Stop the analysis pass in Loopy's redraw routine from being
[sgt/puzzles] / pattern.c
1 /*
2 * pattern.c: the pattern-reconstruction game known as `nonograms'.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13
14 enum {
15 COL_BACKGROUND,
16 COL_EMPTY,
17 COL_FULL,
18 COL_TEXT,
19 COL_UNKNOWN,
20 COL_GRID,
21 COL_CURSOR,
22 COL_ERROR,
23 NCOLOURS
24 };
25
26 #define PREFERRED_TILE_SIZE 24
27 #define TILE_SIZE (ds->tilesize)
28 #define BORDER (3 * TILE_SIZE / 4)
29 #define TLBORDER(d) ( (d) / 5 + 2 )
30 #define GUTTER (TILE_SIZE / 2)
31
32 #define FROMCOORD(d, x) \
33 ( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE )
34
35 #define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d)))
36 #define GETTILESIZE(d, w) ((double)w / (2.0 + (double)TLBORDER(d) + (double)(d)))
37
38 #define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x)))
39
40 struct game_params {
41 int w, h;
42 };
43
44 #define GRID_UNKNOWN 2
45 #define GRID_FULL 1
46 #define GRID_EMPTY 0
47
48 struct game_state {
49 int w, h;
50 unsigned char *grid;
51 int rowsize;
52 int *rowdata, *rowlen;
53 int completed, cheated;
54 };
55
56 #define FLASH_TIME 0.13F
57
58 static game_params *default_params(void)
59 {
60 game_params *ret = snew(game_params);
61
62 ret->w = ret->h = 15;
63
64 return ret;
65 }
66
67 static const struct game_params pattern_presets[] = {
68 {10, 10},
69 {15, 15},
70 {20, 20},
71 #ifndef SLOW_SYSTEM
72 {25, 25},
73 {30, 30},
74 #endif
75 };
76
77 static int game_fetch_preset(int i, char **name, game_params **params)
78 {
79 game_params *ret;
80 char str[80];
81
82 if (i < 0 || i >= lenof(pattern_presets))
83 return FALSE;
84
85 ret = snew(game_params);
86 *ret = pattern_presets[i];
87
88 sprintf(str, "%dx%d", ret->w, ret->h);
89
90 *name = dupstr(str);
91 *params = ret;
92 return TRUE;
93 }
94
95 static void free_params(game_params *params)
96 {
97 sfree(params);
98 }
99
100 static game_params *dup_params(game_params *params)
101 {
102 game_params *ret = snew(game_params);
103 *ret = *params; /* structure copy */
104 return ret;
105 }
106
107 static void decode_params(game_params *ret, char const *string)
108 {
109 char const *p = string;
110
111 ret->w = atoi(p);
112 while (*p && isdigit((unsigned char)*p)) p++;
113 if (*p == 'x') {
114 p++;
115 ret->h = atoi(p);
116 while (*p && isdigit((unsigned char)*p)) p++;
117 } else {
118 ret->h = ret->w;
119 }
120 }
121
122 static char *encode_params(game_params *params, int full)
123 {
124 char ret[400];
125 int len;
126
127 len = sprintf(ret, "%dx%d", params->w, params->h);
128 assert(len < lenof(ret));
129 ret[len] = '\0';
130
131 return dupstr(ret);
132 }
133
134 static config_item *game_configure(game_params *params)
135 {
136 config_item *ret;
137 char buf[80];
138
139 ret = snewn(3, config_item);
140
141 ret[0].name = "Width";
142 ret[0].type = C_STRING;
143 sprintf(buf, "%d", params->w);
144 ret[0].sval = dupstr(buf);
145 ret[0].ival = 0;
146
147 ret[1].name = "Height";
148 ret[1].type = C_STRING;
149 sprintf(buf, "%d", params->h);
150 ret[1].sval = dupstr(buf);
151 ret[1].ival = 0;
152
153 ret[2].name = NULL;
154 ret[2].type = C_END;
155 ret[2].sval = NULL;
156 ret[2].ival = 0;
157
158 return ret;
159 }
160
161 static game_params *custom_params(config_item *cfg)
162 {
163 game_params *ret = snew(game_params);
164
165 ret->w = atoi(cfg[0].sval);
166 ret->h = atoi(cfg[1].sval);
167
168 return ret;
169 }
170
171 static char *validate_params(game_params *params, int full)
172 {
173 if (params->w <= 0 || params->h <= 0)
174 return "Width and height must both be greater than zero";
175 return NULL;
176 }
177
178 /* ----------------------------------------------------------------------
179 * Puzzle generation code.
180 *
181 * For this particular puzzle, it seemed important to me to ensure
182 * a unique solution. I do this the brute-force way, by having a
183 * solver algorithm alongside the generator, and repeatedly
184 * generating a random grid until I find one whose solution is
185 * unique. It turns out that this isn't too onerous on a modern PC
186 * provided you keep grid size below around 30. Any offers of
187 * better algorithms, however, will be very gratefully received.
188 *
189 * Another annoyance of this approach is that it limits the
190 * available puzzles to those solvable by the algorithm I've used.
191 * My algorithm only ever considers a single row or column at any
192 * one time, which means it's incapable of solving the following
193 * difficult example (found by Bella Image around 1995/6, when she
194 * and I were both doing maths degrees):
195 *
196 * 2 1 2 1
197 *
198 * +--+--+--+--+
199 * 1 1 | | | | |
200 * +--+--+--+--+
201 * 2 | | | | |
202 * +--+--+--+--+
203 * 1 | | | | |
204 * +--+--+--+--+
205 * 1 | | | | |
206 * +--+--+--+--+
207 *
208 * Obviously this cannot be solved by a one-row-or-column-at-a-time
209 * algorithm (it would require at least one row or column reading
210 * `2 1', `1 2', `3' or `4' to get started). However, it can be
211 * proved to have a unique solution: if the top left square were
212 * empty, then the only option for the top row would be to fill the
213 * two squares in the 1 columns, which would imply the squares
214 * below those were empty, leaving no place for the 2 in the second
215 * row. Contradiction. Hence the top left square is full, and the
216 * unique solution follows easily from that starting point.
217 *
218 * (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case
219 * it's useful to anyone.)
220 */
221
222 static int float_compare(const void *av, const void *bv)
223 {
224 const float *a = (const float *)av;
225 const float *b = (const float *)bv;
226 if (*a < *b)
227 return -1;
228 else if (*a > *b)
229 return +1;
230 else
231 return 0;
232 }
233
234 static void generate(random_state *rs, int w, int h, unsigned char *retgrid)
235 {
236 float *fgrid;
237 float *fgrid2;
238 int step, i, j;
239 float threshold;
240
241 fgrid = snewn(w*h, float);
242
243 for (i = 0; i < h; i++) {
244 for (j = 0; j < w; j++) {
245 fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F;
246 }
247 }
248
249 /*
250 * The above gives a completely random splattering of black and
251 * white cells. We want to gently bias this in favour of _some_
252 * reasonably thick areas of white and black, while retaining
253 * some randomness and fine detail.
254 *
255 * So we evolve the starting grid using a cellular automaton.
256 * Currently, I'm doing something very simple indeed, which is
257 * to set each square to the average of the surrounding nine
258 * cells (or the average of fewer, if we're on a corner).
259 */
260 for (step = 0; step < 1; step++) {
261 fgrid2 = snewn(w*h, float);
262
263 for (i = 0; i < h; i++) {
264 for (j = 0; j < w; j++) {
265 float sx, xbar;
266 int n, p, q;
267
268 /*
269 * Compute the average of the surrounding cells.
270 */
271 n = 0;
272 sx = 0.F;
273 for (p = -1; p <= +1; p++) {
274 for (q = -1; q <= +1; q++) {
275 if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w)
276 continue;
277 /*
278 * An additional special case not mentioned
279 * above: if a grid dimension is 2xn then
280 * we do not average across that dimension
281 * at all. Otherwise a 2x2 grid would
282 * contain four identical squares.
283 */
284 if ((h==2 && p!=0) || (w==2 && q!=0))
285 continue;
286 n++;
287 sx += fgrid[(i+p)*w+(j+q)];
288 }
289 }
290 xbar = sx / n;
291
292 fgrid2[i*w+j] = xbar;
293 }
294 }
295
296 sfree(fgrid);
297 fgrid = fgrid2;
298 }
299
300 fgrid2 = snewn(w*h, float);
301 memcpy(fgrid2, fgrid, w*h*sizeof(float));
302 qsort(fgrid2, w*h, sizeof(float), float_compare);
303 threshold = fgrid2[w*h/2];
304 sfree(fgrid2);
305
306 for (i = 0; i < h; i++) {
307 for (j = 0; j < w; j++) {
308 retgrid[i*w+j] = (fgrid[i*w+j] >= threshold ? GRID_FULL :
309 GRID_EMPTY);
310 }
311 }
312
313 sfree(fgrid);
314 }
315
316 static int compute_rowdata(int *ret, unsigned char *start, int len, int step)
317 {
318 int i, n;
319
320 n = 0;
321
322 for (i = 0; i < len; i++) {
323 if (start[i*step] == GRID_FULL) {
324 int runlen = 1;
325 while (i+runlen < len && start[(i+runlen)*step] == GRID_FULL)
326 runlen++;
327 ret[n++] = runlen;
328 i += runlen;
329 }
330
331 if (i < len && start[i*step] == GRID_UNKNOWN)
332 return -1;
333 }
334
335 return n;
336 }
337
338 #define UNKNOWN 0
339 #define BLOCK 1
340 #define DOT 2
341 #define STILL_UNKNOWN 3
342
343 #ifdef STANDALONE_SOLVER
344 int verbose = FALSE;
345 #endif
346
347 static void do_recurse(unsigned char *known, unsigned char *deduced,
348 unsigned char *row, int *data, int len,
349 int freespace, int ndone, int lowest)
350 {
351 int i, j, k;
352
353 if (data[ndone]) {
354 for (i=0; i<=freespace; i++) {
355 j = lowest;
356 for (k=0; k<i; k++) row[j++] = DOT;
357 for (k=0; k<data[ndone]; k++) row[j++] = BLOCK;
358 if (j < len) row[j++] = DOT;
359 do_recurse(known, deduced, row, data, len,
360 freespace-i, ndone+1, j);
361 }
362 } else {
363 for (i=lowest; i<len; i++)
364 row[i] = DOT;
365 for (i=0; i<len; i++)
366 if (known[i] && known[i] != row[i])
367 return;
368 for (i=0; i<len; i++)
369 deduced[i] |= row[i];
370 }
371 }
372
373 static int do_row(unsigned char *known, unsigned char *deduced,
374 unsigned char *row,
375 unsigned char *start, int len, int step, int *data
376 #ifdef STANDALONE_SOLVER
377 , const char *rowcol, int index, int cluewid
378 #endif
379 )
380 {
381 int rowlen, i, freespace, done_any;
382
383 freespace = len+1;
384 for (rowlen = 0; data[rowlen]; rowlen++)
385 freespace -= data[rowlen]+1;
386
387 for (i = 0; i < len; i++) {
388 known[i] = start[i*step];
389 deduced[i] = 0;
390 }
391
392 do_recurse(known, deduced, row, data, len, freespace, 0, 0);
393 done_any = FALSE;
394 for (i=0; i<len; i++)
395 if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) {
396 start[i*step] = deduced[i];
397 done_any = TRUE;
398 }
399 #ifdef STANDALONE_SOLVER
400 if (verbose && done_any) {
401 char buf[80];
402 int thiscluewid;
403 printf("%s %2d: [", rowcol, index);
404 for (thiscluewid = -1, i = 0; data[i]; i++)
405 thiscluewid += sprintf(buf, " %d", data[i]);
406 printf("%*s", cluewid - thiscluewid, "");
407 for (i = 0; data[i]; i++)
408 printf(" %d", data[i]);
409 printf(" ] ");
410 for (i = 0; i < len; i++)
411 putchar(known[i] == BLOCK ? '#' :
412 known[i] == DOT ? '.' : '?');
413 printf(" -> ");
414 for (i = 0; i < len; i++)
415 putchar(start[i*step] == BLOCK ? '#' :
416 start[i*step] == DOT ? '.' : '?');
417 putchar('\n');
418 }
419 #endif
420 return done_any;
421 }
422
423 static unsigned char *generate_soluble(random_state *rs, int w, int h)
424 {
425 int i, j, done_any, ok, ntries, max;
426 unsigned char *grid, *matrix, *workspace;
427 int *rowdata;
428
429 grid = snewn(w*h, unsigned char);
430 matrix = snewn(w*h, unsigned char);
431 max = max(w, h);
432 workspace = snewn(max*3, unsigned char);
433 rowdata = snewn(max+1, int);
434
435 ntries = 0;
436
437 do {
438 ntries++;
439
440 generate(rs, w, h, grid);
441
442 /*
443 * The game is a bit too easy if any row or column is
444 * completely black or completely white. An exception is
445 * made for rows/columns that are under 3 squares,
446 * otherwise nothing will ever be successfully generated.
447 */
448 ok = TRUE;
449 if (w > 2) {
450 for (i = 0; i < h; i++) {
451 int colours = 0;
452 for (j = 0; j < w; j++)
453 colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
454 if (colours != 3)
455 ok = FALSE;
456 }
457 }
458 if (h > 2) {
459 for (j = 0; j < w; j++) {
460 int colours = 0;
461 for (i = 0; i < h; i++)
462 colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
463 if (colours != 3)
464 ok = FALSE;
465 }
466 }
467 if (!ok)
468 continue;
469
470 memset(matrix, 0, w*h);
471
472 do {
473 done_any = 0;
474 for (i=0; i<h; i++) {
475 rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
476 done_any |= do_row(workspace, workspace+max, workspace+2*max,
477 matrix+i*w, w, 1, rowdata
478 #ifdef STANDALONE_SOLVER
479 , NULL, 0, 0 /* never do diagnostics here */
480 #endif
481 );
482 }
483 for (i=0; i<w; i++) {
484 rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
485 done_any |= do_row(workspace, workspace+max, workspace+2*max,
486 matrix+i, h, w, rowdata
487 #ifdef STANDALONE_SOLVER
488 , NULL, 0, 0 /* never do diagnostics here */
489 #endif
490 );
491 }
492 } while (done_any);
493
494 ok = TRUE;
495 for (i=0; i<h; i++) {
496 for (j=0; j<w; j++) {
497 if (matrix[i*w+j] == UNKNOWN)
498 ok = FALSE;
499 }
500 }
501 } while (!ok);
502
503 sfree(matrix);
504 sfree(workspace);
505 sfree(rowdata);
506 return grid;
507 }
508
509 static char *new_game_desc(game_params *params, random_state *rs,
510 char **aux, int interactive)
511 {
512 unsigned char *grid;
513 int i, j, max, rowlen, *rowdata;
514 char intbuf[80], *desc;
515 int desclen, descpos;
516
517 grid = generate_soluble(rs, params->w, params->h);
518 max = max(params->w, params->h);
519 rowdata = snewn(max, int);
520
521 /*
522 * Save the solved game in aux.
523 */
524 {
525 char *ai = snewn(params->w * params->h + 2, char);
526
527 /*
528 * String format is exactly the same as a solve move, so we
529 * can just dupstr this in solve_game().
530 */
531
532 ai[0] = 'S';
533
534 for (i = 0; i < params->w * params->h; i++)
535 ai[i+1] = grid[i] ? '1' : '0';
536
537 ai[params->w * params->h + 1] = '\0';
538
539 *aux = ai;
540 }
541
542 /*
543 * Seed is a slash-separated list of row contents; each row
544 * contents section is a dot-separated list of integers. Row
545 * contents are listed in the order (columns left to right,
546 * then rows top to bottom).
547 *
548 * Simplest way to handle memory allocation is to make two
549 * passes, first computing the seed size and then writing it
550 * out.
551 */
552 desclen = 0;
553 for (i = 0; i < params->w + params->h; i++) {
554 if (i < params->w)
555 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
556 else
557 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
558 params->w, 1);
559 if (rowlen > 0) {
560 for (j = 0; j < rowlen; j++) {
561 desclen += 1 + sprintf(intbuf, "%d", rowdata[j]);
562 }
563 } else {
564 desclen++;
565 }
566 }
567 desc = snewn(desclen, char);
568 descpos = 0;
569 for (i = 0; i < params->w + params->h; i++) {
570 if (i < params->w)
571 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
572 else
573 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
574 params->w, 1);
575 if (rowlen > 0) {
576 for (j = 0; j < rowlen; j++) {
577 int len = sprintf(desc+descpos, "%d", rowdata[j]);
578 if (j+1 < rowlen)
579 desc[descpos + len] = '.';
580 else
581 desc[descpos + len] = '/';
582 descpos += len+1;
583 }
584 } else {
585 desc[descpos++] = '/';
586 }
587 }
588 assert(descpos == desclen);
589 assert(desc[desclen-1] == '/');
590 desc[desclen-1] = '\0';
591 sfree(rowdata);
592 sfree(grid);
593 return desc;
594 }
595
596 static char *validate_desc(game_params *params, char *desc)
597 {
598 int i, n, rowspace;
599 char *p;
600
601 for (i = 0; i < params->w + params->h; i++) {
602 if (i < params->w)
603 rowspace = params->h + 1;
604 else
605 rowspace = params->w + 1;
606
607 if (*desc && isdigit((unsigned char)*desc)) {
608 do {
609 p = desc;
610 while (*desc && isdigit((unsigned char)*desc)) desc++;
611 n = atoi(p);
612 rowspace -= n+1;
613
614 if (rowspace < 0) {
615 if (i < params->w)
616 return "at least one column contains more numbers than will fit";
617 else
618 return "at least one row contains more numbers than will fit";
619 }
620 } while (*desc++ == '.');
621 } else {
622 desc++; /* expect a slash immediately */
623 }
624
625 if (desc[-1] == '/') {
626 if (i+1 == params->w + params->h)
627 return "too many row/column specifications";
628 } else if (desc[-1] == '\0') {
629 if (i+1 < params->w + params->h)
630 return "too few row/column specifications";
631 } else
632 return "unrecognised character in game specification";
633 }
634
635 return NULL;
636 }
637
638 static game_state *new_game(midend *me, game_params *params, char *desc)
639 {
640 int i;
641 char *p;
642 game_state *state = snew(game_state);
643
644 state->w = params->w;
645 state->h = params->h;
646
647 state->grid = snewn(state->w * state->h, unsigned char);
648 memset(state->grid, GRID_UNKNOWN, state->w * state->h);
649
650 state->rowsize = max(state->w, state->h);
651 state->rowdata = snewn(state->rowsize * (state->w + state->h), int);
652 state->rowlen = snewn(state->w + state->h, int);
653
654 state->completed = state->cheated = FALSE;
655
656 for (i = 0; i < params->w + params->h; i++) {
657 state->rowlen[i] = 0;
658 if (*desc && isdigit((unsigned char)*desc)) {
659 do {
660 p = desc;
661 while (*desc && isdigit((unsigned char)*desc)) desc++;
662 state->rowdata[state->rowsize * i + state->rowlen[i]++] =
663 atoi(p);
664 } while (*desc++ == '.');
665 } else {
666 desc++; /* expect a slash immediately */
667 }
668 }
669
670 return state;
671 }
672
673 static game_state *dup_game(game_state *state)
674 {
675 game_state *ret = snew(game_state);
676
677 ret->w = state->w;
678 ret->h = state->h;
679
680 ret->grid = snewn(ret->w * ret->h, unsigned char);
681 memcpy(ret->grid, state->grid, ret->w * ret->h);
682
683 ret->rowsize = state->rowsize;
684 ret->rowdata = snewn(ret->rowsize * (ret->w + ret->h), int);
685 ret->rowlen = snewn(ret->w + ret->h, int);
686 memcpy(ret->rowdata, state->rowdata,
687 ret->rowsize * (ret->w + ret->h) * sizeof(int));
688 memcpy(ret->rowlen, state->rowlen,
689 (ret->w + ret->h) * sizeof(int));
690
691 ret->completed = state->completed;
692 ret->cheated = state->cheated;
693
694 return ret;
695 }
696
697 static void free_game(game_state *state)
698 {
699 sfree(state->rowdata);
700 sfree(state->rowlen);
701 sfree(state->grid);
702 sfree(state);
703 }
704
705 static char *solve_game(game_state *state, game_state *currstate,
706 char *ai, char **error)
707 {
708 unsigned char *matrix;
709 int w = state->w, h = state->h;
710 int i;
711 char *ret;
712 int done_any, max;
713 unsigned char *workspace;
714 int *rowdata;
715
716 /*
717 * If we already have the solved state in ai, copy it out.
718 */
719 if (ai)
720 return dupstr(ai);
721
722 matrix = snewn(w*h, unsigned char);
723 max = max(w, h);
724 workspace = snewn(max*3, unsigned char);
725 rowdata = snewn(max+1, int);
726
727 memset(matrix, 0, w*h);
728
729 do {
730 done_any = 0;
731 for (i=0; i<h; i++) {
732 memcpy(rowdata, state->rowdata + state->rowsize*(w+i),
733 max*sizeof(int));
734 rowdata[state->rowlen[w+i]] = 0;
735 done_any |= do_row(workspace, workspace+max, workspace+2*max,
736 matrix+i*w, w, 1, rowdata
737 #ifdef STANDALONE_SOLVER
738 , NULL, 0, 0 /* never do diagnostics here */
739 #endif
740 );
741 }
742 for (i=0; i<w; i++) {
743 memcpy(rowdata, state->rowdata + state->rowsize*i, max*sizeof(int));
744 rowdata[state->rowlen[i]] = 0;
745 done_any |= do_row(workspace, workspace+max, workspace+2*max,
746 matrix+i, h, w, rowdata
747 #ifdef STANDALONE_SOLVER
748 , NULL, 0, 0 /* never do diagnostics here */
749 #endif
750 );
751 }
752 } while (done_any);
753
754 sfree(workspace);
755 sfree(rowdata);
756
757 for (i = 0; i < w*h; i++) {
758 if (matrix[i] != BLOCK && matrix[i] != DOT) {
759 sfree(matrix);
760 *error = "Solving algorithm cannot complete this puzzle";
761 return NULL;
762 }
763 }
764
765 ret = snewn(w*h+2, char);
766 ret[0] = 'S';
767 for (i = 0; i < w*h; i++) {
768 assert(matrix[i] == BLOCK || matrix[i] == DOT);
769 ret[i+1] = (matrix[i] == BLOCK ? '1' : '0');
770 }
771 ret[w*h+1] = '\0';
772
773 sfree(matrix);
774
775 return ret;
776 }
777
778 static int game_can_format_as_text_now(game_params *params)
779 {
780 return TRUE;
781 }
782
783 static char *game_text_format(game_state *state)
784 {
785 return NULL;
786 }
787
788 struct game_ui {
789 int dragging;
790 int drag_start_x;
791 int drag_start_y;
792 int drag_end_x;
793 int drag_end_y;
794 int drag, release, state;
795 int cur_x, cur_y, cur_visible;
796 };
797
798 static game_ui *new_ui(game_state *state)
799 {
800 game_ui *ret;
801
802 ret = snew(game_ui);
803 ret->dragging = FALSE;
804 ret->cur_x = ret->cur_y = ret->cur_visible = 0;
805
806 return ret;
807 }
808
809 static void free_ui(game_ui *ui)
810 {
811 sfree(ui);
812 }
813
814 static char *encode_ui(game_ui *ui)
815 {
816 return NULL;
817 }
818
819 static void decode_ui(game_ui *ui, char *encoding)
820 {
821 }
822
823 static void game_changed_state(game_ui *ui, game_state *oldstate,
824 game_state *newstate)
825 {
826 }
827
828 struct game_drawstate {
829 int started;
830 int w, h;
831 int tilesize;
832 unsigned char *visible, *numcolours;
833 int cur_x, cur_y;
834 };
835
836 static char *interpret_move(game_state *state, game_ui *ui, const game_drawstate *ds,
837 int x, int y, int button)
838 {
839 button &= ~MOD_MASK;
840
841 x = FROMCOORD(state->w, x);
842 y = FROMCOORD(state->h, y);
843
844 if (x >= 0 && x < state->w && y >= 0 && y < state->h &&
845 (button == LEFT_BUTTON || button == RIGHT_BUTTON ||
846 button == MIDDLE_BUTTON)) {
847 #ifdef STYLUS_BASED
848 int currstate = state->grid[y * state->w + x];
849 #endif
850
851 ui->dragging = TRUE;
852
853 if (button == LEFT_BUTTON) {
854 ui->drag = LEFT_DRAG;
855 ui->release = LEFT_RELEASE;
856 #ifdef STYLUS_BASED
857 ui->state = (currstate + 2) % 3; /* FULL -> EMPTY -> UNKNOWN */
858 #else
859 ui->state = GRID_FULL;
860 #endif
861 } else if (button == RIGHT_BUTTON) {
862 ui->drag = RIGHT_DRAG;
863 ui->release = RIGHT_RELEASE;
864 #ifdef STYLUS_BASED
865 ui->state = (currstate + 1) % 3; /* EMPTY -> FULL -> UNKNOWN */
866 #else
867 ui->state = GRID_EMPTY;
868 #endif
869 } else /* if (button == MIDDLE_BUTTON) */ {
870 ui->drag = MIDDLE_DRAG;
871 ui->release = MIDDLE_RELEASE;
872 ui->state = GRID_UNKNOWN;
873 }
874
875 ui->drag_start_x = ui->drag_end_x = x;
876 ui->drag_start_y = ui->drag_end_y = y;
877 ui->cur_visible = 0;
878
879 return ""; /* UI activity occurred */
880 }
881
882 if (ui->dragging && button == ui->drag) {
883 /*
884 * There doesn't seem much point in allowing a rectangle
885 * drag; people will generally only want to drag a single
886 * horizontal or vertical line, so we make that easy by
887 * snapping to it.
888 *
889 * Exception: if we're _middle_-button dragging to tag
890 * things as UNKNOWN, we may well want to trash an entire
891 * area and start over!
892 */
893 if (ui->state != GRID_UNKNOWN) {
894 if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y))
895 y = ui->drag_start_y;
896 else
897 x = ui->drag_start_x;
898 }
899
900 if (x < 0) x = 0;
901 if (y < 0) y = 0;
902 if (x >= state->w) x = state->w - 1;
903 if (y >= state->h) y = state->h - 1;
904
905 ui->drag_end_x = x;
906 ui->drag_end_y = y;
907
908 return ""; /* UI activity occurred */
909 }
910
911 if (ui->dragging && button == ui->release) {
912 int x1, x2, y1, y2, xx, yy;
913 int move_needed = FALSE;
914
915 x1 = min(ui->drag_start_x, ui->drag_end_x);
916 x2 = max(ui->drag_start_x, ui->drag_end_x);
917 y1 = min(ui->drag_start_y, ui->drag_end_y);
918 y2 = max(ui->drag_start_y, ui->drag_end_y);
919
920 for (yy = y1; yy <= y2; yy++)
921 for (xx = x1; xx <= x2; xx++)
922 if (state->grid[yy * state->w + xx] != ui->state)
923 move_needed = TRUE;
924
925 ui->dragging = FALSE;
926
927 if (move_needed) {
928 char buf[80];
929 sprintf(buf, "%c%d,%d,%d,%d",
930 (char)(ui->state == GRID_FULL ? 'F' :
931 ui->state == GRID_EMPTY ? 'E' : 'U'),
932 x1, y1, x2-x1+1, y2-y1+1);
933 return dupstr(buf);
934 } else
935 return ""; /* UI activity occurred */
936 }
937
938 if (IS_CURSOR_MOVE(button)) {
939 move_cursor(button, &ui->cur_x, &ui->cur_y, state->w, state->h, 0);
940 ui->cur_visible = 1;
941 return "";
942 }
943 if (IS_CURSOR_SELECT(button)) {
944 int currstate = state->grid[ui->cur_y * state->w + ui->cur_x];
945 int newstate;
946 char buf[80];
947
948 if (!ui->cur_visible) {
949 ui->cur_visible = 1;
950 return "";
951 }
952
953 if (button == CURSOR_SELECT2)
954 newstate = currstate == GRID_UNKNOWN ? GRID_EMPTY :
955 currstate == GRID_EMPTY ? GRID_FULL : GRID_UNKNOWN;
956 else
957 newstate = currstate == GRID_UNKNOWN ? GRID_FULL :
958 currstate == GRID_FULL ? GRID_EMPTY : GRID_UNKNOWN;
959
960 sprintf(buf, "%c%d,%d,%d,%d",
961 (char)(newstate == GRID_FULL ? 'F' :
962 newstate == GRID_EMPTY ? 'E' : 'U'),
963 ui->cur_x, ui->cur_y, 1, 1);
964 return dupstr(buf);
965 }
966
967 return NULL;
968 }
969
970 static game_state *execute_move(game_state *from, char *move)
971 {
972 game_state *ret;
973 int x1, x2, y1, y2, xx, yy;
974 int val;
975
976 if (move[0] == 'S' && strlen(move) == from->w * from->h + 1) {
977 int i;
978
979 ret = dup_game(from);
980
981 for (i = 0; i < ret->w * ret->h; i++)
982 ret->grid[i] = (move[i+1] == '1' ? GRID_FULL : GRID_EMPTY);
983
984 ret->completed = ret->cheated = TRUE;
985
986 return ret;
987 } else if ((move[0] == 'F' || move[0] == 'E' || move[0] == 'U') &&
988 sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 &&
989 x1 >= 0 && x2 >= 0 && x1+x2 <= from->w &&
990 y1 >= 0 && y2 >= 0 && y1+y2 <= from->h) {
991
992 x2 += x1;
993 y2 += y1;
994 val = (move[0] == 'F' ? GRID_FULL :
995 move[0] == 'E' ? GRID_EMPTY : GRID_UNKNOWN);
996
997 ret = dup_game(from);
998 for (yy = y1; yy < y2; yy++)
999 for (xx = x1; xx < x2; xx++)
1000 ret->grid[yy * ret->w + xx] = val;
1001
1002 /*
1003 * An actual change, so check to see if we've completed the
1004 * game.
1005 */
1006 if (!ret->completed) {
1007 int *rowdata = snewn(ret->rowsize, int);
1008 int i, len;
1009
1010 ret->completed = TRUE;
1011
1012 for (i=0; i<ret->w; i++) {
1013 len = compute_rowdata(rowdata,
1014 ret->grid+i, ret->h, ret->w);
1015 if (len != ret->rowlen[i] ||
1016 memcmp(ret->rowdata+i*ret->rowsize, rowdata,
1017 len * sizeof(int))) {
1018 ret->completed = FALSE;
1019 break;
1020 }
1021 }
1022 for (i=0; i<ret->h; i++) {
1023 len = compute_rowdata(rowdata,
1024 ret->grid+i*ret->w, ret->w, 1);
1025 if (len != ret->rowlen[i+ret->w] ||
1026 memcmp(ret->rowdata+(i+ret->w)*ret->rowsize, rowdata,
1027 len * sizeof(int))) {
1028 ret->completed = FALSE;
1029 break;
1030 }
1031 }
1032
1033 sfree(rowdata);
1034 }
1035
1036 return ret;
1037 } else
1038 return NULL;
1039 }
1040
1041 /* ----------------------------------------------------------------------
1042 * Error-checking during gameplay.
1043 */
1044
1045 /*
1046 * The difficulty in error-checking Pattern is to make the error check
1047 * _weak_ enough. The most obvious way would be to check each row and
1048 * column by calling (a modified form of) do_row() to recursively
1049 * analyse the row contents against the clue set and see if the
1050 * GRID_UNKNOWNs could be filled in in any way that would end up
1051 * correct. However, this turns out to be such a strong error check as
1052 * to constitute a spoiler in many situations: you make a typo while
1053 * trying to fill in one row, and not only does the row light up to
1054 * indicate an error, but several columns crossed by the move also
1055 * light up and draw your attention to deductions you hadn't even
1056 * noticed you could make.
1057 *
1058 * So instead I restrict error-checking to 'complete runs' within a
1059 * row, by which I mean contiguous sequences of GRID_FULL bounded at
1060 * both ends by either GRID_EMPTY or the ends of the row. We identify
1061 * all the complete runs in a row, and verify that _those_ are
1062 * consistent with the row's clue list. Sequences of complete runs
1063 * separated by solid GRID_EMPTY are required to match contiguous
1064 * sequences in the clue list, whereas if there's at least one
1065 * GRID_UNKNOWN between any two complete runs then those two need not
1066 * be contiguous in the clue list.
1067 *
1068 * To simplify the edge cases, I pretend that the clue list for the
1069 * row is extended with a 0 at each end, and I also pretend that the
1070 * grid data for the row is extended with a GRID_EMPTY and a
1071 * zero-length run at each end. This permits the contiguity checker to
1072 * handle the fiddly end effects (e.g. if the first contiguous
1073 * sequence of complete runs in the grid matches _something_ in the
1074 * clue list but not at the beginning, this is allowable iff there's a
1075 * GRID_UNKNOWN before the first one) with minimal faff, since the end
1076 * effects just drop out as special cases of the normal inter-run
1077 * handling (in this code the above case is not 'at the end of the
1078 * clue list' at all, but between the implicit initial zero run and
1079 * the first nonzero one).
1080 *
1081 * We must also be a little careful about how we search for a
1082 * contiguous sequence of runs. In the clue list (1 1 2 1 2 3),
1083 * suppose we see a GRID_UNKNOWN and then a length-1 run. We search
1084 * for 1 in the clue list and find it at the very beginning. But now
1085 * suppose we find a length-2 run with no GRID_UNKNOWN before it. We
1086 * can't naively look at the next clue from the 1 we found, because
1087 * that'll be the second 1 and won't match. Instead, we must backtrack
1088 * by observing that the 2 we've just found must be contiguous with
1089 * the 1 we've already seen, so we search for the sequence (1 2) and
1090 * find it starting at the second 1. Now if we see a 3, we must
1091 * rethink again and search for (1 2 3).
1092 */
1093
1094 struct errcheck_state {
1095 /*
1096 * rowdata and rowlen point at the clue data for this row in the
1097 * game state.
1098 */
1099 int *rowdata;
1100 int rowlen;
1101 /*
1102 * rowpos indicates the lowest position where it would be valid to
1103 * see our next run length. It might be equal to rowlen,
1104 * indicating that the next run would have to be the terminating 0.
1105 */
1106 int rowpos;
1107 /*
1108 * ncontig indicates how many runs we've seen in a contiguous
1109 * block. This is taken into account when searching for the next
1110 * run we find, unless ncontig is zeroed out first by encountering
1111 * a GRID_UNKNOWN.
1112 */
1113 int ncontig;
1114 };
1115
1116 static int errcheck_found_run(struct errcheck_state *es, int r)
1117 {
1118 /* Macro to handle the pretence that rowdata has a 0 at each end */
1119 #define ROWDATA(k) ((k)<0 || (k)>=es->rowlen ? 0 : es->rowdata[(k)])
1120
1121 /*
1122 * See if we can find this new run length at a position where it
1123 * also matches the last 'ncontig' runs we've seen.
1124 */
1125 int i, newpos;
1126 for (newpos = es->rowpos; newpos <= es->rowlen; newpos++) {
1127
1128 if (ROWDATA(newpos) != r)
1129 goto notfound;
1130
1131 for (i = 1; i <= es->ncontig; i++)
1132 if (ROWDATA(newpos - i) != ROWDATA(es->rowpos - i))
1133 goto notfound;
1134
1135 es->rowpos = newpos+1;
1136 es->ncontig++;
1137 return TRUE;
1138
1139 notfound:;
1140 }
1141
1142 return FALSE;
1143
1144 #undef ROWDATA
1145 }
1146
1147 static int check_errors(game_state *state, int i)
1148 {
1149 int start, step, end, j;
1150 int val, runlen;
1151 struct errcheck_state aes, *es = &aes;
1152
1153 es->rowlen = state->rowlen[i];
1154 es->rowdata = state->rowdata + state->rowsize * i;
1155 /* Pretend that we've already encountered the initial zero run */
1156 es->ncontig = 1;
1157 es->rowpos = 0;
1158
1159 if (i < state->w) {
1160 start = i;
1161 step = state->w;
1162 end = start + step * state->h;
1163 } else {
1164 start = (i - state->w) * state->w;
1165 step = 1;
1166 end = start + step * state->w;
1167 }
1168
1169 runlen = -1;
1170 for (j = start - step; j <= end; j += step) {
1171 if (j < start || j == end)
1172 val = GRID_EMPTY;
1173 else
1174 val = state->grid[j];
1175
1176 if (val == GRID_UNKNOWN) {
1177 runlen = -1;
1178 es->ncontig = 0;
1179 } else if (val == GRID_FULL) {
1180 if (runlen >= 0)
1181 runlen++;
1182 } else if (val == GRID_EMPTY) {
1183 if (runlen > 0) {
1184 if (!errcheck_found_run(es, runlen))
1185 return TRUE; /* error! */
1186 }
1187 runlen = 0;
1188 }
1189 }
1190
1191 /* Signal end-of-row by sending errcheck_found_run the terminating
1192 * zero run, which will be marked as contiguous with the previous
1193 * run if and only if there hasn't been a GRID_UNKNOWN before. */
1194 if (!errcheck_found_run(es, 0))
1195 return TRUE; /* error at the last minute! */
1196
1197 return FALSE; /* no error */
1198 }
1199
1200 /* ----------------------------------------------------------------------
1201 * Drawing routines.
1202 */
1203
1204 static void game_compute_size(game_params *params, int tilesize,
1205 int *x, int *y)
1206 {
1207 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1208 struct { int tilesize; } ads, *ds = &ads;
1209 ads.tilesize = tilesize;
1210
1211 *x = SIZE(params->w);
1212 *y = SIZE(params->h);
1213 }
1214
1215 static void game_set_size(drawing *dr, game_drawstate *ds,
1216 game_params *params, int tilesize)
1217 {
1218 ds->tilesize = tilesize;
1219 }
1220
1221 static float *game_colours(frontend *fe, int *ncolours)
1222 {
1223 float *ret = snewn(3 * NCOLOURS, float);
1224 int i;
1225
1226 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1227
1228 for (i = 0; i < 3; i++) {
1229 ret[COL_GRID * 3 + i] = 0.3F;
1230 ret[COL_UNKNOWN * 3 + i] = 0.5F;
1231 ret[COL_TEXT * 3 + i] = 0.0F;
1232 ret[COL_FULL * 3 + i] = 0.0F;
1233 ret[COL_EMPTY * 3 + i] = 1.0F;
1234 }
1235 ret[COL_CURSOR * 3 + 0] = 1.0F;
1236 ret[COL_CURSOR * 3 + 1] = 0.25F;
1237 ret[COL_CURSOR * 3 + 2] = 0.25F;
1238 ret[COL_ERROR * 3 + 0] = 1.0F;
1239 ret[COL_ERROR * 3 + 1] = 0.0F;
1240 ret[COL_ERROR * 3 + 2] = 0.0F;
1241
1242 *ncolours = NCOLOURS;
1243 return ret;
1244 }
1245
1246 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1247 {
1248 struct game_drawstate *ds = snew(struct game_drawstate);
1249
1250 ds->started = FALSE;
1251 ds->w = state->w;
1252 ds->h = state->h;
1253 ds->visible = snewn(ds->w * ds->h, unsigned char);
1254 ds->tilesize = 0; /* not decided yet */
1255 memset(ds->visible, 255, ds->w * ds->h);
1256 ds->numcolours = snewn(ds->w + ds->h, unsigned char);
1257 memset(ds->numcolours, 255, ds->w + ds->h);
1258 ds->cur_x = ds->cur_y = 0;
1259
1260 return ds;
1261 }
1262
1263 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1264 {
1265 sfree(ds->visible);
1266 sfree(ds);
1267 }
1268
1269 static void grid_square(drawing *dr, game_drawstate *ds,
1270 int y, int x, int state, int cur)
1271 {
1272 int xl, xr, yt, yb, dx, dy, dw, dh;
1273
1274 draw_rect(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
1275 TILE_SIZE, TILE_SIZE, COL_GRID);
1276
1277 xl = (x % 5 == 0 ? 1 : 0);
1278 yt = (y % 5 == 0 ? 1 : 0);
1279 xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0);
1280 yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0);
1281
1282 dx = TOCOORD(ds->w, x) + 1 + xl;
1283 dy = TOCOORD(ds->h, y) + 1 + yt;
1284 dw = TILE_SIZE - xl - xr - 1;
1285 dh = TILE_SIZE - yt - yb - 1;
1286
1287 draw_rect(dr, dx, dy, dw, dh,
1288 (state == GRID_FULL ? COL_FULL :
1289 state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN));
1290 if (cur) {
1291 draw_rect_outline(dr, dx, dy, dw, dh, COL_CURSOR);
1292 draw_rect_outline(dr, dx+1, dy+1, dw-2, dh-2, COL_CURSOR);
1293 }
1294
1295 draw_update(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
1296 TILE_SIZE, TILE_SIZE);
1297 }
1298
1299 /*
1300 * Draw the numbers for a single row or column.
1301 */
1302 static void draw_numbers(drawing *dr, game_drawstate *ds, game_state *state,
1303 int i, int erase, int colour)
1304 {
1305 int rowlen = state->rowlen[i];
1306 int *rowdata = state->rowdata + state->rowsize * i;
1307 int nfit;
1308 int j;
1309
1310 if (erase) {
1311 if (i < state->w) {
1312 draw_rect(dr, TOCOORD(state->w, i), 0,
1313 TILE_SIZE, BORDER + TLBORDER(state->h) * TILE_SIZE,
1314 COL_BACKGROUND);
1315 } else {
1316 draw_rect(dr, 0, TOCOORD(state->h, i - state->w),
1317 BORDER + TLBORDER(state->w) * TILE_SIZE, TILE_SIZE,
1318 COL_BACKGROUND);
1319 }
1320 }
1321
1322 /*
1323 * Normally I space the numbers out by the same distance as the
1324 * tile size. However, if there are more numbers than available
1325 * spaces, I have to squash them up a bit.
1326 */
1327 if (i < state->w)
1328 nfit = TLBORDER(state->h);
1329 else
1330 nfit = TLBORDER(state->w);
1331 nfit = max(rowlen, nfit) - 1;
1332 assert(nfit > 0);
1333
1334 for (j = 0; j < rowlen; j++) {
1335 int x, y;
1336 char str[80];
1337
1338 if (i < state->w) {
1339 x = TOCOORD(state->w, i);
1340 y = BORDER + TILE_SIZE * (TLBORDER(state->h)-1);
1341 y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->h)-1) / nfit;
1342 } else {
1343 y = TOCOORD(state->h, i - state->w);
1344 x = BORDER + TILE_SIZE * (TLBORDER(state->w)-1);
1345 x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->w)-1) / nfit;
1346 }
1347
1348 sprintf(str, "%d", rowdata[j]);
1349 draw_text(dr, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE,
1350 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, colour, str);
1351 }
1352
1353 if (i < state->w) {
1354 draw_update(dr, TOCOORD(state->w, i), 0,
1355 TILE_SIZE, BORDER + TLBORDER(state->h) * TILE_SIZE);
1356 } else {
1357 draw_update(dr, 0, TOCOORD(state->h, i - state->w),
1358 BORDER + TLBORDER(state->w) * TILE_SIZE, TILE_SIZE);
1359 }
1360 }
1361
1362 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1363 game_state *state, int dir, game_ui *ui,
1364 float animtime, float flashtime)
1365 {
1366 int i, j;
1367 int x1, x2, y1, y2;
1368 int cx, cy, cmoved;
1369
1370 if (!ds->started) {
1371 /*
1372 * The initial contents of the window are not guaranteed
1373 * and can vary with front ends. To be on the safe side,
1374 * all games should start by drawing a big background-
1375 * colour rectangle covering the whole window.
1376 */
1377 draw_rect(dr, 0, 0, SIZE(ds->w), SIZE(ds->h), COL_BACKGROUND);
1378
1379 /*
1380 * Draw the grid outline.
1381 */
1382 draw_rect(dr, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1,
1383 ds->w * TILE_SIZE + 3, ds->h * TILE_SIZE + 3,
1384 COL_GRID);
1385
1386 ds->started = TRUE;
1387
1388 draw_update(dr, 0, 0, SIZE(ds->w), SIZE(ds->h));
1389 }
1390
1391 if (ui->dragging) {
1392 x1 = min(ui->drag_start_x, ui->drag_end_x);
1393 x2 = max(ui->drag_start_x, ui->drag_end_x);
1394 y1 = min(ui->drag_start_y, ui->drag_end_y);
1395 y2 = max(ui->drag_start_y, ui->drag_end_y);
1396 } else {
1397 x1 = x2 = y1 = y2 = -1; /* placate gcc warnings */
1398 }
1399
1400 if (ui->cur_visible) {
1401 cx = ui->cur_x; cy = ui->cur_y;
1402 } else {
1403 cx = cy = -1;
1404 }
1405 cmoved = (cx != ds->cur_x || cy != ds->cur_y);
1406
1407 /*
1408 * Now draw any grid squares which have changed since last
1409 * redraw.
1410 */
1411 for (i = 0; i < ds->h; i++) {
1412 for (j = 0; j < ds->w; j++) {
1413 int val, cc = 0;
1414
1415 /*
1416 * Work out what state this square should be drawn in,
1417 * taking any current drag operation into account.
1418 */
1419 if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2)
1420 val = ui->state;
1421 else
1422 val = state->grid[i * state->w + j];
1423
1424 if (cmoved) {
1425 /* the cursor has moved; if we were the old or
1426 * the new cursor position we need to redraw. */
1427 if (j == cx && i == cy) cc = 1;
1428 if (j == ds->cur_x && i == ds->cur_y) cc = 1;
1429 }
1430
1431 /*
1432 * Briefly invert everything twice during a completion
1433 * flash.
1434 */
1435 if (flashtime > 0 &&
1436 (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) &&
1437 val != GRID_UNKNOWN)
1438 val = (GRID_FULL ^ GRID_EMPTY) ^ val;
1439
1440 if (ds->visible[i * ds->w + j] != val || cc) {
1441 grid_square(dr, ds, i, j, val,
1442 (j == cx && i == cy));
1443 ds->visible[i * ds->w + j] = val;
1444 }
1445 }
1446 }
1447 ds->cur_x = cx; ds->cur_y = cy;
1448
1449 /*
1450 * Redraw any numbers which have changed their colour due to error
1451 * indication.
1452 */
1453 for (i = 0; i < state->w + state->h; i++) {
1454 int colour = check_errors(state, i) ? COL_ERROR : COL_TEXT;
1455 if (ds->numcolours[i] != colour) {
1456 draw_numbers(dr, ds, state, i, TRUE, colour);
1457 ds->numcolours[i] = colour;
1458 }
1459 }
1460 }
1461
1462 static float game_anim_length(game_state *oldstate,
1463 game_state *newstate, int dir, game_ui *ui)
1464 {
1465 return 0.0F;
1466 }
1467
1468 static float game_flash_length(game_state *oldstate,
1469 game_state *newstate, int dir, game_ui *ui)
1470 {
1471 if (!oldstate->completed && newstate->completed &&
1472 !oldstate->cheated && !newstate->cheated)
1473 return FLASH_TIME;
1474 return 0.0F;
1475 }
1476
1477 static int game_status(game_state *state)
1478 {
1479 return state->completed ? +1 : 0;
1480 }
1481
1482 static int game_timing_state(game_state *state, game_ui *ui)
1483 {
1484 return TRUE;
1485 }
1486
1487 static void game_print_size(game_params *params, float *x, float *y)
1488 {
1489 int pw, ph;
1490
1491 /*
1492 * I'll use 5mm squares by default.
1493 */
1494 game_compute_size(params, 500, &pw, &ph);
1495 *x = pw / 100.0F;
1496 *y = ph / 100.0F;
1497 }
1498
1499 static void game_print(drawing *dr, game_state *state, int tilesize)
1500 {
1501 int w = state->w, h = state->h;
1502 int ink = print_mono_colour(dr, 0);
1503 int x, y, i;
1504
1505 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1506 game_drawstate ads, *ds = &ads;
1507 game_set_size(dr, ds, NULL, tilesize);
1508
1509 /*
1510 * Border.
1511 */
1512 print_line_width(dr, TILE_SIZE / 16);
1513 draw_rect_outline(dr, TOCOORD(w, 0), TOCOORD(h, 0),
1514 w*TILE_SIZE, h*TILE_SIZE, ink);
1515
1516 /*
1517 * Grid.
1518 */
1519 for (x = 1; x < w; x++) {
1520 print_line_width(dr, TILE_SIZE / (x % 5 ? 128 : 24));
1521 draw_line(dr, TOCOORD(w, x), TOCOORD(h, 0),
1522 TOCOORD(w, x), TOCOORD(h, h), ink);
1523 }
1524 for (y = 1; y < h; y++) {
1525 print_line_width(dr, TILE_SIZE / (y % 5 ? 128 : 24));
1526 draw_line(dr, TOCOORD(w, 0), TOCOORD(h, y),
1527 TOCOORD(w, w), TOCOORD(h, y), ink);
1528 }
1529
1530 /*
1531 * Clues.
1532 */
1533 for (i = 0; i < state->w + state->h; i++)
1534 draw_numbers(dr, ds, state, i, FALSE, ink);
1535
1536 /*
1537 * Solution.
1538 */
1539 print_line_width(dr, TILE_SIZE / 128);
1540 for (y = 0; y < h; y++)
1541 for (x = 0; x < w; x++) {
1542 if (state->grid[y*w+x] == GRID_FULL)
1543 draw_rect(dr, TOCOORD(w, x), TOCOORD(h, y),
1544 TILE_SIZE, TILE_SIZE, ink);
1545 else if (state->grid[y*w+x] == GRID_EMPTY)
1546 draw_circle(dr, TOCOORD(w, x) + TILE_SIZE/2,
1547 TOCOORD(h, y) + TILE_SIZE/2,
1548 TILE_SIZE/12, ink, ink);
1549 }
1550 }
1551
1552 #ifdef COMBINED
1553 #define thegame pattern
1554 #endif
1555
1556 const struct game thegame = {
1557 "Pattern", "games.pattern", "pattern",
1558 default_params,
1559 game_fetch_preset,
1560 decode_params,
1561 encode_params,
1562 free_params,
1563 dup_params,
1564 TRUE, game_configure, custom_params,
1565 validate_params,
1566 new_game_desc,
1567 validate_desc,
1568 new_game,
1569 dup_game,
1570 free_game,
1571 TRUE, solve_game,
1572 FALSE, game_can_format_as_text_now, game_text_format,
1573 new_ui,
1574 free_ui,
1575 encode_ui,
1576 decode_ui,
1577 game_changed_state,
1578 interpret_move,
1579 execute_move,
1580 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1581 game_colours,
1582 game_new_drawstate,
1583 game_free_drawstate,
1584 game_redraw,
1585 game_anim_length,
1586 game_flash_length,
1587 game_status,
1588 TRUE, FALSE, game_print_size, game_print,
1589 FALSE, /* wants_statusbar */
1590 FALSE, game_timing_state,
1591 REQUIRE_RBUTTON, /* flags */
1592 };
1593
1594 #ifdef STANDALONE_SOLVER
1595
1596 int main(int argc, char **argv)
1597 {
1598 game_params *p;
1599 game_state *s;
1600 char *id = NULL, *desc, *err;
1601
1602 while (--argc > 0) {
1603 char *p = *++argv;
1604 if (*p == '-') {
1605 if (!strcmp(p, "-v")) {
1606 verbose = TRUE;
1607 } else {
1608 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
1609 return 1;
1610 }
1611 } else {
1612 id = p;
1613 }
1614 }
1615
1616 if (!id) {
1617 fprintf(stderr, "usage: %s <game_id>\n", argv[0]);
1618 return 1;
1619 }
1620
1621 desc = strchr(id, ':');
1622 if (!desc) {
1623 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
1624 return 1;
1625 }
1626 *desc++ = '\0';
1627
1628 p = default_params();
1629 decode_params(p, id);
1630 err = validate_desc(p, desc);
1631 if (err) {
1632 fprintf(stderr, "%s: %s\n", argv[0], err);
1633 return 1;
1634 }
1635 s = new_game(NULL, p, desc);
1636
1637 {
1638 int w = p->w, h = p->h, i, j, done_any, max, cluewid = 0;
1639 unsigned char *matrix, *workspace;
1640 int *rowdata;
1641
1642 matrix = snewn(w*h, unsigned char);
1643 max = max(w, h);
1644 workspace = snewn(max*3, unsigned char);
1645 rowdata = snewn(max+1, int);
1646
1647 memset(matrix, 0, w*h);
1648
1649 if (verbose) {
1650 int thiswid;
1651 /*
1652 * Work out the maximum text width of the clue numbers
1653 * in a row or column, so we can print the solver's
1654 * working in a nicely lined up way.
1655 */
1656 for (i = 0; i < (w+h); i++) {
1657 char buf[80];
1658 for (thiswid = -1, j = 0; j < s->rowlen[i]; j++)
1659 thiswid += sprintf(buf, " %d", s->rowdata[s->rowsize*i+j]);
1660 if (cluewid < thiswid)
1661 cluewid = thiswid;
1662 }
1663 }
1664
1665 do {
1666 done_any = 0;
1667 for (i=0; i<h; i++) {
1668 memcpy(rowdata, s->rowdata + s->rowsize*(w+i),
1669 max*sizeof(int));
1670 rowdata[s->rowlen[w+i]] = 0;
1671 done_any |= do_row(workspace, workspace+max, workspace+2*max,
1672 matrix+i*w, w, 1, rowdata
1673 #ifdef STANDALONE_SOLVER
1674 , "row", i+1, cluewid
1675 #endif
1676 );
1677 }
1678 for (i=0; i<w; i++) {
1679 memcpy(rowdata, s->rowdata + s->rowsize*i, max*sizeof(int));
1680 rowdata[s->rowlen[i]] = 0;
1681 done_any |= do_row(workspace, workspace+max, workspace+2*max,
1682 matrix+i, h, w, rowdata
1683 #ifdef STANDALONE_SOLVER
1684 , "col", i+1, cluewid
1685 #endif
1686 );
1687 }
1688 } while (done_any);
1689
1690 for (i = 0; i < h; i++) {
1691 for (j = 0; j < w; j++) {
1692 int c = (matrix[i*w+j] == UNKNOWN ? '?' :
1693 matrix[i*w+j] == BLOCK ? '#' :
1694 matrix[i*w+j] == DOT ? '.' :
1695 '!');
1696 putchar(c);
1697 }
1698 printf("\n");
1699 }
1700 }
1701
1702 return 0;
1703 }
1704
1705 #endif
1706
1707 /* vim: set shiftwidth=4 tabstop=8: */