doc/sod.sty: Provide explicit description labelling and indexing commands.
[sod] / doc / clang.tex
1 %%% -*-latex-*-
2 %%%
3 %%% C language utilities
4 %%%
5 %%% (c) 2015 Straylight/Edgeware
6 %%%
7
8 %%%----- Licensing notice ---------------------------------------------------
9 %%%
10 %%% This file is part of the Sensible Object Design, an object system for C.
11 %%%
12 %%% SOD is free software; you can redistribute it and/or modify
13 %%% it under the terms of the GNU General Public License as published by
14 %%% the Free Software Foundation; either version 2 of the License, or
15 %%% (at your option) any later version.
16 %%%
17 %%% SOD is distributed in the hope that it will be useful,
18 %%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19 %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 %%% GNU General Public License for more details.
21 %%%
22 %%% You should have received a copy of the GNU General Public License
23 %%% along with SOD; if not, write to the Free Software Foundation,
24 %%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26 \chapter{C language utilities} \label{ch:clang}
27
28 %%%--------------------------------------------------------------------------
29 \section{C type representation} \label{sec:clang.c-types}
30
31 \subsection{Overview} \label{sec:clang.c-types.over}
32
33 The Sod translator represents C types in a fairly simple and direct way.
34 However, because it spends a fair amount of its time dealing with C types, it
35 provides a number of useful operations and macros.
36
37 The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
38
39 \begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
41 @|c-type| \\ \ind
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
44 @|c-class-type| \-\\
45 @|tagged-c-type| \\ \ind
46 @|c-struct-type| \\
47 @|c-union-type| \\
48 @|c-enum-type| \-\\
49 @|c-atomic-type| \\
50 @|c-pointer-type| \-\\
51 @|c-array-type| \\
52 @|c-function-type| \\ \ind
53 @|c-keyword-function-type| \-
54 \end{tabbing}}
55 \caption{Classes representing C types}
56 \label{fig:codegen.c-types.classes}
57 \end{figure}
58
59 C type objects are immutable unless otherwise specified.
60
61 \subsubsection{Constructing C type objects}
62 There is a constructor function for each non-abstract class of C type object.
63 Note, however, that constructor functions need not generate a fresh type
64 object if a previously existing type object is suitable. In this case, we
65 say that the objects are \emph{interned}. Some constructor functions are
66 specified to return interned objects: programs may rely on receiving the same
67 (@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
68 not specified, clients may still not rely on receiving fresh objects.
69
70 A convenient S-expression notation is provided by the
71 \descref{mac}{c-type}[macro]. Use of this macro is merely an abbreviation
72 for corresponding use of the various constructor functions, and therefore
73 interns type objects in the same manner. The syntax accepted by the macro
74 can be extended in order to support new classes: see \descref{mac}{defctype},
75 \descref{mac}{c-type-alias} and \descref{mac}{define-c-type-syntax}.
76
77 The descriptions of each of the various classes include descriptions of the
78 initargs which may be passed to @|make-instance| when constructing a new
79 instance of the class. However, the constructor functions and S-expression
80 syntax are strongly recommended over direct use of @|make-instance|.
81
82 \subsubsection{Printing}
83 There are two protocols for printing C types. Unfortunately they have
84 similar names.
85 \begin{itemize}
86 \item The \descref{gf}{print-c-type}[function] prints a C type value using
87 the S-expression notation. It is mainly useful for diagnostic purposes.
88 \item The \descref{gf}{pprint-c-type}[function] prints a C type as a
89 C-syntax declaration.
90 \end{itemize}
91 Neither generic function defines a default primary method; subclasses of
92 @|c-type| must define their own methods in order to print correctly.
93
94
95 \subsection{The C type root class} \label{sec:clang.c-types.root}
96
97 \begin{describe}{cls}{c-type ()}
98 The class @|c-type| marks the root of the built-in C type hierarchy.
99
100 Users may define subclasses of @|c-type|. All non-abstract subclasses must
101 have a primary method defined on @|pprint-c-type|; unless instances of the
102 subclass are interned, a method on @|c-type-equal-p| is also required.
103
104 The class @|c-type| is abstract.
105 \end{describe}
106
107
108 \subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
109
110 The S-expression representation of a type is described syntactically as a
111 type specifier. Type specifiers fit into two syntactic categories.
112 \begin{itemize}
113 \item A \emph{symbolic type specifier} consists of a symbol. It has a
114 single, fixed meaning: if @<name> is a symbolic type specifier, then each
115 use of @<name> in a type specifier evaluates to the same (@|eq|) type
116 object, until the @<name> is redefined.
117 \item A \emph{type operator} is a symbol; the corresponding specifier is a
118 list whose @|car| is the operator. The remaining items in the list are
119 arguments to the type operator.
120 \end{itemize}
121
122 \begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
123 Evaluates to a C type object, as described by the type specifier
124 @<type-spec>.
125 \end{describe}
126
127 \begin{describe}{mac}
128 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+\\
129 @[[ @|:export| @<export-flag> @]]^*
130 \-\nlret @<names>}
131 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
132 given, then all are defined in the same way. The type constructed by using
133 any of the @<name>s is as described by the type specifier @<type-spec>.
134
135 The resulting type object is constructed once, at the time that the macro
136 expansion is evaluated; the same (@|eq|) value is used each time any
137 @<name> is used in a type specifier.
138
139 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
140 and initialized to contain the C type object so constructed. Altering or
141 binding this name is discouraged.
142
143 If @<export-flag> is true, then the variable name, and all of the @<name>s,
144 are exported from the current package.
145 \end{describe}
146
147 \begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
148 Defines each @<alias> as being a type operator identical in behaviour to
149 @<original>. If @<original> is later redefined then the behaviour of the
150 @<alias>es changes too.
151 \end{describe}
152
153 \begin{describe}{mac}
154 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
155 @[[ @<declaration>^* @! @<doc-string> @]] \\
156 @<form>^*
157 \-\nlret @<name>}
158 Defines the symbol @<name> as a new type operator. When a list of the form
159 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
160 are bound to fresh variables according to @<lambda-list> (a destructuring
161 lambda-list) and the @<form>s evaluated in order in the resulting lexical
162 environment as an implicit @|progn|. The value should be a Lisp form which
163 will evaluate to the type specified by the arguments.
164
165 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
166 type specifiers among its arguments.
167 \end{describe}
168
169 \begin{describe}{gf}{expand-c-type-spec @<type-spec> @> @<form>}
170 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
171
172 If @<type-spec> is a list, then \descref{gf}{expand-c-type-form} is
173 invoked.
174 \end{describe}
175
176 \begin{describe}{gf}{expand-c-type-form @<head> @<tail> @> @<form>}
177 Returns the Lisp form that @|(c-type (@<head> . @<tail>))| would expand
178 into.
179 \end{describe}
180
181 \begin{describe}{gf}
182 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
183 Print the C type object @<type> to @<stream> in S-expression form. The
184 @<colon> and @<atsign> arguments may be interpreted in any way which seems
185 appropriate: they are provided so that @|print-c-type| may be called via
186 @|format|'s @|\char`\~/\dots/| command; they are not set when
187 @|print-c-type| is called by Sod functions.
188
189 There should be a method defined for every C type class; there is no
190 default method.
191 \end{describe}
192
193
194 \subsection{Comparing C types} \label{sec:clang.c-types.cmp}
195
196 It is necessary to compare C types for equality, for example when checking
197 argument lists for methods. This is done by @|c-type-equal-p|.
198
199 \begin{describe}{gf}
200 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
201 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
202 @<c-type>_2 for equality; it returns true if the two types are equal and
203 false if they are not.
204
205 Two types are equal if they are structurally similar, where this property
206 is defined by methods for each individual class; see the descriptions of
207 the classes for the details.
208
209 The generic function @|c-type-equal-p| uses the @|and| method combination.
210
211 \begin{describe}{meth}{t,t}{c-type-equal-p @<c-type>_1 @<c-type>_2}
212 A default primary method for @|c-type-equal-p| is defined. It simply
213 returns @|nil|. This way, methods can specialize on both arguments
214 without fear that a call will fail because no methods are applicable.
215 \end{describe}
216 \begin{describe}{ar-meth}{}{c-type-equal-p @<c-type>_1 @<c-type>_2}
217 A default around-method for @|c-type-equal-p| is defined. It returns
218 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
219 the primary methods. Since several common kinds of C types are interned,
220 this is a common case worth optimizing.
221 \end{describe}
222 \end{describe}
223
224
225 \subsection{Outputting C types} \label{sec:clang.c-types.output}
226
227 \begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
228 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
229 declaration of an object or function of type @<c-type>. The result is
230 written to @<stream>.
231
232 A C declaration has two parts: a sequence of \emph{declaration specifiers}
233 and a \emph{declarator}. The declarator syntax involves parentheses and
234 operators, in order to reflect the operators applicable to the declared
235 variable. For example, the name of a pointer variable is preceded by @`*';
236 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
237
238 The @<kernel> argument must be a function designator (though see the
239 standard around-method); it is invoked as
240 \begin{quote} \codeface
241 (funcall @<kernel> @<stream> @<priority> @<spacep>)
242 \end{quote}
243 It should write to @<stream> -- which may not be the same stream originally
244 passed into the generic function -- the `kernel' of the declarator, i.e.,
245 the part to which prefix and/or postfix operators are attached to form the
246 full declarator.
247
248 The methods on @|pprint-c-type| specialized for compound types work by
249 recursively calling @|pprint-c-type| on the subtype, passing down a closure
250 which prints the necessary additional declarator operators before calling
251 the original @<kernel> function. The additional arguments @<priority> and
252 @<spacep> support this implementation technique.
253
254 The @<priority> argument describes the surrounding operator context. It is
255 zero if no type operators are directly attached to the kernel (i.e., there
256 are no operators at all, or the kernel is enclosed in parentheses), one if
257 a prefix operator is directly attached, or two if a postfix operator is
258 directly attached. If the @<kernel> function intends to provide its own
259 additional declarator operators, it should check the @<priority> in order
260 to determine whether parentheses are necessary. See also the
261 \descref{mac}{maybe-in-parens}[macro].
262
263 The @<spacep> argument indicates whether a space needs to be printed in
264 order to separate the declarator from the declaration specifiers. A kernel
265 which contains an identifier should insert a space before the identifier
266 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
267 declarator (one that specifies no name), looks more pleasing without a
268 trailing space. See also the \descref{fun}{c-type-space}[function].
269
270 Every concrete subclass of @|c-type| is expected to provide a primary
271 method on this function. There is no default primary method.
272
273 \begin{describe}{ar-meth}{}{pprint-c-type @<c-type> @<stream> @<kernel>}
274 A default around method is defined on @|pprint-c-type| which `canonifies'
275 non-function @<kernel> arguments. In particular:
276 \begin{itemize}
277 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
278 with a @<kernel> function that does nothing; and
279 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
280 called recursively with a @<kernel> function that prints the object as
281 if by @|princ|, preceded if necessary by space using @|c-type-space|.
282 \end{itemize}
283 \end{describe}
284 \end{describe}
285
286 \begin{describe}{fun}{c-type-space @<stream>}
287 Writes a space and other pretty-printing instructions to @<stream> in order
288 visually to separate a declarator from the preceding declaration
289 specifiers. The precise details are subject to change.
290 \end{describe}
291
292 \begin{describe}{mac}
293 {maybe-in-parens (@<stream-var> @<guard-form>)
294 @<declaration>^*
295 @<form>^*}
296 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
297 sequence within a pretty-printer logical block writing to the stream named
298 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
299 the logical block has empty prefix and suffix strings; if it evaluates to a
300 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
301 respectively.
302
303 Note that this may cause @<stream> to be bound to a different stream object
304 within the @<form>s.
305 \end{describe}
306
307
308 \subsection{Type qualifiers and qualifiable types}
309 \label{sec:clang.ctypes.qual}
310
311 Qualifiers -- @|const|, @|volatile|, and so on -- are represented as lists of
312 keywords attached to types. Not all C types can carry qualifiers: notably,
313 function and array types cannot be qualified.
314
315 For the most part, the C qualifier keywords correspond to like-named Lisp
316 keywords, only the Lisp keyword names are in uppercase. The correspondence
317 is shown in \xref{tab:clang.ctypes.qual}.
318
319 \begin{table}
320 \begin{tabular}[C]{*2{>{\codeface}l}l} \hlx*{hv}
321 \thd{\textbf{C name}} & \thd{\textbf{Lisp name}} \\ \hlx{vhv}
322 _Atomic & :atomic \\
323 const & :const \\
324 restrict & :restrict \\
325 volatile & :volatile \\ \hlx*{vh}
326 \end{tabular}
327 \caption{C and Lisp qualifier names} \label{tab:clang.ctypes.qual}
328 \end{table}
329
330 The default behaviour, on output, is to convert keywords to lowercase and
331 hope for the best: special cases can be dealt with by adding appropriate
332 methods to \descref{gf}{c-qualifier-keyword}.
333
334 \begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
335 The class @|qualifiable-c-type| describes C types which can bear
336 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
337 @|restrict| and @|volatile|.
338
339 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
340 @|:volatile|. There is no built-in limitation to these particular
341 qualifiers; others keywords may be used, though this isn't recommended.
342
343 Two qualifiable types are equal only if they have \emph{matching
344 qualifiers}: i.e., every qualifier attached to one is also attached to the
345 other: order is not significant, and neither is multiplicity.
346
347 The class @|qualifiable-c-type| is abstract.
348 \end{describe}
349
350 \begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
351 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
352 an immutable list.
353 \end{describe}
354
355 \begin{describe}{fun}{qualify-type @<c-type> @<qualifiers> @> @<c-type>}
356 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
357 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
358 keywords. The result is a C type object like @<c-type> except that it
359 bears the given @<qualifiers>.
360
361 The @<c-type> is not modified. If @<c-type> is interned, then the returned
362 type will be interned.
363 \end{describe}
364
365 \begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
366 Returns a string containing the qualifiers listed in @<qualifiers> in C
367 syntax, with a space after each. In particular, if @<qualifiers> is
368 non-null then the final character of the returned string will be a space.
369 \end{describe}
370
371 \begin{describe}{gf}{c-qualifier-keyword @<qualifier> @> @<string>}
372 Return, as a string, the C keyword corresponding to the Lisp @<qualifier>.
373
374 There is a standard method, which deals with many qualifiers. Additional
375 methods exist for qualifier keywords which need special handling, such as
376 @|:atomic|; they are not listed here explicitly.
377
378 \begin{describe}{meth}{keyword}
379 {c-qualifier-keyword @<keyword> @> @<string>}
380 Returns the @<keyword>'s print-name, in lower case. This is sufficient
381 for the standard qualifiers @|:const|, @|:restrict|, and @|:volatile|.
382 \end{describe}
383 \end{describe}
384
385 \begin{describe}{fun}{c-type-qualifier-keywords @<c-type> @> @<list>}
386 Return the @<c-type>'s qualifiers, as a list of C keyword names.
387 \end{describe}
388
389
390 \subsection{Storage specifiers} \label{sec:clang.ctypes.specs}
391
392 Some declaration specifiers, mostly to do with how to store the specific
393 object in question, are determinedly `top level', and, unlike qualifiers,
394 don't stay attached to the base type when acted on by declarator operators.
395 Sod calls these `storage specifiers', though no such category exists in the C
396 standard. They have their own protocol, which is similar in many ways to
397 that of C types.
398
399 Every Lisp keyword is potentially a storage specifier, which simply maps to
400 its lower-case print name in C; but other storage specifiers may be more
401 complicated objects.
402
403 \begin{describe}{cls}
404 {c-storage-specifiers-type (c-type) \&key :subtype :specifiers}
405 A type which carries storage specifiers. The @<subtype> is the actual
406 type, and may be any C type; the @<specifiers> are a list of
407 storage-specifier objects.
408
409 The type specifier @|(specs @<subtype> @<specifier>^*)| wraps the
410 @<subtype> in a @|c-storage-specifiers-type|, carrying the @<specifier>s,
411 which are a list of storage specifiers in S-expression notation.
412 \end{describe}
413
414 \begin{describe}{fun}{c-type-specifiers @<type> @> @<list>}
415 Returns the list of type specifiers attached to the @<type> object, which
416 must be a @|c-storage-specifiers-type|.
417 \end{describe}
418
419 \begin{describe}{mac}
420 {define-c-storage-specifier-syntax @<name> @<lambda-list> \\ \ind
421 @[[ @<declaration>^* @! @<doc-string> @]] \\
422 @<form>^* \-
423 \nlret @<name>}
424
425 Defines the symbol @<name> as a new storage-specifier operator. When a
426 list of the form @|(@<name> @<argument>^*)| is used as a storage specifier,
427 the @<argument>s are bound to fresh variables according to the
428 @<lambda-list> (a destructuring lambda-list) and the @<form>s evaluated in
429 order in the resulting lexical environment as an implicit @<progn>. The
430 value should be a Lisp form which will evaluate to the storage-specifier
431 object described by the arguments.
432
433 The @<form>s may call @|expand-c-storage-specifier| in order to recursively
434 expand storage specifiers among its arguments.
435 \end{describe}
436
437 \begin{describe}{gf}{expand-c-storage-specifier @<spec> @> @<form>}
438 Returns the Lisp form that @<spec> expands to within @|(c-type (specs
439 @<subtype> @<spec>))|.
440
441 If @<spec> is a list, then \descref{gf}{expand-c-storage-specifier-form} is
442 invoked.
443 \end{describe}
444
445 \begin{describe}{gf}{expand-c-storage-specifier-form @<spec> @> @<form>}
446 Returns the Lisp form that @|(@<head> . @<tail>)| expands to within
447 @|(c-type (specs @<subtype> (@<head> . @<tail>)))|.
448 \end{describe}
449
450 \begin{describe}{gf}{pprint-c-storage-specifier @<spec> @<stream>}
451 \end{describe}
452
453 \begin{describe}{gf}
454 {print-c-storage-specifier @<stream> @<spec>
455 \&optional @<colon> @<atsign>}
456 \end{describe}
457
458 \begin{describe}{fun}{wrap-c-type @<func> @<base-type> @> @<c-type>}
459 Apply @<func> to the underlying C type of @<base-type> to create a new
460 `wrapped' type, and attach the storage specifiers of @<base-type> to the
461 wrapped type.
462
463 If @<base-type> is \emph{not} a @|c-storage-specifiers-type|, then return
464 @|(funcall @<func> @<base-type>)|. Otherwise, return a new
465 @|c-storage-specifiers-type|, with the same specifiers, but whose subtype
466 is the result of applying @<func> to the subtype of the original
467 @<base-type>.
468 \end{describe}
469
470 \begin{describe}{cls}{alignas-storage-specifier () \&key :alignment}
471 The class of @|_Alignas| storage specifiers; an instance denotes the
472 specifier @|_Alignas(@<alignment>)|. The @<alignment> parameter may be any
473 printable object, but is usually a string or C fragment.
474
475 The storage specifier form @|(alignas @<alignment>)| returns a storage
476 specifier @|_Alignas(@<alignment>)|, where @<alignment> is evaluated.
477 \end{describe}
478
479
480 \subsection{Leaf types} \label{sec:clang.c-types.leaf}
481
482 A \emph{leaf type} is a type which is not defined in terms of another type.
483 In Sod, the leaf types are
484 \begin{itemize}
485 \item \emph{simple types}, including builtin types like @|int| and @|char|,
486 as well as type names introduced by @|typename|, because Sod isn't
487 interested in what the type name means, merely that it names a type; and
488 \item \emph{tagged types}, i.e., enum, struct and union types which are named
489 by a keyword identifying the kind of type, and a \emph{tag}.
490 \end{itemize}
491
492 \begin{describe}{cls}{simple-c-type (qualifiable-c-type)
493 \&key :qualifiers :name}
494 The class of `simple types'; an instance denotes the type @<qualifiers>
495 @<name>.
496
497 A simple type object maintains a \emph{name}, which is a string whose
498 contents are the C name for the type. The initarg @|:name| may be used to
499 provide this name when calling @|make-instance|.
500
501 Two simple type objects are equal if and only if they have @|string=| names
502 and matching qualifiers.
503
504 \def\x#1{\desclabel{const}{#1}}
505 \x{c-type-bool} \x{c-type-char} \x{c-type-wchar-t} \x{c-type-signed-char}
506 \x{c-type-unsigned-char} \x{c-type-short} \x{c-type-unsigned-short}
507 \x{c-type-int} \x{c-type-unsigned} \x{c-type-long} \x{c-type-unsigned-long}
508 \x{c-type-long-long} \x{c-type-unsigned-long-long} \x{c-type-size-t}
509 \x{c-type-ptrdiff-t} \x{c-type-float} \x{c-type-double}
510 \x{c-type-long-double} \x{c-type-float-imaginary}
511 \x{c-type-double-imaginary} \x{c-type-long-double-imaginary}
512 \x{c-type-float-complex} \x{c-type-double-complex}
513 \x{c-type-long-double-complex} \x{c-type-va-list} \x{c-type-void}
514 A number of symbolic type specifiers for builtin types are predefined as
515 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
516 @|define-simple-c-type|, so can be used to construct qualified types.
517 \end{describe}
518
519 \begin{table}
520 \begin{tabular}[C]{ll} \hlx*{hv}
521 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
522 @|void| & @|void| \\ \hlx{v}
523 @|_Bool| & @|bool| \\ \hlx{v}
524 @|char| & @|char| \\ \hlx{}
525 @|wchar_t| & @|wchar-t| \\ \hlx{v}
526 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
527 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
528 @|short| & @|short|, @|signed-short|, @|short-int|,
529 @|signed-short-int| @|sshort| \\ \hlx{}
530 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
531 @|ushort| \\ \hlx{v}
532 @|int| & @|int|, @|signed|, @|signed-int|,
533 @|sint| \\ \hlx{}
534 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
535 @|long| & @|long|, @|signed-long|, @|long-int|,
536 @|signed-long-int|, @|slong| \\ \hlx{}
537 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
538 @|ulong| \\ \hlx{v}
539 @|long long| & @|long-long|, @|signed-long-long|,
540 @|long-long-int|, \\ \hlx{}
541 & \qquad @|signed-long-long-int|,
542 @|llong|, @|sllong| \\ \hlx{v}
543 @|unsigned long long|
544 & @|unsigned-long-long|, @|unsigned-long-long-int|,
545 @|ullong| \\ \hlx{v}
546 @|size_t| & @|size-t| \\ \hlx{}
547 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
548 @|float| & @|float| \\ \hlx{}
549 @|double| & @|double| \\ \hlx{}
550 @|long double| & @|long-double| \\ \hlx{v}
551 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
552 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
553 @|long double _Imaginary|
554 & @|long-double-imaginary| \\ \hlx{v}
555 @|float _Complex| & @|float-complex| \\ \hlx{}
556 @|double _Complex| & @|double-complex| \\ \hlx{}
557 @|long double _Complex|
558 & @|long-double-complex| \\ \hlx{v}
559 @|va_list| & @|va-list| \\ \hlx*{vh}
560 \end{tabular}
561 \caption{Builtin symbolic type specifiers for simple C types}
562 \label{tab:codegen.c-types.simple}
563 \end{table}
564
565 \begin{describe}{fun}
566 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
567 Return the (unique interned) simple C type object for the C type whose name
568 is @<name> (a string) and which has the given @<qualifiers> (a list of
569 keywords).
570 \end{describe}
571
572 \begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
573 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
574 string.
575 \end{describe}
576
577 \begin{describe}{mac}
578 {define-simple-c-type
579 \=@{ @<name> @! (@<name>^+) @}
580 @{ @<string> @! (@<string>^*) @} \+\\
581 @[[ @|:export| @<export-flag> @]]
582 \-\nlret @<name>}
583 Define type specifiers for a new simple C type. Each symbol @<name> is
584 defined as a symbolic type specifier for the (unique interned) simple C
585 type whose name is the value of (the first) @<string>. Further, each
586 @<name> is defined to be a type operator: the type specifier @|(@<name>
587 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
588 name is (the first) @<string> and which has the @<qualifiers> (which are
589 evaluated).
590
591 Each of the @<string>s is associated with the resulting type for retrieval
592 by \descref{fun}{find-simple-c-type}. Furthermore, a variable
593 @|c-type-@<name>| is defined, for the first @<name> only, and initialized
594 with the newly constructed C type object.
595
596 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
597 all of the @<name>s, are exported from the current package.
598 \end{describe}
599
600 \begin{describe}{fun}
601 {find-simple-c-type @<string> @> @{ @<simple-c-type> @! @|nil| @}}
602 If @<string> is the name of a simple C type, as established by the
603 \descref{mac}{define-simple-c-type}[macro], then return the corresponding
604 @|simple-c-type| object; otherwise, return @|nil|.
605 \end{describe}
606
607 \begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
608 \&key :qualifiers :tag}
609 Provides common behaviour for C tagged types. A @<tag> is a string
610 containing a C identifier.
611
612 Two tagged types are equal if and only if they have the same class, their
613 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
614 subclasses may have additional methods on @|c-type-equal-p| which impose
615 further restrictions.)
616 \end{describe}
617 \begin{boxy}[Bug]
618 Sod maintains distinct namespaces for the three kinds of tagged types. In
619 C, there is only one namespace for tags which is shared between enums,
620 structs and unions.
621 \end{boxy}
622
623 \begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
624 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
625 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
626 should return their own classification symbols. It is intended that
627 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
628 syntax.\footnote{%
629 Alas, C doesn't provide a syntactic category for these keywords;
630 \Cplusplus\ calls them a @<class-key>.} %
631 There is a method defined for each of the built-in tagged type classes
632 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
633 \end{describe}
634
635 \begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
636 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
637 naming a kind of tagged type, return the name of the corresponding C
638 type class as a symbol.
639 \end{describe}
640
641 \begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
642 Represents a C enumerated type. An instance denotes the C type @|enum|
643 @<tag>. See the direct superclass @|tagged-c-type| for details.
644
645 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
646 interned) enumerated type with the given @<tag> and @<qualifier>s (all
647 evaluated).
648 \end{describe}
649 \begin{describe}{fun}
650 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
651 Return the (unique interned) C type object for the enumerated C type whose
652 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
653 keywords).
654 \end{describe}
655
656 \begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
657 Represents a C structured type. An instance denotes the C type @|struct|
658 @<tag>. See the direct superclass @|tagged-c-type| for details.
659
660 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
661 interned) structured type with the given @<tag> and @<qualifier>s (all
662 evaluated).
663 \end{describe}
664 \begin{describe}{fun}
665 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
666 Return the (unique interned) C type object for the structured C type whose
667 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
668 keywords).
669 \end{describe}
670
671 \begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
672 Represents a C union type. An instance denotes the C type @|union|
673 @<tag>. See the direct superclass @|tagged-c-type|
674 for details.
675
676 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
677 interned) union type with the given @<tag> and @<qualifier>s (all
678 evaluated).
679 \end{describe}
680 \begin{describe}{fun}
681 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
682 Return the (unique interned) C type object for the union C type whose tag
683 is @<tag> (a string) and which has the given @<qualifiers> (a list of
684 keywords).
685 \end{describe}
686
687
688 \subsection{Compound C types} \label{sec:code.c-types.compound}
689
690 Some C types are \emph{compound types}: they're defined in terms of existing
691 types. The classes which represent compound types implement a common
692 protocol.
693
694 \begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
695 Returns the underlying type of a compound type @<c-type>. Precisely what
696 this means depends on the class of @<c-type>.
697 \end{describe}
698
699
700 \subsection{Atomic types} \label{sec:clang.c-types.atomic}
701
702 Atomic types are compound types. The subtype of an atomic type is simply the
703 underlying type of the object. Note that, as far as Sod is concerned, atomic
704 types are not the same as atomic-qualified types: you must be consistent
705 about which you use.
706
707 \begin{describe}{cls}
708 {c-atomic-type (qualifiable-c-type) \&key :qualifiers :subtype}
709 Represents an atomic type. An instance denotes the C type
710 @|_Atomic(@<subtype>)|.
711
712 The @<subtype> may be any C type.\footnote{%
713 C does not permit atomic function or array types.} %
714 Two atomic types are equal if and only if their subtypes are equal and they
715 have matching qualifiers. It is possible, though probably not useful, to
716 have an atomic-qualified atomic type.
717
718 The type specifier @|(atomic @<type-spec> @<qualifier>^*)| returns a type
719 qualified atomic @<subtype>, where @<subtype> is the type specified by
720 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
721 evaluated).
722 \end{describe}
723
724 \begin{describe}{fun}
725 {make-atomic-type @<c-type> \&optional @<qualifiers> @> @<c-atomic-type>}
726 Return an object describing the type qualified atomic @<subtype>. If
727 @<subtype> is interned, then the returned atomic type object is interned
728 also.
729 \end{describe}
730
731
732 \subsection{Pointer types} \label{sec:clang.c-types.pointer}
733
734 Pointers are compound types. The subtype of a pointer type is the type it
735 points to.
736
737 \begin{describe}{cls}
738 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
739 Represents a C pointer type. An instance denotes the C type @<subtype>
740 @|*|@<qualifiers>.
741
742 The @<subtype> may be any C type. Two pointer types are equal if and only
743 if their subtypes are equal and they have matching qualifiers.
744
745 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
746 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
747 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
748 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
749 star @`*'.
750
751 The symbol @|string| is a type specifier for the type pointer to
752 characters; the symbol @|const-string| is a type specifier for the type
753 pointer to constant characters.
754 \end{describe}
755
756 \begin{describe}{fun}
757 {make-pointer-type @<c-type> \&optional @<qualifiers>
758 @> @<c-pointer-type>}
759 Return an object describing the type qualified pointer to @<subtype>.
760 If @<subtype> is interned, then the returned pointer type object is
761 interned also.
762 \end{describe}
763
764
765 \subsection{Array types} \label{sec:clang.c-types.array}
766
767 Arrays implement the compound-type protocol. The subtype of an array type is
768 the array element type.
769
770 \begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
771 Represents a multidimensional C array type. The @<dimensions> are a list
772 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
773 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
774 individual dimension specifier is either a string containing a C integral
775 constant expression, or nil which is equivalent to an empty string. Only
776 the first (outermost) dimension $d_0$ should be empty.
777
778 C doesn't actually have multidimensional arrays as a primitive notion;
779 rather, it permits an array (with known extent) to be the element type of
780 an array, which achieves an equivalent effect. C arrays are stored in
781 row-major order: i.e., if we write down the indices of the elements of an
782 array in order of ascending address, the rightmost index varies fastest;
783 hence, the type constructed is more accurately an array of $d_0$ arrays of
784 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
785 continue to abuse terminology and refer to multidimensional arrays.
786
787 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
788 multidimensional array with the given @<dimension>s whose elements have the
789 type specified by @<type-spec>. If no dimensions are given then a
790 single-dimensional array with unspecified extent. The synonyms @|array|
791 and @|vector| may be used in place of the brackets @`[]'.
792 \end{describe}
793
794 \begin{describe}{fun}
795 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
796 Return an object describing the type of arrays with given @<dimensions> and
797 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
798 argument is a list whose elements are strings or nil; see the description
799 of the class @|c-array-type| above for details.
800 \end{describe}
801
802 \begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
803 Returns the dimensions of @<c-type>, an array type, as an immutable list.
804 \end{describe}
805
806
807 \subsection{Function types} \label{sec:clang.c-types.fun}
808
809 Function types implement the compound-type protocol. The subtype of a
810 function type is the type of the function's return value.
811
812 \begin{describe}{cls}{argument}
813 Represents an ordinary function argument.
814 \end{describe}
815
816 \begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
817 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
818 not return nil.
819 \end{describe}
820
821 \begin{describe}{fun}
822 {make-argument @<name> @<c-type> \&optional @<default> @> @<argument>}
823 Construct and a return a new @<argument> object. The argument has type
824 @<c-type>, which must be a @|c-type| object, and is named @<name>.
825
826 The @<name> may be nil to indicate that the argument has no name: in this
827 case the argument will be formatted as an abstract declarator, which is not
828 suitable for function definitions. If @<name> is not nil, then the
829 @<name>'s print representation, with @|*print-escape*| nil, is used as the
830 argument name.
831
832 A @<default> may be supplied. If the argument is used in a
833 keyword-argument list (e.g., in a \descref{cls}{c-keyword-function-type}
834 [object]), and the @<default> value is provided and non-nil, then its
835 (unescaped) printed representation is used to provide a default value if
836 the keyword argument is not supplied by the caller.
837 \end{describe}
838
839 \begin{describe*}
840 {\dhead{fun}{argument-name @<argument> @> @<name>}
841 \dhead{fun}{argument-type @<argument> @> @<c-type>}
842 \dhead{fun}{argument-default @<argument> @> @<default>}}
843 Accessor functions for @|argument| objects. They return the appropriate
844 component of the object, as set by to @|make-argument|. The @<default> is
845 nil if no default was provided to @|make-argument|.
846 \end{describe*}
847
848 \begin{describe}{gf}
849 {commentify-argument-name @<name> @> @<commentified-name>}
850 Convert the argument name @<name> so that it's suitable to declare the
851 function in a header file.
852
853 Robust header files shouldn't include literal argument names in
854 declarations of functions or function types, since this restricts the
855 including file from defining such names as macros. This generic function
856 is used to convert names into a safe form.
857
858 \begin{describe}{meth}{null}
859 {commentify-argument-name (@<name> null) @> nil}
860 Returns nil: if the argument name is already omitted, it's safe for use
861 in a header file.
862 \end{describe}
863 \begin{describe}{meth}{t}
864 {commentify-argument-name (@<name> t) @> @<string>}
865 Returns the print form of @<name> wrapped in a C comment, as
866 @`/*@<name>*/'.
867 \end{describe}
868 \end{describe}
869
870 \begin{describe}{fun}
871 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
872 Convert the @<arguments> list so that it's suitable for use in a header
873 file.
874
875 The @<arguments> list should be a list whose items are @|argument| objects
876 or the keyword @|:ellipsis|. The return value is a list constructed as
877 follows. For each @|argument| object in the input list, there is a
878 corresponding @|argument| object in the returned list, with the same type,
879 and whose name is the result of @|commentify-argument-name| applied to the
880 input argument name; an @|:ellipsis| in the input list is passed through
881 unchanged.
882 \end{describe}
883
884 \begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
885 Represents C function types. An instance denotes the type of a C
886 function which accepts the @<arguments> and returns @<subtype>.
887
888 The @<arguments> are a possibly empty list. All but the last element of
889 the list must be @|argument| objects; the final element may instead be the
890 keyword @|:ellipsis|, which denotes a variable argument list.
891
892 An @<arguments> list consisting of a single argument with type @|void| is
893 converted into an empty list. On output as C code, an empty argument list
894 is written as @|void|. It is not possible to represent a pre-ANSI C
895 function without prototypes.
896
897 Two function types are considered to be the same if their return types are
898 the same, and their argument lists consist of arguments with the same type,
899 in the same order, and either both or neither argument list ends with
900 @|:ellipsis|; argument names are not compared.
901
902 The type specifier
903 \begin{prog}
904 (fun @<return-type>
905 @{ (@<arg-name> @<arg-type>) @}^*
906 @[:ellipsis @! . @<form>@])
907 \end{prog}
908 constructs a function type. The function has the subtype @<return-type>.
909 The remaining items in the type-specifier list are used to construct the
910 argument list. The argument items are a possibly improper list, beginning
911 with zero or more \emph{explicit arguments}: two-item
912 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
913 is constructed with the given name (evaluated) and type. Following the
914 explicit arguments, there may be
915 \begin{itemize}
916 \item nothing, in which case the function's argument list consists only of
917 the explicit arguments;
918 \item the keyword @|:ellipsis|, as the final item in the type-specifier
919 list, indicating a variable argument list may follow the explicit
920 arguments; or
921 \item a possibly-improper list tail, beginning with an atom either as a
922 list item or as the final list cdr, indicating that the entire list tail
923 is a Lisp expression which is to be evaluated to compute the remaining
924 arguments.
925 \end{itemize}
926 A tail expression may return a list of @|argument| objects, optionally
927 followed by an @|:ellipsis|.
928
929 For example,
930 \begin{prog}
931 (c-type (fun \=(lisp (c-type-subtype other-func)) \+\\
932 ("first" int) . (c-function-arguments other-func))
933 \end{prog}
934 evaluates to a function type like @|other-func|, only with an additional
935 argument of type @|int| added to the front of its argument list. This
936 could also have been written
937 \begin{prog}
938 (let (\=(args (c-function-arguments other-func)) \+\\
939 (ret (c-type-subtype other-func))) \-\\ \ind
940 (c-type (fun \=(lisp ret) ("first" int) . args)
941 \end{prog}
942 \end{describe}
943
944 \begin{describe}{cls}
945 {c-keyword-function-type (c-function-type)
946 \&key :subtype :arguments :keywords}
947 Represents `functions' which accept keyword arguments. Of course, actual C
948 functions can't accept keyword arguments directly, but this type is useful
949 for describing messages and methods which deal with keyword arguments.
950
951 An instance denotes the type of C function which accepts the position
952 argument list @<arguments>, and keyword arguments from the @<keywords>
953 list, and returns @<subtype>. Either or both of the @<arguments> and
954 @<keywords> lists may be empty. (It is important to note the distinction
955 between a function which doesn't accept keyword arguments, and one which
956 does but for which no keyword arguments are defined. In particular, the
957 latter function can be changed later to accept a keyword argument without
958 breaking compatibility with old code.) The @<arguments> and @<keywords>
959 lists must \emph{not} contain @|:ellipsis| markers: a function can accept
960 keywords, or a variable-length argument tail, but not both.
961
962 Keyword arguments may (but need not) have a \emph{default value} which is
963 supplied to the function body if the keyword is omitted.
964
965 Keyword functions are never considered to be the same as ordinary
966 functions. Two keyword function types are considered to be the same if
967 their return types are the same, and their positional argument lists consist of
968 arguments with the same type, in the same order: the keyword arguments
969 accepted by the functions is not significant.
970
971 Keyword functions are constructed using an extended version of the @|fun|
972 specifier used for ordinary C function types. The extended syntax is as
973 follows.
974 \begin{prog}
975 (fun \=@<return-type>
976 @{ (@<arg-name> @<arg-type>) @}^* \+\\
977 @{ \=:keys @{ (@<kw-name> @<kw-type> @[@<kw-default>@]) @}^*
978 @[. @<form>@] @! \+\\
979 . @<form> @}
980 \end{prog}
981 where either the symbol @|:keys| appears literally in the specifier, or the
982 @<form> evaluates to a list containing the symbol @|:keys|. (If neither of
983 these circumstances obtains, then the specifier constructs an ordinary
984 function type.)
985
986 See the description of \descref{cls}{c-function-type} for how a trailing
987 @<form> is handled.
988
989 The list of @<arg-name>s and @<arg-type>s describes the positional
990 arguments. The list of @<kw-name>s, @<kw-type>s and @<kw-defaults>s
991 describes the keyword arguments.
992 \end{describe}
993
994 \begin{describe}{fun}
995 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
996 Construct and return a new function type, returning @<subtype> and
997 accepting the @<arguments>.
998
999 If the @<arguments> list contains a @|:keys| marker, then a
1000 \descref{cls}{c-keyword-function-type}[object] is returned: those arguments
1001 preceding the @|:keys| marker form the positional argument list, and those
1002 following the marker form the list of keyword arguments.
1003 \end{describe}
1004
1005 \begin{describe}{fun}
1006 {make-keyword-function-type @<subtype> @<arguments> @<keywords>
1007 \nlret @<c-keyword-function-type>}
1008 Construct and return a new keyword-function type, returning @<subtype> and
1009 accepting the @<arguments> and @<keywords>.
1010 \end{describe}
1011
1012 \begin{describe}{gf}
1013 {c-function-arguments @<c-function-type> @> @<arguments>}
1014 Return the arguments list of the @<c-function-type>.
1015 \end{describe}
1016
1017 \begin{describe}{fun}
1018 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
1019 Return a commentified version of the @<c-function-type>.
1020
1021 The returned type has the same subtype as the given type, and the argument
1022 list of the returned type is the result of applying
1023 @|commentify-argument-names| to the argument list of the given type.
1024 \end{describe}
1025
1026 \begin{describe}{fun}{reify-variable-argument-tail @<arguments> @> @<list>}
1027 If the @<argument> list contains an @|:ellipsis| marker, then replace it
1028 with a @|va_list|. The name for the new argument, if any, is taken from
1029 the \descref{var}{*sod-ap*}[variable]. The new list is returned; the
1030 original list is not modified, but may share structure with the new list.
1031 \end{describe}
1032
1033 \begin{describe}{fun}
1034 {merge-keyword-lists @<what-function> @<lists> @> @<list>}
1035 Merge a number of keyword-argument lists together and return the result.
1036
1037 The @<what-function> is either nil or a function designator; see below.
1038
1039 The @<lists> parameter is a list consisting of a number of
1040 @|(@<report-function> . @<args>)| pairs: in each pair, @<report-function>
1041 is either nil or a function designator, and @<args> is a list of
1042 \descref{cls}{argument} objects.
1043
1044 The resulting list contains exactly one argument for each distinct argument
1045 name appearing in the input @<lists>; this argument will contain the
1046 default value from the earliest occurrence in the input @<lists> of an
1047 argument with that name.
1048
1049 If the same name appears multiple times with different types, a continuable
1050 error will be signalled, and one of the conflicting argument types will be
1051 chosen arbitrarily. The @<what-function> will be called to establish
1052 information which will be reported to the user. It will be called with no
1053 arguments and is expected to return two values:
1054 \begin{itemize}
1055 \item a file location @<floc> or other object acceptable to
1056 \descref{gf}{file-location}, to be used as the location of the main
1057 error; and
1058 \item an object @<what>, whose printed representation should be a noun
1059 phrase describing the object for which the argument lists are being
1060 combined.
1061 \end{itemize}
1062 The phrasing of the error message is `type mismatch in @<what>'. Either,
1063 or both, of @<floc> and @<what> may be nil, though this is considered poor
1064 practice; if @<what-function> is nil, this is equivalent to a function
1065 which returns two nil values. Following the error, the @<report-function>s
1066 for the @<args> lists containing the conflicting argument objects are
1067 called, in an arbitrary order, with a single argument which is the
1068 offending @|argument| object; the function is expected to issue information
1069 messages (see \descref{fun}{info}) to give more detail for diagnosing the
1070 conflict. If a @<report-function> is nil, then nothing happens; this is
1071 considered poor practice.
1072 \end{describe}
1073
1074 \begin{describe}{fun}
1075 {pprint-c-function-type @<return-type> @<stream>
1076 @<print-args> @<print-kernel>}
1077 Provides the top-level structure for printing C function types.
1078
1079 Output is written to @<stream> to describe a function type returning
1080 @<return-type>, whose declarator kernel (containing the name, and any
1081 further type operands) will be printed by @<print-kernel>, and whose
1082 arguments, if any, will be printed by @<print-args>.
1083
1084 The @<print-kernel> function is a standard kernel-printing function
1085 following the \descref{gf}{pprint-c-type}[protocol].
1086
1087 The @<print-args> function is given a single argument, which is the
1088 @<stream> to print on. It should not print the surrounding parentheses.
1089
1090 The output written to @<stream> looks approximately like
1091 \begin{prog}
1092 @<return-type> @<kernel>(@<args>)
1093 \end{prog}
1094 \end{describe}
1095
1096 \begin{describe}{fun}{pprint-argument-list @<args> @<stream> @> @<flag>}
1097 Print an argument list to @<stream>.
1098
1099 The @<args> is a list of \descref{cls}{argument}[objects], optionally
1100 containing an @|:ellipsis| marker. The function returns true if any
1101 arguments were actually printed.
1102 \end{describe}
1103
1104
1105 \subsection{Parsing C types} \label{sec:clang.c-types.parsing}
1106
1107 \begin{describe}{fun}
1108 {parse-c-type @<scanner>
1109 @> @<result> @<success-flag> @<consumed-flag>}
1110 \end{describe}
1111
1112 \begin{describe}{fun}
1113 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
1114 \nlret @<result> @<success-flag> @<consumed-flag>}
1115 \end{describe}
1116
1117
1118 \subsection{Class types} \label{sec:clang.c-types.class}
1119
1120 \begin{describe}{cls}
1121 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
1122 \end{describe}
1123
1124 \begin{describe*}
1125 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
1126 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
1127 \end{describe*}
1128
1129 \begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
1130 \end{describe}
1131
1132 \begin{describe}{fun}
1133 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
1134 \end{describe}
1135
1136 \begin{describe}{fun}{find-sod-class @<name> @> @<class>}
1137 \end{describe}
1138
1139 \begin{describe}{fun}{record-sod-class @<class>}
1140 \end{describe}
1141
1142 %%%--------------------------------------------------------------------------
1143 \section{Generating C code} \label{sec:clang.codegen}
1144
1145 This section deals with Sod's facilities for constructing and manipulating C
1146 expressions, declarations, instructions and definitions.
1147
1148
1149 \subsection{Temporary names} \label{sec:clang.codegen.temporaries}
1150
1151 Many C-level objects, especially ones with external linkage or inclusion in a
1152 header file, are assigned names which are simple strings, perhaps fixed ones,
1153 perhaps constructed. Other objects don't need meaningful names, and
1154 suitably unique constructed names would be tedious and most likely rather
1155 opaque. Therefore Sod has an ability to construct \emph{temporary names}.
1156
1157 These aren't temporary in the sense that they name C objects which have
1158 limited lifetimes at runtime. Rather, the idea is that the names be
1159 significant only to small pieces of Lisp code, which will soon forget about
1160 them.
1161
1162 \subsubsection{The temporary name protocol}
1163 Temporary names are represented by objects which implement a simple protocol.
1164
1165 \begin{describe}{gf}{format-temporary-name @<var> @<stream>}
1166 \end{describe}
1167
1168 \begin{describe*}
1169 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
1170 \dhead{gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
1171 \end{describe*}
1172
1173 \subsubsection{Temporary name objects}
1174
1175 \begin{describe}{cls}{temporary-name () \&key :tag}
1176 A temporary name object. This is the root of a small collection of
1177 subclasses, but is also usable on its own.
1178 \end{describe}
1179
1180 \begin{describe}{meth}{temporary-name}
1181 {commentify-argument-name (@<name> temporary-name) @> nil}
1182 \end{describe}
1183
1184 \begin{table}
1185 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1186 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1187 temporary-name & @<tag> \\
1188 temporary-argument & sod__a@<tag> \\
1189 temporary-function & sod__f@<tag> \\
1190 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
1191 \end{tabular}
1192 \caption{Temporary name formats}
1193 \label{tab:codegen.codegen.temps-format}
1194 \end{table}
1195
1196 \begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
1197 \end{describe}
1198
1199 \begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
1200 \end{describe}
1201
1202 \begin{describe}{fun}{temporary-function @> @<name>}
1203 \end{describe}
1204
1205 \begin{describe}{cls}
1206 {temporary-variable (temporary-name) \&key :tag :in-use-p}
1207 \end{describe}
1208
1209 \subsubsection{Well-known `temporary' names}
1210
1211 \begin{table}
1212 \def\x#1{\desclabel{var}{#1}}
1213 \x{*sod-ap*} \x{*sod-master-ap*} \x{*null-pointer*}
1214 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1215 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1216 {}*sod-ap* & sod__ap \\
1217 {}*sod-master-ap* & sod__master_ap \\
1218 {}*null-pointer* & NULL \\ \hlx*{vh}
1219 \end{tabular}
1220 \caption{Well-known temporary names}
1221 \label{tab:codegen.codegen.well-known-temps}
1222 \end{table}
1223
1224
1225 \subsection{Instructions} \label{sec:clang.codegen.insts}
1226
1227 \begin{describe}{cls}{inst () \&key}
1228 \end{describe}
1229
1230 \begin{describe}{gf}{inst-metric @<inst>}
1231 \end{describe}
1232
1233 \begin{describe}{mac}
1234 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
1235 @[[ @<declaration>^* @! @<doc-string> @]] \\
1236 @<form>^*
1237 \-\nlret @<code>}
1238 \end{describe}
1239
1240 \begin{describe}{mac}
1241 {format-compound-statement
1242 (@<stream> @<child> \&optional @<morep>) \\ \ind
1243 @<declaration>^* \\
1244 @<form>^*}
1245 \end{describe}
1246
1247 \begin{describe}{fun}
1248 {format-banner-comment @<stream> @<control> \&rest @<args>}
1249 \end{describe}
1250
1251 \begin{table}
1252 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
1253 \thd{Class name} &
1254 \thd{Arguments} &
1255 \thd{Output format} \\ \hlx{vhv}
1256 @|var| & @<name> @<type> @|\&optional| @<init>
1257 & @<type> @<name> @[= @<init>@];
1258 \\ \hlx{v}
1259 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
1260 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
1261 \\ \hlx{v}
1262 @|cond| & @<cond> @<conseq> @<alt> & @<cond> ? @<conseq> : @<alt>
1263 \\ \hlx{v}
1264 @|return| & @<expr> & return @[@<expr>@];
1265 \\ \hlx{v}
1266 @|break| & --- & break; \\ \hlx{v}
1267 @|continue| & --- & continue; \\ \hlx{v}
1268 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
1269 @|call| & @<func> @|\&rest| @<args>
1270 & @<func>(@<arg>_1,
1271 $\ldots$,
1272 @<arg>_n) \\ \hlx{v}
1273 @|banner| & @<control> @|\&rest| @<args>
1274 & /* @<banner> */ \\ \hlx{vhv}
1275 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
1276 \\ \hlx{v}
1277 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
1278 & if (@<cond>) @<conseq>
1279 @[else @<alt>@] \\ \hlx{v}
1280 @|for| & @<init> @<cond> @<update> @<body> &
1281 for (@<init>; @<cond>; @<update>) @<body> \\ \hlx{v}
1282 @|while| & @<cond> @<body> & while (@<cond>) @<body>
1283 \\ \hlx{v}
1284 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
1285 \\ \hlx{v}
1286 @|function| &
1287 \vtop{\hbox{\strut @<name> @<type> @<body>}
1288 \hbox{\strut \quad @|\&optional @<banner>|}
1289 \hbox{\strut \quad @|\&rest| @<banner-args>}} &
1290 \vtop{\hbox{\strut @[/* @<banner> */@]}
1291 \hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
1292 @<type>_n @<arg>_n @[, \dots@])}
1293 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
1294 \end{tabular}
1295 \caption{Instruction classes}
1296 \label{tab:codegen.codegen.insts}
1297 \end{table}
1298
1299 \begin{describe*}
1300 {\dhead*{cls}{@<code>-inst (inst) \&key \dots}
1301 \dhead*{fn}{make-@<code>-inst \dots}
1302 \dhead*{gf}{inst-@<slot> @<inst> @> @<value>}}
1303 \def\instclass#1#2#3{%
1304 #1{cls}{#3-inst}[#2]%
1305 #1{fun}{make-#3-inst}[#2]%
1306 }
1307 \def\instslot#1#2#3{#1{gf}{inst-#3}[#2]}
1308 \def\makelabels#1#2{%
1309 \def\x{\instclass{#1}{#2}}
1310 \x{var} \x{set} \x{update} \x{cond} \x{return} \x{break} \x{continue}
1311 \x{expr} \x{call} \x{banner} \x{block} \x{if} \x{for} \x{while}
1312 \x{do-while} \x{function}
1313 \def\x{\instslot{#1}{#2}}
1314 \x{name} \x{type} \x{init} \x{var} \x{expr} \x{op} \x{cond} \x{conseq}
1315 \x{alt} \x{func} \x{args} \x{control} \x{decls} \x{body} \x{update}
1316 \x{banner} \x{banner-args}
1317 }
1318 \makelabels{\desclabel}{|(}
1319
1320 Sod provides a number of built-in instruction types generated by
1321 \descref{mac}{definst}: see \xref{tab:codegen.codegen.insts}.
1322
1323 \makelabels{\descindex}{|)}
1324 \end{describe*}
1325
1326
1327 \subsection{Code generation} \label{sec:clang.codegen.codegen}
1328
1329 \begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
1330 \end{describe}
1331
1332 \begin{describe}{gf}
1333 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
1334 \end{describe}
1335
1336 \begin{describe}{gf}{emit-inst @<codegen> @<inst>}
1337 \end{describe}
1338
1339 \begin{describe}{gf}{emit-insts @<codegen> @<insts>}
1340 \end{describe}
1341
1342 \begin{describe}{gf}{emit-decl @<codegen> @<decl>}
1343 \end{describe}
1344
1345 \begin{describe}{gf}{emit-decls @<codegen> @<decls>}
1346 \end{describe}
1347
1348 \begin{describe}{fun}{emit-banner @<codegen> @<control> \&rest @<args>}
1349 \end{describe}
1350
1351 \begin{describe}{gf}{codegen-push @<codegen>}
1352 \end{describe}
1353
1354 \begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
1355 \end{describe}
1356
1357 \begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
1358 \end{describe}
1359
1360 \begin{describe}{gf}
1361 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
1362 \end{describe}
1363
1364 \begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
1365 \end{describe}
1366
1367 \begin{describe}{fun}
1368 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
1369 @> @<name>}
1370 \end{describe}
1371
1372 \begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
1373 \end{describe}
1374
1375 \begin{describe}{mac}
1376 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
1377 @<declaration>^* \\
1378 @<form>^*
1379 \-\nlret @<value>^*}
1380 \end{describe}
1381
1382 \begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
1383 \end{describe}
1384
1385 \begin{describe}{fun}
1386 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1387 \end{describe}
1388
1389 \begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1390 \end{describe}
1391
1392 \begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1393 \end{describe}
1394
1395 %%%--------------------------------------------------------------------------
1396 \section{Literal C code fragments} \label{sec:clang.fragment}
1397
1398 \begin{describe}{cls}{c-fragment () \&key :location :text}
1399 \end{describe}
1400
1401 \begin{describe}{gf}{c-fragment-text @<fragment> @> @<string>}
1402 \end{describe}
1403
1404 \begin{describe}{fun}
1405 {scan-c-fragment @<scanner> @<end-chars>
1406 @> @<result> @<success-flag> @<consumed-flag>}
1407 \end{describe}
1408
1409 \begin{describe}{fun}
1410 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1411 \nlret @<result> @<success-flag> @<consumed-flag>}
1412 \end{describe}
1413
1414 %%%----- That's all, folks --------------------------------------------------
1415
1416 %%% Local variables:
1417 %%% mode: LaTeX
1418 %%% TeX-master: "sod.tex"
1419 %%% TeX-PDF-mode: t
1420 %%% End: