Renamed to `karatsuba.h'.
[u/mdw/catacomb] / mpx-kmul.c
CommitLineData
a86e33af 1/* -*-c-*-
2 *
c9060100 3 * $Id: mpx-kmul.c,v 1.6 2000/10/08 12:11:01 mdw Exp $
a86e33af 4 *
5 * Karatsuba's multiplication algorithm
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10/*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30/*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mpx-kmul.c,v $
c9060100 33 * Revision 1.6 2000/10/08 12:11:01 mdw
34 * Use @mpx_ueq@ instead of @MPX_UCMP@.
35 *
07dc33b2 36 * Revision 1.5 2000/07/29 17:04:02 mdw
37 * Remove useless header `mpscan.h'.
38 *
7d5fa32a 39 * Revision 1.4 2000/06/17 11:42:11 mdw
40 * Moved the Karatsuba macros into a separate file for better sharing.
41 * Fixed some comments.
42 *
4468424e 43 * Revision 1.3 1999/12/13 15:35:01 mdw
44 * Simplify and improve.
45 *
1b756626 46 * Revision 1.2 1999/12/11 10:58:02 mdw
47 * Remove tweakable comments.
48 *
a86e33af 49 * Revision 1.1 1999/12/10 23:23:51 mdw
50 * Karatsuba-Ofman multiplication algorithm.
51 *
52 */
53
54/*----- Header files ------------------------------------------------------*/
55
4468424e 56#include <assert.h>
a86e33af 57#include <stdio.h>
58
59#include "mpx.h"
7d5fa32a 60#include "mpx-kmac.h"
a86e33af 61
62/*----- Tweakables --------------------------------------------------------*/
63
a86e33af 64#ifdef TEST_RIG
65# undef KARATSUBA_CUTOFF
66# define KARATSUBA_CUTOFF 2
67#endif
68
a86e33af 69/*----- Main code ---------------------------------------------------------*/
70
71/* --- @mpx_kmul@ --- *
72 *
73 * Arguments: @mpw *dv, *dvl@ = pointer to destination buffer
74 * @const mpw *av, *avl@ = pointer to first argument
75 * @const mpw *bv, *bvl@ = pointer to second argument
76 * @mpw *sv, *svl@ = pointer to scratch workspace
77 *
78 * Returns: ---
79 *
80 * Use: Multiplies two multiprecision integers using Karatsuba's
81 * algorithm. This is rather faster than traditional long
82 * multiplication (e.g., @mpx_umul@) on large numbers, although
83 * more expensive on small ones.
84 *
85 * The destination must be twice as large as the larger
86 * argument. The scratch space must be twice as large as the
87 * larger argument, plus the magic number @KARATSUBA_SLOP@.
a86e33af 88 */
89
90void mpx_kmul(mpw *dv, mpw *dvl,
91 const mpw *av, const mpw *avl,
92 const mpw *bv, const mpw *bvl,
93 mpw *sv, mpw *svl)
94{
95 const mpw *avm, *bvm;
96 size_t m;
97
98 /* --- Dispose of easy cases to @mpx_umul@ --- *
99 *
100 * Karatsuba is only a win on large numbers, because of all the
101 * recursiveness and bookkeeping. The recursive calls make a quick check
102 * to see whether to bottom out to @mpx_umul@ which should help quite a
103 * lot, but sometimes the only way to know is to make sure...
104 */
105
106 MPX_SHRINK(av, avl);
107 MPX_SHRINK(bv, bvl);
108
109 if (avl - av <= KARATSUBA_CUTOFF || bvl - bv <= KARATSUBA_CUTOFF) {
110 mpx_umul(dv, dvl, av, avl, bv, bvl);
111 return;
112 }
113
114 /* --- How the algorithm works --- *
115 *
7d5fa32a 116 * Let %$A = xb + y$% and %$B = ub + v$%. Then, simply by expanding,
117 * %$AB = x u b^2 + b(x v + y u) + y v$%. That's not helped any, because
118 * I've got four multiplications, each four times easier than the one I
119 * started with. However, note that I can rewrite the coefficient of %$b$%
120 * as %$xv + yu = (x + y)(u + v) - xu - yv$%. The terms %$xu$% and %$yv$%
a86e33af 121 * I've already calculated, and that leaves only one more multiplication to
122 * do. So now I have three multiplications, each four times easier, and
123 * that's a win.
124 */
125
126 /* --- First things --- *
127 *
128 * Sort out where to break the factors in half. I'll choose the midpoint
129 * of the largest one, since this minimizes the amount of work I have to do
130 * most effectively.
131 */
132
133 if (avl - av > bvl - bv) {
134 m = (avl - av + 1) >> 1;
135 avm = av + m;
136 if (bvl - bv > m)
137 bvm = bv + m;
138 else
139 bvm = bvl;
140 } else {
141 m = (bvl - bv + 1) >> 1;
142 bvm = bv + m;
143 if (avl - av > m)
144 avm = av + m;
145 else
146 avm = avl;
147 }
148
4468424e 149 assert(((void)"Destination too small for Karatsuba multiply",
150 dvl - dv >= 4 * m));
151 assert(((void)"Not enough workspace for Karatsuba multiply",
152 svl - sv >= 4 * m));
153
154 /* --- Sort out the middle term --- */
a86e33af 155
156 {
4468424e 157 mpw *bsv = sv + m + 1, *ssv = bsv + m + 1;
158 mpw *rdv = dv + m, *rdvl = rdv + 2 * (m + 2);
159
160 UADD2(sv, bsv, av, avm, avm, avl);
161 UADD2(bsv, ssv, bv, bvm, bvm, bvl);
a86e33af 162 if (m > KARATSUBA_CUTOFF)
163 mpx_kmul(rdv, rdvl, sv, bsv, bsv, ssv, ssv, svl);
164 else
165 mpx_umul(rdv, rdvl, sv, bsv, bsv, ssv);
a86e33af 166 }
167
168 /* --- Sort out the other two terms --- */
169
170 {
4468424e 171 mpw *svm = sv + m, *svn = svm + m, *ssv = svn + 4;
a86e33af 172 mpw *tdv = dv + m;
173 mpw *rdv = tdv + m;
174
4468424e 175 if (avl == avm || bvl == bvm)
176 MPX_ZERO(rdv + m + 1, dvl);
177 else {
178 if (m > KARATSUBA_CUTOFF)
179 mpx_kmul(sv, ssv, avm, avl, bvm, bvl, ssv, svl);
180 else
181 mpx_umul(sv, ssv, avm, avl, bvm, bvl);
182 MPX_COPY(rdv + m + 1, dvl, svm + 1, svn);
183 UADD(rdv, sv, svm + 1);
184 USUB(tdv, sv, svn);
185 }
186
a86e33af 187 if (m > KARATSUBA_CUTOFF)
188 mpx_kmul(sv, ssv, av, avm, bv, bvm, ssv, svl);
189 else
190 mpx_umul(sv, ssv, av, avm, bv, bvm);
4468424e 191 MPX_COPY(dv, tdv, sv, svm);
192 USUB(tdv, sv, svn);
193 UADD(tdv, svm, svn);
a86e33af 194 }
195}
196
197/*----- Test rig ----------------------------------------------------------*/
198
199#ifdef TEST_RIG
200
201#include <mLib/alloc.h>
202#include <mLib/testrig.h>
203
a86e33af 204#define ALLOC(v, vl, sz) do { \
205 size_t _sz = (sz); \
206 mpw *_vv = xmalloc(MPWS(_sz)); \
207 mpw *_vvl = _vv + _sz; \
208 (v) = _vv; \
209 (vl) = _vvl; \
210} while (0)
211
212#define LOAD(v, vl, d) do { \
213 const dstr *_d = (d); \
214 mpw *_v, *_vl; \
215 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
216 mpx_loadb(_v, _vl, _d->buf, _d->len); \
217 (v) = _v; \
218 (vl) = _vl; \
219} while (0)
220
221#define MAX(x, y) ((x) > (y) ? (x) : (y))
222
223static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
224{
225 fputs(msg, stderr);
226 MPX_SHRINK(v, vl);
227 while (v < vl)
228 fprintf(stderr, " %08lx", (unsigned long)*--vl);
229 fputc('\n', stderr);
230}
231
232static int umul(dstr *v)
233{
234 mpw *a, *al;
235 mpw *b, *bl;
236 mpw *c, *cl;
237 mpw *d, *dl;
238 mpw *s, *sl;
239 size_t m;
240 int ok = 1;
241
242 LOAD(a, al, &v[0]);
243 LOAD(b, bl, &v[1]);
244 LOAD(c, cl, &v[2]);
245 m = MAX(al - a, bl - b) + 1;
246 ALLOC(d, dl, 2 * m);
247 ALLOC(s, sl, 2 * m + 32);
248
249 mpx_kmul(d, dl, a, al, b, bl, s, sl);
c9060100 250 if (!mpx_ueq(d, dl, c, cl)) {
a86e33af 251 fprintf(stderr, "\n*** umul failed\n");
252 dumpmp(" a", a, al);
253 dumpmp(" b", b, bl);
254 dumpmp("expected", c, cl);
255 dumpmp(" result", d, dl);
256 ok = 0;
257 }
258
259 free(a); free(b); free(c); free(d); free(s);
260 return (ok);
261}
262
263static test_chunk defs[] = {
264 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
265 { 0, 0, { 0 } }
266};
267
268int main(int argc, char *argv[])
269{
270 test_run(argc, argv, defs, SRCDIR"/tests/mpx");
271 return (0);
272}
273
274#endif
275
276/*----- That's all, folks -------------------------------------------------*/