doc/*.tex: Add stubs for `file-location' reader methods.
[sod] / doc / clang.tex
CommitLineData
dea4d055
MW
1%%% -*-latex-*-
2%%%
1f7d590d 3%%% C language utilities
dea4d055 4%%%
1f7d590d 5%%% (c) 2015 Straylight/Edgeware
dea4d055
MW
6%%%
7
8%%%----- Licensing notice ---------------------------------------------------
9%%%
e0808c47 10%%% This file is part of the Sensible Object Design, an object system for C.
dea4d055
MW
11%%%
12%%% SOD is free software; you can redistribute it and/or modify
13%%% it under the terms of the GNU General Public License as published by
14%%% the Free Software Foundation; either version 2 of the License, or
15%%% (at your option) any later version.
16%%%
17%%% SOD is distributed in the hope that it will be useful,
18%%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19%%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20%%% GNU General Public License for more details.
21%%%
22%%% You should have received a copy of the GNU General Public License
23%%% along with SOD; if not, write to the Free Software Foundation,
24%%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
1f7d590d 26\chapter{C language utilities} \label{ch:clang}
dea4d055
MW
27
28%%%--------------------------------------------------------------------------
1f7d590d 29\section{C type representation} \label{sec:clang.c-types}
dea4d055 30
1f7d590d 31\subsection{Overview} \label{sec:clang.c-types.over}
dea4d055
MW
32
33The Sod translator represents C types in a fairly simple and direct way.
34However, because it spends a fair amount of its time dealing with C types, it
35provides a number of useful operations and macros.
36
64d1ecf7 37The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
dea4d055
MW
38
39\begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
020b9e2b
MW
41 @|c-type| \\ \ind
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
44 @|c-class-type| \-\\
45 @|tagged-c-type| \\ \ind
46 @|c-struct-type| \\
47 @|c-union-type| \\
48 @|c-enum-type| \-\\
49 @|c-atomic-type| \\
50 @|c-pointer-type| \-\\
51 @|c-array-type| \\
52 @|c-function-type| \\ \ind
53 @|c-keyword-function-type| \-
dea4d055
MW
54 \end{tabbing}}
55 \caption{Classes representing C types}
64d1ecf7 56\label{fig:codegen.c-types.classes}
dea4d055
MW
57\end{figure}
58
59C type objects are immutable unless otherwise specified.
60
61\subsubsection{Constructing C type objects}
62There is a constructor function for each non-abstract class of C type object.
63Note, however, that constructor functions need not generate a fresh type
64object if a previously existing type object is suitable. In this case, we
65say that the objects are \emph{interned}. Some constructor functions are
66specified to return interned objects: programs may rely on receiving the same
67(@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
68not specified, clients may still not rely on receiving fresh objects.
69
58f9b400 70A convenient S-expression notation is provided by the
e8d70b1b 71\descref{mac}{c-type}[macro]. Use of this macro is merely an abbreviation
58f9b400
MW
72for corresponding use of the various constructor functions, and therefore
73interns type objects in the same manner. The syntax accepted by the macro
e8d70b1b
MW
74can be extended in order to support new classes: see \descref{mac}{defctype},
75\descref{mac}{c-type-alias} and \descref{mac}{define-c-type-syntax}.
dea4d055
MW
76
77The descriptions of each of the various classes include descriptions of the
78initargs which may be passed to @|make-instance| when constructing a new
79instance of the class. However, the constructor functions and S-expression
80syntax are strongly recommended over direct use of @|make-instance|.
81
82\subsubsection{Printing}
83There are two protocols for printing C types. Unfortunately they have
84similar names.
85\begin{itemize}
e8d70b1b 86\item The \descref{gf}{print-c-type}[function] prints a C type value using
58f9b400 87 the S-expression notation. It is mainly useful for diagnostic purposes.
e8d70b1b 88\item The \descref{gf}{pprint-c-type}[function] prints a C type as a
58f9b400 89 C-syntax declaration.
dea4d055
MW
90\end{itemize}
91Neither generic function defines a default primary method; subclasses of
92@|c-type| must define their own methods in order to print correctly.
93
a75cd932
MW
94\begin{describe}{fun}{c-name-case @<name> @> @<string>}
95\end{describe}
96
31d4431b 97
1f7d590d 98\subsection{The C type root class} \label{sec:clang.c-types.root}
dea4d055
MW
99
100\begin{describe}{cls}{c-type ()}
101 The class @|c-type| marks the root of the built-in C type hierarchy.
102
103 Users may define subclasses of @|c-type|. All non-abstract subclasses must
104 have a primary method defined on @|pprint-c-type|; unless instances of the
105 subclass are interned, a method on @|c-type-equal-p| is also required.
106
107 The class @|c-type| is abstract.
108\end{describe}
109
31d4431b 110
1f7d590d 111\subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
dea4d055
MW
112
113The S-expression representation of a type is described syntactically as a
114type specifier. Type specifiers fit into two syntactic categories.
115\begin{itemize}
116\item A \emph{symbolic type specifier} consists of a symbol. It has a
117 single, fixed meaning: if @<name> is a symbolic type specifier, then each
118 use of @<name> in a type specifier evaluates to the same (@|eq|) type
119 object, until the @<name> is redefined.
120\item A \emph{type operator} is a symbol; the corresponding specifier is a
121 list whose @|car| is the operator. The remaining items in the list are
122 arguments to the type operator.
123\end{itemize}
124
1f7d590d 125\begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
dea4d055
MW
126 Evaluates to a C type object, as described by the type specifier
127 @<type-spec>.
128\end{describe}
129
1f7d590d 130\begin{describe}{mac}
020b9e2b
MW
131 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+\\
132 @[[ @|:export| @<export-flag> @]]^*
133 \-\nlret @<names>}
dea4d055
MW
134 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
135 given, then all are defined in the same way. The type constructed by using
136 any of the @<name>s is as described by the type specifier @<type-spec>.
137
138 The resulting type object is constructed once, at the time that the macro
139 expansion is evaluated; the same (@|eq|) value is used each time any
140 @<name> is used in a type specifier.
e43d3532
MW
141
142 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
143 and initialized to contain the C type object so constructed. Altering or
144 binding this name is discouraged.
145
146 If @<export-flag> is true, then the variable name, and all of the @<name>s,
147 are exported from the current package.
dea4d055
MW
148\end{describe}
149
1f7d590d 150\begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
dea4d055
MW
151 Defines each @<alias> as being a type operator identical in behaviour to
152 @<original>. If @<original> is later redefined then the behaviour of the
153 @<alias>es changes too.
154\end{describe}
155
1f7d590d 156\begin{describe}{mac}
020b9e2b
MW
157 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
158 @[[ @<declaration>^* @! @<doc-string> @]] \\
159 @<form>^*
160 \-\nlret @<name>}
dea4d055
MW
161 Defines the symbol @<name> as a new type operator. When a list of the form
162 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
163 are bound to fresh variables according to @<lambda-list> (a destructuring
164 lambda-list) and the @<form>s evaluated in order in the resulting lexical
165 environment as an implicit @|progn|. The value should be a Lisp form which
166 will evaluate to the type specified by the arguments.
167
168 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
169 type specifiers among its arguments.
170\end{describe}
171
e07fb83c 172\begin{describe}{gf}{expand-c-type-spec @<type-spec> @> @<form>}
dea4d055 173 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
e07fb83c 174
e8d70b1b 175 If @<type-spec> is a list, then \descref{gf}{expand-c-type-form} is
e07fb83c
MW
176 invoked.
177\end{describe}
178
179\begin{describe}{gf}{expand-c-type-form @<head> @<tail> @> @<form>}
054e8f8f 180 Returns the Lisp form that @|(c-type (@<head> . @<tail>))| would expand
e07fb83c 181 into.
dea4d055
MW
182\end{describe}
183
1f7d590d
MW
184\begin{describe}{gf}
185 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
dea4d055
MW
186 Print the C type object @<type> to @<stream> in S-expression form. The
187 @<colon> and @<atsign> arguments may be interpreted in any way which seems
188 appropriate: they are provided so that @|print-c-type| may be called via
189 @|format|'s @|\char`\~/\dots/| command; they are not set when
190 @|print-c-type| is called by Sod functions.
191
192 There should be a method defined for every C type class; there is no
193 default method.
194\end{describe}
195
31d4431b 196
1f7d590d 197\subsection{Comparing C types} \label{sec:clang.c-types.cmp}
dea4d055
MW
198
199It is necessary to compare C types for equality, for example when checking
200argument lists for methods. This is done by @|c-type-equal-p|.
201
1f7d590d
MW
202\begin{describe}{gf}
203 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
204 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
205 @<c-type>_2 for equality; it returns true if the two types are equal and
dea4d055
MW
206 false if they are not.
207
208 Two types are equal if they are structurally similar, where this property
209 is defined by methods for each individual class; see the descriptions of
210 the classes for the details.
211
212 The generic function @|c-type-equal-p| uses the @|and| method combination.
213
87883222 214 \begin{describe}{meth}{t,t}{c-type-equal-p @<c-type>_1 @<c-type>_2}
dea4d055
MW
215 A default primary method for @|c-type-equal-p| is defined. It simply
216 returns @|nil|. This way, methods can specialize on both arguments
217 without fear that a call will fail because no methods are applicable.
218 \end{describe}
87883222 219 \begin{describe}{ar-meth}{}{c-type-equal-p @<c-type>_1 @<c-type>_2}
dea4d055 220 A default around-method for @|c-type-equal-p| is defined. It returns
1f7d590d
MW
221 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
222 the primary methods. Since several common kinds of C types are interned,
dea4d055
MW
223 this is a common case worth optimizing.
224 \end{describe}
225\end{describe}
226
31d4431b 227
1f7d590d 228\subsection{Outputting C types} \label{sec:clang.c-types.output}
dea4d055 229
1f7d590d 230\begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
dea4d055 231 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
1f7d590d 232 declaration of an object or function of type @<c-type>. The result is
dea4d055
MW
233 written to @<stream>.
234
235 A C declaration has two parts: a sequence of \emph{declaration specifiers}
236 and a \emph{declarator}. The declarator syntax involves parentheses and
237 operators, in order to reflect the operators applicable to the declared
238 variable. For example, the name of a pointer variable is preceded by @`*';
239 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
240
241 The @<kernel> argument must be a function designator (though see the
242 standard around-method); it is invoked as
243 \begin{quote} \codeface
244 (funcall @<kernel> @<stream> @<priority> @<spacep>)
245 \end{quote}
246 It should write to @<stream> -- which may not be the same stream originally
247 passed into the generic function -- the `kernel' of the declarator, i.e.,
248 the part to which prefix and/or postfix operators are attached to form the
249 full declarator.
250
251 The methods on @|pprint-c-type| specialized for compound types work by
252 recursively calling @|pprint-c-type| on the subtype, passing down a closure
253 which prints the necessary additional declarator operators before calling
254 the original @<kernel> function. The additional arguments @<priority> and
255 @<spacep> support this implementation technique.
256
257 The @<priority> argument describes the surrounding operator context. It is
258 zero if no type operators are directly attached to the kernel (i.e., there
259 are no operators at all, or the kernel is enclosed in parentheses), one if
260 a prefix operator is directly attached, or two if a postfix operator is
261 directly attached. If the @<kernel> function intends to provide its own
262 additional declarator operators, it should check the @<priority> in order
263 to determine whether parentheses are necessary. See also the
e8d70b1b 264 \descref{mac}{maybe-in-parens}[macro].
dea4d055
MW
265
266 The @<spacep> argument indicates whether a space needs to be printed in
267 order to separate the declarator from the declaration specifiers. A kernel
268 which contains an identifier should insert a space before the identifier
269 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
270 declarator (one that specifies no name), looks more pleasing without a
e8d70b1b 271 trailing space. See also the \descref{fun}{c-type-space}[function].
dea4d055
MW
272
273 Every concrete subclass of @|c-type| is expected to provide a primary
274 method on this function. There is no default primary method.
275
87883222 276 \begin{describe}{ar-meth}{}{pprint-c-type @<c-type> @<stream> @<kernel>}
dea4d055
MW
277 A default around method is defined on @|pprint-c-type| which `canonifies'
278 non-function @<kernel> arguments. In particular:
279 \begin{itemize}
280 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
281 with a @<kernel> function that does nothing; and
282 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
283 called recursively with a @<kernel> function that prints the object as
284 if by @|princ|, preceded if necessary by space using @|c-type-space|.
285 \end{itemize}
286 \end{describe}
287\end{describe}
288
289\begin{describe}{fun}{c-type-space @<stream>}
290 Writes a space and other pretty-printing instructions to @<stream> in order
291 visually to separate a declarator from the preceding declaration
292 specifiers. The precise details are subject to change.
293\end{describe}
294
1f7d590d 295\begin{describe}{mac}
cac85e0b
MW
296 {maybe-in-parens (@<stream-var> @<guard-form>)
297 @<declaration>^*
298 @<form>^*}
dea4d055
MW
299 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
300 sequence within a pretty-printer logical block writing to the stream named
301 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
302 the logical block has empty prefix and suffix strings; if it evaluates to a
303 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
304 respectively.
305
306 Note that this may cause @<stream> to be bound to a different stream object
307 within the @<form>s.
308\end{describe}
309
31d4431b 310
dea4d055 311\subsection{Type qualifiers and qualifiable types}
1f7d590d 312\label{sec:clang.ctypes.qual}
dea4d055 313
ae0f15ee
MW
314Qualifiers -- @|const|, @|volatile|, and so on -- are represented as lists of
315keywords attached to types. Not all C types can carry qualifiers: notably,
316function and array types cannot be qualified.
317
318For the most part, the C qualifier keywords correspond to like-named Lisp
319keywords, only the Lisp keyword names are in uppercase. The correspondence
320is shown in \xref{tab:clang.ctypes.qual}.
321
322\begin{table}
323 \begin{tabular}[C]{*2{>{\codeface}l}l} \hlx*{hv}
324 \thd{\textbf{C name}} & \thd{\textbf{Lisp name}} \\ \hlx{vhv}
325 _Atomic & :atomic \\
326 const & :const \\
327 restrict & :restrict \\
328 volatile & :volatile \\ \hlx*{vh}
329 \end{tabular}
330 \caption{C and Lisp qualifier names} \label{tab:clang.ctypes.qual}
331\end{table}
332
333The default behaviour, on output, is to convert keywords to lowercase and
334hope for the best: special cases can be dealt with by adding appropriate
e8d70b1b 335methods to \descref{gf}{c-qualifier-keyword}.
ae0f15ee 336
dea4d055
MW
337\begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
338 The class @|qualifiable-c-type| describes C types which can bear
339 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
340 @|restrict| and @|volatile|.
341
342 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
343 @|:volatile|. There is no built-in limitation to these particular
344 qualifiers; others keywords may be used, though this isn't recommended.
345
346 Two qualifiable types are equal only if they have \emph{matching
31d4431b
MW
347 qualifiers}: i.e., every qualifier attached to one is also attached to the
348 other: order is not significant, and neither is multiplicity.
dea4d055
MW
349
350 The class @|qualifiable-c-type| is abstract.
351\end{describe}
352
a75cd932
MW
353\begin{describe}{fun}
354 {canonify-qualifiers @<qualifiers> @> @<canonfied-qualifiers>}
355\end{describe}
356
1f7d590d
MW
357\begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
358 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
359 an immutable list.
dea4d055
MW
360\end{describe}
361
a75cd932 362\begin{describe}{fun}{qualify-c-type @<c-type> @<qualifiers> @> @<c-type>}
1f7d590d 363 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
dea4d055
MW
364 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
365 keywords. The result is a C type object like @<c-type> except that it
366 bears the given @<qualifiers>.
367
1f7d590d 368 The @<c-type> is not modified. If @<c-type> is interned, then the returned
dea4d055
MW
369 type will be interned.
370\end{describe}
371
0b80399d 372\begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
dea4d055
MW
373 Returns a string containing the qualifiers listed in @<qualifiers> in C
374 syntax, with a space after each. In particular, if @<qualifiers> is
375 non-null then the final character of the returned string will be a space.
376\end{describe}
377
ff4e398b
MW
378\begin{describe}{gf}{c-qualifier-keyword @<qualifier> @> @<string>}
379 Return, as a string, the C keyword corresponding to the Lisp @<qualifier>.
380
381 There is a standard method, which deals with many qualifiers. Additional
382 methods exist for qualifier keywords which need special handling, such as
383 @|:atomic|; they are not listed here explicitly.
384
87883222
MW
385 \begin{describe}{meth}{keyword}
386 {c-qualifier-keyword @<keyword> @> @<string>}
ff4e398b
MW
387 Returns the @<keyword>'s print-name, in lower case. This is sufficient
388 for the standard qualifiers @|:const|, @|:restrict|, and @|:volatile|.
389 \end{describe}
390\end{describe}
391
392\begin{describe}{fun}{c-type-qualifier-keywords @<c-type> @> @<list>}
393 Return the @<c-type>'s qualifiers, as a list of C keyword names.
394\end{describe}
395
31d4431b 396
b7fcf941
MW
397\subsection{Storage specifiers} \label{sec:clang.ctypes.specs}
398
399Some declaration specifiers, mostly to do with how to store the specific
400object in question, are determinedly `top level', and, unlike qualifiers,
401don't stay attached to the base type when acted on by declarator operators.
402Sod calls these `storage specifiers', though no such category exists in the C
403standard. They have their own protocol, which is similar in many ways to
404that of C types.
405
406Every Lisp keyword is potentially a storage specifier, which simply maps to
407its lower-case print name in C; but other storage specifiers may be more
408complicated objects.
409
410\begin{describe}{cls}
411 {c-storage-specifiers-type (c-type) \&key :subtype :specifiers}
412 A type which carries storage specifiers. The @<subtype> is the actual
413 type, and may be any C type; the @<specifiers> are a list of
414 storage-specifier objects.
415
416 The type specifier @|(specs @<subtype> @<specifier>^*)| wraps the
417 @<subtype> in a @|c-storage-specifiers-type|, carrying the @<specifier>s,
418 which are a list of storage specifiers in S-expression notation.
419\end{describe}
420
421\begin{describe}{fun}{c-type-specifiers @<type> @> @<list>}
422 Returns the list of type specifiers attached to the @<type> object, which
423 must be a @|c-storage-specifiers-type|.
424\end{describe}
425
426\begin{describe}{mac}
427 {define-c-storage-specifier-syntax @<name> @<lambda-list> \\ \ind
428 @[[ @<declaration>^* @! @<doc-string> @]] \\
429 @<form>^* \-
430 \nlret @<name>}
431
432 Defines the symbol @<name> as a new storage-specifier operator. When a
433 list of the form @|(@<name> @<argument>^*)| is used as a storage specifier,
434 the @<argument>s are bound to fresh variables according to the
435 @<lambda-list> (a destructuring lambda-list) and the @<form>s evaluated in
436 order in the resulting lexical environment as an implicit @<progn>. The
437 value should be a Lisp form which will evaluate to the storage-specifier
438 object described by the arguments.
439
440 The @<form>s may call @|expand-c-storage-specifier| in order to recursively
441 expand storage specifiers among its arguments.
442\end{describe}
443
444\begin{describe}{gf}{expand-c-storage-specifier @<spec> @> @<form>}
445 Returns the Lisp form that @<spec> expands to within @|(c-type (specs
446 @<subtype> @<spec>))|.
447
588e0b33 448 If @<spec> is a list, then \descref{gf}{expand-c-storage-specifier-form} is
b7fcf941
MW
449 invoked.
450\end{describe}
451
452\begin{describe}{gf}{expand-c-storage-specifier-form @<spec> @> @<form>}
453 Returns the Lisp form that @|(@<head> . @<tail>)| expands to within
454 @|(c-type (specs @<subtype> (@<head> . @<tail>)))|.
455\end{describe}
456
457\begin{describe}{gf}{pprint-c-storage-specifier @<spec> @<stream>}
458\end{describe}
459
460\begin{describe}{gf}
461 {print-c-storage-specifier @<stream> @<spec>
462 \&optional @<colon> @<atsign>}
463\end{describe}
464
465\begin{describe}{fun}{wrap-c-type @<func> @<base-type> @> @<c-type>}
466 Apply @<func> to the underlying C type of @<base-type> to create a new
467 `wrapped' type, and attach the storage specifiers of @<base-type> to the
468 wrapped type.
469
470 If @<base-type> is \emph{not} a @|c-storage-specifiers-type|, then return
471 @|(funcall @<func> @<base-type>)|. Otherwise, return a new
472 @|c-storage-specifiers-type|, with the same specifiers, but whose subtype
473 is the result of applying @<func> to the subtype of the original
474 @<base-type>.
475\end{describe}
476
db56b1d3
MW
477\begin{describe}{cls}{alignas-storage-specifier () \&key :alignment}
478 The class of @|_Alignas| storage specifiers; an instance denotes the
479 specifier @|_Alignas(@<alignment>)|. The @<alignment> parameter may be any
480 printable object, but is usually a string or C fragment.
481
482 The storage specifier form @|(alignas @<alignment>)| returns a storage
483 specifier @|_Alignas(@<alignment>)|, where @<alignment> is evaluated.
484\end{describe}
485
31d4431b 486
1f7d590d 487\subsection{Leaf types} \label{sec:clang.c-types.leaf}
dea4d055
MW
488
489A \emph{leaf type} is a type which is not defined in terms of another type.
490In Sod, the leaf types are
491\begin{itemize}
492\item \emph{simple types}, including builtin types like @|int| and @|char|,
493 as well as type names introduced by @|typename|, because Sod isn't
494 interested in what the type name means, merely that it names a type; and
495\item \emph{tagged types}, i.e., enum, struct and union types which are named
496 by a keyword identifying the kind of type, and a \emph{tag}.
497\end{itemize}
498
499\begin{describe}{cls}{simple-c-type (qualifiable-c-type)
500 \&key :qualifiers :name}
501 The class of `simple types'; an instance denotes the type @<qualifiers>
502 @<name>.
503
504 A simple type object maintains a \emph{name}, which is a string whose
505 contents are the C name for the type. The initarg @|:name| may be used to
506 provide this name when calling @|make-instance|.
507
508 Two simple type objects are equal if and only if they have @|string=| names
509 and matching qualifiers.
510
0dfd5c6d
MW
511 \def\x#1{\desclabel{const}{#1}}
512 \x{c-type-bool} \x{c-type-char} \x{c-type-wchar-t} \x{c-type-signed-char}
513 \x{c-type-unsigned-char} \x{c-type-short} \x{c-type-unsigned-short}
514 \x{c-type-int} \x{c-type-unsigned} \x{c-type-long} \x{c-type-unsigned-long}
515 \x{c-type-long-long} \x{c-type-unsigned-long-long} \x{c-type-size-t}
516 \x{c-type-ptrdiff-t} \x{c-type-float} \x{c-type-double}
517 \x{c-type-long-double} \x{c-type-float-imaginary}
518 \x{c-type-double-imaginary} \x{c-type-long-double-imaginary}
519 \x{c-type-float-complex} \x{c-type-double-complex}
520 \x{c-type-long-double-complex} \x{c-type-va-list} \x{c-type-void}
dea4d055 521 A number of symbolic type specifiers for builtin types are predefined as
64d1ecf7 522 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
dea4d055
MW
523 @|define-simple-c-type|, so can be used to construct qualified types.
524\end{describe}
525
526\begin{table}
fcb6c0fb
MW
527 \begin{tabular}[C]{ll} \hlx*{hv}
528 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
529 @|void| & @|void| \\ \hlx{v}
a4434457
MW
530 @|_Bool| & @|bool| \\ \hlx{v}
531 @|char| & @|char| \\ \hlx{}
a4434457 532 @|wchar_t| & @|wchar-t| \\ \hlx{v}
d21ac4d9
MW
533 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
534 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
dea4d055 535 @|short| & @|short|, @|signed-short|, @|short-int|,
fcb6c0fb 536 @|signed-short-int| @|sshort| \\ \hlx{}
dea4d055 537 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
fcb6c0fb 538 @|ushort| \\ \hlx{v}
dea4d055 539 @|int| & @|int|, @|signed|, @|signed-int|,
fcb6c0fb
MW
540 @|sint| \\ \hlx{}
541 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
dea4d055 542 @|long| & @|long|, @|signed-long|, @|long-int|,
fcb6c0fb 543 @|signed-long-int|, @|slong| \\ \hlx{}
dea4d055 544 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
fcb6c0fb 545 @|ulong| \\ \hlx{v}
dea4d055 546 @|long long| & @|long-long|, @|signed-long-long|,
d21ac4d9 547 @|long-long-int|, \\ \hlx{}
dea4d055
MW
548 & \qquad @|signed-long-long-int|,
549 @|llong|, @|sllong| \\ \hlx{v}
550 @|unsigned long long|
551 & @|unsigned-long-long|, @|unsigned-long-long-int|,
fcb6c0fb 552 @|ullong| \\ \hlx{v}
d21ac4d9
MW
553 @|size_t| & @|size-t| \\ \hlx{}
554 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
fcb6c0fb 555 @|float| & @|float| \\ \hlx{}
a4434457
MW
556 @|double| & @|double| \\ \hlx{}
557 @|long double| & @|long-double| \\ \hlx{v}
558 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
a4434457 559 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
a4434457 560 @|long double _Imaginary|
d21ac4d9
MW
561 & @|long-double-imaginary| \\ \hlx{v}
562 @|float _Complex| & @|float-complex| \\ \hlx{}
563 @|double _Complex| & @|double-complex| \\ \hlx{}
a4434457 564 @|long double _Complex|
d21ac4d9
MW
565 & @|long-double-complex| \\ \hlx{v}
566 @|va_list| & @|va-list| \\ \hlx*{vh}
dea4d055
MW
567 \end{tabular}
568 \caption{Builtin symbolic type specifiers for simple C types}
64d1ecf7 569 \label{tab:codegen.c-types.simple}
dea4d055
MW
570\end{table}
571
1f7d590d
MW
572\begin{describe}{fun}
573 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
dea4d055
MW
574 Return the (unique interned) simple C type object for the C type whose name
575 is @<name> (a string) and which has the given @<qualifiers> (a list of
576 keywords).
577\end{describe}
578
1f7d590d
MW
579\begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
580 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
dea4d055
MW
581 string.
582\end{describe}
583
1f7d590d 584\begin{describe}{mac}
020b9e2b 585 {define-simple-c-type
14adef2f
MW
586 \=@{ @<name> @! (@<name>^+) @}
587 @{ @<string> @! (@<string>^*) @} \+\\
020b9e2b
MW
588 @[[ @|:export| @<export-flag> @]]
589 \-\nlret @<name>}
dea4d055
MW
590 Define type specifiers for a new simple C type. Each symbol @<name> is
591 defined as a symbolic type specifier for the (unique interned) simple C
14adef2f
MW
592 type whose name is the value of (the first) @<string>. Further, each
593 @<name> is defined to be a type operator: the type specifier @|(@<name>
dea4d055 594 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
14adef2f
MW
595 name is (the first) @<string> and which has the @<qualifiers> (which are
596 evaluated).
e43d3532 597
14adef2f 598 Each of the @<string>s is associated with the resulting type for retrieval
e8d70b1b 599 by \descref{fun}{find-simple-c-type}. Furthermore, a variable
14adef2f
MW
600 @|c-type-@<name>| is defined, for the first @<name> only, and initialized
601 with the newly constructed C type object.
e43d3532
MW
602
603 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
604 all of the @<name>s, are exported from the current package.
dea4d055
MW
605\end{describe}
606
14adef2f
MW
607\begin{describe}{fun}
608 {find-simple-c-type @<string> @> @{ @<simple-c-type> @! @|nil| @}}
609 If @<string> is the name of a simple C type, as established by the
e8d70b1b 610 \descref{mac}{define-simple-c-type}[macro], then return the corresponding
14adef2f
MW
611 @|simple-c-type| object; otherwise, return @|nil|.
612\end{describe}
613
dea4d055
MW
614\begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
615 \&key :qualifiers :tag}
616 Provides common behaviour for C tagged types. A @<tag> is a string
617 containing a C identifier.
618
619 Two tagged types are equal if and only if they have the same class, their
620 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
621 subclasses may have additional methods on @|c-type-equal-p| which impose
622 further restrictions.)
623\end{describe}
624\begin{boxy}[Bug]
625 Sod maintains distinct namespaces for the three kinds of tagged types. In
626 C, there is only one namespace for tags which is shared between enums,
627 structs and unions.
628\end{boxy}
629
a75cd932
MW
630\begin{describe}{gf}{c-type-tag @<c-type> @> @<keyword>}
631\end{describe}
632
633\begin{describe}{fun}
634 {make-c-tagged-type @<kind> @<tag> \&optional @<qualifiers>
635 @> @<tagged-type>}
636\end{describe}
637
1f7d590d
MW
638\begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
639 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
640 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
641 should return their own classification symbols. It is intended that
642 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
643 syntax.\footnote{%
dea4d055
MW
644 Alas, C doesn't provide a syntactic category for these keywords;
645 \Cplusplus\ calls them a @<class-key>.} %
1f7d590d
MW
646 There is a method defined for each of the built-in tagged type classes
647 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
648\end{describe}
649
650\begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
651 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
652 naming a kind of tagged type, return the name of the corresponding C
653 type class as a symbol.
dea4d055
MW
654\end{describe}
655
656\begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
657 Represents a C enumerated type. An instance denotes the C type @|enum|
658 @<tag>. See the direct superclass @|tagged-c-type| for details.
659
660 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
661 interned) enumerated type with the given @<tag> and @<qualifier>s (all
662 evaluated).
663\end{describe}
e38e8367 664
1f7d590d
MW
665\begin{describe}{fun}
666 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
dea4d055
MW
667 Return the (unique interned) C type object for the enumerated C type whose
668 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
669 keywords).
670\end{describe}
671
672\begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
673 Represents a C structured type. An instance denotes the C type @|struct|
674 @<tag>. See the direct superclass @|tagged-c-type| for details.
675
676 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
677 interned) structured type with the given @<tag> and @<qualifier>s (all
678 evaluated).
679\end{describe}
e38e8367 680
1f7d590d
MW
681\begin{describe}{fun}
682 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
dea4d055
MW
683 Return the (unique interned) C type object for the structured C type whose
684 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
685 keywords).
686\end{describe}
687
688\begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
689 Represents a C union type. An instance denotes the C type @|union|
690 @<tag>. See the direct superclass @|tagged-c-type|
691 for details.
692
693 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
694 interned) union type with the given @<tag> and @<qualifier>s (all
695 evaluated).
696\end{describe}
1f7d590d
MW
697\begin{describe}{fun}
698 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
dea4d055
MW
699 Return the (unique interned) C type object for the union C type whose tag
700 is @<tag> (a string) and which has the given @<qualifiers> (a list of
701 keywords).
702\end{describe}
703
31d4431b 704
1f7d590d
MW
705\subsection{Compound C types} \label{sec:code.c-types.compound}
706
707Some C types are \emph{compound types}: they're defined in terms of existing
708types. The classes which represent compound types implement a common
709protocol.
dea4d055 710
1f7d590d
MW
711\begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
712 Returns the underlying type of a compound type @<c-type>. Precisely what
713 this means depends on the class of @<c-type>.
dea4d055
MW
714\end{describe}
715
31d4431b 716
ae0f15ee
MW
717\subsection{Atomic types} \label{sec:clang.c-types.atomic}
718
719Atomic types are compound types. The subtype of an atomic type is simply the
720underlying type of the object. Note that, as far as Sod is concerned, atomic
721types are not the same as atomic-qualified types: you must be consistent
722about which you use.
723
724\begin{describe}{cls}
725 {c-atomic-type (qualifiable-c-type) \&key :qualifiers :subtype}
726 Represents an atomic type. An instance denotes the C type
727 @|_Atomic(@<subtype>)|.
728
729 The @<subtype> may be any C type.\footnote{%
730 C does not permit atomic function or array types.} %
731 Two atomic types are equal if and only if their subtypes are equal and they
732 have matching qualifiers. It is possible, though probably not useful, to
733 have an atomic-qualified atomic type.
734
735 The type specifier @|(atomic @<type-spec> @<qualifier>^*)| returns a type
736 qualified atomic @<subtype>, where @<subtype> is the type specified by
737 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
738 evaluated).
739\end{describe}
740
741\begin{describe}{fun}
742 {make-atomic-type @<c-type> \&optional @<qualifiers> @> @<c-atomic-type>}
743 Return an object describing the type qualified atomic @<subtype>. If
744 @<subtype> is interned, then the returned atomic type object is interned
745 also.
746\end{describe}
747
748
1f7d590d
MW
749\subsection{Pointer types} \label{sec:clang.c-types.pointer}
750
cf7f1f46
MW
751Pointers are compound types. The subtype of a pointer type is the type it
752points to.
1f7d590d
MW
753
754\begin{describe}{cls}
755 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
dea4d055
MW
756 Represents a C pointer type. An instance denotes the C type @<subtype>
757 @|*|@<qualifiers>.
758
759 The @<subtype> may be any C type. Two pointer types are equal if and only
760 if their subtypes are equal and they have matching qualifiers.
761
762 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
763 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
764 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
765 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
766 star @`*'.
767
fcb6c0fb 768 The symbol @|string| is a type specifier for the type pointer to
dea4d055
MW
769 characters; the symbol @|const-string| is a type specifier for the type
770 pointer to constant characters.
771\end{describe}
1f7d590d
MW
772
773\begin{describe}{fun}
774 {make-pointer-type @<c-type> \&optional @<qualifiers>
775 @> @<c-pointer-type>}
fcb6c0fb 776 Return an object describing the type qualified pointer to @<subtype>.
dea4d055
MW
777 If @<subtype> is interned, then the returned pointer type object is
778 interned also.
779\end{describe}
780
31d4431b 781
1f7d590d
MW
782\subsection{Array types} \label{sec:clang.c-types.array}
783
fcb6c0fb
MW
784Arrays implement the compound-type protocol. The subtype of an array type is
785the array element type.
1f7d590d 786
dea4d055
MW
787\begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
788 Represents a multidimensional C array type. The @<dimensions> are a list
789 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
790 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
791 individual dimension specifier is either a string containing a C integral
792 constant expression, or nil which is equivalent to an empty string. Only
793 the first (outermost) dimension $d_0$ should be empty.
794
795 C doesn't actually have multidimensional arrays as a primitive notion;
796 rather, it permits an array (with known extent) to be the element type of
797 an array, which achieves an equivalent effect. C arrays are stored in
798 row-major order: i.e., if we write down the indices of the elements of an
799 array in order of ascending address, the rightmost index varies fastest;
800 hence, the type constructed is more accurately an array of $d_0$ arrays of
801 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
802 continue to abuse terminology and refer to multidimensional arrays.
803
804 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
805 multidimensional array with the given @<dimension>s whose elements have the
806 type specified by @<type-spec>. If no dimensions are given then a
807 single-dimensional array with unspecified extent. The synonyms @|array|
808 and @|vector| may be used in place of the brackets @`[]'.
809\end{describe}
1f7d590d
MW
810
811\begin{describe}{fun}
812 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
dea4d055
MW
813 Return an object describing the type of arrays with given @<dimensions> and
814 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
815 argument is a list whose elements are strings or nil; see the description
816 of the class @|c-array-type| above for details.
817\end{describe}
1f7d590d
MW
818
819\begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
820 Returns the dimensions of @<c-type>, an array type, as an immutable list.
821\end{describe}
822
31d4431b 823
1f7d590d
MW
824\subsection{Function types} \label{sec:clang.c-types.fun}
825
fcb6c0fb
MW
826Function types implement the compound-type protocol. The subtype of a
827function type is the type of the function's return value.
828
1f7d590d 829\begin{describe}{cls}{argument}
fcb6c0fb 830 Represents an ordinary function argument.
1f7d590d
MW
831\end{describe}
832
833\begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
fcb6c0fb
MW
834 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
835 not return nil.
1f7d590d
MW
836\end{describe}
837
ced609b8
MW
838\begin{describe}{fun}
839 {make-argument @<name> @<c-type> \&optional @<default> @> @<argument>}
fcb6c0fb
MW
840 Construct and a return a new @<argument> object. The argument has type
841 @<c-type>, which must be a @|c-type| object, and is named @<name>.
842
843 The @<name> may be nil to indicate that the argument has no name: in this
844 case the argument will be formatted as an abstract declarator, which is not
845 suitable for function definitions. If @<name> is not nil, then the
846 @<name>'s print representation, with @|*print-escape*| nil, is used as the
847 argument name.
ced609b8
MW
848
849 A @<default> may be supplied. If the argument is used in a
e8d70b1b
MW
850 keyword-argument list (e.g., in a \descref{cls}{c-keyword-function-type}
851 [object]), and the @<default> value is provided and non-nil, then its
ced609b8
MW
852 (unescaped) printed representation is used to provide a default value if
853 the keyword argument is not supplied by the caller.
1f7d590d
MW
854\end{describe}
855
52e2a70f 856\begin{describe*}
31d4431b 857 {\dhead{fun}{argument-name @<argument> @> @<name>}
ced609b8
MW
858 \dhead{fun}{argument-type @<argument> @> @<c-type>}
859 \dhead{fun}{argument-default @<argument> @> @<default>}}
860 Accessor functions for @|argument| objects. They return the appropriate
861 component of the object, as set by to @|make-argument|. The @<default> is
862 nil if no default was provided to @|make-argument|.
52e2a70f 863\end{describe*}
dea4d055 864
fcb6c0fb 865\begin{describe}{gf}
1f7d590d 866 {commentify-argument-name @<name> @> @<commentified-name>}
fcb6c0fb
MW
867 Convert the argument name @<name> so that it's suitable to declare the
868 function in a header file.
dea4d055 869
fcb6c0fb
MW
870 Robust header files shouldn't include literal argument names in
871 declarations of functions or function types, since this restricts the
872 including file from defining such names as macros. This generic function
873 is used to convert names into a safe form.
874
87883222
MW
875 \begin{describe}{meth}{null}
876 {commentify-argument-name (@<name> null) @> nil}
fcb6c0fb
MW
877 Returns nil: if the argument name is already omitted, it's safe for use
878 in a header file.
879 \end{describe}
87883222
MW
880 \begin{describe}{meth}{t}
881 {commentify-argument-name (@<name> t) @> @<string>}
fcb6c0fb
MW
882 Returns the print form of @<name> wrapped in a C comment, as
883 @`/*@<name>*/'.
884 \end{describe}
1f7d590d
MW
885\end{describe}
886
887\begin{describe}{fun}
fcb6c0fb
MW
888 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
889 Convert the @<arguments> list so that it's suitable for use in a header
890 file.
891
892 The @<arguments> list should be a list whose items are @|argument| objects
893 or the keyword @|:ellipsis|. The return value is a list constructed as
894 follows. For each @|argument| object in the input list, there is a
895 corresponding @|argument| object in the returned list, with the same type,
896 and whose name is the result of @|commentify-argument-name| applied to the
897 input argument name; an @|:ellipsis| in the input list is passed through
898 unchanged.
1f7d590d
MW
899\end{describe}
900
fcb6c0fb
MW
901\begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
902 Represents C function types. An instance denotes the type of a C
903 function which accepts the @<arguments> and returns @<subtype>.
904
905 The @<arguments> are a possibly empty list. All but the last element of
906 the list must be @|argument| objects; the final element may instead be the
907 keyword @|:ellipsis|, which denotes a variable argument list.
908
909 An @<arguments> list consisting of a single argument with type @|void| is
910 converted into an empty list. On output as C code, an empty argument list
911 is written as @|void|. It is not possible to represent a pre-ANSI C
912 function without prototypes.
913
914 Two function types are considered to be the same if their return types are
915 the same, and their argument lists consist of arguments with the same type,
916 in the same order, and either both or neither argument list ends with
917 @|:ellipsis|; argument names are not compared.
918
ed76585e
MW
919 The type specifier
920 \begin{prog}
921 (fun @<return-type>
922 @{ (@<arg-name> @<arg-type>) @}^*
923 @[:ellipsis @! . @<form>@])
924 \end{prog}
925 constructs a function type. The function has the subtype @<return-type>.
926 The remaining items in the type-specifier list are used to construct the
927 argument list. The argument items are a possibly improper list, beginning
928 with zero or more \emph{explicit arguments}: two-item
929 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
930 is constructed with the given name (evaluated) and type. Following the
931 explicit arguments, there may be
fcb6c0fb
MW
932 \begin{itemize}
933 \item nothing, in which case the function's argument list consists only of
934 the explicit arguments;
935 \item the keyword @|:ellipsis|, as the final item in the type-specifier
936 list, indicating a variable argument list may follow the explicit
937 arguments; or
938 \item a possibly-improper list tail, beginning with an atom either as a
939 list item or as the final list cdr, indicating that the entire list tail
2249baa7 940 is a Lisp expression which is to be evaluated to compute the remaining
fcb6c0fb
MW
941 arguments.
942 \end{itemize}
943 A tail expression may return a list of @|argument| objects, optionally
944 followed by an @|:ellipsis|.
945
946 For example,
947 \begin{prog}
020b9e2b 948 (c-type (fun \=(lisp (c-type-subtype other-func)) \+\\
fcb6c0fb
MW
949 ("first" int) . (c-function-arguments other-func))
950 \end{prog}
951 evaluates to a function type like @|other-func|, only with an additional
952 argument of type @|int| added to the front of its argument list. This
953 could also have been written
954 \begin{prog}
020b9e2b
MW
955 (let (\=(args (c-function-arguments other-func)) \+\\
956 (ret (c-type-subtype other-func))) \-\\ \ind
fcb6c0fb
MW
957 (c-type (fun \=(lisp ret) ("first" int) . args)
958 \end{prog}
1f7d590d
MW
959\end{describe}
960
ced609b8
MW
961\begin{describe}{cls}
962 {c-keyword-function-type (c-function-type)
963 \&key :subtype :arguments :keywords}
964 Represents `functions' which accept keyword arguments. Of course, actual C
965 functions can't accept keyword arguments directly, but this type is useful
966 for describing messages and methods which deal with keyword arguments.
967
968 An instance denotes the type of C function which accepts the position
969 argument list @<arguments>, and keyword arguments from the @<keywords>
970 list, and returns @<subtype>. Either or both of the @<arguments> and
971 @<keywords> lists may be empty. (It is important to note the distinction
972 between a function which doesn't accept keyword arguments, and one which
973 does but for which no keyword arguments are defined. In particular, the
974 latter function can be changed later to accept a keyword argument without
975 breaking compatibility with old code.) The @<arguments> and @<keywords>
976 lists must \emph{not} contain @|:ellipsis| markers: a function can accept
977 keywords, or a variable-length argument tail, but not both.
978
979 Keyword arguments may (but need not) have a \emph{default value} which is
980 supplied to the function body if the keyword is omitted.
981
982 Keyword functions are never considered to be the same as ordinary
983 functions. Two keyword function types are considered to be the same if
e38e8367
MW
984 their return types are the same, and their positional argument lists
985 consist of arguments with the same type, in the same order: the keyword
986 arguments accepted by the functions is not significant.
ced609b8
MW
987
988 Keyword functions are constructed using an extended version of the @|fun|
989 specifier used for ordinary C function types. The extended syntax is as
990 follows.
991 \begin{prog}
992 (fun \=@<return-type>
020b9e2b 993 @{ (@<arg-name> @<arg-type>) @}^* \+\\
ced609b8 994 @{ \=:keys @{ (@<kw-name> @<kw-type> @[@<kw-default>@]) @}^*
020b9e2b 995 @[. @<form>@] @! \+\\
ced609b8
MW
996 . @<form> @}
997 \end{prog}
998 where either the symbol @|:keys| appears literally in the specifier, or the
999 @<form> evaluates to a list containing the symbol @|:keys|. (If neither of
1000 these circumstances obtains, then the specifier constructs an ordinary
1001 function type.)
1002
e8d70b1b 1003 See the description of \descref{cls}{c-function-type} for how a trailing
ced609b8
MW
1004 @<form> is handled.
1005
1006 The list of @<arg-name>s and @<arg-type>s describes the positional
1007 arguments. The list of @<kw-name>s, @<kw-type>s and @<kw-defaults>s
1008 describes the keyword arguments.
1009\end{describe}
1010
1f7d590d 1011\begin{describe}{fun}
fcb6c0fb
MW
1012 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
1013 Construct and return a new function type, returning @<subtype> and
1014 accepting the @<arguments>.
ced609b8
MW
1015
1016 If the @<arguments> list contains a @|:keys| marker, then a
e8d70b1b 1017 \descref{cls}{c-keyword-function-type}[object] is returned: those arguments
ced609b8
MW
1018 preceding the @|:keys| marker form the positional argument list, and those
1019 following the marker form the list of keyword arguments.
1020\end{describe}
1021
1022\begin{describe}{fun}
1023 {make-keyword-function-type @<subtype> @<arguments> @<keywords>
1024 \nlret @<c-keyword-function-type>}
1025 Construct and return a new keyword-function type, returning @<subtype> and
1026 accepting the @<arguments> and @<keywords>.
fcb6c0fb
MW
1027\end{describe}
1028
1029\begin{describe}{gf}
1030 {c-function-arguments @<c-function-type> @> @<arguments>}
e048fa59 1031 Return the (non-keyword) argument list of the @<c-function-type>.
1f7d590d
MW
1032\end{describe}
1033
a75cd932
MW
1034\begin{describe}{gf}
1035 {c-function-keywords @<c-function-type> @> @<keywords>}
1036 Return the keyword-argument list of the @<c-function-type>.
1037\end{describe}
1038
1f7d590d 1039\begin{describe}{fun}
fcb6c0fb
MW
1040 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
1041 Return a commentified version of the @<c-function-type>.
1042
1043 The returned type has the same subtype as the given type, and the argument
1044 list of the returned type is the result of applying
1045 @|commentify-argument-names| to the argument list of the given type.
dea4d055
MW
1046\end{describe}
1047
074650bc
MW
1048\begin{describe}{fun}{reify-variable-argument-tail @<arguments> @> @<list>}
1049 If the @<argument> list contains an @|:ellipsis| marker, then replace it
1050 with a @|va_list|. The name for the new argument, if any, is taken from
e8d70b1b 1051 the \descref{var}{*sod-ap*}[variable]. The new list is returned; the
074650bc
MW
1052 original list is not modified, but may share structure with the new list.
1053\end{describe}
1054
84b9d17a
MW
1055\begin{describe}{fun}
1056 {merge-keyword-lists @<what-function> @<lists> @> @<list>}
ced609b8
MW
1057 Merge a number of keyword-argument lists together and return the result.
1058
84b9d17a
MW
1059 The @<what-function> is either nil or a function designator; see below.
1060
1061 The @<lists> parameter is a list consisting of a number of
1062 @|(@<report-function> . @<args>)| pairs: in each pair, @<report-function>
1063 is either nil or a function designator, and @<args> is a list of
e8d70b1b 1064 \descref{cls}{argument} objects.
ced609b8
MW
1065
1066 The resulting list contains exactly one argument for each distinct argument
1067 name appearing in the input @<lists>; this argument will contain the
1068 default value from the earliest occurrence in the input @<lists> of an
1069 argument with that name.
1070
84b9d17a
MW
1071 If the same name appears multiple times with different types, a continuable
1072 error will be signalled, and one of the conflicting argument types will be
1073 chosen arbitrarily. The @<what-function> will be called to establish
1074 information which will be reported to the user. It will be called with no
1075 arguments and is expected to return two values:
1076 \begin{itemize}
1077 \item a file location @<floc> or other object acceptable to
e8d70b1b 1078 \descref{gf}{file-location}, to be used as the location of the main
84b9d17a
MW
1079 error; and
1080 \item an object @<what>, whose printed representation should be a noun
1081 phrase describing the object for which the argument lists are being
1082 combined.
1083 \end{itemize}
1084 The phrasing of the error message is `type mismatch in @<what>'. Either,
1085 or both, of @<floc> and @<what> may be nil, though this is considered poor
1086 practice; if @<what-function> is nil, this is equivalent to a function
1087 which returns two nil values. Following the error, the @<report-function>s
1088 for the @<args> lists containing the conflicting argument objects are
1089 called, in an arbitrary order, with a single argument which is the
1090 offending @|argument| object; the function is expected to issue information
e8d70b1b 1091 messages (see \descref{fun}{info}) to give more detail for diagnosing the
84b9d17a
MW
1092 conflict. If a @<report-function> is nil, then nothing happens; this is
1093 considered poor practice.
ced609b8
MW
1094\end{describe}
1095
678b6c0f
MW
1096\begin{describe}{fun}
1097 {pprint-c-function-type @<return-type> @<stream>
1098 @<print-args> @<print-kernel>}
1099 Provides the top-level structure for printing C function types.
1100
1101 Output is written to @<stream> to describe a function type returning
1102 @<return-type>, whose declarator kernel (containing the name, and any
1103 further type operands) will be printed by @<print-kernel>, and whose
1104 arguments, if any, will be printed by @<print-args>.
1105
1106 The @<print-kernel> function is a standard kernel-printing function
e8d70b1b 1107 following the \descref{gf}{pprint-c-type}[protocol].
678b6c0f
MW
1108
1109 The @<print-args> function is given a single argument, which is the
1110 @<stream> to print on. It should not print the surrounding parentheses.
1111
1112 The output written to @<stream> looks approximately like
1113 \begin{prog}
1114 @<return-type> @<kernel>(@<args>)
1115 \end{prog}
1116\end{describe}
1117
1118\begin{describe}{fun}{pprint-argument-list @<args> @<stream> @> @<flag>}
1119 Print an argument list to @<stream>.
1120
e8d70b1b 1121 The @<args> is a list of \descref{cls}{argument}[objects], optionally
678b6c0f
MW
1122 containing an @|:ellipsis| marker. The function returns true if any
1123 arguments were actually printed.
1124\end{describe}
1125
31d4431b 1126
1f7d590d
MW
1127\subsection{Parsing C types} \label{sec:clang.c-types.parsing}
1128
756f4928
MW
1129\begin{describe}{fun}
1130 {parse-c-type @<scanner>
1131 @> @<result> @<success-flag> @<consumed-flag>}
1132\end{describe}
1133
1134\begin{describe}{fun}
1135 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
1136 \nlret @<result> @<success-flag> @<consumed-flag>}
1137\end{describe}
1138
31d4431b 1139
756f4928
MW
1140\subsection{Class types} \label{sec:clang.c-types.class}
1141
1142\begin{describe}{cls}
1143 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
1144\end{describe}
1145
1146\begin{describe*}
1147 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
1148 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
1149\end{describe*}
1150
1151\begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
1152\end{describe}
1153
1154\begin{describe}{fun}
1155 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
1156\end{describe}
1157
756f4928
MW
1158\begin{describe}{fun}{find-sod-class @<name> @> @<class>}
1159\end{describe}
1160
1161\begin{describe}{fun}{record-sod-class @<class>}
1162\end{describe}
1163
1f7d590d
MW
1164%%%--------------------------------------------------------------------------
1165\section{Generating C code} \label{sec:clang.codegen}
1166
fcb6c0fb
MW
1167This section deals with Sod's facilities for constructing and manipulating C
1168expressions, declarations, instructions and definitions.
1169
31d4431b 1170
fcb6c0fb
MW
1171\subsection{Temporary names} \label{sec:clang.codegen.temporaries}
1172
1173Many C-level objects, especially ones with external linkage or inclusion in a
1174header file, are assigned names which are simple strings, perhaps fixed ones,
1175perhaps constructed. Other objects don't need meaningful names, and
1176suitably unique constructed names would be tedious and most likely rather
1177opaque. Therefore Sod has an ability to construct \emph{temporary names}.
1178
1179These aren't temporary in the sense that they name C objects which have
1180limited lifetimes at runtime. Rather, the idea is that the names be
1181significant only to small pieces of Lisp code, which will soon forget about
1182them.
1183
1184\subsubsection{The temporary name protocol}
1185Temporary names are represented by objects which implement a simple protocol.
1186
1187\begin{describe}{gf}{format-temporary-name @<var> @<stream>}
1188\end{describe}
1189
1190\begin{describe*}
1191 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
73786167 1192 \dhead{gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
fcb6c0fb
MW
1193\end{describe*}
1194
1195\subsubsection{Temporary name objects}
1196
1197\begin{describe}{cls}{temporary-name () \&key :tag}
1198 A temporary name object. This is the root of a small collection of
1199 subclasses, but is also usable on its own.
1200\end{describe}
1201
a75cd932
MW
1202\begin{describe}{gf}{temp-tag @<name> @> @<tag>}
1203\end{describe}
1204
87883222 1205\begin{describe}{meth}{temporary-name}
fcb6c0fb
MW
1206 {commentify-argument-name (@<name> temporary-name) @> nil}
1207\end{describe}
1208
1209\begin{table}
1210 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1211 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1212 temporary-name & @<tag> \\
1213 temporary-argument & sod__a@<tag> \\
1214 temporary-function & sod__f@<tag> \\
1215 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
1216 \end{tabular}
1217 \caption{Temporary name formats}
1218 \label{tab:codegen.codegen.temps-format}
1219\end{table}
1220
1221\begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
1222\end{describe}
1223
1224\begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
1225\end{describe}
1226
1227\begin{describe}{fun}{temporary-function @> @<name>}
1228\end{describe}
1229
1230\begin{describe}{cls}
1231 {temporary-variable (temporary-name) \&key :tag :in-use-p}
1232\end{describe}
1233
1234\subsubsection{Well-known `temporary' names}
1235
1236\begin{table}
0dfd5c6d
MW
1237 \def\x#1{\desclabel{var}{#1}}
1238 \x{*sod-ap*} \x{*sod-master-ap*} \x{*null-pointer*}
fcb6c0fb
MW
1239 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1240 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1241 {}*sod-ap* & sod__ap \\
944caf84
MW
1242 {}*sod-master-ap* & sod__master_ap \\
1243 {}*null-pointer* & NULL \\ \hlx*{vh}
fcb6c0fb
MW
1244 \end{tabular}
1245 \caption{Well-known temporary names}
1246 \label{tab:codegen.codegen.well-known-temps}
1247\end{table}
1248
31d4431b 1249
fcb6c0fb
MW
1250\subsection{Instructions} \label{sec:clang.codegen.insts}
1251
1252\begin{describe}{cls}{inst () \&key}
1253\end{describe}
1254
1255\begin{describe}{gf}{inst-metric @<inst>}
1256\end{describe}
1257
1258\begin{describe}{mac}
020b9e2b
MW
1259 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
1260 @[[ @<declaration>^* @! @<doc-string> @]] \\
1261 @<form>^*
1262 \-\nlret @<code>}
fcb6c0fb
MW
1263\end{describe}
1264
1265\begin{describe}{mac}
cac85e0b 1266 {format-compound-statement
020b9e2b
MW
1267 (@<stream> @<child> \&optional @<morep>) \\ \ind
1268 @<declaration>^* \\
cac85e0b 1269 @<form>^*}
fcb6c0fb
MW
1270\end{describe}
1271
7de8c666
MW
1272\begin{describe}{fun}
1273 {format-banner-comment @<stream> @<control> \&rest @<args>}
1274\end{describe}
1275
fcb6c0fb
MW
1276\begin{table}
1277 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
1278 \thd{Class name} &
1279 \thd{Arguments} &
1280 \thd{Output format} \\ \hlx{vhv}
167524b5
MW
1281 @|var| & @<name> @<type> @|\&optional| @<init>
1282 & @<type> @<name> @[= @<init>@];
fcb6c0fb
MW
1283 \\ \hlx{v}
1284 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
1285 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
1286 \\ \hlx{v}
2d8d81c5
MW
1287 @|cond| & @<cond> @<conseq> @<alt> & @<cond> ? @<conseq> : @<alt>
1288 \\ \hlx{v}
fcb6c0fb
MW
1289 @|return| & @<expr> & return @[@<expr>@];
1290 \\ \hlx{v}
1291 @|break| & --- & break; \\ \hlx{v}
1292 @|continue| & --- & continue; \\ \hlx{v}
1293 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
167524b5
MW
1294 @|call| & @<func> @|\&rest| @<args>
1295 & @<func>(@<arg>_1,
fcb6c0fb 1296 $\ldots$,
7de8c666
MW
1297 @<arg>_n) \\ \hlx{v}
1298 @|banner| & @<control> @|\&rest| @<args>
1299 & /* @<banner> */ \\ \hlx{vhv}
fcb6c0fb
MW
1300 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
1301 \\ \hlx{v}
167524b5
MW
1302 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
1303 & if (@<cond>) @<conseq>
fcb6c0fb 1304 @[else @<alt>@] \\ \hlx{v}
2d8d81c5
MW
1305 @|for| & @<init> @<cond> @<update> @<body> &
1306 for (@<init>; @<cond>; @<update>) @<body> \\ \hlx{v}
fcb6c0fb
MW
1307 @|while| & @<cond> @<body> & while (@<cond>) @<body>
1308 \\ \hlx{v}
1309 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
1310 \\ \hlx{v}
7de8c666
MW
1311 @|function| &
1312 \vtop{\hbox{\strut @<name> @<type> @<body>}
1313 \hbox{\strut \quad @|\&optional @<banner>|}
1314 \hbox{\strut \quad @|\&rest| @<banner-args>}} &
1315 \vtop{\hbox{\strut @[/* @<banner> */@]}
1316 \hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
167524b5
MW
1317 @<type>_n @<arg>_n @[, \dots@])}
1318 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
fcb6c0fb
MW
1319 \end{tabular}
1320 \caption{Instruction classes}
1321 \label{tab:codegen.codegen.insts}
1322\end{table}
1323
0dfd5c6d
MW
1324\begin{describe*}
1325 {\dhead*{cls}{@<code>-inst (inst) \&key \dots}
1326 \dhead*{fn}{make-@<code>-inst \dots}
1327 \dhead*{gf}{inst-@<slot> @<inst> @> @<value>}}
1328 \def\instclass#1#2#3{%
1329 #1{cls}{#3-inst}[#2]%
1330 #1{fun}{make-#3-inst}[#2]%
1331 }
1332 \def\instslot#1#2#3{#1{gf}{inst-#3}[#2]}
1333 \def\makelabels#1#2{%
1334 \def\x{\instclass{#1}{#2}}
1335 \x{var} \x{set} \x{update} \x{cond} \x{return} \x{break} \x{continue}
1336 \x{expr} \x{call} \x{banner} \x{block} \x{if} \x{for} \x{while}
1337 \x{do-while} \x{function}
1338 \def\x{\instslot{#1}{#2}}
1339 \x{name} \x{type} \x{init} \x{var} \x{expr} \x{op} \x{cond} \x{conseq}
1340 \x{alt} \x{func} \x{args} \x{control} \x{decls} \x{body} \x{update}
1341 \x{banner} \x{banner-args}
1342 }
1343 \makelabels{\desclabel}{|(}
1344
1345 Sod provides a number of built-in instruction types generated by
1346 \descref{mac}{definst}: see \xref{tab:codegen.codegen.insts}.
1347
1348 \makelabels{\descindex}{|)}
1349\end{describe*}
1350
31d4431b 1351
fcb6c0fb
MW
1352\subsection{Code generation} \label{sec:clang.codegen.codegen}
1353
1354\begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
1355\end{describe}
1356
1357\begin{describe}{gf}
1358 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
1359\end{describe}
1360
1361\begin{describe}{gf}{emit-inst @<codegen> @<inst>}
1362\end{describe}
1363
1364\begin{describe}{gf}{emit-insts @<codegen> @<insts>}
1365\end{describe}
1366
1367\begin{describe}{gf}{emit-decl @<codegen> @<decl>}
1368\end{describe}
1369
7c3f8ae6 1370\begin{describe}{gf}{emit-decls @<codegen> @<decls>}
fcb6c0fb
MW
1371\end{describe}
1372
7de8c666
MW
1373\begin{describe}{fun}{emit-banner @<codegen> @<control> \&rest @<args>}
1374\end{describe}
1375
fcb6c0fb
MW
1376\begin{describe}{gf}{codegen-push @<codegen>}
1377\end{describe}
1378
1379\begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
1380\end{describe}
1381
1382\begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
1383\end{describe}
1384
1385\begin{describe}{gf}
1386 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
1387\end{describe}
1388
1389\begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
1390\end{describe}
1391
1392\begin{describe}{fun}
1393 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
1394 @> @<name>}
1395\end{describe}
1396
1397\begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
1398\end{describe}
1399
1400\begin{describe}{mac}
020b9e2b
MW
1401 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
1402 @<declaration>^* \\
1403 @<form>^*
1404 \-\nlret @<value>^*}
fcb6c0fb
MW
1405\end{describe}
1406
1407\begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
1408\end{describe}
1409
357885be
MW
1410\begin{describe}{fun}
1411 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1412\end{describe}
1413
fcb6c0fb
MW
1414\begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1415\end{describe}
1416
1417\begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1418\end{describe}
1419
2c7465ac
MW
1420%%%--------------------------------------------------------------------------
1421\section{Literal C code fragments} \label{sec:clang.fragment}
1422
1423\begin{describe}{cls}{c-fragment () \&key :location :text}
1424\end{describe}
1425
1dd7dba9
MW
1426\begin{describe*}
1427 {\dhead{gf}{c-fragment-text @<fragment> @> @<string>}
1428 \dhead{meth}{c-fragment}
1429 {file-location (@<fragment> c-fragment) @> @<floc>}}
1430\end{describe*}
2c7465ac
MW
1431
1432\begin{describe}{fun}
1433 {scan-c-fragment @<scanner> @<end-chars>
1434 @> @<result> @<success-flag> @<consumed-flag>}
1435\end{describe}
1436
1437\begin{describe}{fun}
1438 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1439 \nlret @<result> @<success-flag> @<consumed-flag>}
1440\end{describe}
1441
dea4d055
MW
1442%%%----- That's all, folks --------------------------------------------------
1443
1444%%% Local variables:
1445%%% mode: LaTeX
1446%%% TeX-master: "sod.tex"
1447%%% TeX-PDF-mode: t
1448%%% End: