doc/*.tex: Add stubs for `file-location' reader methods.
[sod] / doc / clang.tex
... / ...
CommitLineData
1%%% -*-latex-*-
2%%%
3%%% C language utilities
4%%%
5%%% (c) 2015 Straylight/Edgeware
6%%%
7
8%%%----- Licensing notice ---------------------------------------------------
9%%%
10%%% This file is part of the Sensible Object Design, an object system for C.
11%%%
12%%% SOD is free software; you can redistribute it and/or modify
13%%% it under the terms of the GNU General Public License as published by
14%%% the Free Software Foundation; either version 2 of the License, or
15%%% (at your option) any later version.
16%%%
17%%% SOD is distributed in the hope that it will be useful,
18%%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19%%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20%%% GNU General Public License for more details.
21%%%
22%%% You should have received a copy of the GNU General Public License
23%%% along with SOD; if not, write to the Free Software Foundation,
24%%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26\chapter{C language utilities} \label{ch:clang}
27
28%%%--------------------------------------------------------------------------
29\section{C type representation} \label{sec:clang.c-types}
30
31\subsection{Overview} \label{sec:clang.c-types.over}
32
33The Sod translator represents C types in a fairly simple and direct way.
34However, because it spends a fair amount of its time dealing with C types, it
35provides a number of useful operations and macros.
36
37The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
38
39\begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
41 @|c-type| \\ \ind
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
44 @|c-class-type| \-\\
45 @|tagged-c-type| \\ \ind
46 @|c-struct-type| \\
47 @|c-union-type| \\
48 @|c-enum-type| \-\\
49 @|c-atomic-type| \\
50 @|c-pointer-type| \-\\
51 @|c-array-type| \\
52 @|c-function-type| \\ \ind
53 @|c-keyword-function-type| \-
54 \end{tabbing}}
55 \caption{Classes representing C types}
56\label{fig:codegen.c-types.classes}
57\end{figure}
58
59C type objects are immutable unless otherwise specified.
60
61\subsubsection{Constructing C type objects}
62There is a constructor function for each non-abstract class of C type object.
63Note, however, that constructor functions need not generate a fresh type
64object if a previously existing type object is suitable. In this case, we
65say that the objects are \emph{interned}. Some constructor functions are
66specified to return interned objects: programs may rely on receiving the same
67(@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
68not specified, clients may still not rely on receiving fresh objects.
69
70A convenient S-expression notation is provided by the
71\descref{mac}{c-type}[macro]. Use of this macro is merely an abbreviation
72for corresponding use of the various constructor functions, and therefore
73interns type objects in the same manner. The syntax accepted by the macro
74can be extended in order to support new classes: see \descref{mac}{defctype},
75\descref{mac}{c-type-alias} and \descref{mac}{define-c-type-syntax}.
76
77The descriptions of each of the various classes include descriptions of the
78initargs which may be passed to @|make-instance| when constructing a new
79instance of the class. However, the constructor functions and S-expression
80syntax are strongly recommended over direct use of @|make-instance|.
81
82\subsubsection{Printing}
83There are two protocols for printing C types. Unfortunately they have
84similar names.
85\begin{itemize}
86\item The \descref{gf}{print-c-type}[function] prints a C type value using
87 the S-expression notation. It is mainly useful for diagnostic purposes.
88\item The \descref{gf}{pprint-c-type}[function] prints a C type as a
89 C-syntax declaration.
90\end{itemize}
91Neither generic function defines a default primary method; subclasses of
92@|c-type| must define their own methods in order to print correctly.
93
94\begin{describe}{fun}{c-name-case @<name> @> @<string>}
95\end{describe}
96
97
98\subsection{The C type root class} \label{sec:clang.c-types.root}
99
100\begin{describe}{cls}{c-type ()}
101 The class @|c-type| marks the root of the built-in C type hierarchy.
102
103 Users may define subclasses of @|c-type|. All non-abstract subclasses must
104 have a primary method defined on @|pprint-c-type|; unless instances of the
105 subclass are interned, a method on @|c-type-equal-p| is also required.
106
107 The class @|c-type| is abstract.
108\end{describe}
109
110
111\subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
112
113The S-expression representation of a type is described syntactically as a
114type specifier. Type specifiers fit into two syntactic categories.
115\begin{itemize}
116\item A \emph{symbolic type specifier} consists of a symbol. It has a
117 single, fixed meaning: if @<name> is a symbolic type specifier, then each
118 use of @<name> in a type specifier evaluates to the same (@|eq|) type
119 object, until the @<name> is redefined.
120\item A \emph{type operator} is a symbol; the corresponding specifier is a
121 list whose @|car| is the operator. The remaining items in the list are
122 arguments to the type operator.
123\end{itemize}
124
125\begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
126 Evaluates to a C type object, as described by the type specifier
127 @<type-spec>.
128\end{describe}
129
130\begin{describe}{mac}
131 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+\\
132 @[[ @|:export| @<export-flag> @]]^*
133 \-\nlret @<names>}
134 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
135 given, then all are defined in the same way. The type constructed by using
136 any of the @<name>s is as described by the type specifier @<type-spec>.
137
138 The resulting type object is constructed once, at the time that the macro
139 expansion is evaluated; the same (@|eq|) value is used each time any
140 @<name> is used in a type specifier.
141
142 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
143 and initialized to contain the C type object so constructed. Altering or
144 binding this name is discouraged.
145
146 If @<export-flag> is true, then the variable name, and all of the @<name>s,
147 are exported from the current package.
148\end{describe}
149
150\begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
151 Defines each @<alias> as being a type operator identical in behaviour to
152 @<original>. If @<original> is later redefined then the behaviour of the
153 @<alias>es changes too.
154\end{describe}
155
156\begin{describe}{mac}
157 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
158 @[[ @<declaration>^* @! @<doc-string> @]] \\
159 @<form>^*
160 \-\nlret @<name>}
161 Defines the symbol @<name> as a new type operator. When a list of the form
162 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
163 are bound to fresh variables according to @<lambda-list> (a destructuring
164 lambda-list) and the @<form>s evaluated in order in the resulting lexical
165 environment as an implicit @|progn|. The value should be a Lisp form which
166 will evaluate to the type specified by the arguments.
167
168 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
169 type specifiers among its arguments.
170\end{describe}
171
172\begin{describe}{gf}{expand-c-type-spec @<type-spec> @> @<form>}
173 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
174
175 If @<type-spec> is a list, then \descref{gf}{expand-c-type-form} is
176 invoked.
177\end{describe}
178
179\begin{describe}{gf}{expand-c-type-form @<head> @<tail> @> @<form>}
180 Returns the Lisp form that @|(c-type (@<head> . @<tail>))| would expand
181 into.
182\end{describe}
183
184\begin{describe}{gf}
185 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
186 Print the C type object @<type> to @<stream> in S-expression form. The
187 @<colon> and @<atsign> arguments may be interpreted in any way which seems
188 appropriate: they are provided so that @|print-c-type| may be called via
189 @|format|'s @|\char`\~/\dots/| command; they are not set when
190 @|print-c-type| is called by Sod functions.
191
192 There should be a method defined for every C type class; there is no
193 default method.
194\end{describe}
195
196
197\subsection{Comparing C types} \label{sec:clang.c-types.cmp}
198
199It is necessary to compare C types for equality, for example when checking
200argument lists for methods. This is done by @|c-type-equal-p|.
201
202\begin{describe}{gf}
203 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
204 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
205 @<c-type>_2 for equality; it returns true if the two types are equal and
206 false if they are not.
207
208 Two types are equal if they are structurally similar, where this property
209 is defined by methods for each individual class; see the descriptions of
210 the classes for the details.
211
212 The generic function @|c-type-equal-p| uses the @|and| method combination.
213
214 \begin{describe}{meth}{t,t}{c-type-equal-p @<c-type>_1 @<c-type>_2}
215 A default primary method for @|c-type-equal-p| is defined. It simply
216 returns @|nil|. This way, methods can specialize on both arguments
217 without fear that a call will fail because no methods are applicable.
218 \end{describe}
219 \begin{describe}{ar-meth}{}{c-type-equal-p @<c-type>_1 @<c-type>_2}
220 A default around-method for @|c-type-equal-p| is defined. It returns
221 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
222 the primary methods. Since several common kinds of C types are interned,
223 this is a common case worth optimizing.
224 \end{describe}
225\end{describe}
226
227
228\subsection{Outputting C types} \label{sec:clang.c-types.output}
229
230\begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
231 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
232 declaration of an object or function of type @<c-type>. The result is
233 written to @<stream>.
234
235 A C declaration has two parts: a sequence of \emph{declaration specifiers}
236 and a \emph{declarator}. The declarator syntax involves parentheses and
237 operators, in order to reflect the operators applicable to the declared
238 variable. For example, the name of a pointer variable is preceded by @`*';
239 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
240
241 The @<kernel> argument must be a function designator (though see the
242 standard around-method); it is invoked as
243 \begin{quote} \codeface
244 (funcall @<kernel> @<stream> @<priority> @<spacep>)
245 \end{quote}
246 It should write to @<stream> -- which may not be the same stream originally
247 passed into the generic function -- the `kernel' of the declarator, i.e.,
248 the part to which prefix and/or postfix operators are attached to form the
249 full declarator.
250
251 The methods on @|pprint-c-type| specialized for compound types work by
252 recursively calling @|pprint-c-type| on the subtype, passing down a closure
253 which prints the necessary additional declarator operators before calling
254 the original @<kernel> function. The additional arguments @<priority> and
255 @<spacep> support this implementation technique.
256
257 The @<priority> argument describes the surrounding operator context. It is
258 zero if no type operators are directly attached to the kernel (i.e., there
259 are no operators at all, or the kernel is enclosed in parentheses), one if
260 a prefix operator is directly attached, or two if a postfix operator is
261 directly attached. If the @<kernel> function intends to provide its own
262 additional declarator operators, it should check the @<priority> in order
263 to determine whether parentheses are necessary. See also the
264 \descref{mac}{maybe-in-parens}[macro].
265
266 The @<spacep> argument indicates whether a space needs to be printed in
267 order to separate the declarator from the declaration specifiers. A kernel
268 which contains an identifier should insert a space before the identifier
269 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
270 declarator (one that specifies no name), looks more pleasing without a
271 trailing space. See also the \descref{fun}{c-type-space}[function].
272
273 Every concrete subclass of @|c-type| is expected to provide a primary
274 method on this function. There is no default primary method.
275
276 \begin{describe}{ar-meth}{}{pprint-c-type @<c-type> @<stream> @<kernel>}
277 A default around method is defined on @|pprint-c-type| which `canonifies'
278 non-function @<kernel> arguments. In particular:
279 \begin{itemize}
280 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
281 with a @<kernel> function that does nothing; and
282 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
283 called recursively with a @<kernel> function that prints the object as
284 if by @|princ|, preceded if necessary by space using @|c-type-space|.
285 \end{itemize}
286 \end{describe}
287\end{describe}
288
289\begin{describe}{fun}{c-type-space @<stream>}
290 Writes a space and other pretty-printing instructions to @<stream> in order
291 visually to separate a declarator from the preceding declaration
292 specifiers. The precise details are subject to change.
293\end{describe}
294
295\begin{describe}{mac}
296 {maybe-in-parens (@<stream-var> @<guard-form>)
297 @<declaration>^*
298 @<form>^*}
299 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
300 sequence within a pretty-printer logical block writing to the stream named
301 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
302 the logical block has empty prefix and suffix strings; if it evaluates to a
303 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
304 respectively.
305
306 Note that this may cause @<stream> to be bound to a different stream object
307 within the @<form>s.
308\end{describe}
309
310
311\subsection{Type qualifiers and qualifiable types}
312\label{sec:clang.ctypes.qual}
313
314Qualifiers -- @|const|, @|volatile|, and so on -- are represented as lists of
315keywords attached to types. Not all C types can carry qualifiers: notably,
316function and array types cannot be qualified.
317
318For the most part, the C qualifier keywords correspond to like-named Lisp
319keywords, only the Lisp keyword names are in uppercase. The correspondence
320is shown in \xref{tab:clang.ctypes.qual}.
321
322\begin{table}
323 \begin{tabular}[C]{*2{>{\codeface}l}l} \hlx*{hv}
324 \thd{\textbf{C name}} & \thd{\textbf{Lisp name}} \\ \hlx{vhv}
325 _Atomic & :atomic \\
326 const & :const \\
327 restrict & :restrict \\
328 volatile & :volatile \\ \hlx*{vh}
329 \end{tabular}
330 \caption{C and Lisp qualifier names} \label{tab:clang.ctypes.qual}
331\end{table}
332
333The default behaviour, on output, is to convert keywords to lowercase and
334hope for the best: special cases can be dealt with by adding appropriate
335methods to \descref{gf}{c-qualifier-keyword}.
336
337\begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
338 The class @|qualifiable-c-type| describes C types which can bear
339 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
340 @|restrict| and @|volatile|.
341
342 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
343 @|:volatile|. There is no built-in limitation to these particular
344 qualifiers; others keywords may be used, though this isn't recommended.
345
346 Two qualifiable types are equal only if they have \emph{matching
347 qualifiers}: i.e., every qualifier attached to one is also attached to the
348 other: order is not significant, and neither is multiplicity.
349
350 The class @|qualifiable-c-type| is abstract.
351\end{describe}
352
353\begin{describe}{fun}
354 {canonify-qualifiers @<qualifiers> @> @<canonfied-qualifiers>}
355\end{describe}
356
357\begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
358 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
359 an immutable list.
360\end{describe}
361
362\begin{describe}{fun}{qualify-c-type @<c-type> @<qualifiers> @> @<c-type>}
363 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
364 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
365 keywords. The result is a C type object like @<c-type> except that it
366 bears the given @<qualifiers>.
367
368 The @<c-type> is not modified. If @<c-type> is interned, then the returned
369 type will be interned.
370\end{describe}
371
372\begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
373 Returns a string containing the qualifiers listed in @<qualifiers> in C
374 syntax, with a space after each. In particular, if @<qualifiers> is
375 non-null then the final character of the returned string will be a space.
376\end{describe}
377
378\begin{describe}{gf}{c-qualifier-keyword @<qualifier> @> @<string>}
379 Return, as a string, the C keyword corresponding to the Lisp @<qualifier>.
380
381 There is a standard method, which deals with many qualifiers. Additional
382 methods exist for qualifier keywords which need special handling, such as
383 @|:atomic|; they are not listed here explicitly.
384
385 \begin{describe}{meth}{keyword}
386 {c-qualifier-keyword @<keyword> @> @<string>}
387 Returns the @<keyword>'s print-name, in lower case. This is sufficient
388 for the standard qualifiers @|:const|, @|:restrict|, and @|:volatile|.
389 \end{describe}
390\end{describe}
391
392\begin{describe}{fun}{c-type-qualifier-keywords @<c-type> @> @<list>}
393 Return the @<c-type>'s qualifiers, as a list of C keyword names.
394\end{describe}
395
396
397\subsection{Storage specifiers} \label{sec:clang.ctypes.specs}
398
399Some declaration specifiers, mostly to do with how to store the specific
400object in question, are determinedly `top level', and, unlike qualifiers,
401don't stay attached to the base type when acted on by declarator operators.
402Sod calls these `storage specifiers', though no such category exists in the C
403standard. They have their own protocol, which is similar in many ways to
404that of C types.
405
406Every Lisp keyword is potentially a storage specifier, which simply maps to
407its lower-case print name in C; but other storage specifiers may be more
408complicated objects.
409
410\begin{describe}{cls}
411 {c-storage-specifiers-type (c-type) \&key :subtype :specifiers}
412 A type which carries storage specifiers. The @<subtype> is the actual
413 type, and may be any C type; the @<specifiers> are a list of
414 storage-specifier objects.
415
416 The type specifier @|(specs @<subtype> @<specifier>^*)| wraps the
417 @<subtype> in a @|c-storage-specifiers-type|, carrying the @<specifier>s,
418 which are a list of storage specifiers in S-expression notation.
419\end{describe}
420
421\begin{describe}{fun}{c-type-specifiers @<type> @> @<list>}
422 Returns the list of type specifiers attached to the @<type> object, which
423 must be a @|c-storage-specifiers-type|.
424\end{describe}
425
426\begin{describe}{mac}
427 {define-c-storage-specifier-syntax @<name> @<lambda-list> \\ \ind
428 @[[ @<declaration>^* @! @<doc-string> @]] \\
429 @<form>^* \-
430 \nlret @<name>}
431
432 Defines the symbol @<name> as a new storage-specifier operator. When a
433 list of the form @|(@<name> @<argument>^*)| is used as a storage specifier,
434 the @<argument>s are bound to fresh variables according to the
435 @<lambda-list> (a destructuring lambda-list) and the @<form>s evaluated in
436 order in the resulting lexical environment as an implicit @<progn>. The
437 value should be a Lisp form which will evaluate to the storage-specifier
438 object described by the arguments.
439
440 The @<form>s may call @|expand-c-storage-specifier| in order to recursively
441 expand storage specifiers among its arguments.
442\end{describe}
443
444\begin{describe}{gf}{expand-c-storage-specifier @<spec> @> @<form>}
445 Returns the Lisp form that @<spec> expands to within @|(c-type (specs
446 @<subtype> @<spec>))|.
447
448 If @<spec> is a list, then \descref{gf}{expand-c-storage-specifier-form} is
449 invoked.
450\end{describe}
451
452\begin{describe}{gf}{expand-c-storage-specifier-form @<spec> @> @<form>}
453 Returns the Lisp form that @|(@<head> . @<tail>)| expands to within
454 @|(c-type (specs @<subtype> (@<head> . @<tail>)))|.
455\end{describe}
456
457\begin{describe}{gf}{pprint-c-storage-specifier @<spec> @<stream>}
458\end{describe}
459
460\begin{describe}{gf}
461 {print-c-storage-specifier @<stream> @<spec>
462 \&optional @<colon> @<atsign>}
463\end{describe}
464
465\begin{describe}{fun}{wrap-c-type @<func> @<base-type> @> @<c-type>}
466 Apply @<func> to the underlying C type of @<base-type> to create a new
467 `wrapped' type, and attach the storage specifiers of @<base-type> to the
468 wrapped type.
469
470 If @<base-type> is \emph{not} a @|c-storage-specifiers-type|, then return
471 @|(funcall @<func> @<base-type>)|. Otherwise, return a new
472 @|c-storage-specifiers-type|, with the same specifiers, but whose subtype
473 is the result of applying @<func> to the subtype of the original
474 @<base-type>.
475\end{describe}
476
477\begin{describe}{cls}{alignas-storage-specifier () \&key :alignment}
478 The class of @|_Alignas| storage specifiers; an instance denotes the
479 specifier @|_Alignas(@<alignment>)|. The @<alignment> parameter may be any
480 printable object, but is usually a string or C fragment.
481
482 The storage specifier form @|(alignas @<alignment>)| returns a storage
483 specifier @|_Alignas(@<alignment>)|, where @<alignment> is evaluated.
484\end{describe}
485
486
487\subsection{Leaf types} \label{sec:clang.c-types.leaf}
488
489A \emph{leaf type} is a type which is not defined in terms of another type.
490In Sod, the leaf types are
491\begin{itemize}
492\item \emph{simple types}, including builtin types like @|int| and @|char|,
493 as well as type names introduced by @|typename|, because Sod isn't
494 interested in what the type name means, merely that it names a type; and
495\item \emph{tagged types}, i.e., enum, struct and union types which are named
496 by a keyword identifying the kind of type, and a \emph{tag}.
497\end{itemize}
498
499\begin{describe}{cls}{simple-c-type (qualifiable-c-type)
500 \&key :qualifiers :name}
501 The class of `simple types'; an instance denotes the type @<qualifiers>
502 @<name>.
503
504 A simple type object maintains a \emph{name}, which is a string whose
505 contents are the C name for the type. The initarg @|:name| may be used to
506 provide this name when calling @|make-instance|.
507
508 Two simple type objects are equal if and only if they have @|string=| names
509 and matching qualifiers.
510
511 \def\x#1{\desclabel{const}{#1}}
512 \x{c-type-bool} \x{c-type-char} \x{c-type-wchar-t} \x{c-type-signed-char}
513 \x{c-type-unsigned-char} \x{c-type-short} \x{c-type-unsigned-short}
514 \x{c-type-int} \x{c-type-unsigned} \x{c-type-long} \x{c-type-unsigned-long}
515 \x{c-type-long-long} \x{c-type-unsigned-long-long} \x{c-type-size-t}
516 \x{c-type-ptrdiff-t} \x{c-type-float} \x{c-type-double}
517 \x{c-type-long-double} \x{c-type-float-imaginary}
518 \x{c-type-double-imaginary} \x{c-type-long-double-imaginary}
519 \x{c-type-float-complex} \x{c-type-double-complex}
520 \x{c-type-long-double-complex} \x{c-type-va-list} \x{c-type-void}
521 A number of symbolic type specifiers for builtin types are predefined as
522 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
523 @|define-simple-c-type|, so can be used to construct qualified types.
524\end{describe}
525
526\begin{table}
527 \begin{tabular}[C]{ll} \hlx*{hv}
528 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
529 @|void| & @|void| \\ \hlx{v}
530 @|_Bool| & @|bool| \\ \hlx{v}
531 @|char| & @|char| \\ \hlx{}
532 @|wchar_t| & @|wchar-t| \\ \hlx{v}
533 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
534 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
535 @|short| & @|short|, @|signed-short|, @|short-int|,
536 @|signed-short-int| @|sshort| \\ \hlx{}
537 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
538 @|ushort| \\ \hlx{v}
539 @|int| & @|int|, @|signed|, @|signed-int|,
540 @|sint| \\ \hlx{}
541 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
542 @|long| & @|long|, @|signed-long|, @|long-int|,
543 @|signed-long-int|, @|slong| \\ \hlx{}
544 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
545 @|ulong| \\ \hlx{v}
546 @|long long| & @|long-long|, @|signed-long-long|,
547 @|long-long-int|, \\ \hlx{}
548 & \qquad @|signed-long-long-int|,
549 @|llong|, @|sllong| \\ \hlx{v}
550 @|unsigned long long|
551 & @|unsigned-long-long|, @|unsigned-long-long-int|,
552 @|ullong| \\ \hlx{v}
553 @|size_t| & @|size-t| \\ \hlx{}
554 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
555 @|float| & @|float| \\ \hlx{}
556 @|double| & @|double| \\ \hlx{}
557 @|long double| & @|long-double| \\ \hlx{v}
558 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
559 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
560 @|long double _Imaginary|
561 & @|long-double-imaginary| \\ \hlx{v}
562 @|float _Complex| & @|float-complex| \\ \hlx{}
563 @|double _Complex| & @|double-complex| \\ \hlx{}
564 @|long double _Complex|
565 & @|long-double-complex| \\ \hlx{v}
566 @|va_list| & @|va-list| \\ \hlx*{vh}
567 \end{tabular}
568 \caption{Builtin symbolic type specifiers for simple C types}
569 \label{tab:codegen.c-types.simple}
570\end{table}
571
572\begin{describe}{fun}
573 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
574 Return the (unique interned) simple C type object for the C type whose name
575 is @<name> (a string) and which has the given @<qualifiers> (a list of
576 keywords).
577\end{describe}
578
579\begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
580 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
581 string.
582\end{describe}
583
584\begin{describe}{mac}
585 {define-simple-c-type
586 \=@{ @<name> @! (@<name>^+) @}
587 @{ @<string> @! (@<string>^*) @} \+\\
588 @[[ @|:export| @<export-flag> @]]
589 \-\nlret @<name>}
590 Define type specifiers for a new simple C type. Each symbol @<name> is
591 defined as a symbolic type specifier for the (unique interned) simple C
592 type whose name is the value of (the first) @<string>. Further, each
593 @<name> is defined to be a type operator: the type specifier @|(@<name>
594 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
595 name is (the first) @<string> and which has the @<qualifiers> (which are
596 evaluated).
597
598 Each of the @<string>s is associated with the resulting type for retrieval
599 by \descref{fun}{find-simple-c-type}. Furthermore, a variable
600 @|c-type-@<name>| is defined, for the first @<name> only, and initialized
601 with the newly constructed C type object.
602
603 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
604 all of the @<name>s, are exported from the current package.
605\end{describe}
606
607\begin{describe}{fun}
608 {find-simple-c-type @<string> @> @{ @<simple-c-type> @! @|nil| @}}
609 If @<string> is the name of a simple C type, as established by the
610 \descref{mac}{define-simple-c-type}[macro], then return the corresponding
611 @|simple-c-type| object; otherwise, return @|nil|.
612\end{describe}
613
614\begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
615 \&key :qualifiers :tag}
616 Provides common behaviour for C tagged types. A @<tag> is a string
617 containing a C identifier.
618
619 Two tagged types are equal if and only if they have the same class, their
620 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
621 subclasses may have additional methods on @|c-type-equal-p| which impose
622 further restrictions.)
623\end{describe}
624\begin{boxy}[Bug]
625 Sod maintains distinct namespaces for the three kinds of tagged types. In
626 C, there is only one namespace for tags which is shared between enums,
627 structs and unions.
628\end{boxy}
629
630\begin{describe}{gf}{c-type-tag @<c-type> @> @<keyword>}
631\end{describe}
632
633\begin{describe}{fun}
634 {make-c-tagged-type @<kind> @<tag> \&optional @<qualifiers>
635 @> @<tagged-type>}
636\end{describe}
637
638\begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
639 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
640 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
641 should return their own classification symbols. It is intended that
642 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
643 syntax.\footnote{%
644 Alas, C doesn't provide a syntactic category for these keywords;
645 \Cplusplus\ calls them a @<class-key>.} %
646 There is a method defined for each of the built-in tagged type classes
647 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
648\end{describe}
649
650\begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
651 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
652 naming a kind of tagged type, return the name of the corresponding C
653 type class as a symbol.
654\end{describe}
655
656\begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
657 Represents a C enumerated type. An instance denotes the C type @|enum|
658 @<tag>. See the direct superclass @|tagged-c-type| for details.
659
660 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
661 interned) enumerated type with the given @<tag> and @<qualifier>s (all
662 evaluated).
663\end{describe}
664
665\begin{describe}{fun}
666 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
667 Return the (unique interned) C type object for the enumerated C type whose
668 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
669 keywords).
670\end{describe}
671
672\begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
673 Represents a C structured type. An instance denotes the C type @|struct|
674 @<tag>. See the direct superclass @|tagged-c-type| for details.
675
676 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
677 interned) structured type with the given @<tag> and @<qualifier>s (all
678 evaluated).
679\end{describe}
680
681\begin{describe}{fun}
682 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
683 Return the (unique interned) C type object for the structured C type whose
684 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
685 keywords).
686\end{describe}
687
688\begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
689 Represents a C union type. An instance denotes the C type @|union|
690 @<tag>. See the direct superclass @|tagged-c-type|
691 for details.
692
693 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
694 interned) union type with the given @<tag> and @<qualifier>s (all
695 evaluated).
696\end{describe}
697\begin{describe}{fun}
698 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
699 Return the (unique interned) C type object for the union C type whose tag
700 is @<tag> (a string) and which has the given @<qualifiers> (a list of
701 keywords).
702\end{describe}
703
704
705\subsection{Compound C types} \label{sec:code.c-types.compound}
706
707Some C types are \emph{compound types}: they're defined in terms of existing
708types. The classes which represent compound types implement a common
709protocol.
710
711\begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
712 Returns the underlying type of a compound type @<c-type>. Precisely what
713 this means depends on the class of @<c-type>.
714\end{describe}
715
716
717\subsection{Atomic types} \label{sec:clang.c-types.atomic}
718
719Atomic types are compound types. The subtype of an atomic type is simply the
720underlying type of the object. Note that, as far as Sod is concerned, atomic
721types are not the same as atomic-qualified types: you must be consistent
722about which you use.
723
724\begin{describe}{cls}
725 {c-atomic-type (qualifiable-c-type) \&key :qualifiers :subtype}
726 Represents an atomic type. An instance denotes the C type
727 @|_Atomic(@<subtype>)|.
728
729 The @<subtype> may be any C type.\footnote{%
730 C does not permit atomic function or array types.} %
731 Two atomic types are equal if and only if their subtypes are equal and they
732 have matching qualifiers. It is possible, though probably not useful, to
733 have an atomic-qualified atomic type.
734
735 The type specifier @|(atomic @<type-spec> @<qualifier>^*)| returns a type
736 qualified atomic @<subtype>, where @<subtype> is the type specified by
737 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
738 evaluated).
739\end{describe}
740
741\begin{describe}{fun}
742 {make-atomic-type @<c-type> \&optional @<qualifiers> @> @<c-atomic-type>}
743 Return an object describing the type qualified atomic @<subtype>. If
744 @<subtype> is interned, then the returned atomic type object is interned
745 also.
746\end{describe}
747
748
749\subsection{Pointer types} \label{sec:clang.c-types.pointer}
750
751Pointers are compound types. The subtype of a pointer type is the type it
752points to.
753
754\begin{describe}{cls}
755 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
756 Represents a C pointer type. An instance denotes the C type @<subtype>
757 @|*|@<qualifiers>.
758
759 The @<subtype> may be any C type. Two pointer types are equal if and only
760 if their subtypes are equal and they have matching qualifiers.
761
762 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
763 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
764 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
765 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
766 star @`*'.
767
768 The symbol @|string| is a type specifier for the type pointer to
769 characters; the symbol @|const-string| is a type specifier for the type
770 pointer to constant characters.
771\end{describe}
772
773\begin{describe}{fun}
774 {make-pointer-type @<c-type> \&optional @<qualifiers>
775 @> @<c-pointer-type>}
776 Return an object describing the type qualified pointer to @<subtype>.
777 If @<subtype> is interned, then the returned pointer type object is
778 interned also.
779\end{describe}
780
781
782\subsection{Array types} \label{sec:clang.c-types.array}
783
784Arrays implement the compound-type protocol. The subtype of an array type is
785the array element type.
786
787\begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
788 Represents a multidimensional C array type. The @<dimensions> are a list
789 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
790 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
791 individual dimension specifier is either a string containing a C integral
792 constant expression, or nil which is equivalent to an empty string. Only
793 the first (outermost) dimension $d_0$ should be empty.
794
795 C doesn't actually have multidimensional arrays as a primitive notion;
796 rather, it permits an array (with known extent) to be the element type of
797 an array, which achieves an equivalent effect. C arrays are stored in
798 row-major order: i.e., if we write down the indices of the elements of an
799 array in order of ascending address, the rightmost index varies fastest;
800 hence, the type constructed is more accurately an array of $d_0$ arrays of
801 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
802 continue to abuse terminology and refer to multidimensional arrays.
803
804 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
805 multidimensional array with the given @<dimension>s whose elements have the
806 type specified by @<type-spec>. If no dimensions are given then a
807 single-dimensional array with unspecified extent. The synonyms @|array|
808 and @|vector| may be used in place of the brackets @`[]'.
809\end{describe}
810
811\begin{describe}{fun}
812 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
813 Return an object describing the type of arrays with given @<dimensions> and
814 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
815 argument is a list whose elements are strings or nil; see the description
816 of the class @|c-array-type| above for details.
817\end{describe}
818
819\begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
820 Returns the dimensions of @<c-type>, an array type, as an immutable list.
821\end{describe}
822
823
824\subsection{Function types} \label{sec:clang.c-types.fun}
825
826Function types implement the compound-type protocol. The subtype of a
827function type is the type of the function's return value.
828
829\begin{describe}{cls}{argument}
830 Represents an ordinary function argument.
831\end{describe}
832
833\begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
834 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
835 not return nil.
836\end{describe}
837
838\begin{describe}{fun}
839 {make-argument @<name> @<c-type> \&optional @<default> @> @<argument>}
840 Construct and a return a new @<argument> object. The argument has type
841 @<c-type>, which must be a @|c-type| object, and is named @<name>.
842
843 The @<name> may be nil to indicate that the argument has no name: in this
844 case the argument will be formatted as an abstract declarator, which is not
845 suitable for function definitions. If @<name> is not nil, then the
846 @<name>'s print representation, with @|*print-escape*| nil, is used as the
847 argument name.
848
849 A @<default> may be supplied. If the argument is used in a
850 keyword-argument list (e.g., in a \descref{cls}{c-keyword-function-type}
851 [object]), and the @<default> value is provided and non-nil, then its
852 (unescaped) printed representation is used to provide a default value if
853 the keyword argument is not supplied by the caller.
854\end{describe}
855
856\begin{describe*}
857 {\dhead{fun}{argument-name @<argument> @> @<name>}
858 \dhead{fun}{argument-type @<argument> @> @<c-type>}
859 \dhead{fun}{argument-default @<argument> @> @<default>}}
860 Accessor functions for @|argument| objects. They return the appropriate
861 component of the object, as set by to @|make-argument|. The @<default> is
862 nil if no default was provided to @|make-argument|.
863\end{describe*}
864
865\begin{describe}{gf}
866 {commentify-argument-name @<name> @> @<commentified-name>}
867 Convert the argument name @<name> so that it's suitable to declare the
868 function in a header file.
869
870 Robust header files shouldn't include literal argument names in
871 declarations of functions or function types, since this restricts the
872 including file from defining such names as macros. This generic function
873 is used to convert names into a safe form.
874
875 \begin{describe}{meth}{null}
876 {commentify-argument-name (@<name> null) @> nil}
877 Returns nil: if the argument name is already omitted, it's safe for use
878 in a header file.
879 \end{describe}
880 \begin{describe}{meth}{t}
881 {commentify-argument-name (@<name> t) @> @<string>}
882 Returns the print form of @<name> wrapped in a C comment, as
883 @`/*@<name>*/'.
884 \end{describe}
885\end{describe}
886
887\begin{describe}{fun}
888 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
889 Convert the @<arguments> list so that it's suitable for use in a header
890 file.
891
892 The @<arguments> list should be a list whose items are @|argument| objects
893 or the keyword @|:ellipsis|. The return value is a list constructed as
894 follows. For each @|argument| object in the input list, there is a
895 corresponding @|argument| object in the returned list, with the same type,
896 and whose name is the result of @|commentify-argument-name| applied to the
897 input argument name; an @|:ellipsis| in the input list is passed through
898 unchanged.
899\end{describe}
900
901\begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
902 Represents C function types. An instance denotes the type of a C
903 function which accepts the @<arguments> and returns @<subtype>.
904
905 The @<arguments> are a possibly empty list. All but the last element of
906 the list must be @|argument| objects; the final element may instead be the
907 keyword @|:ellipsis|, which denotes a variable argument list.
908
909 An @<arguments> list consisting of a single argument with type @|void| is
910 converted into an empty list. On output as C code, an empty argument list
911 is written as @|void|. It is not possible to represent a pre-ANSI C
912 function without prototypes.
913
914 Two function types are considered to be the same if their return types are
915 the same, and their argument lists consist of arguments with the same type,
916 in the same order, and either both or neither argument list ends with
917 @|:ellipsis|; argument names are not compared.
918
919 The type specifier
920 \begin{prog}
921 (fun @<return-type>
922 @{ (@<arg-name> @<arg-type>) @}^*
923 @[:ellipsis @! . @<form>@])
924 \end{prog}
925 constructs a function type. The function has the subtype @<return-type>.
926 The remaining items in the type-specifier list are used to construct the
927 argument list. The argument items are a possibly improper list, beginning
928 with zero or more \emph{explicit arguments}: two-item
929 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
930 is constructed with the given name (evaluated) and type. Following the
931 explicit arguments, there may be
932 \begin{itemize}
933 \item nothing, in which case the function's argument list consists only of
934 the explicit arguments;
935 \item the keyword @|:ellipsis|, as the final item in the type-specifier
936 list, indicating a variable argument list may follow the explicit
937 arguments; or
938 \item a possibly-improper list tail, beginning with an atom either as a
939 list item or as the final list cdr, indicating that the entire list tail
940 is a Lisp expression which is to be evaluated to compute the remaining
941 arguments.
942 \end{itemize}
943 A tail expression may return a list of @|argument| objects, optionally
944 followed by an @|:ellipsis|.
945
946 For example,
947 \begin{prog}
948 (c-type (fun \=(lisp (c-type-subtype other-func)) \+\\
949 ("first" int) . (c-function-arguments other-func))
950 \end{prog}
951 evaluates to a function type like @|other-func|, only with an additional
952 argument of type @|int| added to the front of its argument list. This
953 could also have been written
954 \begin{prog}
955 (let (\=(args (c-function-arguments other-func)) \+\\
956 (ret (c-type-subtype other-func))) \-\\ \ind
957 (c-type (fun \=(lisp ret) ("first" int) . args)
958 \end{prog}
959\end{describe}
960
961\begin{describe}{cls}
962 {c-keyword-function-type (c-function-type)
963 \&key :subtype :arguments :keywords}
964 Represents `functions' which accept keyword arguments. Of course, actual C
965 functions can't accept keyword arguments directly, but this type is useful
966 for describing messages and methods which deal with keyword arguments.
967
968 An instance denotes the type of C function which accepts the position
969 argument list @<arguments>, and keyword arguments from the @<keywords>
970 list, and returns @<subtype>. Either or both of the @<arguments> and
971 @<keywords> lists may be empty. (It is important to note the distinction
972 between a function which doesn't accept keyword arguments, and one which
973 does but for which no keyword arguments are defined. In particular, the
974 latter function can be changed later to accept a keyword argument without
975 breaking compatibility with old code.) The @<arguments> and @<keywords>
976 lists must \emph{not} contain @|:ellipsis| markers: a function can accept
977 keywords, or a variable-length argument tail, but not both.
978
979 Keyword arguments may (but need not) have a \emph{default value} which is
980 supplied to the function body if the keyword is omitted.
981
982 Keyword functions are never considered to be the same as ordinary
983 functions. Two keyword function types are considered to be the same if
984 their return types are the same, and their positional argument lists
985 consist of arguments with the same type, in the same order: the keyword
986 arguments accepted by the functions is not significant.
987
988 Keyword functions are constructed using an extended version of the @|fun|
989 specifier used for ordinary C function types. The extended syntax is as
990 follows.
991 \begin{prog}
992 (fun \=@<return-type>
993 @{ (@<arg-name> @<arg-type>) @}^* \+\\
994 @{ \=:keys @{ (@<kw-name> @<kw-type> @[@<kw-default>@]) @}^*
995 @[. @<form>@] @! \+\\
996 . @<form> @}
997 \end{prog}
998 where either the symbol @|:keys| appears literally in the specifier, or the
999 @<form> evaluates to a list containing the symbol @|:keys|. (If neither of
1000 these circumstances obtains, then the specifier constructs an ordinary
1001 function type.)
1002
1003 See the description of \descref{cls}{c-function-type} for how a trailing
1004 @<form> is handled.
1005
1006 The list of @<arg-name>s and @<arg-type>s describes the positional
1007 arguments. The list of @<kw-name>s, @<kw-type>s and @<kw-defaults>s
1008 describes the keyword arguments.
1009\end{describe}
1010
1011\begin{describe}{fun}
1012 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
1013 Construct and return a new function type, returning @<subtype> and
1014 accepting the @<arguments>.
1015
1016 If the @<arguments> list contains a @|:keys| marker, then a
1017 \descref{cls}{c-keyword-function-type}[object] is returned: those arguments
1018 preceding the @|:keys| marker form the positional argument list, and those
1019 following the marker form the list of keyword arguments.
1020\end{describe}
1021
1022\begin{describe}{fun}
1023 {make-keyword-function-type @<subtype> @<arguments> @<keywords>
1024 \nlret @<c-keyword-function-type>}
1025 Construct and return a new keyword-function type, returning @<subtype> and
1026 accepting the @<arguments> and @<keywords>.
1027\end{describe}
1028
1029\begin{describe}{gf}
1030 {c-function-arguments @<c-function-type> @> @<arguments>}
1031 Return the (non-keyword) argument list of the @<c-function-type>.
1032\end{describe}
1033
1034\begin{describe}{gf}
1035 {c-function-keywords @<c-function-type> @> @<keywords>}
1036 Return the keyword-argument list of the @<c-function-type>.
1037\end{describe}
1038
1039\begin{describe}{fun}
1040 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
1041 Return a commentified version of the @<c-function-type>.
1042
1043 The returned type has the same subtype as the given type, and the argument
1044 list of the returned type is the result of applying
1045 @|commentify-argument-names| to the argument list of the given type.
1046\end{describe}
1047
1048\begin{describe}{fun}{reify-variable-argument-tail @<arguments> @> @<list>}
1049 If the @<argument> list contains an @|:ellipsis| marker, then replace it
1050 with a @|va_list|. The name for the new argument, if any, is taken from
1051 the \descref{var}{*sod-ap*}[variable]. The new list is returned; the
1052 original list is not modified, but may share structure with the new list.
1053\end{describe}
1054
1055\begin{describe}{fun}
1056 {merge-keyword-lists @<what-function> @<lists> @> @<list>}
1057 Merge a number of keyword-argument lists together and return the result.
1058
1059 The @<what-function> is either nil or a function designator; see below.
1060
1061 The @<lists> parameter is a list consisting of a number of
1062 @|(@<report-function> . @<args>)| pairs: in each pair, @<report-function>
1063 is either nil or a function designator, and @<args> is a list of
1064 \descref{cls}{argument} objects.
1065
1066 The resulting list contains exactly one argument for each distinct argument
1067 name appearing in the input @<lists>; this argument will contain the
1068 default value from the earliest occurrence in the input @<lists> of an
1069 argument with that name.
1070
1071 If the same name appears multiple times with different types, a continuable
1072 error will be signalled, and one of the conflicting argument types will be
1073 chosen arbitrarily. The @<what-function> will be called to establish
1074 information which will be reported to the user. It will be called with no
1075 arguments and is expected to return two values:
1076 \begin{itemize}
1077 \item a file location @<floc> or other object acceptable to
1078 \descref{gf}{file-location}, to be used as the location of the main
1079 error; and
1080 \item an object @<what>, whose printed representation should be a noun
1081 phrase describing the object for which the argument lists are being
1082 combined.
1083 \end{itemize}
1084 The phrasing of the error message is `type mismatch in @<what>'. Either,
1085 or both, of @<floc> and @<what> may be nil, though this is considered poor
1086 practice; if @<what-function> is nil, this is equivalent to a function
1087 which returns two nil values. Following the error, the @<report-function>s
1088 for the @<args> lists containing the conflicting argument objects are
1089 called, in an arbitrary order, with a single argument which is the
1090 offending @|argument| object; the function is expected to issue information
1091 messages (see \descref{fun}{info}) to give more detail for diagnosing the
1092 conflict. If a @<report-function> is nil, then nothing happens; this is
1093 considered poor practice.
1094\end{describe}
1095
1096\begin{describe}{fun}
1097 {pprint-c-function-type @<return-type> @<stream>
1098 @<print-args> @<print-kernel>}
1099 Provides the top-level structure for printing C function types.
1100
1101 Output is written to @<stream> to describe a function type returning
1102 @<return-type>, whose declarator kernel (containing the name, and any
1103 further type operands) will be printed by @<print-kernel>, and whose
1104 arguments, if any, will be printed by @<print-args>.
1105
1106 The @<print-kernel> function is a standard kernel-printing function
1107 following the \descref{gf}{pprint-c-type}[protocol].
1108
1109 The @<print-args> function is given a single argument, which is the
1110 @<stream> to print on. It should not print the surrounding parentheses.
1111
1112 The output written to @<stream> looks approximately like
1113 \begin{prog}
1114 @<return-type> @<kernel>(@<args>)
1115 \end{prog}
1116\end{describe}
1117
1118\begin{describe}{fun}{pprint-argument-list @<args> @<stream> @> @<flag>}
1119 Print an argument list to @<stream>.
1120
1121 The @<args> is a list of \descref{cls}{argument}[objects], optionally
1122 containing an @|:ellipsis| marker. The function returns true if any
1123 arguments were actually printed.
1124\end{describe}
1125
1126
1127\subsection{Parsing C types} \label{sec:clang.c-types.parsing}
1128
1129\begin{describe}{fun}
1130 {parse-c-type @<scanner>
1131 @> @<result> @<success-flag> @<consumed-flag>}
1132\end{describe}
1133
1134\begin{describe}{fun}
1135 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
1136 \nlret @<result> @<success-flag> @<consumed-flag>}
1137\end{describe}
1138
1139
1140\subsection{Class types} \label{sec:clang.c-types.class}
1141
1142\begin{describe}{cls}
1143 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
1144\end{describe}
1145
1146\begin{describe*}
1147 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
1148 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
1149\end{describe*}
1150
1151\begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
1152\end{describe}
1153
1154\begin{describe}{fun}
1155 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
1156\end{describe}
1157
1158\begin{describe}{fun}{find-sod-class @<name> @> @<class>}
1159\end{describe}
1160
1161\begin{describe}{fun}{record-sod-class @<class>}
1162\end{describe}
1163
1164%%%--------------------------------------------------------------------------
1165\section{Generating C code} \label{sec:clang.codegen}
1166
1167This section deals with Sod's facilities for constructing and manipulating C
1168expressions, declarations, instructions and definitions.
1169
1170
1171\subsection{Temporary names} \label{sec:clang.codegen.temporaries}
1172
1173Many C-level objects, especially ones with external linkage or inclusion in a
1174header file, are assigned names which are simple strings, perhaps fixed ones,
1175perhaps constructed. Other objects don't need meaningful names, and
1176suitably unique constructed names would be tedious and most likely rather
1177opaque. Therefore Sod has an ability to construct \emph{temporary names}.
1178
1179These aren't temporary in the sense that they name C objects which have
1180limited lifetimes at runtime. Rather, the idea is that the names be
1181significant only to small pieces of Lisp code, which will soon forget about
1182them.
1183
1184\subsubsection{The temporary name protocol}
1185Temporary names are represented by objects which implement a simple protocol.
1186
1187\begin{describe}{gf}{format-temporary-name @<var> @<stream>}
1188\end{describe}
1189
1190\begin{describe*}
1191 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
1192 \dhead{gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
1193\end{describe*}
1194
1195\subsubsection{Temporary name objects}
1196
1197\begin{describe}{cls}{temporary-name () \&key :tag}
1198 A temporary name object. This is the root of a small collection of
1199 subclasses, but is also usable on its own.
1200\end{describe}
1201
1202\begin{describe}{gf}{temp-tag @<name> @> @<tag>}
1203\end{describe}
1204
1205\begin{describe}{meth}{temporary-name}
1206 {commentify-argument-name (@<name> temporary-name) @> nil}
1207\end{describe}
1208
1209\begin{table}
1210 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1211 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1212 temporary-name & @<tag> \\
1213 temporary-argument & sod__a@<tag> \\
1214 temporary-function & sod__f@<tag> \\
1215 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
1216 \end{tabular}
1217 \caption{Temporary name formats}
1218 \label{tab:codegen.codegen.temps-format}
1219\end{table}
1220
1221\begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
1222\end{describe}
1223
1224\begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
1225\end{describe}
1226
1227\begin{describe}{fun}{temporary-function @> @<name>}
1228\end{describe}
1229
1230\begin{describe}{cls}
1231 {temporary-variable (temporary-name) \&key :tag :in-use-p}
1232\end{describe}
1233
1234\subsubsection{Well-known `temporary' names}
1235
1236\begin{table}
1237 \def\x#1{\desclabel{var}{#1}}
1238 \x{*sod-ap*} \x{*sod-master-ap*} \x{*null-pointer*}
1239 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1240 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1241 {}*sod-ap* & sod__ap \\
1242 {}*sod-master-ap* & sod__master_ap \\
1243 {}*null-pointer* & NULL \\ \hlx*{vh}
1244 \end{tabular}
1245 \caption{Well-known temporary names}
1246 \label{tab:codegen.codegen.well-known-temps}
1247\end{table}
1248
1249
1250\subsection{Instructions} \label{sec:clang.codegen.insts}
1251
1252\begin{describe}{cls}{inst () \&key}
1253\end{describe}
1254
1255\begin{describe}{gf}{inst-metric @<inst>}
1256\end{describe}
1257
1258\begin{describe}{mac}
1259 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
1260 @[[ @<declaration>^* @! @<doc-string> @]] \\
1261 @<form>^*
1262 \-\nlret @<code>}
1263\end{describe}
1264
1265\begin{describe}{mac}
1266 {format-compound-statement
1267 (@<stream> @<child> \&optional @<morep>) \\ \ind
1268 @<declaration>^* \\
1269 @<form>^*}
1270\end{describe}
1271
1272\begin{describe}{fun}
1273 {format-banner-comment @<stream> @<control> \&rest @<args>}
1274\end{describe}
1275
1276\begin{table}
1277 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
1278 \thd{Class name} &
1279 \thd{Arguments} &
1280 \thd{Output format} \\ \hlx{vhv}
1281 @|var| & @<name> @<type> @|\&optional| @<init>
1282 & @<type> @<name> @[= @<init>@];
1283 \\ \hlx{v}
1284 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
1285 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
1286 \\ \hlx{v}
1287 @|cond| & @<cond> @<conseq> @<alt> & @<cond> ? @<conseq> : @<alt>
1288 \\ \hlx{v}
1289 @|return| & @<expr> & return @[@<expr>@];
1290 \\ \hlx{v}
1291 @|break| & --- & break; \\ \hlx{v}
1292 @|continue| & --- & continue; \\ \hlx{v}
1293 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
1294 @|call| & @<func> @|\&rest| @<args>
1295 & @<func>(@<arg>_1,
1296 $\ldots$,
1297 @<arg>_n) \\ \hlx{v}
1298 @|banner| & @<control> @|\&rest| @<args>
1299 & /* @<banner> */ \\ \hlx{vhv}
1300 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
1301 \\ \hlx{v}
1302 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
1303 & if (@<cond>) @<conseq>
1304 @[else @<alt>@] \\ \hlx{v}
1305 @|for| & @<init> @<cond> @<update> @<body> &
1306 for (@<init>; @<cond>; @<update>) @<body> \\ \hlx{v}
1307 @|while| & @<cond> @<body> & while (@<cond>) @<body>
1308 \\ \hlx{v}
1309 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
1310 \\ \hlx{v}
1311 @|function| &
1312 \vtop{\hbox{\strut @<name> @<type> @<body>}
1313 \hbox{\strut \quad @|\&optional @<banner>|}
1314 \hbox{\strut \quad @|\&rest| @<banner-args>}} &
1315 \vtop{\hbox{\strut @[/* @<banner> */@]}
1316 \hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
1317 @<type>_n @<arg>_n @[, \dots@])}
1318 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
1319 \end{tabular}
1320 \caption{Instruction classes}
1321 \label{tab:codegen.codegen.insts}
1322\end{table}
1323
1324\begin{describe*}
1325 {\dhead*{cls}{@<code>-inst (inst) \&key \dots}
1326 \dhead*{fn}{make-@<code>-inst \dots}
1327 \dhead*{gf}{inst-@<slot> @<inst> @> @<value>}}
1328 \def\instclass#1#2#3{%
1329 #1{cls}{#3-inst}[#2]%
1330 #1{fun}{make-#3-inst}[#2]%
1331 }
1332 \def\instslot#1#2#3{#1{gf}{inst-#3}[#2]}
1333 \def\makelabels#1#2{%
1334 \def\x{\instclass{#1}{#2}}
1335 \x{var} \x{set} \x{update} \x{cond} \x{return} \x{break} \x{continue}
1336 \x{expr} \x{call} \x{banner} \x{block} \x{if} \x{for} \x{while}
1337 \x{do-while} \x{function}
1338 \def\x{\instslot{#1}{#2}}
1339 \x{name} \x{type} \x{init} \x{var} \x{expr} \x{op} \x{cond} \x{conseq}
1340 \x{alt} \x{func} \x{args} \x{control} \x{decls} \x{body} \x{update}
1341 \x{banner} \x{banner-args}
1342 }
1343 \makelabels{\desclabel}{|(}
1344
1345 Sod provides a number of built-in instruction types generated by
1346 \descref{mac}{definst}: see \xref{tab:codegen.codegen.insts}.
1347
1348 \makelabels{\descindex}{|)}
1349\end{describe*}
1350
1351
1352\subsection{Code generation} \label{sec:clang.codegen.codegen}
1353
1354\begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
1355\end{describe}
1356
1357\begin{describe}{gf}
1358 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
1359\end{describe}
1360
1361\begin{describe}{gf}{emit-inst @<codegen> @<inst>}
1362\end{describe}
1363
1364\begin{describe}{gf}{emit-insts @<codegen> @<insts>}
1365\end{describe}
1366
1367\begin{describe}{gf}{emit-decl @<codegen> @<decl>}
1368\end{describe}
1369
1370\begin{describe}{gf}{emit-decls @<codegen> @<decls>}
1371\end{describe}
1372
1373\begin{describe}{fun}{emit-banner @<codegen> @<control> \&rest @<args>}
1374\end{describe}
1375
1376\begin{describe}{gf}{codegen-push @<codegen>}
1377\end{describe}
1378
1379\begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
1380\end{describe}
1381
1382\begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
1383\end{describe}
1384
1385\begin{describe}{gf}
1386 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
1387\end{describe}
1388
1389\begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
1390\end{describe}
1391
1392\begin{describe}{fun}
1393 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
1394 @> @<name>}
1395\end{describe}
1396
1397\begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
1398\end{describe}
1399
1400\begin{describe}{mac}
1401 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
1402 @<declaration>^* \\
1403 @<form>^*
1404 \-\nlret @<value>^*}
1405\end{describe}
1406
1407\begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
1408\end{describe}
1409
1410\begin{describe}{fun}
1411 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1412\end{describe}
1413
1414\begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1415\end{describe}
1416
1417\begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1418\end{describe}
1419
1420%%%--------------------------------------------------------------------------
1421\section{Literal C code fragments} \label{sec:clang.fragment}
1422
1423\begin{describe}{cls}{c-fragment () \&key :location :text}
1424\end{describe}
1425
1426\begin{describe*}
1427 {\dhead{gf}{c-fragment-text @<fragment> @> @<string>}
1428 \dhead{meth}{c-fragment}
1429 {file-location (@<fragment> c-fragment) @> @<floc>}}
1430\end{describe*}
1431
1432\begin{describe}{fun}
1433 {scan-c-fragment @<scanner> @<end-chars>
1434 @> @<result> @<success-flag> @<consumed-flag>}
1435\end{describe}
1436
1437\begin{describe}{fun}
1438 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1439 \nlret @<result> @<success-flag> @<consumed-flag>}
1440\end{describe}
1441
1442%%%----- That's all, folks --------------------------------------------------
1443
1444%%% Local variables:
1445%%% mode: LaTeX
1446%%% TeX-master: "sod.tex"
1447%%% TeX-PDF-mode: t
1448%%% End: