Make table have external linkage to bodge around deficiency in C. The
[u/mdw/catacomb] / mpx-kmul.c
CommitLineData
a86e33af 1/* -*-c-*-
2 *
07dc33b2 3 * $Id: mpx-kmul.c,v 1.5 2000/07/29 17:04:02 mdw Exp $
a86e33af 4 *
5 * Karatsuba's multiplication algorithm
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10/*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30/*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mpx-kmul.c,v $
07dc33b2 33 * Revision 1.5 2000/07/29 17:04:02 mdw
34 * Remove useless header `mpscan.h'.
35 *
7d5fa32a 36 * Revision 1.4 2000/06/17 11:42:11 mdw
37 * Moved the Karatsuba macros into a separate file for better sharing.
38 * Fixed some comments.
39 *
4468424e 40 * Revision 1.3 1999/12/13 15:35:01 mdw
41 * Simplify and improve.
42 *
1b756626 43 * Revision 1.2 1999/12/11 10:58:02 mdw
44 * Remove tweakable comments.
45 *
a86e33af 46 * Revision 1.1 1999/12/10 23:23:51 mdw
47 * Karatsuba-Ofman multiplication algorithm.
48 *
49 */
50
51/*----- Header files ------------------------------------------------------*/
52
4468424e 53#include <assert.h>
a86e33af 54#include <stdio.h>
55
56#include "mpx.h"
7d5fa32a 57#include "mpx-kmac.h"
a86e33af 58
59/*----- Tweakables --------------------------------------------------------*/
60
a86e33af 61#ifdef TEST_RIG
62# undef KARATSUBA_CUTOFF
63# define KARATSUBA_CUTOFF 2
64#endif
65
a86e33af 66/*----- Main code ---------------------------------------------------------*/
67
68/* --- @mpx_kmul@ --- *
69 *
70 * Arguments: @mpw *dv, *dvl@ = pointer to destination buffer
71 * @const mpw *av, *avl@ = pointer to first argument
72 * @const mpw *bv, *bvl@ = pointer to second argument
73 * @mpw *sv, *svl@ = pointer to scratch workspace
74 *
75 * Returns: ---
76 *
77 * Use: Multiplies two multiprecision integers using Karatsuba's
78 * algorithm. This is rather faster than traditional long
79 * multiplication (e.g., @mpx_umul@) on large numbers, although
80 * more expensive on small ones.
81 *
82 * The destination must be twice as large as the larger
83 * argument. The scratch space must be twice as large as the
84 * larger argument, plus the magic number @KARATSUBA_SLOP@.
a86e33af 85 */
86
87void mpx_kmul(mpw *dv, mpw *dvl,
88 const mpw *av, const mpw *avl,
89 const mpw *bv, const mpw *bvl,
90 mpw *sv, mpw *svl)
91{
92 const mpw *avm, *bvm;
93 size_t m;
94
95 /* --- Dispose of easy cases to @mpx_umul@ --- *
96 *
97 * Karatsuba is only a win on large numbers, because of all the
98 * recursiveness and bookkeeping. The recursive calls make a quick check
99 * to see whether to bottom out to @mpx_umul@ which should help quite a
100 * lot, but sometimes the only way to know is to make sure...
101 */
102
103 MPX_SHRINK(av, avl);
104 MPX_SHRINK(bv, bvl);
105
106 if (avl - av <= KARATSUBA_CUTOFF || bvl - bv <= KARATSUBA_CUTOFF) {
107 mpx_umul(dv, dvl, av, avl, bv, bvl);
108 return;
109 }
110
111 /* --- How the algorithm works --- *
112 *
7d5fa32a 113 * Let %$A = xb + y$% and %$B = ub + v$%. Then, simply by expanding,
114 * %$AB = x u b^2 + b(x v + y u) + y v$%. That's not helped any, because
115 * I've got four multiplications, each four times easier than the one I
116 * started with. However, note that I can rewrite the coefficient of %$b$%
117 * as %$xv + yu = (x + y)(u + v) - xu - yv$%. The terms %$xu$% and %$yv$%
a86e33af 118 * I've already calculated, and that leaves only one more multiplication to
119 * do. So now I have three multiplications, each four times easier, and
120 * that's a win.
121 */
122
123 /* --- First things --- *
124 *
125 * Sort out where to break the factors in half. I'll choose the midpoint
126 * of the largest one, since this minimizes the amount of work I have to do
127 * most effectively.
128 */
129
130 if (avl - av > bvl - bv) {
131 m = (avl - av + 1) >> 1;
132 avm = av + m;
133 if (bvl - bv > m)
134 bvm = bv + m;
135 else
136 bvm = bvl;
137 } else {
138 m = (bvl - bv + 1) >> 1;
139 bvm = bv + m;
140 if (avl - av > m)
141 avm = av + m;
142 else
143 avm = avl;
144 }
145
4468424e 146 assert(((void)"Destination too small for Karatsuba multiply",
147 dvl - dv >= 4 * m));
148 assert(((void)"Not enough workspace for Karatsuba multiply",
149 svl - sv >= 4 * m));
150
151 /* --- Sort out the middle term --- */
a86e33af 152
153 {
4468424e 154 mpw *bsv = sv + m + 1, *ssv = bsv + m + 1;
155 mpw *rdv = dv + m, *rdvl = rdv + 2 * (m + 2);
156
157 UADD2(sv, bsv, av, avm, avm, avl);
158 UADD2(bsv, ssv, bv, bvm, bvm, bvl);
a86e33af 159 if (m > KARATSUBA_CUTOFF)
160 mpx_kmul(rdv, rdvl, sv, bsv, bsv, ssv, ssv, svl);
161 else
162 mpx_umul(rdv, rdvl, sv, bsv, bsv, ssv);
a86e33af 163 }
164
165 /* --- Sort out the other two terms --- */
166
167 {
4468424e 168 mpw *svm = sv + m, *svn = svm + m, *ssv = svn + 4;
a86e33af 169 mpw *tdv = dv + m;
170 mpw *rdv = tdv + m;
171
4468424e 172 if (avl == avm || bvl == bvm)
173 MPX_ZERO(rdv + m + 1, dvl);
174 else {
175 if (m > KARATSUBA_CUTOFF)
176 mpx_kmul(sv, ssv, avm, avl, bvm, bvl, ssv, svl);
177 else
178 mpx_umul(sv, ssv, avm, avl, bvm, bvl);
179 MPX_COPY(rdv + m + 1, dvl, svm + 1, svn);
180 UADD(rdv, sv, svm + 1);
181 USUB(tdv, sv, svn);
182 }
183
a86e33af 184 if (m > KARATSUBA_CUTOFF)
185 mpx_kmul(sv, ssv, av, avm, bv, bvm, ssv, svl);
186 else
187 mpx_umul(sv, ssv, av, avm, bv, bvm);
4468424e 188 MPX_COPY(dv, tdv, sv, svm);
189 USUB(tdv, sv, svn);
190 UADD(tdv, svm, svn);
a86e33af 191 }
192}
193
194/*----- Test rig ----------------------------------------------------------*/
195
196#ifdef TEST_RIG
197
198#include <mLib/alloc.h>
199#include <mLib/testrig.h>
200
a86e33af 201#define ALLOC(v, vl, sz) do { \
202 size_t _sz = (sz); \
203 mpw *_vv = xmalloc(MPWS(_sz)); \
204 mpw *_vvl = _vv + _sz; \
205 (v) = _vv; \
206 (vl) = _vvl; \
207} while (0)
208
209#define LOAD(v, vl, d) do { \
210 const dstr *_d = (d); \
211 mpw *_v, *_vl; \
212 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
213 mpx_loadb(_v, _vl, _d->buf, _d->len); \
214 (v) = _v; \
215 (vl) = _vl; \
216} while (0)
217
218#define MAX(x, y) ((x) > (y) ? (x) : (y))
219
220static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
221{
222 fputs(msg, stderr);
223 MPX_SHRINK(v, vl);
224 while (v < vl)
225 fprintf(stderr, " %08lx", (unsigned long)*--vl);
226 fputc('\n', stderr);
227}
228
229static int umul(dstr *v)
230{
231 mpw *a, *al;
232 mpw *b, *bl;
233 mpw *c, *cl;
234 mpw *d, *dl;
235 mpw *s, *sl;
236 size_t m;
237 int ok = 1;
238
239 LOAD(a, al, &v[0]);
240 LOAD(b, bl, &v[1]);
241 LOAD(c, cl, &v[2]);
242 m = MAX(al - a, bl - b) + 1;
243 ALLOC(d, dl, 2 * m);
244 ALLOC(s, sl, 2 * m + 32);
245
246 mpx_kmul(d, dl, a, al, b, bl, s, sl);
247 if (MPX_UCMP(d, dl, !=, c, cl)) {
248 fprintf(stderr, "\n*** umul failed\n");
249 dumpmp(" a", a, al);
250 dumpmp(" b", b, bl);
251 dumpmp("expected", c, cl);
252 dumpmp(" result", d, dl);
253 ok = 0;
254 }
255
256 free(a); free(b); free(c); free(d); free(s);
257 return (ok);
258}
259
260static test_chunk defs[] = {
261 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
262 { 0, 0, { 0 } }
263};
264
265int main(int argc, char *argv[])
266{
267 test_run(argc, argv, defs, SRCDIR"/tests/mpx");
268 return (0);
269}
270
271#endif
272
273/*----- That's all, folks -------------------------------------------------*/