Rather than each game backend file exporting a whole load of
[sgt/puzzles] / pattern.c
1 /*
2 * pattern.c: the pattern-reconstruction game known as `nonograms'.
3 *
4 * TODO before checkin:
5 *
6 * - make some sort of stab at number-of-numbers judgment
7 */
8
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 #include <assert.h>
13 #include <ctype.h>
14 #include <math.h>
15
16 #include "puzzles.h"
17
18 #define max(x,y) ( (x)>(y) ? (x):(y) )
19 #define min(x,y) ( (x)<(y) ? (x):(y) )
20
21 enum {
22 COL_BACKGROUND,
23 COL_EMPTY,
24 COL_FULL,
25 COL_UNKNOWN,
26 COL_GRID,
27 NCOLOURS
28 };
29
30 #define BORDER 18
31 #define TLBORDER(d) ( (d) / 5 + 2 )
32 #define GUTTER 12
33 #define TILE_SIZE 24
34
35 #define FROMCOORD(d, x) \
36 ( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE )
37
38 #define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d)))
39
40 #define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x)))
41
42 struct game_params {
43 int w, h;
44 };
45
46 #define GRID_UNKNOWN 2
47 #define GRID_FULL 1
48 #define GRID_EMPTY 0
49
50 struct game_state {
51 int w, h;
52 unsigned char *grid;
53 int rowsize;
54 int *rowdata, *rowlen;
55 int completed;
56 };
57
58 #define FLASH_TIME 0.13F
59
60 static game_params *default_params(void)
61 {
62 game_params *ret = snew(game_params);
63
64 ret->w = ret->h = 15;
65
66 return ret;
67 }
68
69 static int game_fetch_preset(int i, char **name, game_params **params)
70 {
71 game_params *ret;
72 char str[80];
73 static const struct { int x, y; } values[] = {
74 {10, 10},
75 {15, 15},
76 {20, 20},
77 {25, 25},
78 {30, 30},
79 };
80
81 if (i < 0 || i >= lenof(values))
82 return FALSE;
83
84 ret = snew(game_params);
85 ret->w = values[i].x;
86 ret->h = values[i].y;
87
88 sprintf(str, "%dx%d", ret->w, ret->h);
89
90 *name = dupstr(str);
91 *params = ret;
92 return TRUE;
93 }
94
95 static void free_params(game_params *params)
96 {
97 sfree(params);
98 }
99
100 static game_params *dup_params(game_params *params)
101 {
102 game_params *ret = snew(game_params);
103 *ret = *params; /* structure copy */
104 return ret;
105 }
106
107 static game_params *decode_params(char const *string)
108 {
109 game_params *ret = default_params();
110 char const *p = string;
111
112 ret->w = atoi(p);
113 while (*p && isdigit(*p)) p++;
114 if (*p == 'x') {
115 p++;
116 ret->h = atoi(p);
117 while (*p && isdigit(*p)) p++;
118 } else {
119 ret->h = ret->w;
120 }
121
122 return ret;
123 }
124
125 static char *encode_params(game_params *params)
126 {
127 char ret[400];
128 int len;
129
130 len = sprintf(ret, "%dx%d", params->w, params->h);
131 assert(len < lenof(ret));
132 ret[len] = '\0';
133
134 return dupstr(ret);
135 }
136
137 static config_item *game_configure(game_params *params)
138 {
139 config_item *ret;
140 char buf[80];
141
142 ret = snewn(3, config_item);
143
144 ret[0].name = "Width";
145 ret[0].type = C_STRING;
146 sprintf(buf, "%d", params->w);
147 ret[0].sval = dupstr(buf);
148 ret[0].ival = 0;
149
150 ret[1].name = "Height";
151 ret[1].type = C_STRING;
152 sprintf(buf, "%d", params->h);
153 ret[1].sval = dupstr(buf);
154 ret[1].ival = 0;
155
156 ret[2].name = NULL;
157 ret[2].type = C_END;
158 ret[2].sval = NULL;
159 ret[2].ival = 0;
160
161 return ret;
162 }
163
164 static game_params *custom_params(config_item *cfg)
165 {
166 game_params *ret = snew(game_params);
167
168 ret->w = atoi(cfg[0].sval);
169 ret->h = atoi(cfg[1].sval);
170
171 return ret;
172 }
173
174 static char *validate_params(game_params *params)
175 {
176 if (params->w <= 0 && params->h <= 0)
177 return "Width and height must both be greater than zero";
178 if (params->w <= 0)
179 return "Width must be greater than zero";
180 if (params->h <= 0)
181 return "Height must be greater than zero";
182 return NULL;
183 }
184
185 /* ----------------------------------------------------------------------
186 * Puzzle generation code.
187 *
188 * For this particular puzzle, it seemed important to me to ensure
189 * a unique solution. I do this the brute-force way, by having a
190 * solver algorithm alongside the generator, and repeatedly
191 * generating a random grid until I find one whose solution is
192 * unique. It turns out that this isn't too onerous on a modern PC
193 * provided you keep grid size below around 30. Any offers of
194 * better algorithms, however, will be very gratefully received.
195 *
196 * Another annoyance of this approach is that it limits the
197 * available puzzles to those solvable by the algorithm I've used.
198 * My algorithm only ever considers a single row or column at any
199 * one time, which means it's incapable of solving the following
200 * difficult example (found by Bella Image around 1995/6, when she
201 * and I were both doing maths degrees):
202 *
203 * 2 1 2 1
204 *
205 * +--+--+--+--+
206 * 1 1 | | | | |
207 * +--+--+--+--+
208 * 2 | | | | |
209 * +--+--+--+--+
210 * 1 | | | | |
211 * +--+--+--+--+
212 * 1 | | | | |
213 * +--+--+--+--+
214 *
215 * Obviously this cannot be solved by a one-row-or-column-at-a-time
216 * algorithm (it would require at least one row or column reading
217 * `2 1', `1 2', `3' or `4' to get started). However, it can be
218 * proved to have a unique solution: if the top left square were
219 * empty, then the only option for the top row would be to fill the
220 * two squares in the 1 columns, which would imply the squares
221 * below those were empty, leaving no place for the 2 in the second
222 * row. Contradiction. Hence the top left square is full, and the
223 * unique solution follows easily from that starting point.
224 *
225 * (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case
226 * it's useful to anyone.)
227 */
228
229 static int float_compare(const void *av, const void *bv)
230 {
231 const float *a = (const float *)av;
232 const float *b = (const float *)bv;
233 if (*a < *b)
234 return -1;
235 else if (*a > *b)
236 return +1;
237 else
238 return 0;
239 }
240
241 static void generate(random_state *rs, int w, int h, unsigned char *retgrid)
242 {
243 float *fgrid;
244 float *fgrid2;
245 int step, i, j;
246 float threshold;
247
248 fgrid = snewn(w*h, float);
249
250 for (i = 0; i < h; i++) {
251 for (j = 0; j < w; j++) {
252 fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F;
253 }
254 }
255
256 /*
257 * The above gives a completely random splattering of black and
258 * white cells. We want to gently bias this in favour of _some_
259 * reasonably thick areas of white and black, while retaining
260 * some randomness and fine detail.
261 *
262 * So we evolve the starting grid using a cellular automaton.
263 * Currently, I'm doing something very simple indeed, which is
264 * to set each square to the average of the surrounding nine
265 * cells (or the average of fewer, if we're on a corner).
266 */
267 for (step = 0; step < 1; step++) {
268 fgrid2 = snewn(w*h, float);
269
270 for (i = 0; i < h; i++) {
271 for (j = 0; j < w; j++) {
272 float sx, xbar;
273 int n, p, q;
274
275 /*
276 * Compute the average of the surrounding cells.
277 */
278 n = 0;
279 sx = 0.F;
280 for (p = -1; p <= +1; p++) {
281 for (q = -1; q <= +1; q++) {
282 if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w)
283 continue;
284 n++;
285 sx += fgrid[(i+p)*w+(j+q)];
286 }
287 }
288 xbar = sx / n;
289
290 fgrid2[i*w+j] = xbar;
291 }
292 }
293
294 sfree(fgrid);
295 fgrid = fgrid2;
296 }
297
298 fgrid2 = snewn(w*h, float);
299 memcpy(fgrid2, fgrid, w*h*sizeof(float));
300 qsort(fgrid2, w*h, sizeof(float), float_compare);
301 threshold = fgrid2[w*h/2];
302 sfree(fgrid2);
303
304 for (i = 0; i < h; i++) {
305 for (j = 0; j < w; j++) {
306 retgrid[i*w+j] = (fgrid[i*w+j] > threshold ? GRID_FULL :
307 GRID_EMPTY);
308 }
309 }
310
311 sfree(fgrid);
312 }
313
314 static int compute_rowdata(int *ret, unsigned char *start, int len, int step)
315 {
316 int i, n;
317
318 n = 0;
319
320 for (i = 0; i < len; i++) {
321 if (start[i*step] == GRID_FULL) {
322 int runlen = 1;
323 while (i+runlen < len && start[(i+runlen)*step] == GRID_FULL)
324 runlen++;
325 ret[n++] = runlen;
326 i += runlen;
327 }
328
329 if (i < len && start[i*step] == GRID_UNKNOWN)
330 return -1;
331 }
332
333 return n;
334 }
335
336 #define UNKNOWN 0
337 #define BLOCK 1
338 #define DOT 2
339 #define STILL_UNKNOWN 3
340
341 static void do_recurse(unsigned char *known, unsigned char *deduced,
342 unsigned char *row, int *data, int len,
343 int freespace, int ndone, int lowest)
344 {
345 int i, j, k;
346
347 if (data[ndone]) {
348 for (i=0; i<=freespace; i++) {
349 j = lowest;
350 for (k=0; k<i; k++) row[j++] = DOT;
351 for (k=0; k<data[ndone]; k++) row[j++] = BLOCK;
352 if (j < len) row[j++] = DOT;
353 do_recurse(known, deduced, row, data, len,
354 freespace-i, ndone+1, j);
355 }
356 } else {
357 for (i=lowest; i<len; i++)
358 row[i] = DOT;
359 for (i=0; i<len; i++)
360 if (known[i] && known[i] != row[i])
361 return;
362 for (i=0; i<len; i++)
363 deduced[i] |= row[i];
364 }
365 }
366
367 static int do_row(unsigned char *known, unsigned char *deduced,
368 unsigned char *row,
369 unsigned char *start, int len, int step, int *data)
370 {
371 int rowlen, i, freespace, done_any;
372
373 freespace = len+1;
374 for (rowlen = 0; data[rowlen]; rowlen++)
375 freespace -= data[rowlen]+1;
376
377 for (i = 0; i < len; i++) {
378 known[i] = start[i*step];
379 deduced[i] = 0;
380 }
381
382 do_recurse(known, deduced, row, data, len, freespace, 0, 0);
383 done_any = FALSE;
384 for (i=0; i<len; i++)
385 if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) {
386 start[i*step] = deduced[i];
387 done_any = TRUE;
388 }
389 return done_any;
390 }
391
392 static unsigned char *generate_soluble(random_state *rs, int w, int h)
393 {
394 int i, j, done_any, ok, ntries, max;
395 unsigned char *grid, *matrix, *workspace;
396 int *rowdata;
397
398 grid = snewn(w*h, unsigned char);
399 matrix = snewn(w*h, unsigned char);
400 max = max(w, h);
401 workspace = snewn(max*3, unsigned char);
402 rowdata = snewn(max+1, int);
403
404 ntries = 0;
405
406 do {
407 ntries++;
408
409 generate(rs, w, h, grid);
410
411 memset(matrix, 0, w*h);
412
413 do {
414 done_any = 0;
415 for (i=0; i<h; i++) {
416 rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
417 done_any |= do_row(workspace, workspace+max, workspace+2*max,
418 matrix+i*w, w, 1, rowdata);
419 }
420 for (i=0; i<w; i++) {
421 rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
422 done_any |= do_row(workspace, workspace+max, workspace+2*max,
423 matrix+i, h, w, rowdata);
424 }
425 } while (done_any);
426
427 ok = TRUE;
428 for (i=0; i<h; i++) {
429 for (j=0; j<w; j++) {
430 if (matrix[i*w+j] == UNKNOWN)
431 ok = FALSE;
432 }
433 }
434 } while (!ok);
435
436 sfree(matrix);
437 sfree(workspace);
438 sfree(rowdata);
439 return grid;
440 }
441
442 static char *new_game_seed(game_params *params, random_state *rs)
443 {
444 unsigned char *grid;
445 int i, j, max, rowlen, *rowdata;
446 char intbuf[80], *seed;
447 int seedlen, seedpos;
448
449 grid = generate_soluble(rs, params->w, params->h);
450 max = max(params->w, params->h);
451 rowdata = snewn(max, int);
452
453 /*
454 * Seed is a slash-separated list of row contents; each row
455 * contents section is a dot-separated list of integers. Row
456 * contents are listed in the order (columns left to right,
457 * then rows top to bottom).
458 *
459 * Simplest way to handle memory allocation is to make two
460 * passes, first computing the seed size and then writing it
461 * out.
462 */
463 seedlen = 0;
464 for (i = 0; i < params->w + params->h; i++) {
465 if (i < params->w)
466 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
467 else
468 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
469 params->w, 1);
470 if (rowlen > 0) {
471 for (j = 0; j < rowlen; j++) {
472 seedlen += 1 + sprintf(intbuf, "%d", rowdata[j]);
473 }
474 } else {
475 seedlen++;
476 }
477 }
478 seed = snewn(seedlen, char);
479 seedpos = 0;
480 for (i = 0; i < params->w + params->h; i++) {
481 if (i < params->w)
482 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
483 else
484 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
485 params->w, 1);
486 if (rowlen > 0) {
487 for (j = 0; j < rowlen; j++) {
488 int len = sprintf(seed+seedpos, "%d", rowdata[j]);
489 if (j+1 < rowlen)
490 seed[seedpos + len] = '.';
491 else
492 seed[seedpos + len] = '/';
493 seedpos += len+1;
494 }
495 } else {
496 seed[seedpos++] = '/';
497 }
498 }
499 assert(seedpos == seedlen);
500 assert(seed[seedlen-1] == '/');
501 seed[seedlen-1] = '\0';
502 sfree(rowdata);
503 return seed;
504 }
505
506 static char *validate_seed(game_params *params, char *seed)
507 {
508 int i, n, rowspace;
509 char *p;
510
511 for (i = 0; i < params->w + params->h; i++) {
512 if (i < params->w)
513 rowspace = params->h + 1;
514 else
515 rowspace = params->w + 1;
516
517 if (*seed && isdigit((unsigned char)*seed)) {
518 do {
519 p = seed;
520 while (seed && isdigit((unsigned char)*seed)) seed++;
521 n = atoi(p);
522 rowspace -= n+1;
523
524 if (rowspace < 0) {
525 if (i < params->w)
526 return "at least one column contains more numbers than will fit";
527 else
528 return "at least one row contains more numbers than will fit";
529 }
530 } while (*seed++ == '.');
531 } else {
532 seed++; /* expect a slash immediately */
533 }
534
535 if (seed[-1] == '/') {
536 if (i+1 == params->w + params->h)
537 return "too many row/column specifications";
538 } else if (seed[-1] == '\0') {
539 if (i+1 < params->w + params->h)
540 return "too few row/column specifications";
541 } else
542 return "unrecognised character in game specification";
543 }
544
545 return NULL;
546 }
547
548 static game_state *new_game(game_params *params, char *seed)
549 {
550 int i;
551 char *p;
552 game_state *state = snew(game_state);
553
554 state->w = params->w;
555 state->h = params->h;
556
557 state->grid = snewn(state->w * state->h, unsigned char);
558 memset(state->grid, GRID_UNKNOWN, state->w * state->h);
559
560 state->rowsize = max(state->w, state->h);
561 state->rowdata = snewn(state->rowsize * (state->w + state->h), int);
562 state->rowlen = snewn(state->w + state->h, int);
563
564 state->completed = FALSE;
565
566 for (i = 0; i < params->w + params->h; i++) {
567 state->rowlen[i] = 0;
568 if (*seed && isdigit((unsigned char)*seed)) {
569 do {
570 p = seed;
571 while (seed && isdigit((unsigned char)*seed)) seed++;
572 state->rowdata[state->rowsize * i + state->rowlen[i]++] =
573 atoi(p);
574 } while (*seed++ == '.');
575 } else {
576 seed++; /* expect a slash immediately */
577 }
578 }
579
580 return state;
581 }
582
583 static game_state *dup_game(game_state *state)
584 {
585 game_state *ret = snew(game_state);
586
587 ret->w = state->w;
588 ret->h = state->h;
589
590 ret->grid = snewn(ret->w * ret->h, unsigned char);
591 memcpy(ret->grid, state->grid, ret->w * ret->h);
592
593 ret->rowsize = state->rowsize;
594 ret->rowdata = snewn(ret->rowsize * (ret->w + ret->h), int);
595 ret->rowlen = snewn(ret->w + ret->h, int);
596 memcpy(ret->rowdata, state->rowdata,
597 ret->rowsize * (ret->w + ret->h) * sizeof(int));
598 memcpy(ret->rowlen, state->rowlen,
599 (ret->w + ret->h) * sizeof(int));
600
601 ret->completed = state->completed;
602
603 return ret;
604 }
605
606 static void free_game(game_state *state)
607 {
608 sfree(state->rowdata);
609 sfree(state->rowlen);
610 sfree(state->grid);
611 sfree(state);
612 }
613
614 struct game_ui {
615 int dragging;
616 int drag_start_x;
617 int drag_start_y;
618 int drag_end_x;
619 int drag_end_y;
620 int drag, release, state;
621 };
622
623 static game_ui *new_ui(game_state *state)
624 {
625 game_ui *ret;
626
627 ret = snew(game_ui);
628 ret->dragging = FALSE;
629
630 return ret;
631 }
632
633 static void free_ui(game_ui *ui)
634 {
635 sfree(ui);
636 }
637
638 static game_state *make_move(game_state *from, game_ui *ui,
639 int x, int y, int button)
640 {
641 game_state *ret;
642
643 x = FROMCOORD(from->w, x);
644 y = FROMCOORD(from->h, y);
645
646 if (x >= 0 && x < from->w && y >= 0 && y < from->h &&
647 (button == LEFT_BUTTON || button == RIGHT_BUTTON ||
648 button == MIDDLE_BUTTON)) {
649
650 ui->dragging = TRUE;
651
652 if (button == LEFT_BUTTON) {
653 ui->drag = LEFT_DRAG;
654 ui->release = LEFT_RELEASE;
655 ui->state = GRID_FULL;
656 } else if (button == RIGHT_BUTTON) {
657 ui->drag = RIGHT_DRAG;
658 ui->release = RIGHT_RELEASE;
659 ui->state = GRID_EMPTY;
660 } else /* if (button == MIDDLE_BUTTON) */ {
661 ui->drag = MIDDLE_DRAG;
662 ui->release = MIDDLE_RELEASE;
663 ui->state = GRID_UNKNOWN;
664 }
665
666 ui->drag_start_x = ui->drag_end_x = x;
667 ui->drag_start_y = ui->drag_end_y = y;
668
669 return from; /* UI activity occurred */
670 }
671
672 if (ui->dragging && button == ui->drag) {
673 /*
674 * There doesn't seem much point in allowing a rectangle
675 * drag; people will generally only want to drag a single
676 * horizontal or vertical line, so we make that easy by
677 * snapping to it.
678 *
679 * Exception: if we're _middle_-button dragging to tag
680 * things as UNKNOWN, we may well want to trash an entire
681 * area and start over!
682 */
683 if (ui->state != GRID_UNKNOWN) {
684 if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y))
685 y = ui->drag_start_y;
686 else
687 x = ui->drag_start_x;
688 }
689
690 if (x < 0) x = 0;
691 if (y < 0) y = 0;
692 if (x >= from->w) x = from->w - 1;
693 if (y >= from->h) y = from->h - 1;
694
695 ui->drag_end_x = x;
696 ui->drag_end_y = y;
697
698 return from; /* UI activity occurred */
699 }
700
701 if (ui->dragging && button == ui->release) {
702 int x1, x2, y1, y2, xx, yy;
703 int move_needed = FALSE;
704
705 x1 = min(ui->drag_start_x, ui->drag_end_x);
706 x2 = max(ui->drag_start_x, ui->drag_end_x);
707 y1 = min(ui->drag_start_y, ui->drag_end_y);
708 y2 = max(ui->drag_start_y, ui->drag_end_y);
709
710 for (yy = y1; yy <= y2; yy++)
711 for (xx = x1; xx <= x2; xx++)
712 if (from->grid[yy * from->w + xx] != ui->state)
713 move_needed = TRUE;
714
715 ui->dragging = FALSE;
716
717 if (move_needed) {
718 ret = dup_game(from);
719 for (yy = y1; yy <= y2; yy++)
720 for (xx = x1; xx <= x2; xx++)
721 ret->grid[yy * ret->w + xx] = ui->state;
722
723 /*
724 * An actual change, so check to see if we've completed
725 * the game.
726 */
727 if (!ret->completed) {
728 int *rowdata = snewn(ret->rowsize, int);
729 int i, len;
730
731 ret->completed = TRUE;
732
733 for (i=0; i<ret->w; i++) {
734 len = compute_rowdata(rowdata,
735 ret->grid+i, ret->h, ret->w);
736 if (len != ret->rowlen[i] ||
737 memcmp(ret->rowdata+i*ret->rowsize, rowdata,
738 len * sizeof(int))) {
739 ret->completed = FALSE;
740 break;
741 }
742 }
743 for (i=0; i<ret->h; i++) {
744 len = compute_rowdata(rowdata,
745 ret->grid+i*ret->w, ret->w, 1);
746 if (len != ret->rowlen[i+ret->w] ||
747 memcmp(ret->rowdata+(i+ret->w)*ret->rowsize, rowdata,
748 len * sizeof(int))) {
749 ret->completed = FALSE;
750 break;
751 }
752 }
753
754 sfree(rowdata);
755 }
756
757 return ret;
758 } else
759 return from; /* UI activity occurred */
760 }
761
762 return NULL;
763 }
764
765 /* ----------------------------------------------------------------------
766 * Drawing routines.
767 */
768
769 struct game_drawstate {
770 int started;
771 int w, h;
772 unsigned char *visible;
773 };
774
775 static void game_size(game_params *params, int *x, int *y)
776 {
777 *x = SIZE(params->w);
778 *y = SIZE(params->h);
779 }
780
781 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
782 {
783 float *ret = snewn(3 * NCOLOURS, float);
784
785 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
786
787 ret[COL_GRID * 3 + 0] = 0.3F;
788 ret[COL_GRID * 3 + 1] = 0.3F;
789 ret[COL_GRID * 3 + 2] = 0.3F;
790
791 ret[COL_UNKNOWN * 3 + 0] = 0.5F;
792 ret[COL_UNKNOWN * 3 + 1] = 0.5F;
793 ret[COL_UNKNOWN * 3 + 2] = 0.5F;
794
795 ret[COL_FULL * 3 + 0] = 0.0F;
796 ret[COL_FULL * 3 + 1] = 0.0F;
797 ret[COL_FULL * 3 + 2] = 0.0F;
798
799 ret[COL_EMPTY * 3 + 0] = 1.0F;
800 ret[COL_EMPTY * 3 + 1] = 1.0F;
801 ret[COL_EMPTY * 3 + 2] = 1.0F;
802
803 *ncolours = NCOLOURS;
804 return ret;
805 }
806
807 static game_drawstate *game_new_drawstate(game_state *state)
808 {
809 struct game_drawstate *ds = snew(struct game_drawstate);
810
811 ds->started = FALSE;
812 ds->w = state->w;
813 ds->h = state->h;
814 ds->visible = snewn(ds->w * ds->h, unsigned char);
815 memset(ds->visible, 255, ds->w * ds->h);
816
817 return ds;
818 }
819
820 static void game_free_drawstate(game_drawstate *ds)
821 {
822 sfree(ds->visible);
823 sfree(ds);
824 }
825
826 static void grid_square(frontend *fe, game_drawstate *ds,
827 int y, int x, int state)
828 {
829 int xl, xr, yt, yb;
830
831 draw_rect(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
832 TILE_SIZE, TILE_SIZE, COL_GRID);
833
834 xl = (x % 5 == 0 ? 1 : 0);
835 yt = (y % 5 == 0 ? 1 : 0);
836 xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0);
837 yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0);
838
839 draw_rect(fe, TOCOORD(ds->w, x) + 1 + xl, TOCOORD(ds->h, y) + 1 + yt,
840 TILE_SIZE - xl - xr - 1, TILE_SIZE - yt - yb - 1,
841 (state == GRID_FULL ? COL_FULL :
842 state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN));
843
844 draw_update(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
845 TILE_SIZE, TILE_SIZE);
846 }
847
848 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
849 game_state *state, int dir, game_ui *ui,
850 float animtime, float flashtime)
851 {
852 int i, j;
853 int x1, x2, y1, y2;
854
855 if (!ds->started) {
856 /*
857 * The initial contents of the window are not guaranteed
858 * and can vary with front ends. To be on the safe side,
859 * all games should start by drawing a big background-
860 * colour rectangle covering the whole window.
861 */
862 draw_rect(fe, 0, 0, SIZE(ds->w), SIZE(ds->h), COL_BACKGROUND);
863
864 /*
865 * Draw the numbers.
866 */
867 for (i = 0; i < ds->w + ds->h; i++) {
868 int rowlen = state->rowlen[i];
869 int *rowdata = state->rowdata + state->rowsize * i;
870 int nfit;
871
872 /*
873 * Normally I space the numbers out by the same
874 * distance as the tile size. However, if there are
875 * more numbers than available spaces, I have to squash
876 * them up a bit.
877 */
878 nfit = max(rowlen, TLBORDER(ds->h))-1;
879 assert(nfit > 0);
880
881 for (j = 0; j < rowlen; j++) {
882 int x, y;
883 char str[80];
884
885 if (i < ds->w) {
886 x = TOCOORD(ds->w, i);
887 y = BORDER + TILE_SIZE * (TLBORDER(ds->h)-1);
888 y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit;
889 } else {
890 y = TOCOORD(ds->h, i - ds->w);
891 x = BORDER + TILE_SIZE * (TLBORDER(ds->w)-1);
892 x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit;
893 }
894
895 sprintf(str, "%d", rowdata[j]);
896 draw_text(fe, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE,
897 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE,
898 COL_FULL, str); /* FIXME: COL_TEXT */
899 }
900 }
901
902 /*
903 * Draw the grid outline.
904 */
905 draw_rect(fe, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1,
906 ds->w * TILE_SIZE + 2, ds->h * TILE_SIZE + 2,
907 COL_GRID);
908
909 ds->started = TRUE;
910
911 draw_update(fe, 0, 0, SIZE(ds->w), SIZE(ds->h));
912 }
913
914 if (ui->dragging) {
915 x1 = min(ui->drag_start_x, ui->drag_end_x);
916 x2 = max(ui->drag_start_x, ui->drag_end_x);
917 y1 = min(ui->drag_start_y, ui->drag_end_y);
918 y2 = max(ui->drag_start_y, ui->drag_end_y);
919 } else {
920 x1 = x2 = y1 = y2 = -1; /* placate gcc warnings */
921 }
922
923 /*
924 * Now draw any grid squares which have changed since last
925 * redraw.
926 */
927 for (i = 0; i < ds->h; i++) {
928 for (j = 0; j < ds->w; j++) {
929 int val;
930
931 /*
932 * Work out what state this square should be drawn in,
933 * taking any current drag operation into account.
934 */
935 if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2)
936 val = ui->state;
937 else
938 val = state->grid[i * state->w + j];
939
940 /*
941 * Briefly invert everything twice during a completion
942 * flash.
943 */
944 if (flashtime > 0 &&
945 (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) &&
946 val != GRID_UNKNOWN)
947 val = (GRID_FULL ^ GRID_EMPTY) ^ val;
948
949 if (ds->visible[i * ds->w + j] != val) {
950 grid_square(fe, ds, i, j, val);
951 ds->visible[i * ds->w + j] = val;
952 }
953 }
954 }
955 }
956
957 static float game_anim_length(game_state *oldstate,
958 game_state *newstate, int dir)
959 {
960 return 0.0F;
961 }
962
963 static float game_flash_length(game_state *oldstate,
964 game_state *newstate, int dir)
965 {
966 if (!oldstate->completed && newstate->completed)
967 return FLASH_TIME;
968 return 0.0F;
969 }
970
971 static int game_wants_statusbar(void)
972 {
973 return FALSE;
974 }
975
976 #ifdef COMBINED
977 #define thegame pattern
978 #endif
979
980 const struct game thegame = {
981 "Pattern", "games.pattern", TRUE,
982 default_params,
983 game_fetch_preset,
984 decode_params,
985 encode_params,
986 free_params,
987 dup_params,
988 game_configure,
989 custom_params,
990 validate_params,
991 new_game_seed,
992 validate_seed,
993 new_game,
994 dup_game,
995 free_game,
996 new_ui,
997 free_ui,
998 make_move,
999 game_size,
1000 game_colours,
1001 game_new_drawstate,
1002 game_free_drawstate,
1003 game_redraw,
1004 game_anim_length,
1005 game_flash_length,
1006 game_wants_statusbar,
1007 };