New infrastructure feature. Games are now permitted to be
[sgt/puzzles] / pattern.c
1 /*
2 * pattern.c: the pattern-reconstruction game known as `nonograms'.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13
14 enum {
15 COL_BACKGROUND,
16 COL_EMPTY,
17 COL_FULL,
18 COL_TEXT,
19 COL_UNKNOWN,
20 COL_GRID,
21 NCOLOURS
22 };
23
24 #define PREFERRED_TILE_SIZE 24
25 #define TILE_SIZE (ds->tilesize)
26 #define BORDER (3 * TILE_SIZE / 4)
27 #define TLBORDER(d) ( (d) / 5 + 2 )
28 #define GUTTER (TILE_SIZE / 2)
29
30 #define FROMCOORD(d, x) \
31 ( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE )
32
33 #define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d)))
34 #define GETTILESIZE(d, w) ((double)w / (2.0 + (double)TLBORDER(d) + (double)(d)))
35
36 #define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x)))
37
38 struct game_params {
39 int w, h;
40 };
41
42 #define GRID_UNKNOWN 2
43 #define GRID_FULL 1
44 #define GRID_EMPTY 0
45
46 struct game_state {
47 int w, h;
48 unsigned char *grid;
49 int rowsize;
50 int *rowdata, *rowlen;
51 int completed, cheated;
52 };
53
54 #define FLASH_TIME 0.13F
55
56 static game_params *default_params(void)
57 {
58 game_params *ret = snew(game_params);
59
60 ret->w = ret->h = 15;
61
62 return ret;
63 }
64
65 static const struct game_params pattern_presets[] = {
66 {10, 10},
67 {15, 15},
68 {20, 20},
69 #ifndef SLOW_SYSTEM
70 {25, 25},
71 {30, 30},
72 #endif
73 };
74
75 static int game_fetch_preset(int i, char **name, game_params **params)
76 {
77 game_params *ret;
78 char str[80];
79
80 if (i < 0 || i >= lenof(pattern_presets))
81 return FALSE;
82
83 ret = snew(game_params);
84 *ret = pattern_presets[i];
85
86 sprintf(str, "%dx%d", ret->w, ret->h);
87
88 *name = dupstr(str);
89 *params = ret;
90 return TRUE;
91 }
92
93 static void free_params(game_params *params)
94 {
95 sfree(params);
96 }
97
98 static game_params *dup_params(game_params *params)
99 {
100 game_params *ret = snew(game_params);
101 *ret = *params; /* structure copy */
102 return ret;
103 }
104
105 static void decode_params(game_params *ret, char const *string)
106 {
107 char const *p = string;
108
109 ret->w = atoi(p);
110 while (*p && isdigit((unsigned char)*p)) p++;
111 if (*p == 'x') {
112 p++;
113 ret->h = atoi(p);
114 while (*p && isdigit((unsigned char)*p)) p++;
115 } else {
116 ret->h = ret->w;
117 }
118 }
119
120 static char *encode_params(game_params *params, int full)
121 {
122 char ret[400];
123 int len;
124
125 len = sprintf(ret, "%dx%d", params->w, params->h);
126 assert(len < lenof(ret));
127 ret[len] = '\0';
128
129 return dupstr(ret);
130 }
131
132 static config_item *game_configure(game_params *params)
133 {
134 config_item *ret;
135 char buf[80];
136
137 ret = snewn(3, config_item);
138
139 ret[0].name = "Width";
140 ret[0].type = C_STRING;
141 sprintf(buf, "%d", params->w);
142 ret[0].sval = dupstr(buf);
143 ret[0].ival = 0;
144
145 ret[1].name = "Height";
146 ret[1].type = C_STRING;
147 sprintf(buf, "%d", params->h);
148 ret[1].sval = dupstr(buf);
149 ret[1].ival = 0;
150
151 ret[2].name = NULL;
152 ret[2].type = C_END;
153 ret[2].sval = NULL;
154 ret[2].ival = 0;
155
156 return ret;
157 }
158
159 static game_params *custom_params(config_item *cfg)
160 {
161 game_params *ret = snew(game_params);
162
163 ret->w = atoi(cfg[0].sval);
164 ret->h = atoi(cfg[1].sval);
165
166 return ret;
167 }
168
169 static char *validate_params(game_params *params, int full)
170 {
171 if (params->w <= 0 || params->h <= 0)
172 return "Width and height must both be greater than zero";
173 return NULL;
174 }
175
176 /* ----------------------------------------------------------------------
177 * Puzzle generation code.
178 *
179 * For this particular puzzle, it seemed important to me to ensure
180 * a unique solution. I do this the brute-force way, by having a
181 * solver algorithm alongside the generator, and repeatedly
182 * generating a random grid until I find one whose solution is
183 * unique. It turns out that this isn't too onerous on a modern PC
184 * provided you keep grid size below around 30. Any offers of
185 * better algorithms, however, will be very gratefully received.
186 *
187 * Another annoyance of this approach is that it limits the
188 * available puzzles to those solvable by the algorithm I've used.
189 * My algorithm only ever considers a single row or column at any
190 * one time, which means it's incapable of solving the following
191 * difficult example (found by Bella Image around 1995/6, when she
192 * and I were both doing maths degrees):
193 *
194 * 2 1 2 1
195 *
196 * +--+--+--+--+
197 * 1 1 | | | | |
198 * +--+--+--+--+
199 * 2 | | | | |
200 * +--+--+--+--+
201 * 1 | | | | |
202 * +--+--+--+--+
203 * 1 | | | | |
204 * +--+--+--+--+
205 *
206 * Obviously this cannot be solved by a one-row-or-column-at-a-time
207 * algorithm (it would require at least one row or column reading
208 * `2 1', `1 2', `3' or `4' to get started). However, it can be
209 * proved to have a unique solution: if the top left square were
210 * empty, then the only option for the top row would be to fill the
211 * two squares in the 1 columns, which would imply the squares
212 * below those were empty, leaving no place for the 2 in the second
213 * row. Contradiction. Hence the top left square is full, and the
214 * unique solution follows easily from that starting point.
215 *
216 * (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case
217 * it's useful to anyone.)
218 */
219
220 static int float_compare(const void *av, const void *bv)
221 {
222 const float *a = (const float *)av;
223 const float *b = (const float *)bv;
224 if (*a < *b)
225 return -1;
226 else if (*a > *b)
227 return +1;
228 else
229 return 0;
230 }
231
232 static void generate(random_state *rs, int w, int h, unsigned char *retgrid)
233 {
234 float *fgrid;
235 float *fgrid2;
236 int step, i, j;
237 float threshold;
238
239 fgrid = snewn(w*h, float);
240
241 for (i = 0; i < h; i++) {
242 for (j = 0; j < w; j++) {
243 fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F;
244 }
245 }
246
247 /*
248 * The above gives a completely random splattering of black and
249 * white cells. We want to gently bias this in favour of _some_
250 * reasonably thick areas of white and black, while retaining
251 * some randomness and fine detail.
252 *
253 * So we evolve the starting grid using a cellular automaton.
254 * Currently, I'm doing something very simple indeed, which is
255 * to set each square to the average of the surrounding nine
256 * cells (or the average of fewer, if we're on a corner).
257 */
258 for (step = 0; step < 1; step++) {
259 fgrid2 = snewn(w*h, float);
260
261 for (i = 0; i < h; i++) {
262 for (j = 0; j < w; j++) {
263 float sx, xbar;
264 int n, p, q;
265
266 /*
267 * Compute the average of the surrounding cells.
268 */
269 n = 0;
270 sx = 0.F;
271 for (p = -1; p <= +1; p++) {
272 for (q = -1; q <= +1; q++) {
273 if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w)
274 continue;
275 /*
276 * An additional special case not mentioned
277 * above: if a grid dimension is 2xn then
278 * we do not average across that dimension
279 * at all. Otherwise a 2x2 grid would
280 * contain four identical squares.
281 */
282 if ((h==2 && p!=0) || (w==2 && q!=0))
283 continue;
284 n++;
285 sx += fgrid[(i+p)*w+(j+q)];
286 }
287 }
288 xbar = sx / n;
289
290 fgrid2[i*w+j] = xbar;
291 }
292 }
293
294 sfree(fgrid);
295 fgrid = fgrid2;
296 }
297
298 fgrid2 = snewn(w*h, float);
299 memcpy(fgrid2, fgrid, w*h*sizeof(float));
300 qsort(fgrid2, w*h, sizeof(float), float_compare);
301 threshold = fgrid2[w*h/2];
302 sfree(fgrid2);
303
304 for (i = 0; i < h; i++) {
305 for (j = 0; j < w; j++) {
306 retgrid[i*w+j] = (fgrid[i*w+j] >= threshold ? GRID_FULL :
307 GRID_EMPTY);
308 }
309 }
310
311 sfree(fgrid);
312 }
313
314 static int compute_rowdata(int *ret, unsigned char *start, int len, int step)
315 {
316 int i, n;
317
318 n = 0;
319
320 for (i = 0; i < len; i++) {
321 if (start[i*step] == GRID_FULL) {
322 int runlen = 1;
323 while (i+runlen < len && start[(i+runlen)*step] == GRID_FULL)
324 runlen++;
325 ret[n++] = runlen;
326 i += runlen;
327 }
328
329 if (i < len && start[i*step] == GRID_UNKNOWN)
330 return -1;
331 }
332
333 return n;
334 }
335
336 #define UNKNOWN 0
337 #define BLOCK 1
338 #define DOT 2
339 #define STILL_UNKNOWN 3
340
341 static void do_recurse(unsigned char *known, unsigned char *deduced,
342 unsigned char *row, int *data, int len,
343 int freespace, int ndone, int lowest)
344 {
345 int i, j, k;
346
347 if (data[ndone]) {
348 for (i=0; i<=freespace; i++) {
349 j = lowest;
350 for (k=0; k<i; k++) row[j++] = DOT;
351 for (k=0; k<data[ndone]; k++) row[j++] = BLOCK;
352 if (j < len) row[j++] = DOT;
353 do_recurse(known, deduced, row, data, len,
354 freespace-i, ndone+1, j);
355 }
356 } else {
357 for (i=lowest; i<len; i++)
358 row[i] = DOT;
359 for (i=0; i<len; i++)
360 if (known[i] && known[i] != row[i])
361 return;
362 for (i=0; i<len; i++)
363 deduced[i] |= row[i];
364 }
365 }
366
367 static int do_row(unsigned char *known, unsigned char *deduced,
368 unsigned char *row,
369 unsigned char *start, int len, int step, int *data)
370 {
371 int rowlen, i, freespace, done_any;
372
373 freespace = len+1;
374 for (rowlen = 0; data[rowlen]; rowlen++)
375 freespace -= data[rowlen]+1;
376
377 for (i = 0; i < len; i++) {
378 known[i] = start[i*step];
379 deduced[i] = 0;
380 }
381
382 do_recurse(known, deduced, row, data, len, freespace, 0, 0);
383 done_any = FALSE;
384 for (i=0; i<len; i++)
385 if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) {
386 start[i*step] = deduced[i];
387 done_any = TRUE;
388 }
389 return done_any;
390 }
391
392 static unsigned char *generate_soluble(random_state *rs, int w, int h)
393 {
394 int i, j, done_any, ok, ntries, max;
395 unsigned char *grid, *matrix, *workspace;
396 int *rowdata;
397
398 grid = snewn(w*h, unsigned char);
399 matrix = snewn(w*h, unsigned char);
400 max = max(w, h);
401 workspace = snewn(max*3, unsigned char);
402 rowdata = snewn(max+1, int);
403
404 ntries = 0;
405
406 do {
407 ntries++;
408
409 generate(rs, w, h, grid);
410
411 /*
412 * The game is a bit too easy if any row or column is
413 * completely black or completely white. An exception is
414 * made for rows/columns that are under 3 squares,
415 * otherwise nothing will ever be successfully generated.
416 */
417 ok = TRUE;
418 if (w > 2) {
419 for (i = 0; i < h; i++) {
420 int colours = 0;
421 for (j = 0; j < w; j++)
422 colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
423 if (colours != 3)
424 ok = FALSE;
425 }
426 }
427 if (h > 2) {
428 for (j = 0; j < w; j++) {
429 int colours = 0;
430 for (i = 0; i < h; i++)
431 colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
432 if (colours != 3)
433 ok = FALSE;
434 }
435 }
436 if (!ok)
437 continue;
438
439 memset(matrix, 0, w*h);
440
441 do {
442 done_any = 0;
443 for (i=0; i<h; i++) {
444 rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
445 done_any |= do_row(workspace, workspace+max, workspace+2*max,
446 matrix+i*w, w, 1, rowdata);
447 }
448 for (i=0; i<w; i++) {
449 rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
450 done_any |= do_row(workspace, workspace+max, workspace+2*max,
451 matrix+i, h, w, rowdata);
452 }
453 } while (done_any);
454
455 ok = TRUE;
456 for (i=0; i<h; i++) {
457 for (j=0; j<w; j++) {
458 if (matrix[i*w+j] == UNKNOWN)
459 ok = FALSE;
460 }
461 }
462 } while (!ok);
463
464 sfree(matrix);
465 sfree(workspace);
466 sfree(rowdata);
467 return grid;
468 }
469
470 static char *new_game_desc(game_params *params, random_state *rs,
471 char **aux, int interactive)
472 {
473 unsigned char *grid;
474 int i, j, max, rowlen, *rowdata;
475 char intbuf[80], *desc;
476 int desclen, descpos;
477
478 grid = generate_soluble(rs, params->w, params->h);
479 max = max(params->w, params->h);
480 rowdata = snewn(max, int);
481
482 /*
483 * Save the solved game in aux.
484 */
485 {
486 char *ai = snewn(params->w * params->h + 2, char);
487
488 /*
489 * String format is exactly the same as a solve move, so we
490 * can just dupstr this in solve_game().
491 */
492
493 ai[0] = 'S';
494
495 for (i = 0; i < params->w * params->h; i++)
496 ai[i+1] = grid[i] ? '1' : '0';
497
498 ai[params->w * params->h + 1] = '\0';
499
500 *aux = ai;
501 }
502
503 /*
504 * Seed is a slash-separated list of row contents; each row
505 * contents section is a dot-separated list of integers. Row
506 * contents are listed in the order (columns left to right,
507 * then rows top to bottom).
508 *
509 * Simplest way to handle memory allocation is to make two
510 * passes, first computing the seed size and then writing it
511 * out.
512 */
513 desclen = 0;
514 for (i = 0; i < params->w + params->h; i++) {
515 if (i < params->w)
516 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
517 else
518 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
519 params->w, 1);
520 if (rowlen > 0) {
521 for (j = 0; j < rowlen; j++) {
522 desclen += 1 + sprintf(intbuf, "%d", rowdata[j]);
523 }
524 } else {
525 desclen++;
526 }
527 }
528 desc = snewn(desclen, char);
529 descpos = 0;
530 for (i = 0; i < params->w + params->h; i++) {
531 if (i < params->w)
532 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
533 else
534 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
535 params->w, 1);
536 if (rowlen > 0) {
537 for (j = 0; j < rowlen; j++) {
538 int len = sprintf(desc+descpos, "%d", rowdata[j]);
539 if (j+1 < rowlen)
540 desc[descpos + len] = '.';
541 else
542 desc[descpos + len] = '/';
543 descpos += len+1;
544 }
545 } else {
546 desc[descpos++] = '/';
547 }
548 }
549 assert(descpos == desclen);
550 assert(desc[desclen-1] == '/');
551 desc[desclen-1] = '\0';
552 sfree(rowdata);
553 sfree(grid);
554 return desc;
555 }
556
557 static char *validate_desc(game_params *params, char *desc)
558 {
559 int i, n, rowspace;
560 char *p;
561
562 for (i = 0; i < params->w + params->h; i++) {
563 if (i < params->w)
564 rowspace = params->h + 1;
565 else
566 rowspace = params->w + 1;
567
568 if (*desc && isdigit((unsigned char)*desc)) {
569 do {
570 p = desc;
571 while (desc && isdigit((unsigned char)*desc)) desc++;
572 n = atoi(p);
573 rowspace -= n+1;
574
575 if (rowspace < 0) {
576 if (i < params->w)
577 return "at least one column contains more numbers than will fit";
578 else
579 return "at least one row contains more numbers than will fit";
580 }
581 } while (*desc++ == '.');
582 } else {
583 desc++; /* expect a slash immediately */
584 }
585
586 if (desc[-1] == '/') {
587 if (i+1 == params->w + params->h)
588 return "too many row/column specifications";
589 } else if (desc[-1] == '\0') {
590 if (i+1 < params->w + params->h)
591 return "too few row/column specifications";
592 } else
593 return "unrecognised character in game specification";
594 }
595
596 return NULL;
597 }
598
599 static game_state *new_game(midend *me, game_params *params, char *desc)
600 {
601 int i;
602 char *p;
603 game_state *state = snew(game_state);
604
605 state->w = params->w;
606 state->h = params->h;
607
608 state->grid = snewn(state->w * state->h, unsigned char);
609 memset(state->grid, GRID_UNKNOWN, state->w * state->h);
610
611 state->rowsize = max(state->w, state->h);
612 state->rowdata = snewn(state->rowsize * (state->w + state->h), int);
613 state->rowlen = snewn(state->w + state->h, int);
614
615 state->completed = state->cheated = FALSE;
616
617 for (i = 0; i < params->w + params->h; i++) {
618 state->rowlen[i] = 0;
619 if (*desc && isdigit((unsigned char)*desc)) {
620 do {
621 p = desc;
622 while (desc && isdigit((unsigned char)*desc)) desc++;
623 state->rowdata[state->rowsize * i + state->rowlen[i]++] =
624 atoi(p);
625 } while (*desc++ == '.');
626 } else {
627 desc++; /* expect a slash immediately */
628 }
629 }
630
631 return state;
632 }
633
634 static game_state *dup_game(game_state *state)
635 {
636 game_state *ret = snew(game_state);
637
638 ret->w = state->w;
639 ret->h = state->h;
640
641 ret->grid = snewn(ret->w * ret->h, unsigned char);
642 memcpy(ret->grid, state->grid, ret->w * ret->h);
643
644 ret->rowsize = state->rowsize;
645 ret->rowdata = snewn(ret->rowsize * (ret->w + ret->h), int);
646 ret->rowlen = snewn(ret->w + ret->h, int);
647 memcpy(ret->rowdata, state->rowdata,
648 ret->rowsize * (ret->w + ret->h) * sizeof(int));
649 memcpy(ret->rowlen, state->rowlen,
650 (ret->w + ret->h) * sizeof(int));
651
652 ret->completed = state->completed;
653 ret->cheated = state->cheated;
654
655 return ret;
656 }
657
658 static void free_game(game_state *state)
659 {
660 sfree(state->rowdata);
661 sfree(state->rowlen);
662 sfree(state->grid);
663 sfree(state);
664 }
665
666 static char *solve_game(game_state *state, game_state *currstate,
667 char *ai, char **error)
668 {
669 unsigned char *matrix;
670 int w = state->w, h = state->h;
671 int i;
672 char *ret;
673 int done_any, max;
674 unsigned char *workspace;
675 int *rowdata;
676
677 /*
678 * If we already have the solved state in ai, copy it out.
679 */
680 if (ai)
681 return dupstr(ai);
682
683 matrix = snewn(w*h, unsigned char);
684 max = max(w, h);
685 workspace = snewn(max*3, unsigned char);
686 rowdata = snewn(max+1, int);
687
688 memset(matrix, 0, w*h);
689
690 do {
691 done_any = 0;
692 for (i=0; i<h; i++) {
693 memcpy(rowdata, state->rowdata + state->rowsize*(w+i),
694 max*sizeof(int));
695 rowdata[state->rowlen[w+i]] = 0;
696 done_any |= do_row(workspace, workspace+max, workspace+2*max,
697 matrix+i*w, w, 1, rowdata);
698 }
699 for (i=0; i<w; i++) {
700 memcpy(rowdata, state->rowdata + state->rowsize*i, max*sizeof(int));
701 rowdata[state->rowlen[i]] = 0;
702 done_any |= do_row(workspace, workspace+max, workspace+2*max,
703 matrix+i, h, w, rowdata);
704 }
705 } while (done_any);
706
707 sfree(workspace);
708 sfree(rowdata);
709
710 for (i = 0; i < w*h; i++) {
711 if (matrix[i] != BLOCK && matrix[i] != DOT) {
712 sfree(matrix);
713 *error = "Solving algorithm cannot complete this puzzle";
714 return NULL;
715 }
716 }
717
718 ret = snewn(w*h+2, char);
719 ret[0] = 'S';
720 for (i = 0; i < w*h; i++) {
721 assert(matrix[i] == BLOCK || matrix[i] == DOT);
722 ret[i+1] = (matrix[i] == BLOCK ? '1' : '0');
723 }
724 ret[w*h+1] = '\0';
725
726 sfree(matrix);
727
728 return ret;
729 }
730
731 static int game_can_format_as_text_now(game_params *params)
732 {
733 return TRUE;
734 }
735
736 static char *game_text_format(game_state *state)
737 {
738 return NULL;
739 }
740
741 struct game_ui {
742 int dragging;
743 int drag_start_x;
744 int drag_start_y;
745 int drag_end_x;
746 int drag_end_y;
747 int drag, release, state;
748 };
749
750 static game_ui *new_ui(game_state *state)
751 {
752 game_ui *ret;
753
754 ret = snew(game_ui);
755 ret->dragging = FALSE;
756
757 return ret;
758 }
759
760 static void free_ui(game_ui *ui)
761 {
762 sfree(ui);
763 }
764
765 static char *encode_ui(game_ui *ui)
766 {
767 return NULL;
768 }
769
770 static void decode_ui(game_ui *ui, char *encoding)
771 {
772 }
773
774 static void game_changed_state(game_ui *ui, game_state *oldstate,
775 game_state *newstate)
776 {
777 }
778
779 struct game_drawstate {
780 int started;
781 int w, h;
782 int tilesize;
783 unsigned char *visible;
784 };
785
786 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
787 int x, int y, int button)
788 {
789 button &= ~MOD_MASK;
790
791 x = FROMCOORD(state->w, x);
792 y = FROMCOORD(state->h, y);
793
794 if (x >= 0 && x < state->w && y >= 0 && y < state->h &&
795 (button == LEFT_BUTTON || button == RIGHT_BUTTON ||
796 button == MIDDLE_BUTTON)) {
797 #ifdef STYLUS_BASED
798 int currstate = state->grid[y * state->w + x];
799 #endif
800
801 ui->dragging = TRUE;
802
803 if (button == LEFT_BUTTON) {
804 ui->drag = LEFT_DRAG;
805 ui->release = LEFT_RELEASE;
806 #ifdef STYLUS_BASED
807 ui->state = currstate == GRID_FULL ? GRID_UNKNOWN : GRID_FULL;
808 #else
809 ui->state = GRID_FULL;
810 #endif
811 } else if (button == RIGHT_BUTTON) {
812 ui->drag = RIGHT_DRAG;
813 ui->release = RIGHT_RELEASE;
814 #ifdef STYLUS_BASED
815 ui->state = currstate == GRID_EMPTY ? GRID_UNKNOWN : GRID_EMPTY;
816 #else
817 ui->state = GRID_EMPTY;
818 #endif
819 } else /* if (button == MIDDLE_BUTTON) */ {
820 ui->drag = MIDDLE_DRAG;
821 ui->release = MIDDLE_RELEASE;
822 ui->state = GRID_UNKNOWN;
823 }
824
825 ui->drag_start_x = ui->drag_end_x = x;
826 ui->drag_start_y = ui->drag_end_y = y;
827
828 return ""; /* UI activity occurred */
829 }
830
831 if (ui->dragging && button == ui->drag) {
832 /*
833 * There doesn't seem much point in allowing a rectangle
834 * drag; people will generally only want to drag a single
835 * horizontal or vertical line, so we make that easy by
836 * snapping to it.
837 *
838 * Exception: if we're _middle_-button dragging to tag
839 * things as UNKNOWN, we may well want to trash an entire
840 * area and start over!
841 */
842 if (ui->state != GRID_UNKNOWN) {
843 if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y))
844 y = ui->drag_start_y;
845 else
846 x = ui->drag_start_x;
847 }
848
849 if (x < 0) x = 0;
850 if (y < 0) y = 0;
851 if (x >= state->w) x = state->w - 1;
852 if (y >= state->h) y = state->h - 1;
853
854 ui->drag_end_x = x;
855 ui->drag_end_y = y;
856
857 return ""; /* UI activity occurred */
858 }
859
860 if (ui->dragging && button == ui->release) {
861 int x1, x2, y1, y2, xx, yy;
862 int move_needed = FALSE;
863
864 x1 = min(ui->drag_start_x, ui->drag_end_x);
865 x2 = max(ui->drag_start_x, ui->drag_end_x);
866 y1 = min(ui->drag_start_y, ui->drag_end_y);
867 y2 = max(ui->drag_start_y, ui->drag_end_y);
868
869 for (yy = y1; yy <= y2; yy++)
870 for (xx = x1; xx <= x2; xx++)
871 if (state->grid[yy * state->w + xx] != ui->state)
872 move_needed = TRUE;
873
874 ui->dragging = FALSE;
875
876 if (move_needed) {
877 char buf[80];
878 sprintf(buf, "%c%d,%d,%d,%d",
879 (char)(ui->state == GRID_FULL ? 'F' :
880 ui->state == GRID_EMPTY ? 'E' : 'U'),
881 x1, y1, x2-x1+1, y2-y1+1);
882 return dupstr(buf);
883 } else
884 return ""; /* UI activity occurred */
885 }
886
887 return NULL;
888 }
889
890 static game_state *execute_move(game_state *from, char *move)
891 {
892 game_state *ret;
893 int x1, x2, y1, y2, xx, yy;
894 int val;
895
896 if (move[0] == 'S' && strlen(move) == from->w * from->h + 1) {
897 int i;
898
899 ret = dup_game(from);
900
901 for (i = 0; i < ret->w * ret->h; i++)
902 ret->grid[i] = (move[i+1] == '1' ? GRID_FULL : GRID_EMPTY);
903
904 ret->completed = ret->cheated = TRUE;
905
906 return ret;
907 } else if ((move[0] == 'F' || move[0] == 'E' || move[0] == 'U') &&
908 sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 &&
909 x1 >= 0 && x2 >= 0 && x1+x2 <= from->w &&
910 y1 >= 0 && y2 >= 0 && y1+y2 <= from->h) {
911
912 x2 += x1;
913 y2 += y1;
914 val = (move[0] == 'F' ? GRID_FULL :
915 move[0] == 'E' ? GRID_EMPTY : GRID_UNKNOWN);
916
917 ret = dup_game(from);
918 for (yy = y1; yy < y2; yy++)
919 for (xx = x1; xx < x2; xx++)
920 ret->grid[yy * ret->w + xx] = val;
921
922 /*
923 * An actual change, so check to see if we've completed the
924 * game.
925 */
926 if (!ret->completed) {
927 int *rowdata = snewn(ret->rowsize, int);
928 int i, len;
929
930 ret->completed = TRUE;
931
932 for (i=0; i<ret->w; i++) {
933 len = compute_rowdata(rowdata,
934 ret->grid+i, ret->h, ret->w);
935 if (len != ret->rowlen[i] ||
936 memcmp(ret->rowdata+i*ret->rowsize, rowdata,
937 len * sizeof(int))) {
938 ret->completed = FALSE;
939 break;
940 }
941 }
942 for (i=0; i<ret->h; i++) {
943 len = compute_rowdata(rowdata,
944 ret->grid+i*ret->w, ret->w, 1);
945 if (len != ret->rowlen[i+ret->w] ||
946 memcmp(ret->rowdata+(i+ret->w)*ret->rowsize, rowdata,
947 len * sizeof(int))) {
948 ret->completed = FALSE;
949 break;
950 }
951 }
952
953 sfree(rowdata);
954 }
955
956 return ret;
957 } else
958 return NULL;
959 }
960
961 /* ----------------------------------------------------------------------
962 * Drawing routines.
963 */
964
965 static void game_compute_size(game_params *params, int tilesize,
966 int *x, int *y)
967 {
968 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
969 struct { int tilesize; } ads, *ds = &ads;
970 ads.tilesize = tilesize;
971
972 *x = SIZE(params->w);
973 *y = SIZE(params->h);
974 }
975
976 static void game_set_size(drawing *dr, game_drawstate *ds,
977 game_params *params, int tilesize)
978 {
979 ds->tilesize = tilesize;
980 }
981
982 static float *game_colours(frontend *fe, int *ncolours)
983 {
984 float *ret = snewn(3 * NCOLOURS, float);
985
986 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
987
988 ret[COL_GRID * 3 + 0] = 0.3F;
989 ret[COL_GRID * 3 + 1] = 0.3F;
990 ret[COL_GRID * 3 + 2] = 0.3F;
991
992 ret[COL_UNKNOWN * 3 + 0] = 0.5F;
993 ret[COL_UNKNOWN * 3 + 1] = 0.5F;
994 ret[COL_UNKNOWN * 3 + 2] = 0.5F;
995
996 ret[COL_TEXT * 3 + 0] = 0.0F;
997 ret[COL_TEXT * 3 + 1] = 0.0F;
998 ret[COL_TEXT * 3 + 2] = 0.0F;
999
1000 ret[COL_FULL * 3 + 0] = 0.0F;
1001 ret[COL_FULL * 3 + 1] = 0.0F;
1002 ret[COL_FULL * 3 + 2] = 0.0F;
1003
1004 ret[COL_EMPTY * 3 + 0] = 1.0F;
1005 ret[COL_EMPTY * 3 + 1] = 1.0F;
1006 ret[COL_EMPTY * 3 + 2] = 1.0F;
1007
1008 *ncolours = NCOLOURS;
1009 return ret;
1010 }
1011
1012 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1013 {
1014 struct game_drawstate *ds = snew(struct game_drawstate);
1015
1016 ds->started = FALSE;
1017 ds->w = state->w;
1018 ds->h = state->h;
1019 ds->visible = snewn(ds->w * ds->h, unsigned char);
1020 ds->tilesize = 0; /* not decided yet */
1021 memset(ds->visible, 255, ds->w * ds->h);
1022
1023 return ds;
1024 }
1025
1026 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1027 {
1028 sfree(ds->visible);
1029 sfree(ds);
1030 }
1031
1032 static void grid_square(drawing *dr, game_drawstate *ds,
1033 int y, int x, int state)
1034 {
1035 int xl, xr, yt, yb;
1036
1037 draw_rect(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
1038 TILE_SIZE, TILE_SIZE, COL_GRID);
1039
1040 xl = (x % 5 == 0 ? 1 : 0);
1041 yt = (y % 5 == 0 ? 1 : 0);
1042 xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0);
1043 yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0);
1044
1045 draw_rect(dr, TOCOORD(ds->w, x) + 1 + xl, TOCOORD(ds->h, y) + 1 + yt,
1046 TILE_SIZE - xl - xr - 1, TILE_SIZE - yt - yb - 1,
1047 (state == GRID_FULL ? COL_FULL :
1048 state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN));
1049
1050 draw_update(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
1051 TILE_SIZE, TILE_SIZE);
1052 }
1053
1054 static void draw_numbers(drawing *dr, game_drawstate *ds, game_state *state,
1055 int colour)
1056 {
1057 int i, j;
1058
1059 /*
1060 * Draw the numbers.
1061 */
1062 for (i = 0; i < state->w + state->h; i++) {
1063 int rowlen = state->rowlen[i];
1064 int *rowdata = state->rowdata + state->rowsize * i;
1065 int nfit;
1066
1067 /*
1068 * Normally I space the numbers out by the same
1069 * distance as the tile size. However, if there are
1070 * more numbers than available spaces, I have to squash
1071 * them up a bit.
1072 */
1073 nfit = max(rowlen, TLBORDER(state->h))-1;
1074 assert(nfit > 0);
1075
1076 for (j = 0; j < rowlen; j++) {
1077 int x, y;
1078 char str[80];
1079
1080 if (i < state->w) {
1081 x = TOCOORD(state->w, i);
1082 y = BORDER + TILE_SIZE * (TLBORDER(state->h)-1);
1083 y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->h)-1) / nfit;
1084 } else {
1085 y = TOCOORD(state->h, i - state->w);
1086 x = BORDER + TILE_SIZE * (TLBORDER(state->w)-1);
1087 x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->h)-1) / nfit;
1088 }
1089
1090 sprintf(str, "%d", rowdata[j]);
1091 draw_text(dr, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE,
1092 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, colour, str);
1093 }
1094 }
1095 }
1096
1097 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1098 game_state *state, int dir, game_ui *ui,
1099 float animtime, float flashtime)
1100 {
1101 int i, j;
1102 int x1, x2, y1, y2;
1103
1104 if (!ds->started) {
1105 /*
1106 * The initial contents of the window are not guaranteed
1107 * and can vary with front ends. To be on the safe side,
1108 * all games should start by drawing a big background-
1109 * colour rectangle covering the whole window.
1110 */
1111 draw_rect(dr, 0, 0, SIZE(ds->w), SIZE(ds->h), COL_BACKGROUND);
1112
1113 /*
1114 * Draw the numbers.
1115 */
1116 draw_numbers(dr, ds, state, COL_TEXT);
1117
1118 /*
1119 * Draw the grid outline.
1120 */
1121 draw_rect(dr, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1,
1122 ds->w * TILE_SIZE + 3, ds->h * TILE_SIZE + 3,
1123 COL_GRID);
1124
1125 ds->started = TRUE;
1126
1127 draw_update(dr, 0, 0, SIZE(ds->w), SIZE(ds->h));
1128 }
1129
1130 if (ui->dragging) {
1131 x1 = min(ui->drag_start_x, ui->drag_end_x);
1132 x2 = max(ui->drag_start_x, ui->drag_end_x);
1133 y1 = min(ui->drag_start_y, ui->drag_end_y);
1134 y2 = max(ui->drag_start_y, ui->drag_end_y);
1135 } else {
1136 x1 = x2 = y1 = y2 = -1; /* placate gcc warnings */
1137 }
1138
1139 /*
1140 * Now draw any grid squares which have changed since last
1141 * redraw.
1142 */
1143 for (i = 0; i < ds->h; i++) {
1144 for (j = 0; j < ds->w; j++) {
1145 int val;
1146
1147 /*
1148 * Work out what state this square should be drawn in,
1149 * taking any current drag operation into account.
1150 */
1151 if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2)
1152 val = ui->state;
1153 else
1154 val = state->grid[i * state->w + j];
1155
1156 /*
1157 * Briefly invert everything twice during a completion
1158 * flash.
1159 */
1160 if (flashtime > 0 &&
1161 (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) &&
1162 val != GRID_UNKNOWN)
1163 val = (GRID_FULL ^ GRID_EMPTY) ^ val;
1164
1165 if (ds->visible[i * ds->w + j] != val) {
1166 grid_square(dr, ds, i, j, val);
1167 ds->visible[i * ds->w + j] = val;
1168 }
1169 }
1170 }
1171 }
1172
1173 static float game_anim_length(game_state *oldstate,
1174 game_state *newstate, int dir, game_ui *ui)
1175 {
1176 return 0.0F;
1177 }
1178
1179 static float game_flash_length(game_state *oldstate,
1180 game_state *newstate, int dir, game_ui *ui)
1181 {
1182 if (!oldstate->completed && newstate->completed &&
1183 !oldstate->cheated && !newstate->cheated)
1184 return FLASH_TIME;
1185 return 0.0F;
1186 }
1187
1188 static int game_timing_state(game_state *state, game_ui *ui)
1189 {
1190 return TRUE;
1191 }
1192
1193 static void game_print_size(game_params *params, float *x, float *y)
1194 {
1195 int pw, ph;
1196
1197 /*
1198 * I'll use 5mm squares by default.
1199 */
1200 game_compute_size(params, 500, &pw, &ph);
1201 *x = pw / 100.0;
1202 *y = ph / 100.0;
1203 }
1204
1205 static void game_print(drawing *dr, game_state *state, int tilesize)
1206 {
1207 int w = state->w, h = state->h;
1208 int ink = print_mono_colour(dr, 0);
1209 int x, y;
1210
1211 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1212 game_drawstate ads, *ds = &ads;
1213 game_set_size(dr, ds, NULL, tilesize);
1214
1215 /*
1216 * Border.
1217 */
1218 print_line_width(dr, TILE_SIZE / 16);
1219 draw_rect_outline(dr, TOCOORD(w, 0), TOCOORD(h, 0),
1220 w*TILE_SIZE, h*TILE_SIZE, ink);
1221
1222 /*
1223 * Grid.
1224 */
1225 for (x = 1; x < w; x++) {
1226 print_line_width(dr, TILE_SIZE / (x % 5 ? 128 : 24));
1227 draw_line(dr, TOCOORD(w, x), TOCOORD(h, 0),
1228 TOCOORD(w, x), TOCOORD(h, h), ink);
1229 }
1230 for (y = 1; y < h; y++) {
1231 print_line_width(dr, TILE_SIZE / (y % 5 ? 128 : 24));
1232 draw_line(dr, TOCOORD(w, 0), TOCOORD(h, y),
1233 TOCOORD(w, w), TOCOORD(h, y), ink);
1234 }
1235
1236 /*
1237 * Clues.
1238 */
1239 draw_numbers(dr, ds, state, ink);
1240
1241 /*
1242 * Solution.
1243 */
1244 print_line_width(dr, TILE_SIZE / 128);
1245 for (y = 0; y < h; y++)
1246 for (x = 0; x < w; x++) {
1247 if (state->grid[y*w+x] == GRID_FULL)
1248 draw_rect(dr, TOCOORD(w, x), TOCOORD(h, y),
1249 TILE_SIZE, TILE_SIZE, ink);
1250 else if (state->grid[y*w+x] == GRID_EMPTY)
1251 draw_circle(dr, TOCOORD(w, x) + TILE_SIZE/2,
1252 TOCOORD(h, y) + TILE_SIZE/2,
1253 TILE_SIZE/12, ink, ink);
1254 }
1255 }
1256
1257 #ifdef COMBINED
1258 #define thegame pattern
1259 #endif
1260
1261 const struct game thegame = {
1262 "Pattern", "games.pattern", "pattern",
1263 default_params,
1264 game_fetch_preset,
1265 decode_params,
1266 encode_params,
1267 free_params,
1268 dup_params,
1269 TRUE, game_configure, custom_params,
1270 validate_params,
1271 new_game_desc,
1272 validate_desc,
1273 new_game,
1274 dup_game,
1275 free_game,
1276 TRUE, solve_game,
1277 FALSE, game_can_format_as_text_now, game_text_format,
1278 new_ui,
1279 free_ui,
1280 encode_ui,
1281 decode_ui,
1282 game_changed_state,
1283 interpret_move,
1284 execute_move,
1285 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1286 game_colours,
1287 game_new_drawstate,
1288 game_free_drawstate,
1289 game_redraw,
1290 game_anim_length,
1291 game_flash_length,
1292 TRUE, FALSE, game_print_size, game_print,
1293 FALSE, /* wants_statusbar */
1294 FALSE, game_timing_state,
1295 REQUIRE_RBUTTON, /* flags */
1296 };
1297
1298 #ifdef STANDALONE_SOLVER
1299
1300 int main(int argc, char **argv)
1301 {
1302 game_params *p;
1303 game_state *s;
1304 char *id = NULL, *desc, *err;
1305
1306 while (--argc > 0) {
1307 char *p = *++argv;
1308 if (*p == '-') {
1309 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
1310 return 1;
1311 } else {
1312 id = p;
1313 }
1314 }
1315
1316 if (!id) {
1317 fprintf(stderr, "usage: %s <game_id>\n", argv[0]);
1318 return 1;
1319 }
1320
1321 desc = strchr(id, ':');
1322 if (!desc) {
1323 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
1324 return 1;
1325 }
1326 *desc++ = '\0';
1327
1328 p = default_params();
1329 decode_params(p, id);
1330 err = validate_desc(p, desc);
1331 if (err) {
1332 fprintf(stderr, "%s: %s\n", argv[0], err);
1333 return 1;
1334 }
1335 s = new_game(NULL, p, desc);
1336
1337 {
1338 int w = p->w, h = p->h, i, j, done_any, max;
1339 unsigned char *matrix, *workspace;
1340 int *rowdata;
1341
1342 matrix = snewn(w*h, unsigned char);
1343 max = max(w, h);
1344 workspace = snewn(max*3, unsigned char);
1345 rowdata = snewn(max+1, int);
1346
1347 memset(matrix, 0, w*h);
1348
1349 do {
1350 done_any = 0;
1351 for (i=0; i<h; i++) {
1352 memcpy(rowdata, s->rowdata + s->rowsize*(w+i),
1353 max*sizeof(int));
1354 rowdata[s->rowlen[w+i]] = 0;
1355 done_any |= do_row(workspace, workspace+max, workspace+2*max,
1356 matrix+i*w, w, 1, rowdata);
1357 }
1358 for (i=0; i<w; i++) {
1359 memcpy(rowdata, s->rowdata + s->rowsize*i, max*sizeof(int));
1360 rowdata[s->rowlen[i]] = 0;
1361 done_any |= do_row(workspace, workspace+max, workspace+2*max,
1362 matrix+i, h, w, rowdata);
1363 }
1364 } while (done_any);
1365
1366 for (i = 0; i < h; i++) {
1367 for (j = 0; j < w; j++) {
1368 int c = (matrix[i*w+j] == UNKNOWN ? '?' :
1369 matrix[i*w+j] == BLOCK ? '#' :
1370 matrix[i*w+j] == DOT ? '.' :
1371 '!');
1372 putchar(c);
1373 }
1374 printf("\n");
1375 }
1376 }
1377
1378 return 0;
1379 }
1380
1381 #endif