doc/sod.sty: Provide explicit description labelling and indexing commands.
[sod] / doc / clang.tex
CommitLineData
dea4d055
MW
1%%% -*-latex-*-
2%%%
1f7d590d 3%%% C language utilities
dea4d055 4%%%
1f7d590d 5%%% (c) 2015 Straylight/Edgeware
dea4d055
MW
6%%%
7
8%%%----- Licensing notice ---------------------------------------------------
9%%%
e0808c47 10%%% This file is part of the Sensible Object Design, an object system for C.
dea4d055
MW
11%%%
12%%% SOD is free software; you can redistribute it and/or modify
13%%% it under the terms of the GNU General Public License as published by
14%%% the Free Software Foundation; either version 2 of the License, or
15%%% (at your option) any later version.
16%%%
17%%% SOD is distributed in the hope that it will be useful,
18%%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19%%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20%%% GNU General Public License for more details.
21%%%
22%%% You should have received a copy of the GNU General Public License
23%%% along with SOD; if not, write to the Free Software Foundation,
24%%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
1f7d590d 26\chapter{C language utilities} \label{ch:clang}
dea4d055
MW
27
28%%%--------------------------------------------------------------------------
1f7d590d 29\section{C type representation} \label{sec:clang.c-types}
dea4d055 30
1f7d590d 31\subsection{Overview} \label{sec:clang.c-types.over}
dea4d055
MW
32
33The Sod translator represents C types in a fairly simple and direct way.
34However, because it spends a fair amount of its time dealing with C types, it
35provides a number of useful operations and macros.
36
64d1ecf7 37The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
dea4d055
MW
38
39\begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
020b9e2b
MW
41 @|c-type| \\ \ind
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
44 @|c-class-type| \-\\
45 @|tagged-c-type| \\ \ind
46 @|c-struct-type| \\
47 @|c-union-type| \\
48 @|c-enum-type| \-\\
49 @|c-atomic-type| \\
50 @|c-pointer-type| \-\\
51 @|c-array-type| \\
52 @|c-function-type| \\ \ind
53 @|c-keyword-function-type| \-
dea4d055
MW
54 \end{tabbing}}
55 \caption{Classes representing C types}
64d1ecf7 56\label{fig:codegen.c-types.classes}
dea4d055
MW
57\end{figure}
58
59C type objects are immutable unless otherwise specified.
60
61\subsubsection{Constructing C type objects}
62There is a constructor function for each non-abstract class of C type object.
63Note, however, that constructor functions need not generate a fresh type
64object if a previously existing type object is suitable. In this case, we
65say that the objects are \emph{interned}. Some constructor functions are
66specified to return interned objects: programs may rely on receiving the same
67(@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
68not specified, clients may still not rely on receiving fresh objects.
69
58f9b400 70A convenient S-expression notation is provided by the
e8d70b1b 71\descref{mac}{c-type}[macro]. Use of this macro is merely an abbreviation
58f9b400
MW
72for corresponding use of the various constructor functions, and therefore
73interns type objects in the same manner. The syntax accepted by the macro
e8d70b1b
MW
74can be extended in order to support new classes: see \descref{mac}{defctype},
75\descref{mac}{c-type-alias} and \descref{mac}{define-c-type-syntax}.
dea4d055
MW
76
77The descriptions of each of the various classes include descriptions of the
78initargs which may be passed to @|make-instance| when constructing a new
79instance of the class. However, the constructor functions and S-expression
80syntax are strongly recommended over direct use of @|make-instance|.
81
82\subsubsection{Printing}
83There are two protocols for printing C types. Unfortunately they have
84similar names.
85\begin{itemize}
e8d70b1b 86\item The \descref{gf}{print-c-type}[function] prints a C type value using
58f9b400 87 the S-expression notation. It is mainly useful for diagnostic purposes.
e8d70b1b 88\item The \descref{gf}{pprint-c-type}[function] prints a C type as a
58f9b400 89 C-syntax declaration.
dea4d055
MW
90\end{itemize}
91Neither generic function defines a default primary method; subclasses of
92@|c-type| must define their own methods in order to print correctly.
93
31d4431b 94
1f7d590d 95\subsection{The C type root class} \label{sec:clang.c-types.root}
dea4d055
MW
96
97\begin{describe}{cls}{c-type ()}
98 The class @|c-type| marks the root of the built-in C type hierarchy.
99
100 Users may define subclasses of @|c-type|. All non-abstract subclasses must
101 have a primary method defined on @|pprint-c-type|; unless instances of the
102 subclass are interned, a method on @|c-type-equal-p| is also required.
103
104 The class @|c-type| is abstract.
105\end{describe}
106
31d4431b 107
1f7d590d 108\subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
dea4d055
MW
109
110The S-expression representation of a type is described syntactically as a
111type specifier. Type specifiers fit into two syntactic categories.
112\begin{itemize}
113\item A \emph{symbolic type specifier} consists of a symbol. It has a
114 single, fixed meaning: if @<name> is a symbolic type specifier, then each
115 use of @<name> in a type specifier evaluates to the same (@|eq|) type
116 object, until the @<name> is redefined.
117\item A \emph{type operator} is a symbol; the corresponding specifier is a
118 list whose @|car| is the operator. The remaining items in the list are
119 arguments to the type operator.
120\end{itemize}
121
1f7d590d 122\begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
dea4d055
MW
123 Evaluates to a C type object, as described by the type specifier
124 @<type-spec>.
125\end{describe}
126
1f7d590d 127\begin{describe}{mac}
020b9e2b
MW
128 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+\\
129 @[[ @|:export| @<export-flag> @]]^*
130 \-\nlret @<names>}
dea4d055
MW
131 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
132 given, then all are defined in the same way. The type constructed by using
133 any of the @<name>s is as described by the type specifier @<type-spec>.
134
135 The resulting type object is constructed once, at the time that the macro
136 expansion is evaluated; the same (@|eq|) value is used each time any
137 @<name> is used in a type specifier.
e43d3532
MW
138
139 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
140 and initialized to contain the C type object so constructed. Altering or
141 binding this name is discouraged.
142
143 If @<export-flag> is true, then the variable name, and all of the @<name>s,
144 are exported from the current package.
dea4d055
MW
145\end{describe}
146
1f7d590d 147\begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
dea4d055
MW
148 Defines each @<alias> as being a type operator identical in behaviour to
149 @<original>. If @<original> is later redefined then the behaviour of the
150 @<alias>es changes too.
151\end{describe}
152
1f7d590d 153\begin{describe}{mac}
020b9e2b
MW
154 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
155 @[[ @<declaration>^* @! @<doc-string> @]] \\
156 @<form>^*
157 \-\nlret @<name>}
dea4d055
MW
158 Defines the symbol @<name> as a new type operator. When a list of the form
159 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
160 are bound to fresh variables according to @<lambda-list> (a destructuring
161 lambda-list) and the @<form>s evaluated in order in the resulting lexical
162 environment as an implicit @|progn|. The value should be a Lisp form which
163 will evaluate to the type specified by the arguments.
164
165 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
166 type specifiers among its arguments.
167\end{describe}
168
e07fb83c 169\begin{describe}{gf}{expand-c-type-spec @<type-spec> @> @<form>}
dea4d055 170 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
e07fb83c 171
e8d70b1b 172 If @<type-spec> is a list, then \descref{gf}{expand-c-type-form} is
e07fb83c
MW
173 invoked.
174\end{describe}
175
176\begin{describe}{gf}{expand-c-type-form @<head> @<tail> @> @<form>}
054e8f8f 177 Returns the Lisp form that @|(c-type (@<head> . @<tail>))| would expand
e07fb83c 178 into.
dea4d055
MW
179\end{describe}
180
1f7d590d
MW
181\begin{describe}{gf}
182 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
dea4d055
MW
183 Print the C type object @<type> to @<stream> in S-expression form. The
184 @<colon> and @<atsign> arguments may be interpreted in any way which seems
185 appropriate: they are provided so that @|print-c-type| may be called via
186 @|format|'s @|\char`\~/\dots/| command; they are not set when
187 @|print-c-type| is called by Sod functions.
188
189 There should be a method defined for every C type class; there is no
190 default method.
191\end{describe}
192
31d4431b 193
1f7d590d 194\subsection{Comparing C types} \label{sec:clang.c-types.cmp}
dea4d055
MW
195
196It is necessary to compare C types for equality, for example when checking
197argument lists for methods. This is done by @|c-type-equal-p|.
198
1f7d590d
MW
199\begin{describe}{gf}
200 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
201 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
202 @<c-type>_2 for equality; it returns true if the two types are equal and
dea4d055
MW
203 false if they are not.
204
205 Two types are equal if they are structurally similar, where this property
206 is defined by methods for each individual class; see the descriptions of
207 the classes for the details.
208
209 The generic function @|c-type-equal-p| uses the @|and| method combination.
210
87883222 211 \begin{describe}{meth}{t,t}{c-type-equal-p @<c-type>_1 @<c-type>_2}
dea4d055
MW
212 A default primary method for @|c-type-equal-p| is defined. It simply
213 returns @|nil|. This way, methods can specialize on both arguments
214 without fear that a call will fail because no methods are applicable.
215 \end{describe}
87883222 216 \begin{describe}{ar-meth}{}{c-type-equal-p @<c-type>_1 @<c-type>_2}
dea4d055 217 A default around-method for @|c-type-equal-p| is defined. It returns
1f7d590d
MW
218 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
219 the primary methods. Since several common kinds of C types are interned,
dea4d055
MW
220 this is a common case worth optimizing.
221 \end{describe}
222\end{describe}
223
31d4431b 224
1f7d590d 225\subsection{Outputting C types} \label{sec:clang.c-types.output}
dea4d055 226
1f7d590d 227\begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
dea4d055 228 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
1f7d590d 229 declaration of an object or function of type @<c-type>. The result is
dea4d055
MW
230 written to @<stream>.
231
232 A C declaration has two parts: a sequence of \emph{declaration specifiers}
233 and a \emph{declarator}. The declarator syntax involves parentheses and
234 operators, in order to reflect the operators applicable to the declared
235 variable. For example, the name of a pointer variable is preceded by @`*';
236 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
237
238 The @<kernel> argument must be a function designator (though see the
239 standard around-method); it is invoked as
240 \begin{quote} \codeface
241 (funcall @<kernel> @<stream> @<priority> @<spacep>)
242 \end{quote}
243 It should write to @<stream> -- which may not be the same stream originally
244 passed into the generic function -- the `kernel' of the declarator, i.e.,
245 the part to which prefix and/or postfix operators are attached to form the
246 full declarator.
247
248 The methods on @|pprint-c-type| specialized for compound types work by
249 recursively calling @|pprint-c-type| on the subtype, passing down a closure
250 which prints the necessary additional declarator operators before calling
251 the original @<kernel> function. The additional arguments @<priority> and
252 @<spacep> support this implementation technique.
253
254 The @<priority> argument describes the surrounding operator context. It is
255 zero if no type operators are directly attached to the kernel (i.e., there
256 are no operators at all, or the kernel is enclosed in parentheses), one if
257 a prefix operator is directly attached, or two if a postfix operator is
258 directly attached. If the @<kernel> function intends to provide its own
259 additional declarator operators, it should check the @<priority> in order
260 to determine whether parentheses are necessary. See also the
e8d70b1b 261 \descref{mac}{maybe-in-parens}[macro].
dea4d055
MW
262
263 The @<spacep> argument indicates whether a space needs to be printed in
264 order to separate the declarator from the declaration specifiers. A kernel
265 which contains an identifier should insert a space before the identifier
266 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
267 declarator (one that specifies no name), looks more pleasing without a
e8d70b1b 268 trailing space. See also the \descref{fun}{c-type-space}[function].
dea4d055
MW
269
270 Every concrete subclass of @|c-type| is expected to provide a primary
271 method on this function. There is no default primary method.
272
87883222 273 \begin{describe}{ar-meth}{}{pprint-c-type @<c-type> @<stream> @<kernel>}
dea4d055
MW
274 A default around method is defined on @|pprint-c-type| which `canonifies'
275 non-function @<kernel> arguments. In particular:
276 \begin{itemize}
277 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
278 with a @<kernel> function that does nothing; and
279 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
280 called recursively with a @<kernel> function that prints the object as
281 if by @|princ|, preceded if necessary by space using @|c-type-space|.
282 \end{itemize}
283 \end{describe}
284\end{describe}
285
286\begin{describe}{fun}{c-type-space @<stream>}
287 Writes a space and other pretty-printing instructions to @<stream> in order
288 visually to separate a declarator from the preceding declaration
289 specifiers. The precise details are subject to change.
290\end{describe}
291
1f7d590d 292\begin{describe}{mac}
cac85e0b
MW
293 {maybe-in-parens (@<stream-var> @<guard-form>)
294 @<declaration>^*
295 @<form>^*}
dea4d055
MW
296 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
297 sequence within a pretty-printer logical block writing to the stream named
298 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
299 the logical block has empty prefix and suffix strings; if it evaluates to a
300 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
301 respectively.
302
303 Note that this may cause @<stream> to be bound to a different stream object
304 within the @<form>s.
305\end{describe}
306
31d4431b 307
dea4d055 308\subsection{Type qualifiers and qualifiable types}
1f7d590d 309\label{sec:clang.ctypes.qual}
dea4d055 310
ae0f15ee
MW
311Qualifiers -- @|const|, @|volatile|, and so on -- are represented as lists of
312keywords attached to types. Not all C types can carry qualifiers: notably,
313function and array types cannot be qualified.
314
315For the most part, the C qualifier keywords correspond to like-named Lisp
316keywords, only the Lisp keyword names are in uppercase. The correspondence
317is shown in \xref{tab:clang.ctypes.qual}.
318
319\begin{table}
320 \begin{tabular}[C]{*2{>{\codeface}l}l} \hlx*{hv}
321 \thd{\textbf{C name}} & \thd{\textbf{Lisp name}} \\ \hlx{vhv}
322 _Atomic & :atomic \\
323 const & :const \\
324 restrict & :restrict \\
325 volatile & :volatile \\ \hlx*{vh}
326 \end{tabular}
327 \caption{C and Lisp qualifier names} \label{tab:clang.ctypes.qual}
328\end{table}
329
330The default behaviour, on output, is to convert keywords to lowercase and
331hope for the best: special cases can be dealt with by adding appropriate
e8d70b1b 332methods to \descref{gf}{c-qualifier-keyword}.
ae0f15ee 333
dea4d055
MW
334\begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
335 The class @|qualifiable-c-type| describes C types which can bear
336 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
337 @|restrict| and @|volatile|.
338
339 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
340 @|:volatile|. There is no built-in limitation to these particular
341 qualifiers; others keywords may be used, though this isn't recommended.
342
343 Two qualifiable types are equal only if they have \emph{matching
31d4431b
MW
344 qualifiers}: i.e., every qualifier attached to one is also attached to the
345 other: order is not significant, and neither is multiplicity.
dea4d055
MW
346
347 The class @|qualifiable-c-type| is abstract.
348\end{describe}
349
1f7d590d
MW
350\begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
351 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
352 an immutable list.
dea4d055
MW
353\end{describe}
354
1f7d590d
MW
355\begin{describe}{fun}{qualify-type @<c-type> @<qualifiers> @> @<c-type>}
356 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
dea4d055
MW
357 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
358 keywords. The result is a C type object like @<c-type> except that it
359 bears the given @<qualifiers>.
360
1f7d590d 361 The @<c-type> is not modified. If @<c-type> is interned, then the returned
dea4d055
MW
362 type will be interned.
363\end{describe}
364
0b80399d 365\begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
dea4d055
MW
366 Returns a string containing the qualifiers listed in @<qualifiers> in C
367 syntax, with a space after each. In particular, if @<qualifiers> is
368 non-null then the final character of the returned string will be a space.
369\end{describe}
370
ff4e398b
MW
371\begin{describe}{gf}{c-qualifier-keyword @<qualifier> @> @<string>}
372 Return, as a string, the C keyword corresponding to the Lisp @<qualifier>.
373
374 There is a standard method, which deals with many qualifiers. Additional
375 methods exist for qualifier keywords which need special handling, such as
376 @|:atomic|; they are not listed here explicitly.
377
87883222
MW
378 \begin{describe}{meth}{keyword}
379 {c-qualifier-keyword @<keyword> @> @<string>}
ff4e398b
MW
380 Returns the @<keyword>'s print-name, in lower case. This is sufficient
381 for the standard qualifiers @|:const|, @|:restrict|, and @|:volatile|.
382 \end{describe}
383\end{describe}
384
385\begin{describe}{fun}{c-type-qualifier-keywords @<c-type> @> @<list>}
386 Return the @<c-type>'s qualifiers, as a list of C keyword names.
387\end{describe}
388
31d4431b 389
b7fcf941
MW
390\subsection{Storage specifiers} \label{sec:clang.ctypes.specs}
391
392Some declaration specifiers, mostly to do with how to store the specific
393object in question, are determinedly `top level', and, unlike qualifiers,
394don't stay attached to the base type when acted on by declarator operators.
395Sod calls these `storage specifiers', though no such category exists in the C
396standard. They have their own protocol, which is similar in many ways to
397that of C types.
398
399Every Lisp keyword is potentially a storage specifier, which simply maps to
400its lower-case print name in C; but other storage specifiers may be more
401complicated objects.
402
403\begin{describe}{cls}
404 {c-storage-specifiers-type (c-type) \&key :subtype :specifiers}
405 A type which carries storage specifiers. The @<subtype> is the actual
406 type, and may be any C type; the @<specifiers> are a list of
407 storage-specifier objects.
408
409 The type specifier @|(specs @<subtype> @<specifier>^*)| wraps the
410 @<subtype> in a @|c-storage-specifiers-type|, carrying the @<specifier>s,
411 which are a list of storage specifiers in S-expression notation.
412\end{describe}
413
414\begin{describe}{fun}{c-type-specifiers @<type> @> @<list>}
415 Returns the list of type specifiers attached to the @<type> object, which
416 must be a @|c-storage-specifiers-type|.
417\end{describe}
418
419\begin{describe}{mac}
420 {define-c-storage-specifier-syntax @<name> @<lambda-list> \\ \ind
421 @[[ @<declaration>^* @! @<doc-string> @]] \\
422 @<form>^* \-
423 \nlret @<name>}
424
425 Defines the symbol @<name> as a new storage-specifier operator. When a
426 list of the form @|(@<name> @<argument>^*)| is used as a storage specifier,
427 the @<argument>s are bound to fresh variables according to the
428 @<lambda-list> (a destructuring lambda-list) and the @<form>s evaluated in
429 order in the resulting lexical environment as an implicit @<progn>. The
430 value should be a Lisp form which will evaluate to the storage-specifier
431 object described by the arguments.
432
433 The @<form>s may call @|expand-c-storage-specifier| in order to recursively
434 expand storage specifiers among its arguments.
435\end{describe}
436
437\begin{describe}{gf}{expand-c-storage-specifier @<spec> @> @<form>}
438 Returns the Lisp form that @<spec> expands to within @|(c-type (specs
439 @<subtype> @<spec>))|.
440
588e0b33 441 If @<spec> is a list, then \descref{gf}{expand-c-storage-specifier-form} is
b7fcf941
MW
442 invoked.
443\end{describe}
444
445\begin{describe}{gf}{expand-c-storage-specifier-form @<spec> @> @<form>}
446 Returns the Lisp form that @|(@<head> . @<tail>)| expands to within
447 @|(c-type (specs @<subtype> (@<head> . @<tail>)))|.
448\end{describe}
449
450\begin{describe}{gf}{pprint-c-storage-specifier @<spec> @<stream>}
451\end{describe}
452
453\begin{describe}{gf}
454 {print-c-storage-specifier @<stream> @<spec>
455 \&optional @<colon> @<atsign>}
456\end{describe}
457
458\begin{describe}{fun}{wrap-c-type @<func> @<base-type> @> @<c-type>}
459 Apply @<func> to the underlying C type of @<base-type> to create a new
460 `wrapped' type, and attach the storage specifiers of @<base-type> to the
461 wrapped type.
462
463 If @<base-type> is \emph{not} a @|c-storage-specifiers-type|, then return
464 @|(funcall @<func> @<base-type>)|. Otherwise, return a new
465 @|c-storage-specifiers-type|, with the same specifiers, but whose subtype
466 is the result of applying @<func> to the subtype of the original
467 @<base-type>.
468\end{describe}
469
db56b1d3
MW
470\begin{describe}{cls}{alignas-storage-specifier () \&key :alignment}
471 The class of @|_Alignas| storage specifiers; an instance denotes the
472 specifier @|_Alignas(@<alignment>)|. The @<alignment> parameter may be any
473 printable object, but is usually a string or C fragment.
474
475 The storage specifier form @|(alignas @<alignment>)| returns a storage
476 specifier @|_Alignas(@<alignment>)|, where @<alignment> is evaluated.
477\end{describe}
478
31d4431b 479
1f7d590d 480\subsection{Leaf types} \label{sec:clang.c-types.leaf}
dea4d055
MW
481
482A \emph{leaf type} is a type which is not defined in terms of another type.
483In Sod, the leaf types are
484\begin{itemize}
485\item \emph{simple types}, including builtin types like @|int| and @|char|,
486 as well as type names introduced by @|typename|, because Sod isn't
487 interested in what the type name means, merely that it names a type; and
488\item \emph{tagged types}, i.e., enum, struct and union types which are named
489 by a keyword identifying the kind of type, and a \emph{tag}.
490\end{itemize}
491
492\begin{describe}{cls}{simple-c-type (qualifiable-c-type)
493 \&key :qualifiers :name}
494 The class of `simple types'; an instance denotes the type @<qualifiers>
495 @<name>.
496
497 A simple type object maintains a \emph{name}, which is a string whose
498 contents are the C name for the type. The initarg @|:name| may be used to
499 provide this name when calling @|make-instance|.
500
501 Two simple type objects are equal if and only if they have @|string=| names
502 and matching qualifiers.
503
0dfd5c6d
MW
504 \def\x#1{\desclabel{const}{#1}}
505 \x{c-type-bool} \x{c-type-char} \x{c-type-wchar-t} \x{c-type-signed-char}
506 \x{c-type-unsigned-char} \x{c-type-short} \x{c-type-unsigned-short}
507 \x{c-type-int} \x{c-type-unsigned} \x{c-type-long} \x{c-type-unsigned-long}
508 \x{c-type-long-long} \x{c-type-unsigned-long-long} \x{c-type-size-t}
509 \x{c-type-ptrdiff-t} \x{c-type-float} \x{c-type-double}
510 \x{c-type-long-double} \x{c-type-float-imaginary}
511 \x{c-type-double-imaginary} \x{c-type-long-double-imaginary}
512 \x{c-type-float-complex} \x{c-type-double-complex}
513 \x{c-type-long-double-complex} \x{c-type-va-list} \x{c-type-void}
dea4d055 514 A number of symbolic type specifiers for builtin types are predefined as
64d1ecf7 515 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
dea4d055
MW
516 @|define-simple-c-type|, so can be used to construct qualified types.
517\end{describe}
518
519\begin{table}
fcb6c0fb
MW
520 \begin{tabular}[C]{ll} \hlx*{hv}
521 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
522 @|void| & @|void| \\ \hlx{v}
a4434457
MW
523 @|_Bool| & @|bool| \\ \hlx{v}
524 @|char| & @|char| \\ \hlx{}
a4434457 525 @|wchar_t| & @|wchar-t| \\ \hlx{v}
d21ac4d9
MW
526 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
527 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
dea4d055 528 @|short| & @|short|, @|signed-short|, @|short-int|,
fcb6c0fb 529 @|signed-short-int| @|sshort| \\ \hlx{}
dea4d055 530 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
fcb6c0fb 531 @|ushort| \\ \hlx{v}
dea4d055 532 @|int| & @|int|, @|signed|, @|signed-int|,
fcb6c0fb
MW
533 @|sint| \\ \hlx{}
534 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
dea4d055 535 @|long| & @|long|, @|signed-long|, @|long-int|,
fcb6c0fb 536 @|signed-long-int|, @|slong| \\ \hlx{}
dea4d055 537 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
fcb6c0fb 538 @|ulong| \\ \hlx{v}
dea4d055 539 @|long long| & @|long-long|, @|signed-long-long|,
d21ac4d9 540 @|long-long-int|, \\ \hlx{}
dea4d055
MW
541 & \qquad @|signed-long-long-int|,
542 @|llong|, @|sllong| \\ \hlx{v}
543 @|unsigned long long|
544 & @|unsigned-long-long|, @|unsigned-long-long-int|,
fcb6c0fb 545 @|ullong| \\ \hlx{v}
d21ac4d9
MW
546 @|size_t| & @|size-t| \\ \hlx{}
547 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
fcb6c0fb 548 @|float| & @|float| \\ \hlx{}
a4434457
MW
549 @|double| & @|double| \\ \hlx{}
550 @|long double| & @|long-double| \\ \hlx{v}
551 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
a4434457 552 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
a4434457 553 @|long double _Imaginary|
d21ac4d9
MW
554 & @|long-double-imaginary| \\ \hlx{v}
555 @|float _Complex| & @|float-complex| \\ \hlx{}
556 @|double _Complex| & @|double-complex| \\ \hlx{}
a4434457 557 @|long double _Complex|
d21ac4d9
MW
558 & @|long-double-complex| \\ \hlx{v}
559 @|va_list| & @|va-list| \\ \hlx*{vh}
dea4d055
MW
560 \end{tabular}
561 \caption{Builtin symbolic type specifiers for simple C types}
64d1ecf7 562 \label{tab:codegen.c-types.simple}
dea4d055
MW
563\end{table}
564
1f7d590d
MW
565\begin{describe}{fun}
566 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
dea4d055
MW
567 Return the (unique interned) simple C type object for the C type whose name
568 is @<name> (a string) and which has the given @<qualifiers> (a list of
569 keywords).
570\end{describe}
571
1f7d590d
MW
572\begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
573 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
dea4d055
MW
574 string.
575\end{describe}
576
1f7d590d 577\begin{describe}{mac}
020b9e2b 578 {define-simple-c-type
14adef2f
MW
579 \=@{ @<name> @! (@<name>^+) @}
580 @{ @<string> @! (@<string>^*) @} \+\\
020b9e2b
MW
581 @[[ @|:export| @<export-flag> @]]
582 \-\nlret @<name>}
dea4d055
MW
583 Define type specifiers for a new simple C type. Each symbol @<name> is
584 defined as a symbolic type specifier for the (unique interned) simple C
14adef2f
MW
585 type whose name is the value of (the first) @<string>. Further, each
586 @<name> is defined to be a type operator: the type specifier @|(@<name>
dea4d055 587 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
14adef2f
MW
588 name is (the first) @<string> and which has the @<qualifiers> (which are
589 evaluated).
e43d3532 590
14adef2f 591 Each of the @<string>s is associated with the resulting type for retrieval
e8d70b1b 592 by \descref{fun}{find-simple-c-type}. Furthermore, a variable
14adef2f
MW
593 @|c-type-@<name>| is defined, for the first @<name> only, and initialized
594 with the newly constructed C type object.
e43d3532
MW
595
596 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
597 all of the @<name>s, are exported from the current package.
dea4d055
MW
598\end{describe}
599
14adef2f
MW
600\begin{describe}{fun}
601 {find-simple-c-type @<string> @> @{ @<simple-c-type> @! @|nil| @}}
602 If @<string> is the name of a simple C type, as established by the
e8d70b1b 603 \descref{mac}{define-simple-c-type}[macro], then return the corresponding
14adef2f
MW
604 @|simple-c-type| object; otherwise, return @|nil|.
605\end{describe}
606
dea4d055
MW
607\begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
608 \&key :qualifiers :tag}
609 Provides common behaviour for C tagged types. A @<tag> is a string
610 containing a C identifier.
611
612 Two tagged types are equal if and only if they have the same class, their
613 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
614 subclasses may have additional methods on @|c-type-equal-p| which impose
615 further restrictions.)
616\end{describe}
617\begin{boxy}[Bug]
618 Sod maintains distinct namespaces for the three kinds of tagged types. In
619 C, there is only one namespace for tags which is shared between enums,
620 structs and unions.
621\end{boxy}
622
1f7d590d
MW
623\begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
624 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
625 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
626 should return their own classification symbols. It is intended that
627 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
628 syntax.\footnote{%
dea4d055
MW
629 Alas, C doesn't provide a syntactic category for these keywords;
630 \Cplusplus\ calls them a @<class-key>.} %
1f7d590d
MW
631 There is a method defined for each of the built-in tagged type classes
632 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
633\end{describe}
634
635\begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
636 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
637 naming a kind of tagged type, return the name of the corresponding C
638 type class as a symbol.
dea4d055
MW
639\end{describe}
640
641\begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
642 Represents a C enumerated type. An instance denotes the C type @|enum|
643 @<tag>. See the direct superclass @|tagged-c-type| for details.
644
645 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
646 interned) enumerated type with the given @<tag> and @<qualifier>s (all
647 evaluated).
648\end{describe}
1f7d590d
MW
649\begin{describe}{fun}
650 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
dea4d055
MW
651 Return the (unique interned) C type object for the enumerated C type whose
652 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
653 keywords).
654\end{describe}
655
656\begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
657 Represents a C structured type. An instance denotes the C type @|struct|
658 @<tag>. See the direct superclass @|tagged-c-type| for details.
659
660 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
661 interned) structured type with the given @<tag> and @<qualifier>s (all
662 evaluated).
663\end{describe}
1f7d590d
MW
664\begin{describe}{fun}
665 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
dea4d055
MW
666 Return the (unique interned) C type object for the structured C type whose
667 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
668 keywords).
669\end{describe}
670
671\begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
672 Represents a C union type. An instance denotes the C type @|union|
673 @<tag>. See the direct superclass @|tagged-c-type|
674 for details.
675
676 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
677 interned) union type with the given @<tag> and @<qualifier>s (all
678 evaluated).
679\end{describe}
1f7d590d
MW
680\begin{describe}{fun}
681 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
dea4d055
MW
682 Return the (unique interned) C type object for the union C type whose tag
683 is @<tag> (a string) and which has the given @<qualifiers> (a list of
684 keywords).
685\end{describe}
686
31d4431b 687
1f7d590d
MW
688\subsection{Compound C types} \label{sec:code.c-types.compound}
689
690Some C types are \emph{compound types}: they're defined in terms of existing
691types. The classes which represent compound types implement a common
692protocol.
dea4d055 693
1f7d590d
MW
694\begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
695 Returns the underlying type of a compound type @<c-type>. Precisely what
696 this means depends on the class of @<c-type>.
dea4d055
MW
697\end{describe}
698
31d4431b 699
ae0f15ee
MW
700\subsection{Atomic types} \label{sec:clang.c-types.atomic}
701
702Atomic types are compound types. The subtype of an atomic type is simply the
703underlying type of the object. Note that, as far as Sod is concerned, atomic
704types are not the same as atomic-qualified types: you must be consistent
705about which you use.
706
707\begin{describe}{cls}
708 {c-atomic-type (qualifiable-c-type) \&key :qualifiers :subtype}
709 Represents an atomic type. An instance denotes the C type
710 @|_Atomic(@<subtype>)|.
711
712 The @<subtype> may be any C type.\footnote{%
713 C does not permit atomic function or array types.} %
714 Two atomic types are equal if and only if their subtypes are equal and they
715 have matching qualifiers. It is possible, though probably not useful, to
716 have an atomic-qualified atomic type.
717
718 The type specifier @|(atomic @<type-spec> @<qualifier>^*)| returns a type
719 qualified atomic @<subtype>, where @<subtype> is the type specified by
720 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
721 evaluated).
722\end{describe}
723
724\begin{describe}{fun}
725 {make-atomic-type @<c-type> \&optional @<qualifiers> @> @<c-atomic-type>}
726 Return an object describing the type qualified atomic @<subtype>. If
727 @<subtype> is interned, then the returned atomic type object is interned
728 also.
729\end{describe}
730
731
1f7d590d
MW
732\subsection{Pointer types} \label{sec:clang.c-types.pointer}
733
cf7f1f46
MW
734Pointers are compound types. The subtype of a pointer type is the type it
735points to.
1f7d590d
MW
736
737\begin{describe}{cls}
738 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
dea4d055
MW
739 Represents a C pointer type. An instance denotes the C type @<subtype>
740 @|*|@<qualifiers>.
741
742 The @<subtype> may be any C type. Two pointer types are equal if and only
743 if their subtypes are equal and they have matching qualifiers.
744
745 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
746 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
747 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
748 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
749 star @`*'.
750
fcb6c0fb 751 The symbol @|string| is a type specifier for the type pointer to
dea4d055
MW
752 characters; the symbol @|const-string| is a type specifier for the type
753 pointer to constant characters.
754\end{describe}
1f7d590d
MW
755
756\begin{describe}{fun}
757 {make-pointer-type @<c-type> \&optional @<qualifiers>
758 @> @<c-pointer-type>}
fcb6c0fb 759 Return an object describing the type qualified pointer to @<subtype>.
dea4d055
MW
760 If @<subtype> is interned, then the returned pointer type object is
761 interned also.
762\end{describe}
763
31d4431b 764
1f7d590d
MW
765\subsection{Array types} \label{sec:clang.c-types.array}
766
fcb6c0fb
MW
767Arrays implement the compound-type protocol. The subtype of an array type is
768the array element type.
1f7d590d 769
dea4d055
MW
770\begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
771 Represents a multidimensional C array type. The @<dimensions> are a list
772 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
773 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
774 individual dimension specifier is either a string containing a C integral
775 constant expression, or nil which is equivalent to an empty string. Only
776 the first (outermost) dimension $d_0$ should be empty.
777
778 C doesn't actually have multidimensional arrays as a primitive notion;
779 rather, it permits an array (with known extent) to be the element type of
780 an array, which achieves an equivalent effect. C arrays are stored in
781 row-major order: i.e., if we write down the indices of the elements of an
782 array in order of ascending address, the rightmost index varies fastest;
783 hence, the type constructed is more accurately an array of $d_0$ arrays of
784 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
785 continue to abuse terminology and refer to multidimensional arrays.
786
787 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
788 multidimensional array with the given @<dimension>s whose elements have the
789 type specified by @<type-spec>. If no dimensions are given then a
790 single-dimensional array with unspecified extent. The synonyms @|array|
791 and @|vector| may be used in place of the brackets @`[]'.
792\end{describe}
1f7d590d
MW
793
794\begin{describe}{fun}
795 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
dea4d055
MW
796 Return an object describing the type of arrays with given @<dimensions> and
797 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
798 argument is a list whose elements are strings or nil; see the description
799 of the class @|c-array-type| above for details.
800\end{describe}
1f7d590d
MW
801
802\begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
803 Returns the dimensions of @<c-type>, an array type, as an immutable list.
804\end{describe}
805
31d4431b 806
1f7d590d
MW
807\subsection{Function types} \label{sec:clang.c-types.fun}
808
fcb6c0fb
MW
809Function types implement the compound-type protocol. The subtype of a
810function type is the type of the function's return value.
811
1f7d590d 812\begin{describe}{cls}{argument}
fcb6c0fb 813 Represents an ordinary function argument.
1f7d590d
MW
814\end{describe}
815
816\begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
fcb6c0fb
MW
817 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
818 not return nil.
1f7d590d
MW
819\end{describe}
820
ced609b8
MW
821\begin{describe}{fun}
822 {make-argument @<name> @<c-type> \&optional @<default> @> @<argument>}
fcb6c0fb
MW
823 Construct and a return a new @<argument> object. The argument has type
824 @<c-type>, which must be a @|c-type| object, and is named @<name>.
825
826 The @<name> may be nil to indicate that the argument has no name: in this
827 case the argument will be formatted as an abstract declarator, which is not
828 suitable for function definitions. If @<name> is not nil, then the
829 @<name>'s print representation, with @|*print-escape*| nil, is used as the
830 argument name.
ced609b8
MW
831
832 A @<default> may be supplied. If the argument is used in a
e8d70b1b
MW
833 keyword-argument list (e.g., in a \descref{cls}{c-keyword-function-type}
834 [object]), and the @<default> value is provided and non-nil, then its
ced609b8
MW
835 (unescaped) printed representation is used to provide a default value if
836 the keyword argument is not supplied by the caller.
1f7d590d
MW
837\end{describe}
838
52e2a70f 839\begin{describe*}
31d4431b 840 {\dhead{fun}{argument-name @<argument> @> @<name>}
ced609b8
MW
841 \dhead{fun}{argument-type @<argument> @> @<c-type>}
842 \dhead{fun}{argument-default @<argument> @> @<default>}}
843 Accessor functions for @|argument| objects. They return the appropriate
844 component of the object, as set by to @|make-argument|. The @<default> is
845 nil if no default was provided to @|make-argument|.
52e2a70f 846\end{describe*}
dea4d055 847
fcb6c0fb 848\begin{describe}{gf}
1f7d590d 849 {commentify-argument-name @<name> @> @<commentified-name>}
fcb6c0fb
MW
850 Convert the argument name @<name> so that it's suitable to declare the
851 function in a header file.
dea4d055 852
fcb6c0fb
MW
853 Robust header files shouldn't include literal argument names in
854 declarations of functions or function types, since this restricts the
855 including file from defining such names as macros. This generic function
856 is used to convert names into a safe form.
857
87883222
MW
858 \begin{describe}{meth}{null}
859 {commentify-argument-name (@<name> null) @> nil}
fcb6c0fb
MW
860 Returns nil: if the argument name is already omitted, it's safe for use
861 in a header file.
862 \end{describe}
87883222
MW
863 \begin{describe}{meth}{t}
864 {commentify-argument-name (@<name> t) @> @<string>}
fcb6c0fb
MW
865 Returns the print form of @<name> wrapped in a C comment, as
866 @`/*@<name>*/'.
867 \end{describe}
1f7d590d
MW
868\end{describe}
869
870\begin{describe}{fun}
fcb6c0fb
MW
871 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
872 Convert the @<arguments> list so that it's suitable for use in a header
873 file.
874
875 The @<arguments> list should be a list whose items are @|argument| objects
876 or the keyword @|:ellipsis|. The return value is a list constructed as
877 follows. For each @|argument| object in the input list, there is a
878 corresponding @|argument| object in the returned list, with the same type,
879 and whose name is the result of @|commentify-argument-name| applied to the
880 input argument name; an @|:ellipsis| in the input list is passed through
881 unchanged.
1f7d590d
MW
882\end{describe}
883
fcb6c0fb
MW
884\begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
885 Represents C function types. An instance denotes the type of a C
886 function which accepts the @<arguments> and returns @<subtype>.
887
888 The @<arguments> are a possibly empty list. All but the last element of
889 the list must be @|argument| objects; the final element may instead be the
890 keyword @|:ellipsis|, which denotes a variable argument list.
891
892 An @<arguments> list consisting of a single argument with type @|void| is
893 converted into an empty list. On output as C code, an empty argument list
894 is written as @|void|. It is not possible to represent a pre-ANSI C
895 function without prototypes.
896
897 Two function types are considered to be the same if their return types are
898 the same, and their argument lists consist of arguments with the same type,
899 in the same order, and either both or neither argument list ends with
900 @|:ellipsis|; argument names are not compared.
901
ed76585e
MW
902 The type specifier
903 \begin{prog}
904 (fun @<return-type>
905 @{ (@<arg-name> @<arg-type>) @}^*
906 @[:ellipsis @! . @<form>@])
907 \end{prog}
908 constructs a function type. The function has the subtype @<return-type>.
909 The remaining items in the type-specifier list are used to construct the
910 argument list. The argument items are a possibly improper list, beginning
911 with zero or more \emph{explicit arguments}: two-item
912 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
913 is constructed with the given name (evaluated) and type. Following the
914 explicit arguments, there may be
fcb6c0fb
MW
915 \begin{itemize}
916 \item nothing, in which case the function's argument list consists only of
917 the explicit arguments;
918 \item the keyword @|:ellipsis|, as the final item in the type-specifier
919 list, indicating a variable argument list may follow the explicit
920 arguments; or
921 \item a possibly-improper list tail, beginning with an atom either as a
922 list item or as the final list cdr, indicating that the entire list tail
2249baa7 923 is a Lisp expression which is to be evaluated to compute the remaining
fcb6c0fb
MW
924 arguments.
925 \end{itemize}
926 A tail expression may return a list of @|argument| objects, optionally
927 followed by an @|:ellipsis|.
928
929 For example,
930 \begin{prog}
020b9e2b 931 (c-type (fun \=(lisp (c-type-subtype other-func)) \+\\
fcb6c0fb
MW
932 ("first" int) . (c-function-arguments other-func))
933 \end{prog}
934 evaluates to a function type like @|other-func|, only with an additional
935 argument of type @|int| added to the front of its argument list. This
936 could also have been written
937 \begin{prog}
020b9e2b
MW
938 (let (\=(args (c-function-arguments other-func)) \+\\
939 (ret (c-type-subtype other-func))) \-\\ \ind
fcb6c0fb
MW
940 (c-type (fun \=(lisp ret) ("first" int) . args)
941 \end{prog}
1f7d590d
MW
942\end{describe}
943
ced609b8
MW
944\begin{describe}{cls}
945 {c-keyword-function-type (c-function-type)
946 \&key :subtype :arguments :keywords}
947 Represents `functions' which accept keyword arguments. Of course, actual C
948 functions can't accept keyword arguments directly, but this type is useful
949 for describing messages and methods which deal with keyword arguments.
950
951 An instance denotes the type of C function which accepts the position
952 argument list @<arguments>, and keyword arguments from the @<keywords>
953 list, and returns @<subtype>. Either or both of the @<arguments> and
954 @<keywords> lists may be empty. (It is important to note the distinction
955 between a function which doesn't accept keyword arguments, and one which
956 does but for which no keyword arguments are defined. In particular, the
957 latter function can be changed later to accept a keyword argument without
958 breaking compatibility with old code.) The @<arguments> and @<keywords>
959 lists must \emph{not} contain @|:ellipsis| markers: a function can accept
960 keywords, or a variable-length argument tail, but not both.
961
962 Keyword arguments may (but need not) have a \emph{default value} which is
963 supplied to the function body if the keyword is omitted.
964
965 Keyword functions are never considered to be the same as ordinary
966 functions. Two keyword function types are considered to be the same if
967 their return types are the same, and their positional argument lists consist of
968 arguments with the same type, in the same order: the keyword arguments
969 accepted by the functions is not significant.
970
971 Keyword functions are constructed using an extended version of the @|fun|
972 specifier used for ordinary C function types. The extended syntax is as
973 follows.
974 \begin{prog}
975 (fun \=@<return-type>
020b9e2b 976 @{ (@<arg-name> @<arg-type>) @}^* \+\\
ced609b8 977 @{ \=:keys @{ (@<kw-name> @<kw-type> @[@<kw-default>@]) @}^*
020b9e2b 978 @[. @<form>@] @! \+\\
ced609b8
MW
979 . @<form> @}
980 \end{prog}
981 where either the symbol @|:keys| appears literally in the specifier, or the
982 @<form> evaluates to a list containing the symbol @|:keys|. (If neither of
983 these circumstances obtains, then the specifier constructs an ordinary
984 function type.)
985
e8d70b1b 986 See the description of \descref{cls}{c-function-type} for how a trailing
ced609b8
MW
987 @<form> is handled.
988
989 The list of @<arg-name>s and @<arg-type>s describes the positional
990 arguments. The list of @<kw-name>s, @<kw-type>s and @<kw-defaults>s
991 describes the keyword arguments.
992\end{describe}
993
1f7d590d 994\begin{describe}{fun}
fcb6c0fb
MW
995 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
996 Construct and return a new function type, returning @<subtype> and
997 accepting the @<arguments>.
ced609b8
MW
998
999 If the @<arguments> list contains a @|:keys| marker, then a
e8d70b1b 1000 \descref{cls}{c-keyword-function-type}[object] is returned: those arguments
ced609b8
MW
1001 preceding the @|:keys| marker form the positional argument list, and those
1002 following the marker form the list of keyword arguments.
1003\end{describe}
1004
1005\begin{describe}{fun}
1006 {make-keyword-function-type @<subtype> @<arguments> @<keywords>
1007 \nlret @<c-keyword-function-type>}
1008 Construct and return a new keyword-function type, returning @<subtype> and
1009 accepting the @<arguments> and @<keywords>.
fcb6c0fb
MW
1010\end{describe}
1011
1012\begin{describe}{gf}
1013 {c-function-arguments @<c-function-type> @> @<arguments>}
1014 Return the arguments list of the @<c-function-type>.
1f7d590d
MW
1015\end{describe}
1016
1017\begin{describe}{fun}
fcb6c0fb
MW
1018 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
1019 Return a commentified version of the @<c-function-type>.
1020
1021 The returned type has the same subtype as the given type, and the argument
1022 list of the returned type is the result of applying
1023 @|commentify-argument-names| to the argument list of the given type.
dea4d055
MW
1024\end{describe}
1025
074650bc
MW
1026\begin{describe}{fun}{reify-variable-argument-tail @<arguments> @> @<list>}
1027 If the @<argument> list contains an @|:ellipsis| marker, then replace it
1028 with a @|va_list|. The name for the new argument, if any, is taken from
e8d70b1b 1029 the \descref{var}{*sod-ap*}[variable]. The new list is returned; the
074650bc
MW
1030 original list is not modified, but may share structure with the new list.
1031\end{describe}
1032
84b9d17a
MW
1033\begin{describe}{fun}
1034 {merge-keyword-lists @<what-function> @<lists> @> @<list>}
ced609b8
MW
1035 Merge a number of keyword-argument lists together and return the result.
1036
84b9d17a
MW
1037 The @<what-function> is either nil or a function designator; see below.
1038
1039 The @<lists> parameter is a list consisting of a number of
1040 @|(@<report-function> . @<args>)| pairs: in each pair, @<report-function>
1041 is either nil or a function designator, and @<args> is a list of
e8d70b1b 1042 \descref{cls}{argument} objects.
ced609b8
MW
1043
1044 The resulting list contains exactly one argument for each distinct argument
1045 name appearing in the input @<lists>; this argument will contain the
1046 default value from the earliest occurrence in the input @<lists> of an
1047 argument with that name.
1048
84b9d17a
MW
1049 If the same name appears multiple times with different types, a continuable
1050 error will be signalled, and one of the conflicting argument types will be
1051 chosen arbitrarily. The @<what-function> will be called to establish
1052 information which will be reported to the user. It will be called with no
1053 arguments and is expected to return two values:
1054 \begin{itemize}
1055 \item a file location @<floc> or other object acceptable to
e8d70b1b 1056 \descref{gf}{file-location}, to be used as the location of the main
84b9d17a
MW
1057 error; and
1058 \item an object @<what>, whose printed representation should be a noun
1059 phrase describing the object for which the argument lists are being
1060 combined.
1061 \end{itemize}
1062 The phrasing of the error message is `type mismatch in @<what>'. Either,
1063 or both, of @<floc> and @<what> may be nil, though this is considered poor
1064 practice; if @<what-function> is nil, this is equivalent to a function
1065 which returns two nil values. Following the error, the @<report-function>s
1066 for the @<args> lists containing the conflicting argument objects are
1067 called, in an arbitrary order, with a single argument which is the
1068 offending @|argument| object; the function is expected to issue information
e8d70b1b 1069 messages (see \descref{fun}{info}) to give more detail for diagnosing the
84b9d17a
MW
1070 conflict. If a @<report-function> is nil, then nothing happens; this is
1071 considered poor practice.
ced609b8
MW
1072\end{describe}
1073
678b6c0f
MW
1074\begin{describe}{fun}
1075 {pprint-c-function-type @<return-type> @<stream>
1076 @<print-args> @<print-kernel>}
1077 Provides the top-level structure for printing C function types.
1078
1079 Output is written to @<stream> to describe a function type returning
1080 @<return-type>, whose declarator kernel (containing the name, and any
1081 further type operands) will be printed by @<print-kernel>, and whose
1082 arguments, if any, will be printed by @<print-args>.
1083
1084 The @<print-kernel> function is a standard kernel-printing function
e8d70b1b 1085 following the \descref{gf}{pprint-c-type}[protocol].
678b6c0f
MW
1086
1087 The @<print-args> function is given a single argument, which is the
1088 @<stream> to print on. It should not print the surrounding parentheses.
1089
1090 The output written to @<stream> looks approximately like
1091 \begin{prog}
1092 @<return-type> @<kernel>(@<args>)
1093 \end{prog}
1094\end{describe}
1095
1096\begin{describe}{fun}{pprint-argument-list @<args> @<stream> @> @<flag>}
1097 Print an argument list to @<stream>.
1098
e8d70b1b 1099 The @<args> is a list of \descref{cls}{argument}[objects], optionally
678b6c0f
MW
1100 containing an @|:ellipsis| marker. The function returns true if any
1101 arguments were actually printed.
1102\end{describe}
1103
31d4431b 1104
1f7d590d
MW
1105\subsection{Parsing C types} \label{sec:clang.c-types.parsing}
1106
756f4928
MW
1107\begin{describe}{fun}
1108 {parse-c-type @<scanner>
1109 @> @<result> @<success-flag> @<consumed-flag>}
1110\end{describe}
1111
1112\begin{describe}{fun}
1113 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
1114 \nlret @<result> @<success-flag> @<consumed-flag>}
1115\end{describe}
1116
31d4431b 1117
756f4928
MW
1118\subsection{Class types} \label{sec:clang.c-types.class}
1119
1120\begin{describe}{cls}
1121 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
1122\end{describe}
1123
1124\begin{describe*}
1125 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
1126 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
1127\end{describe*}
1128
1129\begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
1130\end{describe}
1131
1132\begin{describe}{fun}
1133 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
1134\end{describe}
1135
756f4928
MW
1136\begin{describe}{fun}{find-sod-class @<name> @> @<class>}
1137\end{describe}
1138
1139\begin{describe}{fun}{record-sod-class @<class>}
1140\end{describe}
1141
1f7d590d
MW
1142%%%--------------------------------------------------------------------------
1143\section{Generating C code} \label{sec:clang.codegen}
1144
fcb6c0fb
MW
1145This section deals with Sod's facilities for constructing and manipulating C
1146expressions, declarations, instructions and definitions.
1147
31d4431b 1148
fcb6c0fb
MW
1149\subsection{Temporary names} \label{sec:clang.codegen.temporaries}
1150
1151Many C-level objects, especially ones with external linkage or inclusion in a
1152header file, are assigned names which are simple strings, perhaps fixed ones,
1153perhaps constructed. Other objects don't need meaningful names, and
1154suitably unique constructed names would be tedious and most likely rather
1155opaque. Therefore Sod has an ability to construct \emph{temporary names}.
1156
1157These aren't temporary in the sense that they name C objects which have
1158limited lifetimes at runtime. Rather, the idea is that the names be
1159significant only to small pieces of Lisp code, which will soon forget about
1160them.
1161
1162\subsubsection{The temporary name protocol}
1163Temporary names are represented by objects which implement a simple protocol.
1164
1165\begin{describe}{gf}{format-temporary-name @<var> @<stream>}
1166\end{describe}
1167
1168\begin{describe*}
1169 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
73786167 1170 \dhead{gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
fcb6c0fb
MW
1171\end{describe*}
1172
1173\subsubsection{Temporary name objects}
1174
1175\begin{describe}{cls}{temporary-name () \&key :tag}
1176 A temporary name object. This is the root of a small collection of
1177 subclasses, but is also usable on its own.
1178\end{describe}
1179
87883222 1180\begin{describe}{meth}{temporary-name}
fcb6c0fb
MW
1181 {commentify-argument-name (@<name> temporary-name) @> nil}
1182\end{describe}
1183
1184\begin{table}
1185 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1186 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1187 temporary-name & @<tag> \\
1188 temporary-argument & sod__a@<tag> \\
1189 temporary-function & sod__f@<tag> \\
1190 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
1191 \end{tabular}
1192 \caption{Temporary name formats}
1193 \label{tab:codegen.codegen.temps-format}
1194\end{table}
1195
1196\begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
1197\end{describe}
1198
1199\begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
1200\end{describe}
1201
1202\begin{describe}{fun}{temporary-function @> @<name>}
1203\end{describe}
1204
1205\begin{describe}{cls}
1206 {temporary-variable (temporary-name) \&key :tag :in-use-p}
1207\end{describe}
1208
1209\subsubsection{Well-known `temporary' names}
1210
1211\begin{table}
0dfd5c6d
MW
1212 \def\x#1{\desclabel{var}{#1}}
1213 \x{*sod-ap*} \x{*sod-master-ap*} \x{*null-pointer*}
fcb6c0fb
MW
1214 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1215 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1216 {}*sod-ap* & sod__ap \\
944caf84
MW
1217 {}*sod-master-ap* & sod__master_ap \\
1218 {}*null-pointer* & NULL \\ \hlx*{vh}
fcb6c0fb
MW
1219 \end{tabular}
1220 \caption{Well-known temporary names}
1221 \label{tab:codegen.codegen.well-known-temps}
1222\end{table}
1223
31d4431b 1224
fcb6c0fb
MW
1225\subsection{Instructions} \label{sec:clang.codegen.insts}
1226
1227\begin{describe}{cls}{inst () \&key}
1228\end{describe}
1229
1230\begin{describe}{gf}{inst-metric @<inst>}
1231\end{describe}
1232
1233\begin{describe}{mac}
020b9e2b
MW
1234 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
1235 @[[ @<declaration>^* @! @<doc-string> @]] \\
1236 @<form>^*
1237 \-\nlret @<code>}
fcb6c0fb
MW
1238\end{describe}
1239
1240\begin{describe}{mac}
cac85e0b 1241 {format-compound-statement
020b9e2b
MW
1242 (@<stream> @<child> \&optional @<morep>) \\ \ind
1243 @<declaration>^* \\
cac85e0b 1244 @<form>^*}
fcb6c0fb
MW
1245\end{describe}
1246
7de8c666
MW
1247\begin{describe}{fun}
1248 {format-banner-comment @<stream> @<control> \&rest @<args>}
1249\end{describe}
1250
fcb6c0fb
MW
1251\begin{table}
1252 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
1253 \thd{Class name} &
1254 \thd{Arguments} &
1255 \thd{Output format} \\ \hlx{vhv}
167524b5
MW
1256 @|var| & @<name> @<type> @|\&optional| @<init>
1257 & @<type> @<name> @[= @<init>@];
fcb6c0fb
MW
1258 \\ \hlx{v}
1259 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
1260 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
1261 \\ \hlx{v}
2d8d81c5
MW
1262 @|cond| & @<cond> @<conseq> @<alt> & @<cond> ? @<conseq> : @<alt>
1263 \\ \hlx{v}
fcb6c0fb
MW
1264 @|return| & @<expr> & return @[@<expr>@];
1265 \\ \hlx{v}
1266 @|break| & --- & break; \\ \hlx{v}
1267 @|continue| & --- & continue; \\ \hlx{v}
1268 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
167524b5
MW
1269 @|call| & @<func> @|\&rest| @<args>
1270 & @<func>(@<arg>_1,
fcb6c0fb 1271 $\ldots$,
7de8c666
MW
1272 @<arg>_n) \\ \hlx{v}
1273 @|banner| & @<control> @|\&rest| @<args>
1274 & /* @<banner> */ \\ \hlx{vhv}
fcb6c0fb
MW
1275 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
1276 \\ \hlx{v}
167524b5
MW
1277 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
1278 & if (@<cond>) @<conseq>
fcb6c0fb 1279 @[else @<alt>@] \\ \hlx{v}
2d8d81c5
MW
1280 @|for| & @<init> @<cond> @<update> @<body> &
1281 for (@<init>; @<cond>; @<update>) @<body> \\ \hlx{v}
fcb6c0fb
MW
1282 @|while| & @<cond> @<body> & while (@<cond>) @<body>
1283 \\ \hlx{v}
1284 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
1285 \\ \hlx{v}
7de8c666
MW
1286 @|function| &
1287 \vtop{\hbox{\strut @<name> @<type> @<body>}
1288 \hbox{\strut \quad @|\&optional @<banner>|}
1289 \hbox{\strut \quad @|\&rest| @<banner-args>}} &
1290 \vtop{\hbox{\strut @[/* @<banner> */@]}
1291 \hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
167524b5
MW
1292 @<type>_n @<arg>_n @[, \dots@])}
1293 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
fcb6c0fb
MW
1294 \end{tabular}
1295 \caption{Instruction classes}
1296 \label{tab:codegen.codegen.insts}
1297\end{table}
1298
0dfd5c6d
MW
1299\begin{describe*}
1300 {\dhead*{cls}{@<code>-inst (inst) \&key \dots}
1301 \dhead*{fn}{make-@<code>-inst \dots}
1302 \dhead*{gf}{inst-@<slot> @<inst> @> @<value>}}
1303 \def\instclass#1#2#3{%
1304 #1{cls}{#3-inst}[#2]%
1305 #1{fun}{make-#3-inst}[#2]%
1306 }
1307 \def\instslot#1#2#3{#1{gf}{inst-#3}[#2]}
1308 \def\makelabels#1#2{%
1309 \def\x{\instclass{#1}{#2}}
1310 \x{var} \x{set} \x{update} \x{cond} \x{return} \x{break} \x{continue}
1311 \x{expr} \x{call} \x{banner} \x{block} \x{if} \x{for} \x{while}
1312 \x{do-while} \x{function}
1313 \def\x{\instslot{#1}{#2}}
1314 \x{name} \x{type} \x{init} \x{var} \x{expr} \x{op} \x{cond} \x{conseq}
1315 \x{alt} \x{func} \x{args} \x{control} \x{decls} \x{body} \x{update}
1316 \x{banner} \x{banner-args}
1317 }
1318 \makelabels{\desclabel}{|(}
1319
1320 Sod provides a number of built-in instruction types generated by
1321 \descref{mac}{definst}: see \xref{tab:codegen.codegen.insts}.
1322
1323 \makelabels{\descindex}{|)}
1324\end{describe*}
1325
31d4431b 1326
fcb6c0fb
MW
1327\subsection{Code generation} \label{sec:clang.codegen.codegen}
1328
1329\begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
1330\end{describe}
1331
1332\begin{describe}{gf}
1333 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
1334\end{describe}
1335
1336\begin{describe}{gf}{emit-inst @<codegen> @<inst>}
1337\end{describe}
1338
1339\begin{describe}{gf}{emit-insts @<codegen> @<insts>}
1340\end{describe}
1341
1342\begin{describe}{gf}{emit-decl @<codegen> @<decl>}
1343\end{describe}
1344
7c3f8ae6 1345\begin{describe}{gf}{emit-decls @<codegen> @<decls>}
fcb6c0fb
MW
1346\end{describe}
1347
7de8c666
MW
1348\begin{describe}{fun}{emit-banner @<codegen> @<control> \&rest @<args>}
1349\end{describe}
1350
fcb6c0fb
MW
1351\begin{describe}{gf}{codegen-push @<codegen>}
1352\end{describe}
1353
1354\begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
1355\end{describe}
1356
1357\begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
1358\end{describe}
1359
1360\begin{describe}{gf}
1361 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
1362\end{describe}
1363
1364\begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
1365\end{describe}
1366
1367\begin{describe}{fun}
1368 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
1369 @> @<name>}
1370\end{describe}
1371
1372\begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
1373\end{describe}
1374
1375\begin{describe}{mac}
020b9e2b
MW
1376 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
1377 @<declaration>^* \\
1378 @<form>^*
1379 \-\nlret @<value>^*}
fcb6c0fb
MW
1380\end{describe}
1381
1382\begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
1383\end{describe}
1384
357885be
MW
1385\begin{describe}{fun}
1386 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1387\end{describe}
1388
fcb6c0fb
MW
1389\begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1390\end{describe}
1391
1392\begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1393\end{describe}
1394
2c7465ac
MW
1395%%%--------------------------------------------------------------------------
1396\section{Literal C code fragments} \label{sec:clang.fragment}
1397
1398\begin{describe}{cls}{c-fragment () \&key :location :text}
1399\end{describe}
1400
1401\begin{describe}{gf}{c-fragment-text @<fragment> @> @<string>}
1402\end{describe}
1403
1404\begin{describe}{fun}
1405 {scan-c-fragment @<scanner> @<end-chars>
1406 @> @<result> @<success-flag> @<consumed-flag>}
1407\end{describe}
1408
1409\begin{describe}{fun}
1410 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1411 \nlret @<result> @<success-flag> @<consumed-flag>}
1412\end{describe}
1413
dea4d055
MW
1414%%%----- That's all, folks --------------------------------------------------
1415
1416%%% Local variables:
1417%%% mode: LaTeX
1418%%% TeX-master: "sod.tex"
1419%%% TeX-PDF-mode: t
1420%%% End: