Increase the entropy threshhold in rand_getgood.
[u/mdw/catacomb] / mpx-kmul.c
CommitLineData
a86e33af 1/* -*-c-*-
2 *
1b756626 3 * $Id: mpx-kmul.c,v 1.2 1999/12/11 10:58:02 mdw Exp $
a86e33af 4 *
5 * Karatsuba's multiplication algorithm
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10/*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30/*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mpx-kmul.c,v $
1b756626 33 * Revision 1.2 1999/12/11 10:58:02 mdw
34 * Remove tweakable comments.
35 *
a86e33af 36 * Revision 1.1 1999/12/10 23:23:51 mdw
37 * Karatsuba-Ofman multiplication algorithm.
38 *
39 */
40
41/*----- Header files ------------------------------------------------------*/
42
43#include <stdio.h>
44
45#include "mpx.h"
46
47/*----- Tweakables --------------------------------------------------------*/
48
a86e33af 49#ifdef TEST_RIG
50# undef KARATSUBA_CUTOFF
51# define KARATSUBA_CUTOFF 2
52#endif
53
54/*----- Addition macros ---------------------------------------------------*/
55
56#define UADD(dv, av, avl) do { \
57 mpw *_dv = (dv); \
58 const mpw *_av = (av), *_avl = (avl); \
59 mpw _c = 0; \
60 \
61 while (_av < _avl) { \
62 mpw _a, _b; \
63 mpd _x; \
64 _a = *_av++; \
65 _b = *_dv; \
66 _x = (mpd)_a + (mpd)_b + _c; \
67 *_dv++ = MPW(_x); \
68 _c = _x >> MPW_BITS; \
69 } \
70 while (_c) { \
71 mpd _x = (mpd)*_dv + (mpd)_c; \
72 *_dv++ = MPW(_x); \
73 _c = _x >> MPW_BITS; \
74 } \
75} while (0)
76
77#define UADD2(dv, dvl, av, avl, bv, bvl) do { \
78 mpw *_dv = (dv), *_dvl = (dvl); \
79 const mpw *_av = (av), *_avl = (avl); \
80 const mpw *_bv = (bv), *_bvl = (bvl); \
81 mpw _c = 0; \
82 \
83 while (_av < _avl || _bv < _bvl) { \
84 mpw _a, _b; \
85 mpd _x; \
86 _a = (_av < _avl) ? *_av++ : 0; \
87 _b = (_bv < _bvl) ? *_bv++ : 0; \
88 _x = (mpd)_a + (mpd)_b + _c; \
89 *_dv++ = MPW(_x); \
90 _c = _x >> MPW_BITS; \
91 } \
92 *_dv++ = _c; \
93 while (_dv < _dvl) \
94 *_dv++ = 0; \
95} while (0)
96
97#define USUB(dv, av, avl) do { \
98 mpw *_dv = (dv); \
99 const mpw *_av = (av), *_avl = (avl); \
100 mpw _c = 0; \
101 \
102 while (_av < _avl) { \
103 mpw _a, _b; \
104 mpd _x; \
105 _a = *_av++; \
106 _b = *_dv; \
107 _x = (mpd)_b - (mpd)_a - _c; \
108 *_dv++ = MPW(_x); \
109 if (_x >> MPW_BITS) \
110 _c = 1; \
111 else \
112 _c = 0; \
113 } \
114 while (_c) { \
115 mpd _x = (mpd)*_dv - (mpd)_c; \
116 *_dv++ = MPW(_x); \
117 if (_x >> MPW_BITS) \
118 _c = 1; \
119 else \
120 _c = 0; \
121 } \
122} while (0)
123
124/*----- Main code ---------------------------------------------------------*/
125
126/* --- @mpx_kmul@ --- *
127 *
128 * Arguments: @mpw *dv, *dvl@ = pointer to destination buffer
129 * @const mpw *av, *avl@ = pointer to first argument
130 * @const mpw *bv, *bvl@ = pointer to second argument
131 * @mpw *sv, *svl@ = pointer to scratch workspace
132 *
133 * Returns: ---
134 *
135 * Use: Multiplies two multiprecision integers using Karatsuba's
136 * algorithm. This is rather faster than traditional long
137 * multiplication (e.g., @mpx_umul@) on large numbers, although
138 * more expensive on small ones.
139 *
140 * The destination must be twice as large as the larger
141 * argument. The scratch space must be twice as large as the
142 * larger argument, plus the magic number @KARATSUBA_SLOP@.
a86e33af 143 */
144
145void mpx_kmul(mpw *dv, mpw *dvl,
146 const mpw *av, const mpw *avl,
147 const mpw *bv, const mpw *bvl,
148 mpw *sv, mpw *svl)
149{
150 const mpw *avm, *bvm;
151 size_t m;
152
153 /* --- Dispose of easy cases to @mpx_umul@ --- *
154 *
155 * Karatsuba is only a win on large numbers, because of all the
156 * recursiveness and bookkeeping. The recursive calls make a quick check
157 * to see whether to bottom out to @mpx_umul@ which should help quite a
158 * lot, but sometimes the only way to know is to make sure...
159 */
160
161 MPX_SHRINK(av, avl);
162 MPX_SHRINK(bv, bvl);
163
164 if (avl - av <= KARATSUBA_CUTOFF || bvl - bv <= KARATSUBA_CUTOFF) {
165 mpx_umul(dv, dvl, av, avl, bv, bvl);
166 return;
167 }
168
169 /* --- How the algorithm works --- *
170 *
171 * Let %$A = xb + y$% and %$B = ub + v$%. Then, simply by expanding, %$AB
172 * = x u b^2 + b(x v + y u) + y v$%. That's not helped any, because I've
173 * got four multiplications, each four times easier than the one I started
174 * with. However, note that I can rewrite the coefficient of %$b$% as
175 * %$xv + yu = (x + y)(u + v) - xu - yv$%. The terms %$xu$% and %$yv$%
176 * I've already calculated, and that leaves only one more multiplication to
177 * do. So now I have three multiplications, each four times easier, and
178 * that's a win.
179 */
180
181 /* --- First things --- *
182 *
183 * Sort out where to break the factors in half. I'll choose the midpoint
184 * of the largest one, since this minimizes the amount of work I have to do
185 * most effectively.
186 */
187
188 if (avl - av > bvl - bv) {
189 m = (avl - av + 1) >> 1;
190 avm = av + m;
191 if (bvl - bv > m)
192 bvm = bv + m;
193 else
194 bvm = bvl;
195 } else {
196 m = (bvl - bv + 1) >> 1;
197 bvm = bv + m;
198 if (avl - av > m)
199 avm = av + m;
200 else
201 avm = avl;
202 }
203
204 /* --- Sort out the middle term --- *
205 *
206 * I'm going to keep track of the carry by hand rather than pass it down to
207 * the next level, because it means multiplication by one or zero, which I
208 * can do easily myself.
209 */
210
211 {
212 unsigned f = 0;
213 enum {
214 carry_a = 1,
215 carry_b = 2
216 };
217
218 mpw *bsv = sv + m, *ssv = bsv + m;
219 mpw *rdv = dv + m, *rdvl = rdv + 2 * m;
220
221 UADD2(sv, bsv + 1, av, avm, avm, avl);
222 if (*bsv)
223 f |= carry_a;
224 UADD2(bsv, ssv + 1, bv, bvm, bvm, bvl);
225 if (*ssv)
226 f |= carry_b;
227 MPX_ZERO(dv, rdv);
228 if (m > KARATSUBA_CUTOFF)
229 mpx_kmul(rdv, rdvl, sv, bsv, bsv, ssv, ssv, svl);
230 else
231 mpx_umul(rdv, rdvl, sv, bsv, bsv, ssv);
232 MPX_ZERO(rdvl, dvl);
233 rdv += m; rdvl += m;
234 if (f & carry_b)
235 UADD(rdv, sv, bsv);
236 if (f & carry_a)
237 UADD(rdv, bsv, ssv);
238 if (!(~f & (carry_a | carry_b)))
239 MPX_UADDN(rdv + m, rdvl, 1);
240 }
241
242 /* --- Sort out the other two terms --- */
243
244 {
245 mpw *ssv = sv + 2 * m;
246 mpw *tdv = dv + m;
247 mpw *rdv = tdv + m;
248
249 if (m > KARATSUBA_CUTOFF)
250 mpx_kmul(sv, ssv, avm, avl, bvm, bvl, ssv, svl);
251 else
252 mpx_umul(sv, ssv, avm, avl, bvm, bvl);
253 UADD(rdv, sv, ssv);
254 USUB(tdv, sv, ssv);
255
256 if (m > KARATSUBA_CUTOFF)
257 mpx_kmul(sv, ssv, av, avm, bv, bvm, ssv, svl);
258 else
259 mpx_umul(sv, ssv, av, avm, bv, bvm);
260 USUB(tdv, sv, ssv);
261 UADD(dv, sv, ssv);
262 }
263}
264
265/*----- Test rig ----------------------------------------------------------*/
266
267#ifdef TEST_RIG
268
269#include <mLib/alloc.h>
270#include <mLib/testrig.h>
271
272#include "mpscan.h"
273
274#define ALLOC(v, vl, sz) do { \
275 size_t _sz = (sz); \
276 mpw *_vv = xmalloc(MPWS(_sz)); \
277 mpw *_vvl = _vv + _sz; \
278 (v) = _vv; \
279 (vl) = _vvl; \
280} while (0)
281
282#define LOAD(v, vl, d) do { \
283 const dstr *_d = (d); \
284 mpw *_v, *_vl; \
285 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
286 mpx_loadb(_v, _vl, _d->buf, _d->len); \
287 (v) = _v; \
288 (vl) = _vl; \
289} while (0)
290
291#define MAX(x, y) ((x) > (y) ? (x) : (y))
292
293static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
294{
295 fputs(msg, stderr);
296 MPX_SHRINK(v, vl);
297 while (v < vl)
298 fprintf(stderr, " %08lx", (unsigned long)*--vl);
299 fputc('\n', stderr);
300}
301
302static int umul(dstr *v)
303{
304 mpw *a, *al;
305 mpw *b, *bl;
306 mpw *c, *cl;
307 mpw *d, *dl;
308 mpw *s, *sl;
309 size_t m;
310 int ok = 1;
311
312 LOAD(a, al, &v[0]);
313 LOAD(b, bl, &v[1]);
314 LOAD(c, cl, &v[2]);
315 m = MAX(al - a, bl - b) + 1;
316 ALLOC(d, dl, 2 * m);
317 ALLOC(s, sl, 2 * m + 32);
318
319 mpx_kmul(d, dl, a, al, b, bl, s, sl);
320 if (MPX_UCMP(d, dl, !=, c, cl)) {
321 fprintf(stderr, "\n*** umul failed\n");
322 dumpmp(" a", a, al);
323 dumpmp(" b", b, bl);
324 dumpmp("expected", c, cl);
325 dumpmp(" result", d, dl);
326 ok = 0;
327 }
328
329 free(a); free(b); free(c); free(d); free(s);
330 return (ok);
331}
332
333static test_chunk defs[] = {
334 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
335 { 0, 0, { 0 } }
336};
337
338int main(int argc, char *argv[])
339{
340 test_run(argc, argv, defs, SRCDIR"/tests/mpx");
341 return (0);
342}
343
344#endif
345
346/*----- That's all, folks -------------------------------------------------*/