Stop the analysis pass in Loopy's redraw routine from being
[sgt/puzzles] / pegs.c
1 /*
2 * pegs.c: the classic Peg Solitaire game.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13 #include "tree234.h"
14
15 #define GRID_HOLE 0
16 #define GRID_PEG 1
17 #define GRID_OBST 2
18
19 #define GRID_CURSOR 10
20 #define GRID_JUMPING 20
21
22 enum {
23 COL_BACKGROUND,
24 COL_HIGHLIGHT,
25 COL_LOWLIGHT,
26 COL_PEG,
27 COL_CURSOR,
28 NCOLOURS
29 };
30
31 /*
32 * Grid shapes. I do some macro ickery here to ensure that my enum
33 * and the various forms of my name list always match up.
34 */
35 #define TYPELIST(A) \
36 A(CROSS,Cross,cross) \
37 A(OCTAGON,Octagon,octagon) \
38 A(RANDOM,Random,random)
39 #define ENUM(upper,title,lower) TYPE_ ## upper,
40 #define TITLE(upper,title,lower) #title,
41 #define LOWER(upper,title,lower) #lower,
42 #define CONFIG(upper,title,lower) ":" #title
43
44 enum { TYPELIST(ENUM) TYPECOUNT };
45 static char const *const pegs_titletypes[] = { TYPELIST(TITLE) };
46 static char const *const pegs_lowertypes[] = { TYPELIST(LOWER) };
47 #define TYPECONFIG TYPELIST(CONFIG)
48
49 #define FLASH_FRAME 0.13F
50
51 struct game_params {
52 int w, h;
53 int type;
54 };
55
56 struct game_state {
57 int w, h;
58 int completed;
59 unsigned char *grid;
60 };
61
62 static game_params *default_params(void)
63 {
64 game_params *ret = snew(game_params);
65
66 ret->w = ret->h = 7;
67 ret->type = TYPE_CROSS;
68
69 return ret;
70 }
71
72 static const struct game_params pegs_presets[] = {
73 {7, 7, TYPE_CROSS},
74 {7, 7, TYPE_OCTAGON},
75 {5, 5, TYPE_RANDOM},
76 {7, 7, TYPE_RANDOM},
77 {9, 9, TYPE_RANDOM},
78 };
79
80 static int game_fetch_preset(int i, char **name, game_params **params)
81 {
82 game_params *ret;
83 char str[80];
84
85 if (i < 0 || i >= lenof(pegs_presets))
86 return FALSE;
87
88 ret = snew(game_params);
89 *ret = pegs_presets[i];
90
91 strcpy(str, pegs_titletypes[ret->type]);
92 if (ret->type == TYPE_RANDOM)
93 sprintf(str + strlen(str), " %dx%d", ret->w, ret->h);
94
95 *name = dupstr(str);
96 *params = ret;
97 return TRUE;
98 }
99
100 static void free_params(game_params *params)
101 {
102 sfree(params);
103 }
104
105 static game_params *dup_params(game_params *params)
106 {
107 game_params *ret = snew(game_params);
108 *ret = *params; /* structure copy */
109 return ret;
110 }
111
112 static void decode_params(game_params *params, char const *string)
113 {
114 char const *p = string;
115 int i;
116
117 params->w = atoi(p);
118 while (*p && isdigit((unsigned char)*p)) p++;
119 if (*p == 'x') {
120 p++;
121 params->h = atoi(p);
122 while (*p && isdigit((unsigned char)*p)) p++;
123 } else {
124 params->h = params->w;
125 }
126
127 for (i = 0; i < lenof(pegs_lowertypes); i++)
128 if (!strcmp(p, pegs_lowertypes[i]))
129 params->type = i;
130 }
131
132 static char *encode_params(game_params *params, int full)
133 {
134 char str[80];
135
136 sprintf(str, "%dx%d", params->w, params->h);
137 if (full) {
138 assert(params->type >= 0 && params->type < lenof(pegs_lowertypes));
139 strcat(str, pegs_lowertypes[params->type]);
140 }
141 return dupstr(str);
142 }
143
144 static config_item *game_configure(game_params *params)
145 {
146 config_item *ret = snewn(4, config_item);
147 char buf[80];
148
149 ret[0].name = "Width";
150 ret[0].type = C_STRING;
151 sprintf(buf, "%d", params->w);
152 ret[0].sval = dupstr(buf);
153 ret[0].ival = 0;
154
155 ret[1].name = "Height";
156 ret[1].type = C_STRING;
157 sprintf(buf, "%d", params->h);
158 ret[1].sval = dupstr(buf);
159 ret[1].ival = 0;
160
161 ret[2].name = "Board type";
162 ret[2].type = C_CHOICES;
163 ret[2].sval = TYPECONFIG;
164 ret[2].ival = params->type;
165
166 ret[3].name = NULL;
167 ret[3].type = C_END;
168 ret[3].sval = NULL;
169 ret[3].ival = 0;
170
171 return ret;
172 }
173
174 static game_params *custom_params(config_item *cfg)
175 {
176 game_params *ret = snew(game_params);
177
178 ret->w = atoi(cfg[0].sval);
179 ret->h = atoi(cfg[1].sval);
180 ret->type = cfg[2].ival;
181
182 return ret;
183 }
184
185 static char *validate_params(game_params *params, int full)
186 {
187 if (full && (params->w <= 3 || params->h <= 3))
188 return "Width and height must both be greater than three";
189
190 /*
191 * It might be possible to implement generalisations of Cross
192 * and Octagon, but only if I can find a proof that they're all
193 * soluble. For the moment, therefore, I'm going to disallow
194 * them at any size other than the standard one.
195 */
196 if (full && (params->type == TYPE_CROSS || params->type == TYPE_OCTAGON)) {
197 if (params->w != 7 || params->h != 7)
198 return "This board type is only supported at 7x7";
199 }
200 return NULL;
201 }
202
203 /* ----------------------------------------------------------------------
204 * Beginning of code to generate random Peg Solitaire boards.
205 *
206 * This procedure is done with no aesthetic judgment, no effort at
207 * symmetry, no difficulty grading and generally no finesse
208 * whatsoever. We simply begin with an empty board containing a
209 * single peg, and repeatedly make random reverse moves until it's
210 * plausibly full. This typically yields a scrappy haphazard mess
211 * with several holes, an uneven shape, and no redeeming features
212 * except guaranteed solubility.
213 *
214 * My only concessions to sophistication are (a) to repeat the
215 * generation process until I at least get a grid that touches
216 * every edge of the specified board size, and (b) to try when
217 * selecting moves to reuse existing space rather than expanding
218 * into new space (so that non-rectangular board shape becomes a
219 * factor during play).
220 */
221
222 struct move {
223 /*
224 * x,y are the start point of the move during generation (hence
225 * its endpoint during normal play).
226 *
227 * dx,dy are the direction of the move during generation.
228 * Absolute value 1. Hence, for example, x=3,y=5,dx=1,dy=0
229 * means that the move during generation starts at (3,5) and
230 * ends at (5,5), and vice versa during normal play.
231 */
232 int x, y, dx, dy;
233 /*
234 * cost is 0, 1 or 2, depending on how many GRID_OBSTs we must
235 * turn into GRID_HOLEs to play this move.
236 */
237 int cost;
238 };
239
240 static int movecmp(void *av, void *bv)
241 {
242 struct move *a = (struct move *)av;
243 struct move *b = (struct move *)bv;
244
245 if (a->y < b->y)
246 return -1;
247 else if (a->y > b->y)
248 return +1;
249
250 if (a->x < b->x)
251 return -1;
252 else if (a->x > b->x)
253 return +1;
254
255 if (a->dy < b->dy)
256 return -1;
257 else if (a->dy > b->dy)
258 return +1;
259
260 if (a->dx < b->dx)
261 return -1;
262 else if (a->dx > b->dx)
263 return +1;
264
265 return 0;
266 }
267
268 static int movecmpcost(void *av, void *bv)
269 {
270 struct move *a = (struct move *)av;
271 struct move *b = (struct move *)bv;
272
273 if (a->cost < b->cost)
274 return -1;
275 else if (a->cost > b->cost)
276 return +1;
277
278 return movecmp(av, bv);
279 }
280
281 struct movetrees {
282 tree234 *bymove, *bycost;
283 };
284
285 static void update_moves(unsigned char *grid, int w, int h, int x, int y,
286 struct movetrees *trees)
287 {
288 struct move move;
289 int dir, pos;
290
291 /*
292 * There are twelve moves that can include (x,y): three in each
293 * of four directions. Check each one to see if it's possible.
294 */
295 for (dir = 0; dir < 4; dir++) {
296 int dx, dy;
297
298 if (dir & 1)
299 dx = 0, dy = dir - 2;
300 else
301 dy = 0, dx = dir - 1;
302
303 assert(abs(dx) + abs(dy) == 1);
304
305 for (pos = 0; pos < 3; pos++) {
306 int v1, v2, v3;
307
308 move.dx = dx;
309 move.dy = dy;
310 move.x = x - pos*dx;
311 move.y = y - pos*dy;
312
313 if (move.x < 0 || move.x >= w || move.y < 0 || move.y >= h)
314 continue; /* completely invalid move */
315 if (move.x+2*move.dx < 0 || move.x+2*move.dx >= w ||
316 move.y+2*move.dy < 0 || move.y+2*move.dy >= h)
317 continue; /* completely invalid move */
318
319 v1 = grid[move.y * w + move.x];
320 v2 = grid[(move.y+move.dy) * w + (move.x+move.dx)];
321 v3 = grid[(move.y+2*move.dy)*w + (move.x+2*move.dx)];
322 if (v1 == GRID_PEG && v2 != GRID_PEG && v3 != GRID_PEG) {
323 struct move *m;
324
325 move.cost = (v2 == GRID_OBST) + (v3 == GRID_OBST);
326
327 /*
328 * This move is possible. See if it's already in
329 * the tree.
330 */
331 m = find234(trees->bymove, &move, NULL);
332 if (m && m->cost != move.cost) {
333 /*
334 * It's in the tree but listed with the wrong
335 * cost. Remove the old version.
336 */
337 #ifdef GENERATION_DIAGNOSTICS
338 printf("correcting %d%+d,%d%+d at cost %d\n",
339 m->x, m->dx, m->y, m->dy, m->cost);
340 #endif
341 del234(trees->bymove, m);
342 del234(trees->bycost, m);
343 sfree(m);
344 m = NULL;
345 }
346 if (!m) {
347 struct move *m, *m2;
348 m = snew(struct move);
349 *m = move;
350 m2 = add234(trees->bymove, m);
351 m2 = add234(trees->bycost, m);
352 assert(m2 == m);
353 #ifdef GENERATION_DIAGNOSTICS
354 printf("adding %d%+d,%d%+d at cost %d\n",
355 move.x, move.dx, move.y, move.dy, move.cost);
356 #endif
357 } else {
358 #ifdef GENERATION_DIAGNOSTICS
359 printf("not adding %d%+d,%d%+d at cost %d\n",
360 move.x, move.dx, move.y, move.dy, move.cost);
361 #endif
362 }
363 } else {
364 /*
365 * This move is impossible. If it is already in the
366 * tree, delete it.
367 *
368 * (We make use here of the fact that del234
369 * doesn't have to be passed a pointer to the
370 * _actual_ element it's deleting: it merely needs
371 * one that compares equal to it, and it will
372 * return the one it deletes.)
373 */
374 struct move *m = del234(trees->bymove, &move);
375 #ifdef GENERATION_DIAGNOSTICS
376 printf("%sdeleting %d%+d,%d%+d\n", m ? "" : "not ",
377 move.x, move.dx, move.y, move.dy);
378 #endif
379 if (m) {
380 del234(trees->bycost, m);
381 sfree(m);
382 }
383 }
384 }
385 }
386 }
387
388 static void pegs_genmoves(unsigned char *grid, int w, int h, random_state *rs)
389 {
390 struct movetrees atrees, *trees = &atrees;
391 struct move *m;
392 int x, y, i, nmoves;
393
394 trees->bymove = newtree234(movecmp);
395 trees->bycost = newtree234(movecmpcost);
396
397 for (y = 0; y < h; y++)
398 for (x = 0; x < w; x++)
399 if (grid[y*w+x] == GRID_PEG)
400 update_moves(grid, w, h, x, y, trees);
401
402 nmoves = 0;
403
404 while (1) {
405 int limit, maxcost, index;
406 struct move mtmp, move, *m;
407
408 /*
409 * See how many moves we can make at zero cost. Make one,
410 * if possible. Failing that, make a one-cost move, and
411 * then a two-cost one.
412 *
413 * After filling at least half the input grid, we no longer
414 * accept cost-2 moves: if that's our only option, we give
415 * up and finish.
416 */
417 mtmp.y = h+1;
418 maxcost = (nmoves < w*h/2 ? 2 : 1);
419 m = NULL; /* placate optimiser */
420 for (mtmp.cost = 0; mtmp.cost <= maxcost; mtmp.cost++) {
421 limit = -1;
422 m = findrelpos234(trees->bycost, &mtmp, NULL, REL234_LT, &limit);
423 #ifdef GENERATION_DIAGNOSTICS
424 printf("%d moves available with cost %d\n", limit+1, mtmp.cost);
425 #endif
426 if (m)
427 break;
428 }
429 if (!m)
430 break;
431
432 index = random_upto(rs, limit+1);
433 move = *(struct move *)index234(trees->bycost, index);
434
435 #ifdef GENERATION_DIAGNOSTICS
436 printf("selecting move %d%+d,%d%+d at cost %d\n",
437 move.x, move.dx, move.y, move.dy, move.cost);
438 #endif
439
440 grid[move.y * w + move.x] = GRID_HOLE;
441 grid[(move.y+move.dy) * w + (move.x+move.dx)] = GRID_PEG;
442 grid[(move.y+2*move.dy)*w + (move.x+2*move.dx)] = GRID_PEG;
443
444 for (i = 0; i <= 2; i++) {
445 int tx = move.x + i*move.dx;
446 int ty = move.y + i*move.dy;
447 update_moves(grid, w, h, tx, ty, trees);
448 }
449
450 nmoves++;
451 }
452
453 while ((m = delpos234(trees->bymove, 0)) != NULL) {
454 del234(trees->bycost, m);
455 sfree(m);
456 }
457 freetree234(trees->bymove);
458 freetree234(trees->bycost);
459 }
460
461 static void pegs_generate(unsigned char *grid, int w, int h, random_state *rs)
462 {
463 while (1) {
464 int x, y, extremes;
465
466 memset(grid, GRID_OBST, w*h);
467 grid[(h/2) * w + (w/2)] = GRID_PEG;
468 #ifdef GENERATION_DIAGNOSTICS
469 printf("beginning move selection\n");
470 #endif
471 pegs_genmoves(grid, w, h, rs);
472 #ifdef GENERATION_DIAGNOSTICS
473 printf("finished move selection\n");
474 #endif
475
476 extremes = 0;
477 for (y = 0; y < h; y++) {
478 if (grid[y*w+0] != GRID_OBST)
479 extremes |= 1;
480 if (grid[y*w+w-1] != GRID_OBST)
481 extremes |= 2;
482 }
483 for (x = 0; x < w; x++) {
484 if (grid[0*w+x] != GRID_OBST)
485 extremes |= 4;
486 if (grid[(h-1)*w+x] != GRID_OBST)
487 extremes |= 8;
488 }
489
490 if (extremes == 15)
491 break;
492 #ifdef GENERATION_DIAGNOSTICS
493 printf("insufficient extent; trying again\n");
494 #endif
495 }
496 #ifdef GENERATION_DIAGNOSTICS
497 fflush(stdout);
498 #endif
499 }
500
501 /* ----------------------------------------------------------------------
502 * End of board generation code. Now for the client code which uses
503 * it as part of the puzzle.
504 */
505
506 static char *new_game_desc(game_params *params, random_state *rs,
507 char **aux, int interactive)
508 {
509 int w = params->w, h = params->h;
510 unsigned char *grid;
511 char *ret;
512 int i;
513
514 grid = snewn(w*h, unsigned char);
515 if (params->type == TYPE_RANDOM) {
516 pegs_generate(grid, w, h, rs);
517 } else {
518 int x, y, cx, cy, v;
519
520 for (y = 0; y < h; y++)
521 for (x = 0; x < w; x++) {
522 v = GRID_OBST; /* placate optimiser */
523 switch (params->type) {
524 case TYPE_CROSS:
525 cx = abs(x - w/2);
526 cy = abs(y - h/2);
527 if (cx == 0 && cy == 0)
528 v = GRID_HOLE;
529 else if (cx > 1 && cy > 1)
530 v = GRID_OBST;
531 else
532 v = GRID_PEG;
533 break;
534 case TYPE_OCTAGON:
535 cx = abs(x - w/2);
536 cy = abs(y - h/2);
537 if (cx + cy > 1 + max(w,h)/2)
538 v = GRID_OBST;
539 else
540 v = GRID_PEG;
541 break;
542 }
543 grid[y*w+x] = v;
544 }
545
546 if (params->type == TYPE_OCTAGON) {
547 /*
548 * The octagonal (European) solitaire layout is
549 * actually _insoluble_ with the starting hole at the
550 * centre. Here's a proof:
551 *
552 * Colour the squares of the board diagonally in
553 * stripes of three different colours, which I'll call
554 * A, B and C. So the board looks like this:
555 *
556 * A B C
557 * A B C A B
558 * A B C A B C A
559 * B C A B C A B
560 * C A B C A B C
561 * B C A B C
562 * A B C
563 *
564 * Suppose we keep running track of the number of pegs
565 * occuping each colour of square. This colouring has
566 * the property that any valid move whatsoever changes
567 * all three of those counts by one (two of them go
568 * down and one goes up), which means that the _parity_
569 * of every count flips on every move.
570 *
571 * If the centre square starts off unoccupied, then
572 * there are twelve pegs on each colour and all three
573 * counts start off even; therefore, after 35 moves all
574 * three counts would have to be odd, which isn't
575 * possible if there's only one peg left. []
576 *
577 * This proof works just as well if the starting hole
578 * is _any_ of the thirteen positions labelled B. Also,
579 * we can stripe the board in the opposite direction
580 * and rule out any square labelled B in that colouring
581 * as well. This leaves:
582 *
583 * Y n Y
584 * n n Y n n
585 * Y n n Y n n Y
586 * n Y Y n Y Y n
587 * Y n n Y n n Y
588 * n n Y n n
589 * Y n Y
590 *
591 * where the ns are squares we've proved insoluble, and
592 * the Ys are the ones remaining.
593 *
594 * That doesn't prove all those starting positions to
595 * be soluble, of course; they're merely the ones we
596 * _haven't_ proved to be impossible. Nevertheless, it
597 * turns out that they are all soluble, so when the
598 * user requests an Octagon board the simplest thing is
599 * to pick one of these at random.
600 *
601 * Rather than picking equiprobably from those twelve
602 * positions, we'll pick equiprobably from the three
603 * equivalence classes
604 */
605 switch (random_upto(rs, 3)) {
606 case 0:
607 /* Remove a random corner piece. */
608 {
609 int dx, dy;
610
611 dx = random_upto(rs, 2) * 2 - 1; /* +1 or -1 */
612 dy = random_upto(rs, 2) * 2 - 1; /* +1 or -1 */
613 if (random_upto(rs, 2))
614 dy *= 3;
615 else
616 dx *= 3;
617 grid[(3+dy)*w+(3+dx)] = GRID_HOLE;
618 }
619 break;
620 case 1:
621 /* Remove a random piece two from the centre. */
622 {
623 int dx, dy;
624 dx = 2 * (random_upto(rs, 2) * 2 - 1);
625 if (random_upto(rs, 2))
626 dy = 0;
627 else
628 dy = dx, dx = 0;
629 grid[(3+dy)*w+(3+dx)] = GRID_HOLE;
630 }
631 break;
632 default /* case 2 */:
633 /* Remove a random piece one from the centre. */
634 {
635 int dx, dy;
636 dx = random_upto(rs, 2) * 2 - 1;
637 if (random_upto(rs, 2))
638 dy = 0;
639 else
640 dy = dx, dx = 0;
641 grid[(3+dy)*w+(3+dx)] = GRID_HOLE;
642 }
643 break;
644 }
645 }
646 }
647
648 /*
649 * Encode a game description which is simply a long list of P
650 * for peg, H for hole or O for obstacle.
651 */
652 ret = snewn(w*h+1, char);
653 for (i = 0; i < w*h; i++)
654 ret[i] = (grid[i] == GRID_PEG ? 'P' :
655 grid[i] == GRID_HOLE ? 'H' : 'O');
656 ret[w*h] = '\0';
657
658 sfree(grid);
659
660 return ret;
661 }
662
663 static char *validate_desc(game_params *params, char *desc)
664 {
665 int len = params->w * params->h;
666
667 if (len != strlen(desc))
668 return "Game description is wrong length";
669 if (len != strspn(desc, "PHO"))
670 return "Invalid character in game description";
671
672 return NULL;
673 }
674
675 static game_state *new_game(midend *me, game_params *params, char *desc)
676 {
677 int w = params->w, h = params->h;
678 game_state *state = snew(game_state);
679 int i;
680
681 state->w = w;
682 state->h = h;
683 state->completed = 0;
684 state->grid = snewn(w*h, unsigned char);
685 for (i = 0; i < w*h; i++)
686 state->grid[i] = (desc[i] == 'P' ? GRID_PEG :
687 desc[i] == 'H' ? GRID_HOLE : GRID_OBST);
688
689 return state;
690 }
691
692 static game_state *dup_game(game_state *state)
693 {
694 int w = state->w, h = state->h;
695 game_state *ret = snew(game_state);
696
697 ret->w = state->w;
698 ret->h = state->h;
699 ret->completed = state->completed;
700 ret->grid = snewn(w*h, unsigned char);
701 memcpy(ret->grid, state->grid, w*h);
702
703 return ret;
704 }
705
706 static void free_game(game_state *state)
707 {
708 sfree(state->grid);
709 sfree(state);
710 }
711
712 static char *solve_game(game_state *state, game_state *currstate,
713 char *aux, char **error)
714 {
715 return NULL;
716 }
717
718 static int game_can_format_as_text_now(game_params *params)
719 {
720 return TRUE;
721 }
722
723 static char *game_text_format(game_state *state)
724 {
725 int w = state->w, h = state->h;
726 int x, y;
727 char *ret;
728
729 ret = snewn((w+1)*h + 1, char);
730
731 for (y = 0; y < h; y++) {
732 for (x = 0; x < w; x++)
733 ret[y*(w+1)+x] = (state->grid[y*w+x] == GRID_HOLE ? '-' :
734 state->grid[y*w+x] == GRID_PEG ? '*' : ' ');
735 ret[y*(w+1)+w] = '\n';
736 }
737 ret[h*(w+1)] = '\0';
738
739 return ret;
740 }
741
742 struct game_ui {
743 int dragging; /* boolean: is a drag in progress? */
744 int sx, sy; /* grid coords of drag start cell */
745 int dx, dy; /* pixel coords of current drag posn */
746 int cur_x, cur_y, cur_visible, cur_jumping;
747 };
748
749 static game_ui *new_ui(game_state *state)
750 {
751 game_ui *ui = snew(game_ui);
752 int x, y, v;
753
754 ui->sx = ui->sy = ui->dx = ui->dy = 0;
755 ui->dragging = FALSE;
756 ui->cur_visible = ui->cur_jumping = 0;
757
758 /* make sure we start the cursor somewhere on the grid. */
759 for (x = 0; x < state->w; x++) {
760 for (y = 0; y < state->h; y++) {
761 v = state->grid[y*state->w+x];
762 if (v == GRID_PEG || v == GRID_HOLE) {
763 ui->cur_x = x; ui->cur_y = y;
764 goto found;
765 }
766 }
767 }
768 assert(!"new_ui found nowhere for cursor");
769 found:
770
771 return ui;
772 }
773
774 static void free_ui(game_ui *ui)
775 {
776 sfree(ui);
777 }
778
779 static char *encode_ui(game_ui *ui)
780 {
781 return NULL;
782 }
783
784 static void decode_ui(game_ui *ui, char *encoding)
785 {
786 }
787
788 static void game_changed_state(game_ui *ui, game_state *oldstate,
789 game_state *newstate)
790 {
791 /*
792 * Cancel a drag, in case the source square has become
793 * unoccupied.
794 */
795 ui->dragging = FALSE;
796 }
797
798 #define PREFERRED_TILE_SIZE 33
799 #define TILESIZE (ds->tilesize)
800 #define BORDER (TILESIZE / 2)
801
802 #define HIGHLIGHT_WIDTH (TILESIZE / 16)
803
804 #define COORD(x) ( BORDER + (x) * TILESIZE )
805 #define FROMCOORD(x) ( ((x) + TILESIZE - BORDER) / TILESIZE - 1 )
806
807 struct game_drawstate {
808 int tilesize;
809 blitter *drag_background;
810 int dragging, dragx, dragy;
811 int w, h;
812 unsigned char *grid;
813 int started;
814 int bgcolour;
815 };
816
817 static char *interpret_move(game_state *state, game_ui *ui, const game_drawstate *ds,
818 int x, int y, int button)
819 {
820 int w = state->w, h = state->h;
821 char buf[80];
822
823 if (button == LEFT_BUTTON) {
824 int tx, ty;
825
826 /*
827 * Left button down: we attempt to start a drag.
828 */
829
830 /*
831 * There certainly shouldn't be a current drag in progress,
832 * unless the midend failed to send us button events in
833 * order; it has a responsibility to always get that right,
834 * so we can legitimately punish it by failing an
835 * assertion.
836 */
837 assert(!ui->dragging);
838
839 tx = FROMCOORD(x);
840 ty = FROMCOORD(y);
841 if (tx >= 0 && tx < w && ty >= 0 && ty < h &&
842 state->grid[ty*w+tx] == GRID_PEG) {
843 ui->dragging = TRUE;
844 ui->sx = tx;
845 ui->sy = ty;
846 ui->dx = x;
847 ui->dy = y;
848 ui->cur_visible = ui->cur_jumping = 0;
849 return ""; /* ui modified */
850 }
851 } else if (button == LEFT_DRAG && ui->dragging) {
852 /*
853 * Mouse moved; just move the peg being dragged.
854 */
855 ui->dx = x;
856 ui->dy = y;
857 return ""; /* ui modified */
858 } else if (button == LEFT_RELEASE && ui->dragging) {
859 int tx, ty, dx, dy;
860
861 /*
862 * Button released. Identify the target square of the drag,
863 * see if it represents a valid move, and if so make it.
864 */
865 ui->dragging = FALSE; /* cancel the drag no matter what */
866 tx = FROMCOORD(x);
867 ty = FROMCOORD(y);
868 if (tx < 0 || tx >= w || ty < 0 || ty >= h)
869 return ""; /* target out of range */
870 dx = tx - ui->sx;
871 dy = ty - ui->sy;
872 if (max(abs(dx),abs(dy)) != 2 || min(abs(dx),abs(dy)) != 0)
873 return ""; /* move length was wrong */
874 dx /= 2;
875 dy /= 2;
876
877 if (state->grid[ty*w+tx] != GRID_HOLE ||
878 state->grid[(ty-dy)*w+(tx-dx)] != GRID_PEG ||
879 state->grid[ui->sy*w+ui->sx] != GRID_PEG)
880 return ""; /* grid contents were invalid */
881
882 /*
883 * We have a valid move. Encode it simply as source and
884 * destination coordinate pairs.
885 */
886 sprintf(buf, "%d,%d-%d,%d", ui->sx, ui->sy, tx, ty);
887 return dupstr(buf);
888 } else if (IS_CURSOR_MOVE(button)) {
889 if (!ui->cur_jumping) {
890 /* Not jumping; move cursor as usual, making sure we don't
891 * leave the gameboard (which may be an irregular shape) */
892 int cx = ui->cur_x, cy = ui->cur_y;
893 move_cursor(button, &cx, &cy, w, h, 0);
894 ui->cur_visible = 1;
895 if (state->grid[cy*w+cx] == GRID_HOLE ||
896 state->grid[cy*w+cx] == GRID_PEG) {
897 ui->cur_x = cx;
898 ui->cur_y = cy;
899 }
900 return "";
901 } else {
902 int dx, dy, mx, my, jx, jy;
903
904 /* We're jumping; if the requested direction has a hole, and
905 * there's a peg in the way, */
906 assert(state->grid[ui->cur_y*w+ui->cur_x] == GRID_PEG);
907 dx = (button == CURSOR_RIGHT) ? 1 : (button == CURSOR_LEFT) ? -1 : 0;
908 dy = (button == CURSOR_DOWN) ? 1 : (button == CURSOR_UP) ? -1 : 0;
909
910 mx = ui->cur_x+dx; my = ui->cur_y+dy;
911 jx = mx+dx; jy = my+dy;
912
913 ui->cur_jumping = 0; /* reset, whatever. */
914 if (jx >= 0 && jy >= 0 && jx < w && jy < h &&
915 state->grid[my*w+mx] == GRID_PEG &&
916 state->grid[jy*w+jx] == GRID_HOLE) {
917 /* Move cursor to the jumped-to location (this felt more
918 * natural while playtesting) */
919 sprintf(buf, "%d,%d-%d,%d", ui->cur_x, ui->cur_y, jx, jy);
920 ui->cur_x = jx; ui->cur_y = jy;
921 return dupstr(buf);
922 }
923 return "";
924 }
925 } else if (IS_CURSOR_SELECT(button)) {
926 if (!ui->cur_visible) {
927 ui->cur_visible = 1;
928 return "";
929 }
930 if (ui->cur_jumping) {
931 ui->cur_jumping = 0;
932 return "";
933 }
934 if (state->grid[ui->cur_y*w+ui->cur_x] == GRID_PEG) {
935 /* cursor is on peg: next arrow-move wil jump. */
936 ui->cur_jumping = 1;
937 return "";
938 }
939 return NULL;
940 }
941
942 return NULL;
943 }
944
945 static game_state *execute_move(game_state *state, char *move)
946 {
947 int w = state->w, h = state->h;
948 int sx, sy, tx, ty;
949 game_state *ret;
950
951 if (sscanf(move, "%d,%d-%d,%d", &sx, &sy, &tx, &ty) == 4) {
952 int mx, my, dx, dy;
953
954 if (sx < 0 || sx >= w || sy < 0 || sy >= h)
955 return NULL; /* source out of range */
956 if (tx < 0 || tx >= w || ty < 0 || ty >= h)
957 return NULL; /* target out of range */
958
959 dx = tx - sx;
960 dy = ty - sy;
961 if (max(abs(dx),abs(dy)) != 2 || min(abs(dx),abs(dy)) != 0)
962 return NULL; /* move length was wrong */
963 mx = sx + dx/2;
964 my = sy + dy/2;
965
966 if (state->grid[sy*w+sx] != GRID_PEG ||
967 state->grid[my*w+mx] != GRID_PEG ||
968 state->grid[ty*w+tx] != GRID_HOLE)
969 return NULL; /* grid contents were invalid */
970
971 ret = dup_game(state);
972 ret->grid[sy*w+sx] = GRID_HOLE;
973 ret->grid[my*w+mx] = GRID_HOLE;
974 ret->grid[ty*w+tx] = GRID_PEG;
975
976 /*
977 * Opinion varies on whether getting to a single peg counts as
978 * completing the game, or whether that peg has to be at a
979 * specific location (central in the classic cross game, for
980 * instance). For now we take the former, rather lax position.
981 */
982 if (!ret->completed) {
983 int count = 0, i;
984 for (i = 0; i < w*h; i++)
985 if (ret->grid[i] == GRID_PEG)
986 count++;
987 if (count == 1)
988 ret->completed = 1;
989 }
990
991 return ret;
992 }
993 return NULL;
994 }
995
996 /* ----------------------------------------------------------------------
997 * Drawing routines.
998 */
999
1000 static void game_compute_size(game_params *params, int tilesize,
1001 int *x, int *y)
1002 {
1003 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1004 struct { int tilesize; } ads, *ds = &ads;
1005 ads.tilesize = tilesize;
1006
1007 *x = TILESIZE * params->w + 2 * BORDER;
1008 *y = TILESIZE * params->h + 2 * BORDER;
1009 }
1010
1011 static void game_set_size(drawing *dr, game_drawstate *ds,
1012 game_params *params, int tilesize)
1013 {
1014 ds->tilesize = tilesize;
1015
1016 assert(TILESIZE > 0);
1017
1018 assert(!ds->drag_background); /* set_size is never called twice */
1019 ds->drag_background = blitter_new(dr, TILESIZE, TILESIZE);
1020 }
1021
1022 static float *game_colours(frontend *fe, int *ncolours)
1023 {
1024 float *ret = snewn(3 * NCOLOURS, float);
1025
1026 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
1027
1028 ret[COL_PEG * 3 + 0] = 0.0F;
1029 ret[COL_PEG * 3 + 1] = 0.0F;
1030 ret[COL_PEG * 3 + 2] = 1.0F;
1031
1032 ret[COL_CURSOR * 3 + 0] = 0.5F;
1033 ret[COL_CURSOR * 3 + 1] = 0.5F;
1034 ret[COL_CURSOR * 3 + 2] = 1.0F;
1035
1036 *ncolours = NCOLOURS;
1037 return ret;
1038 }
1039
1040 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1041 {
1042 int w = state->w, h = state->h;
1043 struct game_drawstate *ds = snew(struct game_drawstate);
1044
1045 ds->tilesize = 0; /* not decided yet */
1046
1047 /* We can't allocate the blitter rectangle for the drag background
1048 * until we know what size to make it. */
1049 ds->drag_background = NULL;
1050 ds->dragging = FALSE;
1051
1052 ds->w = w;
1053 ds->h = h;
1054 ds->grid = snewn(w*h, unsigned char);
1055 memset(ds->grid, 255, w*h);
1056
1057 ds->started = FALSE;
1058 ds->bgcolour = -1;
1059
1060 return ds;
1061 }
1062
1063 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1064 {
1065 if (ds->drag_background)
1066 blitter_free(dr, ds->drag_background);
1067 sfree(ds->grid);
1068 sfree(ds);
1069 }
1070
1071 static void draw_tile(drawing *dr, game_drawstate *ds,
1072 int x, int y, int v, int bgcolour)
1073 {
1074 int cursor = 0, jumping = 0, bg;
1075
1076 if (bgcolour >= 0) {
1077 draw_rect(dr, x, y, TILESIZE, TILESIZE, bgcolour);
1078 }
1079 if (v >= GRID_JUMPING) {
1080 jumping = 1; v -= GRID_JUMPING;
1081 }
1082 if (v >= GRID_CURSOR) {
1083 cursor = 1; v -= GRID_CURSOR;
1084 }
1085
1086 if (v == GRID_HOLE) {
1087 bg = cursor ? COL_HIGHLIGHT : COL_LOWLIGHT;
1088 assert(!jumping); /* can't jump from a hole! */
1089 draw_circle(dr, x+TILESIZE/2, y+TILESIZE/2, TILESIZE/4,
1090 bg, bg);
1091 } else if (v == GRID_PEG) {
1092 bg = (cursor || jumping) ? COL_CURSOR : COL_PEG;
1093 draw_circle(dr, x+TILESIZE/2, y+TILESIZE/2, TILESIZE/3,
1094 bg, bg);
1095 bg = (!cursor || jumping) ? COL_PEG : COL_CURSOR;
1096 draw_circle(dr, x+TILESIZE/2, y+TILESIZE/2, TILESIZE/4,
1097 bg, bg);
1098 }
1099
1100 draw_update(dr, x, y, TILESIZE, TILESIZE);
1101 }
1102
1103 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1104 game_state *state, int dir, game_ui *ui,
1105 float animtime, float flashtime)
1106 {
1107 int w = state->w, h = state->h;
1108 int x, y;
1109 int bgcolour;
1110
1111 if (flashtime > 0) {
1112 int frame = (int)(flashtime / FLASH_FRAME);
1113 bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
1114 } else
1115 bgcolour = COL_BACKGROUND;
1116
1117 /*
1118 * Erase the sprite currently being dragged, if any.
1119 */
1120 if (ds->dragging) {
1121 assert(ds->drag_background);
1122 blitter_load(dr, ds->drag_background, ds->dragx, ds->dragy);
1123 draw_update(dr, ds->dragx, ds->dragy, TILESIZE, TILESIZE);
1124 ds->dragging = FALSE;
1125 }
1126
1127 if (!ds->started) {
1128 draw_rect(dr, 0, 0,
1129 TILESIZE * state->w + 2 * BORDER,
1130 TILESIZE * state->h + 2 * BORDER, COL_BACKGROUND);
1131
1132 /*
1133 * Draw relief marks around all the squares that aren't
1134 * GRID_OBST.
1135 */
1136 for (y = 0; y < h; y++)
1137 for (x = 0; x < w; x++)
1138 if (state->grid[y*w+x] != GRID_OBST) {
1139 /*
1140 * First pass: draw the full relief square.
1141 */
1142 int coords[6];
1143 coords[0] = COORD(x+1) + HIGHLIGHT_WIDTH - 1;
1144 coords[1] = COORD(y) - HIGHLIGHT_WIDTH;
1145 coords[2] = COORD(x) - HIGHLIGHT_WIDTH;
1146 coords[3] = COORD(y+1) + HIGHLIGHT_WIDTH - 1;
1147 coords[4] = COORD(x) - HIGHLIGHT_WIDTH;
1148 coords[5] = COORD(y) - HIGHLIGHT_WIDTH;
1149 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
1150 coords[4] = COORD(x+1) + HIGHLIGHT_WIDTH - 1;
1151 coords[5] = COORD(y+1) + HIGHLIGHT_WIDTH - 1;
1152 draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
1153 }
1154 for (y = 0; y < h; y++)
1155 for (x = 0; x < w; x++)
1156 if (state->grid[y*w+x] != GRID_OBST) {
1157 /*
1158 * Second pass: draw everything but the two
1159 * diagonal corners.
1160 */
1161 draw_rect(dr, COORD(x) - HIGHLIGHT_WIDTH,
1162 COORD(y) - HIGHLIGHT_WIDTH,
1163 TILESIZE + HIGHLIGHT_WIDTH,
1164 TILESIZE + HIGHLIGHT_WIDTH, COL_HIGHLIGHT);
1165 draw_rect(dr, COORD(x),
1166 COORD(y),
1167 TILESIZE + HIGHLIGHT_WIDTH,
1168 TILESIZE + HIGHLIGHT_WIDTH, COL_LOWLIGHT);
1169 }
1170 for (y = 0; y < h; y++)
1171 for (x = 0; x < w; x++)
1172 if (state->grid[y*w+x] != GRID_OBST) {
1173 /*
1174 * Third pass: draw a trapezium on each edge.
1175 */
1176 int coords[8];
1177 int dx, dy, s, sn, c;
1178
1179 for (dx = 0; dx < 2; dx++) {
1180 dy = 1 - dx;
1181 for (s = 0; s < 2; s++) {
1182 sn = 2*s - 1;
1183 c = s ? COL_LOWLIGHT : COL_HIGHLIGHT;
1184
1185 coords[0] = COORD(x) + (s*dx)*(TILESIZE-1);
1186 coords[1] = COORD(y) + (s*dy)*(TILESIZE-1);
1187 coords[2] = COORD(x) + (s*dx+dy)*(TILESIZE-1);
1188 coords[3] = COORD(y) + (s*dy+dx)*(TILESIZE-1);
1189 coords[4] = coords[2] - HIGHLIGHT_WIDTH * (dy-sn*dx);
1190 coords[5] = coords[3] - HIGHLIGHT_WIDTH * (dx-sn*dy);
1191 coords[6] = coords[0] + HIGHLIGHT_WIDTH * (dy+sn*dx);
1192 coords[7] = coords[1] + HIGHLIGHT_WIDTH * (dx+sn*dy);
1193 draw_polygon(dr, coords, 4, c, c);
1194 }
1195 }
1196 }
1197 for (y = 0; y < h; y++)
1198 for (x = 0; x < w; x++)
1199 if (state->grid[y*w+x] != GRID_OBST) {
1200 /*
1201 * Second pass: draw everything but the two
1202 * diagonal corners.
1203 */
1204 draw_rect(dr, COORD(x),
1205 COORD(y),
1206 TILESIZE,
1207 TILESIZE, COL_BACKGROUND);
1208 }
1209
1210 ds->started = TRUE;
1211
1212 draw_update(dr, 0, 0,
1213 TILESIZE * state->w + 2 * BORDER,
1214 TILESIZE * state->h + 2 * BORDER);
1215 }
1216
1217 /*
1218 * Loop over the grid redrawing anything that looks as if it
1219 * needs it.
1220 */
1221 for (y = 0; y < h; y++)
1222 for (x = 0; x < w; x++) {
1223 int v;
1224
1225 v = state->grid[y*w+x];
1226 /*
1227 * Blank the source of a drag so it looks as if the
1228 * user picked the peg up physically.
1229 */
1230 if (ui->dragging && ui->sx == x && ui->sy == y && v == GRID_PEG)
1231 v = GRID_HOLE;
1232
1233 if (ui->cur_visible && ui->cur_x == x && ui->cur_y == y)
1234 v += ui->cur_jumping ? GRID_JUMPING : GRID_CURSOR;
1235
1236 if (v != GRID_OBST &&
1237 (bgcolour != ds->bgcolour || /* always redraw when flashing */
1238 v != ds->grid[y*w+x])) {
1239 draw_tile(dr, ds, COORD(x), COORD(y), v, bgcolour);
1240 ds->grid[y*w+x] = v;
1241 }
1242 }
1243
1244 /*
1245 * Draw the dragging sprite if any.
1246 */
1247 if (ui->dragging) {
1248 ds->dragging = TRUE;
1249 ds->dragx = ui->dx - TILESIZE/2;
1250 ds->dragy = ui->dy - TILESIZE/2;
1251 blitter_save(dr, ds->drag_background, ds->dragx, ds->dragy);
1252 draw_tile(dr, ds, ds->dragx, ds->dragy, GRID_PEG, -1);
1253 }
1254
1255 ds->bgcolour = bgcolour;
1256 }
1257
1258 static float game_anim_length(game_state *oldstate, game_state *newstate,
1259 int dir, game_ui *ui)
1260 {
1261 return 0.0F;
1262 }
1263
1264 static float game_flash_length(game_state *oldstate, game_state *newstate,
1265 int dir, game_ui *ui)
1266 {
1267 if (!oldstate->completed && newstate->completed)
1268 return 2 * FLASH_FRAME;
1269 else
1270 return 0.0F;
1271 }
1272
1273 static int game_status(game_state *state)
1274 {
1275 /*
1276 * Dead-end situations are assumed to be rescuable by Undo, so we
1277 * don't bother to identify them and return -1.
1278 */
1279 return state->completed ? +1 : 0;
1280 }
1281
1282 static int game_timing_state(game_state *state, game_ui *ui)
1283 {
1284 return TRUE;
1285 }
1286
1287 static void game_print_size(game_params *params, float *x, float *y)
1288 {
1289 }
1290
1291 static void game_print(drawing *dr, game_state *state, int tilesize)
1292 {
1293 }
1294
1295 #ifdef COMBINED
1296 #define thegame pegs
1297 #endif
1298
1299 const struct game thegame = {
1300 "Pegs", "games.pegs", "pegs",
1301 default_params,
1302 game_fetch_preset,
1303 decode_params,
1304 encode_params,
1305 free_params,
1306 dup_params,
1307 TRUE, game_configure, custom_params,
1308 validate_params,
1309 new_game_desc,
1310 validate_desc,
1311 new_game,
1312 dup_game,
1313 free_game,
1314 FALSE, solve_game,
1315 TRUE, game_can_format_as_text_now, game_text_format,
1316 new_ui,
1317 free_ui,
1318 encode_ui,
1319 decode_ui,
1320 game_changed_state,
1321 interpret_move,
1322 execute_move,
1323 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1324 game_colours,
1325 game_new_drawstate,
1326 game_free_drawstate,
1327 game_redraw,
1328 game_anim_length,
1329 game_flash_length,
1330 game_status,
1331 FALSE, FALSE, game_print_size, game_print,
1332 FALSE, /* wants_statusbar */
1333 FALSE, game_timing_state,
1334 0, /* flags */
1335 };
1336
1337 /* vim: set shiftwidth=4 tabstop=8: */