)
775 #define BORDER (TILESIZE / 2)
776
777 #define HIGHLIGHT_WIDTH (TILESIZE / 16)
778
779 #define COORD(x) ( BORDER + (x) * TILESIZE )
780 #define FROMCOORD(x) ( ((x) + TILESIZE - BORDER) / TILESIZE - 1 )
781
782 struct game_drawstate {
783 int tilesize;
784 blitter *drag_background;
785 int dragging, dragx, dragy;
786 int w, h;
787 unsigned char *grid;
788 int started;
789 int bgcolour;
790 };
791
792 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
793 int x, int y, int button)
794 {
795 int w = state->w, h = state->h;
796
797 if (button == LEFT_BUTTON) {
798 int tx, ty;
799
800 /*
801 * Left button down: we attempt to start a drag.
802 */
803
804 /*
805 * There certainly shouldn't be a current drag in progress,
806 * unless the midend failed to send us button events in
807 * order; it has a responsibility to always get that right,
808 * so we can legitimately punish it by failing an
809 * assertion.
810 */
811 assert(!ui->dragging);
812
813 tx = FROMCOORD(x);
814 ty = FROMCOORD(y);
815 if (tx >= 0 && tx < w && ty >= 0 && ty < h &&
816 state->grid[ty*w+tx] == GRID_PEG) {
817 ui->dragging = TRUE;
818 ui->sx = tx;
819 ui->sy = ty;
820 ui->dx = x;
821 ui->dy = y;
822 return ""; /* ui modified */
823 }
824 } else if (button == LEFT_DRAG && ui->dragging) {
825 /*
826 * Mouse moved; just move the peg being dragged.
827 */
828 ui->dx = x;
829 ui->dy = y;
830 return ""; /* ui modified */
831 } else if (button == LEFT_RELEASE && ui->dragging) {
832 char buf[80];
833 int tx, ty, dx, dy;
834
835 /*
836 * Button released. Identify the target square of the drag,
837 * see if it represents a valid move, and if so make it.
838 */
839 ui->dragging = FALSE; /* cancel the drag no matter what */
840 tx = FROMCOORD(x);
841 ty = FROMCOORD(y);
842 if (tx < 0 || tx >= w || ty < 0 || ty >= h)
843 return ""; /* target out of range */
844 dx = tx - ui->sx;
845 dy = ty - ui->sy;
846 if (max(abs(dx),abs(dy)) != 2 || min(abs(dx),abs(dy)) != 0)
847 return ""; /* move length was wrong */
848 dx /= 2;
849 dy /= 2;
850
851 if (state->grid[ty*w+tx] != GRID_HOLE ||
852 state->grid[(ty-dy)*w+(tx-dx)] != GRID_PEG ||
853 state->grid[ui->sy*w+ui->sx] != GRID_PEG)
854 return ""; /* grid contents were invalid */
855
856 /*
857 * We have a valid move. Encode it simply as source and
858 * destination coordinate pairs.
859 */
860 sprintf(buf, "%d,%d-%d,%d", ui->sx, ui->sy, tx, ty);
861 return dupstr(buf);
862 }
863 return NULL;
864 }
865
866 static game_state *execute_move(game_state *state, char *move)
867 {
868 int w = state->w, h = state->h;
869 int sx, sy, tx, ty;
870 game_state *ret;
871
872 if (sscanf(move, "%d,%d-%d,%d", &sx, &sy, &tx, &ty) == 4) {
873 int mx, my, dx, dy;
874
875 if (sx < 0 || sx >= w || sy < 0 || sy >= h)
876 return NULL; /* source out of range */
877 if (tx < 0 || tx >= w || ty < 0 || ty >= h)
878 return NULL; /* target out of range */
879
880 dx = tx - sx;
881 dy = ty - sy;
882 if (max(abs(dx),abs(dy)) != 2 || min(abs(dx),abs(dy)) != 0)
883 return NULL; /* move length was wrong */
884 mx = sx + dx/2;
885 my = sy + dy/2;
886
887 if (state->grid[sy*w+sx] != GRID_PEG ||
888 state->grid[my*w+mx] != GRID_PEG ||
889 state->grid[ty*w+tx] != GRID_HOLE)
890 return NULL; /* grid contents were invalid */
891
892 ret = dup_game(state);
893 ret->grid[sy*w+sx] = GRID_HOLE;
894 ret->grid[my*w+mx] = GRID_HOLE;
895 ret->grid[ty*w+tx] = GRID_PEG;
896
897 /*
898 * Opinion varies on whether getting to a single peg counts as
899 * completing the game, or whether that peg has to be at a
900 * specific location (central in the classic cross game, for
901 * instance). For now we take the former, rather lax position.
902 */
903 if (!ret->completed) {
904 int count = 0, i;
905 for (i = 0; i < w*h; i++)
906 if (ret->grid[i] == GRID_PEG)
907 count++;
908 if (count == 1)
909 ret->completed = 1;
910 }
911
912 return ret;
913 }
914 return NULL;
915 }
916
917 /* ----------------------------------------------------------------------
918 * Drawing routines.
919 */
920
921 static void game_compute_size(game_params *params, int tilesize,
922 int *x, int *y)
923 {
924 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
925 struct { int tilesize; } ads, *ds = &ads;
926 ads.tilesize = tilesize;
927
928 *x = TILESIZE * params->w + 2 * BORDER;
929 *y = TILESIZE * params->h + 2 * BORDER;
930 }
931
932 static void game_set_size(drawing *dr, game_drawstate *ds,
933 game_params *params, int tilesize)
934 {
935 ds->tilesize = tilesize;
936
937 assert(TILESIZE > 0);
938
939 assert(!ds->drag_background); /* set_size is never called twice */
940 ds->drag_background = blitter_new(dr, TILESIZE, TILESIZE);
941 }
942
943 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
944 {
945 float *ret = snewn(3 * NCOLOURS, float);
946
947 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
948
949 ret[COL_PEG * 3 + 0] = 0.0F;
950 ret[COL_PEG * 3 + 1] = 0.0F;
951 ret[COL_PEG * 3 + 2] = 1.0F;
952
953 *ncolours = NCOLOURS;
954 return ret;
955 }
956
957 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
958 {
959 int w = state->w, h = state->h;
960 struct game_drawstate *ds = snew(struct game_drawstate);
961
962 ds->tilesize = 0; /* not decided yet */
963
964 /* We can't allocate the blitter rectangle for the drag background
965 * until we know what size to make it. */
966 ds->drag_background = NULL;
967 ds->dragging = FALSE;
968
969 ds->w = w;
970 ds->h = h;
971 ds->grid = snewn(w*h, unsigned char);
972 memset(ds->grid, 255, w*h);
973
974 ds->started = FALSE;
975 ds->bgcolour = -1;
976
977 return ds;
978 }
979
980 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
981 {
982 if (ds->drag_background)
983 blitter_free(dr, ds->drag_background);
984 sfree(ds->grid);
985 sfree(ds);
986 }
987
988 static void draw_tile(drawing *dr, game_drawstate *ds,
989 int x, int y, int v, int bgcolour)
990 {
991 if (bgcolour >= 0) {
992 draw_rect(dr, x, y, TILESIZE, TILESIZE, bgcolour);
993 }
994
995 if (v == GRID_HOLE) {
996 draw_circle(dr, x+TILESIZE/2, y+TILESIZE/2, TILESIZE/4,
997 COL_LOWLIGHT, COL_LOWLIGHT);
998 } else if (v == GRID_PEG) {
999 draw_circle(dr, x+TILESIZE/2, y+TILESIZE/2, TILESIZE/3,
1000 COL_PEG, COL_PEG);
1001 }
1002
1003 draw_update(dr, x, y, TILESIZE, TILESIZE);
1004 }
1005
1006 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1007 game_state *state, int dir, game_ui *ui,
1008 float animtime, float flashtime)
1009 {
1010 int w = state->w, h = state->h;
1011 int x, y;
1012 int bgcolour;
1013
1014 if (flashtime > 0) {
1015 int frame = (int)(flashtime / FLASH_FRAME);
1016 bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
1017 } else
1018 bgcolour = COL_BACKGROUND;
1019
1020 /*
1021 * Erase the sprite currently being dragged, if any.
1022 */
1023 if (ds->dragging) {
1024 assert(ds->drag_background);
1025 blitter_load(dr, ds->drag_background, ds->dragx, ds->dragy);
1026 draw_update(dr, ds->dragx, ds->dragy, TILESIZE, TILESIZE);
1027 ds->dragging = FALSE;
1028 }
1029
1030 if (!ds->started) {
1031 draw_rect(dr, 0, 0,
1032 TILESIZE * state->w + 2 * BORDER,
1033 TILESIZE * state->h + 2 * BORDER, COL_BACKGROUND);
1034
1035 /*
1036 * Draw relief marks around all the squares that aren't
1037 * GRID_OBST.
1038 */
1039 for (y = 0; y < h; y++)
1040 for (x = 0; x < w; x++)
1041 if (state->grid[y*w+x] != GRID_OBST) {
1042 /*
1043 * First pass: draw the full relief square.
1044 */
1045 int coords[6];
1046 coords[0] = COORD(x+1) + HIGHLIGHT_WIDTH - 1;
1047 coords[1] = COORD(y) - HIGHLIGHT_WIDTH;
1048 coords[2] = COORD(x) - HIGHLIGHT_WIDTH;
1049 coords[3] = COORD(y+1) + HIGHLIGHT_WIDTH - 1;
1050 coords[4] = COORD(x) - HIGHLIGHT_WIDTH;
1051 coords[5] = COORD(y) - HIGHLIGHT_WIDTH;
1052 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
1053 coords[4] = COORD(x+1) + HIGHLIGHT_WIDTH - 1;
1054 coords[5] = COORD(y+1) + HIGHLIGHT_WIDTH - 1;
1055 draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
1056 }
1057 for (y = 0; y < h; y++)
1058 for (x = 0; x < w; x++)
1059 if (state->grid[y*w+x] != GRID_OBST) {
1060 /*
1061 * Second pass: draw everything but the two
1062 * diagonal corners.
1063 */
1064 draw_rect(dr, COORD(x) - HIGHLIGHT_WIDTH,
1065 COORD(y) - HIGHLIGHT_WIDTH,
1066 TILESIZE + HIGHLIGHT_WIDTH,
1067 TILESIZE + HIGHLIGHT_WIDTH, COL_HIGHLIGHT);
1068 draw_rect(dr, COORD(x),
1069 COORD(y),
1070 TILESIZE + HIGHLIGHT_WIDTH,
1071 TILESIZE + HIGHLIGHT_WIDTH, COL_LOWLIGHT);
1072 }
1073 for (y = 0; y < h; y++)
1074 for (x = 0; x < w; x++)
1075 if (state->grid[y*w+x] != GRID_OBST) {
1076 /*
1077 * Third pass: draw a trapezium on each edge.
1078 */
1079 int coords[8];
1080 int dx, dy, s, sn, c;
1081
1082 for (dx = 0; dx < 2; dx++) {
1083 dy = 1 - dx;
1084 for (s = 0; s < 2; s++) {
1085 sn = 2*s - 1;
1086 c = s ? COL_LOWLIGHT : COL_HIGHLIGHT;
1087
1088 coords[0] = COORD(x) + (s*dx)*(TILESIZE-1);
1089 coords[1] = COORD(y) + (s*dy)*(TILESIZE-1);
1090 coords[2] = COORD(x) + (s*dx+dy)*(TILESIZE-1);
1091 coords[3] = COORD(y) + (s*dy+dx)*(TILESIZE-1);
1092 coords[4] = coords[2] - HIGHLIGHT_WIDTH * (dy-sn*dx);
1093 coords[5] = coords[3] - HIGHLIGHT_WIDTH * (dx-sn*dy);
1094 coords[6] = coords[0] + HIGHLIGHT_WIDTH * (dy+sn*dx);
1095 coords[7] = coords[1] + HIGHLIGHT_WIDTH * (dx+sn*dy);
1096 draw_polygon(dr, coords, 4, c, c);
1097 }
1098 }
1099 }
1100 for (y = 0; y < h; y++)
1101 for (x = 0; x < w; x++)
1102 if (state->grid[y*w+x] != GRID_OBST) {
1103 /*
1104 * Second pass: draw everything but the two
1105 * diagonal corners.
1106 */
1107 draw_rect(dr, COORD(x),
1108 COORD(y),
1109 TILESIZE,
1110 TILESIZE, COL_BACKGROUND);
1111 }
1112
1113 ds->started = TRUE;
1114
1115 draw_update(dr, 0, 0,
1116 TILESIZE * state->w + 2 * BORDER,
1117 TILESIZE * state->h + 2 * BORDER);
1118 }
1119
1120 /*
1121 * Loop over the grid redrawing anything that looks as if it
1122 * needs it.
1123 */
1124 for (y = 0; y < h; y++)
1125 for (x = 0; x < w; x++) {
1126 int v;
1127
1128 v = state->grid[y*w+x];
1129 /*
1130 * Blank the source of a drag so it looks as if the
1131 * user picked the peg up physically.
1132 */
1133 if (ui->dragging && ui->sx == x && ui->sy == y && v == GRID_PEG)
1134 v = GRID_HOLE;
1135 if (v != GRID_OBST &&
1136 (bgcolour != ds->bgcolour || /* always redraw when flashing */
1137 v != ds->grid[y*w+x])) {
1138 draw_tile(dr, ds, COORD(x), COORD(y), v, bgcolour);
1139 }
1140 }
1141
1142 /*
1143 * Draw the dragging sprite if any.
1144 */
1145 if (ui->dragging) {
1146 ds->dragging = TRUE;
1147 ds->dragx = ui->dx - TILESIZE/2;
1148 ds->dragy = ui->dy - TILESIZE/2;
1149 blitter_save(dr, ds->drag_background, ds->dragx, ds->dragy);
1150 draw_tile(dr, ds, ds->dragx, ds->dragy, GRID_PEG, -1);
1151 }
1152
1153 ds->bgcolour = bgcolour;
1154 }
1155
1156 static float game_anim_length(game_state *oldstate, game_state *newstate,
1157 int dir, game_ui *ui)
1158 {
1159 return 0.0F;
1160 }
1161
1162 static float game_flash_length(game_state *oldstate, game_state *newstate,
1163 int dir, game_ui *ui)
1164 {
1165 if (!oldstate->completed && newstate->completed)
1166 return 2 * FLASH_FRAME;
1167 else
1168 return 0.0F;
1169 }
1170
1171 static int game_wants_statusbar(void)
1172 {
1173 return FALSE;
1174 }
1175
1176 static int game_timing_state(game_state *state, game_ui *ui)
1177 {
1178 return TRUE;
1179 }
1180
1181 static void game_print_size(game_params *params, float *x, float *y)
1182 {
1183 }
1184
1185 static void game_print(drawing *dr, game_state *state, int tilesize)
1186 {
1187 }
1188
1189 #ifdef COMBINED
1190 #define thegame pegs
1191 #endif
1192
1193 const struct game thegame = {
1194 "Pegs", "games.pegs",
1195 default_params,
1196 game_fetch_preset,
1197 decode_params,
1198 encode_params,
1199 free_params,
1200 dup_params,
1201 TRUE, game_configure, custom_params,
1202 validate_params,
1203 new_game_desc,
1204 validate_desc,
1205 new_game,
1206 dup_game,
1207 free_game,
1208 FALSE, solve_game,
1209 TRUE, game_text_format,
1210 new_ui,
1211 free_ui,
1212 encode_ui,
1213 decode_ui,
1214 game_changed_state,
1215 interpret_move,
1216 execute_move,
1217 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1218 game_colours,
1219 game_new_drawstate,
1220 game_free_drawstate,
1221 game_redraw,
1222 game_anim_length,
1223 game_flash_length,
1224 FALSE, FALSE, game_print_size, game_print,
1225 game_wants_statusbar,
1226 FALSE, game_timing_state,
1227 0, /* mouse_priorities */
1228 };