Move definition of PI into puzzles.h. If nothing else, the definition in cube.c
[sgt/puzzles] / netslide.c
1 /*
2 * netslide.c: cross between Net and Sixteen, courtesy of Richard
3 * Boulton.
4 */
5
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <assert.h>
10 #include <ctype.h>
11 #include <math.h>
12
13 #include "puzzles.h"
14 #include "tree234.h"
15
16 #define MATMUL(xr,yr,m,x,y) do { \
17 float rx, ry, xx = (x), yy = (y), *mat = (m); \
18 rx = mat[0] * xx + mat[2] * yy; \
19 ry = mat[1] * xx + mat[3] * yy; \
20 (xr) = rx; (yr) = ry; \
21 } while (0)
22
23 /* Direction and other bitfields */
24 #define R 0x01
25 #define U 0x02
26 #define L 0x04
27 #define D 0x08
28 #define FLASHING 0x10
29 #define ACTIVE 0x20
30 /* Corner flags go in the barriers array */
31 #define RU 0x10
32 #define UL 0x20
33 #define LD 0x40
34 #define DR 0x80
35
36 /* Get tile at given coordinate */
37 #define T(state, x, y) ( (y) * (state)->width + (x) )
38
39 /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
40 #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
41 #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
42 #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
43 #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
44 ((n)&3) == 1 ? A(x) : \
45 ((n)&3) == 2 ? F(x) : C(x) )
46
47 /* X and Y displacements */
48 #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
49 #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
50
51 /* Bit count */
52 #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
53 (((x) & 0x02) >> 1) + ((x) & 0x01) )
54
55 #define TILE_SIZE 48
56 #define BORDER TILE_SIZE
57 #define TILE_BORDER 1
58 #define WINDOW_OFFSET 0
59
60 #define ANIM_TIME 0.13F
61 #define FLASH_FRAME 0.07F
62
63 enum {
64 COL_BACKGROUND,
65 COL_FLASHING,
66 COL_BORDER,
67 COL_WIRE,
68 COL_ENDPOINT,
69 COL_POWERED,
70 COL_BARRIER,
71 COL_LOWLIGHT,
72 COL_TEXT,
73 NCOLOURS
74 };
75
76 struct game_params {
77 int width;
78 int height;
79 int wrapping;
80 float barrier_probability;
81 int movetarget;
82 };
83
84 struct game_aux_info {
85 int width, height;
86 unsigned char *tiles;
87 };
88
89 struct game_state {
90 int width, height, cx, cy, wrapping, completed;
91 int used_solve, just_used_solve;
92 int move_count, movetarget;
93
94 /* position (row or col number, starting at 0) of last move. */
95 int last_move_row, last_move_col;
96
97 /* direction of last move: +1 or -1 */
98 int last_move_dir;
99
100 unsigned char *tiles;
101 unsigned char *barriers;
102 };
103
104 #define OFFSET(x2,y2,x1,y1,dir,state) \
105 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
106 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
107
108 #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
109 #define tile(state, x, y) index(state, (state)->tiles, x, y)
110 #define barrier(state, x, y) index(state, (state)->barriers, x, y)
111
112 struct xyd {
113 int x, y, direction;
114 };
115
116 static int xyd_cmp(void *av, void *bv) {
117 struct xyd *a = (struct xyd *)av;
118 struct xyd *b = (struct xyd *)bv;
119 if (a->x < b->x)
120 return -1;
121 if (a->x > b->x)
122 return +1;
123 if (a->y < b->y)
124 return -1;
125 if (a->y > b->y)
126 return +1;
127 if (a->direction < b->direction)
128 return -1;
129 if (a->direction > b->direction)
130 return +1;
131 return 0;
132 };
133
134 static struct xyd *new_xyd(int x, int y, int direction)
135 {
136 struct xyd *xyd = snew(struct xyd);
137 xyd->x = x;
138 xyd->y = y;
139 xyd->direction = direction;
140 return xyd;
141 }
142
143 static void slide_col(game_state *state, int dir, int col);
144 static void slide_col_int(int w, int h, unsigned char *tiles, int dir, int col);
145 static void slide_row(game_state *state, int dir, int row);
146 static void slide_row_int(int w, int h, unsigned char *tiles, int dir, int row);
147
148 /* ----------------------------------------------------------------------
149 * Manage game parameters.
150 */
151 static game_params *default_params(void)
152 {
153 game_params *ret = snew(game_params);
154
155 ret->width = 3;
156 ret->height = 3;
157 ret->wrapping = FALSE;
158 ret->barrier_probability = 1.0;
159 ret->movetarget = 0;
160
161 return ret;
162 }
163
164 static int game_fetch_preset(int i, char **name, game_params **params)
165 {
166 game_params *ret;
167 char str[80];
168 static const struct { int x, y, wrap, bprob; const char* desc; } values[] = {
169 {3, 3, FALSE, 1.0, " easy"},
170 {3, 3, FALSE, 0.0, " medium"},
171 {3, 3, TRUE, 0.0, " hard"},
172 {4, 4, FALSE, 1.0, " easy"},
173 {4, 4, FALSE, 0.0, " medium"},
174 {4, 4, TRUE, 0.0, " hard"},
175 {5, 5, FALSE, 1.0, " easy"},
176 {5, 5, FALSE, 0.0, " medium"},
177 {5, 5, TRUE, 0.0, " hard"},
178 };
179
180 if (i < 0 || i >= lenof(values))
181 return FALSE;
182
183 ret = snew(game_params);
184 ret->width = values[i].x;
185 ret->height = values[i].y;
186 ret->wrapping = values[i].wrap;
187 ret->barrier_probability = values[i].bprob;
188 ret->movetarget = 0;
189
190 sprintf(str, "%dx%d%s", ret->width, ret->height,
191 values[i].desc);
192
193 *name = dupstr(str);
194 *params = ret;
195 return TRUE;
196 }
197
198 static void free_params(game_params *params)
199 {
200 sfree(params);
201 }
202
203 static game_params *dup_params(game_params *params)
204 {
205 game_params *ret = snew(game_params);
206 *ret = *params; /* structure copy */
207 return ret;
208 }
209
210 static void decode_params(game_params *ret, char const *string)
211 {
212 char const *p = string;
213
214 ret->wrapping = FALSE;
215 ret->barrier_probability = 0.0;
216 ret->movetarget = 0;
217
218 ret->width = atoi(p);
219 while (*p && isdigit(*p)) p++;
220 if (*p == 'x') {
221 p++;
222 ret->height = atoi(p);
223 while (*p && isdigit(*p)) p++;
224 if ( (ret->wrapping = (*p == 'w')) != 0 )
225 p++;
226 if (*p == 'b') {
227 ret->barrier_probability = atof(++p);
228 while (*p && (isdigit(*p) || *p == '.')) p++;
229 }
230 if (*p == 'm') {
231 ret->movetarget = atoi(++p);
232 }
233 } else {
234 ret->height = ret->width;
235 }
236 }
237
238 static char *encode_params(game_params *params, int full)
239 {
240 char ret[400];
241 int len;
242
243 len = sprintf(ret, "%dx%d", params->width, params->height);
244 if (params->wrapping)
245 ret[len++] = 'w';
246 if (full && params->barrier_probability)
247 len += sprintf(ret+len, "b%g", params->barrier_probability);
248 /* Shuffle limit is part of the limited parameters, because we have to
249 * provide the target move count. */
250 if (params->movetarget)
251 len += sprintf(ret+len, "m%d", params->movetarget);
252 assert(len < lenof(ret));
253 ret[len] = '\0';
254
255 return dupstr(ret);
256 }
257
258 static config_item *game_configure(game_params *params)
259 {
260 config_item *ret;
261 char buf[80];
262
263 ret = snewn(6, config_item);
264
265 ret[0].name = "Width";
266 ret[0].type = C_STRING;
267 sprintf(buf, "%d", params->width);
268 ret[0].sval = dupstr(buf);
269 ret[0].ival = 0;
270
271 ret[1].name = "Height";
272 ret[1].type = C_STRING;
273 sprintf(buf, "%d", params->height);
274 ret[1].sval = dupstr(buf);
275 ret[1].ival = 0;
276
277 ret[2].name = "Walls wrap around";
278 ret[2].type = C_BOOLEAN;
279 ret[2].sval = NULL;
280 ret[2].ival = params->wrapping;
281
282 ret[3].name = "Barrier probability";
283 ret[3].type = C_STRING;
284 sprintf(buf, "%g", params->barrier_probability);
285 ret[3].sval = dupstr(buf);
286 ret[3].ival = 0;
287
288 ret[4].name = "Number of shuffling moves";
289 ret[4].type = C_STRING;
290 sprintf(buf, "%d", params->movetarget);
291 ret[4].sval = dupstr(buf);
292 ret[4].ival = 0;
293
294 ret[5].name = NULL;
295 ret[5].type = C_END;
296 ret[5].sval = NULL;
297 ret[5].ival = 0;
298
299 return ret;
300 }
301
302 static game_params *custom_params(config_item *cfg)
303 {
304 game_params *ret = snew(game_params);
305
306 ret->width = atoi(cfg[0].sval);
307 ret->height = atoi(cfg[1].sval);
308 ret->wrapping = cfg[2].ival;
309 ret->barrier_probability = (float)atof(cfg[3].sval);
310 ret->movetarget = atoi(cfg[4].sval);
311
312 return ret;
313 }
314
315 static char *validate_params(game_params *params)
316 {
317 if (params->width <= 1 && params->height <= 1)
318 return "Width and height must both be greater than one";
319 if (params->width <= 1)
320 return "Width must be greater than one";
321 if (params->height <= 1)
322 return "Height must be greater than one";
323 if (params->barrier_probability < 0)
324 return "Barrier probability may not be negative";
325 if (params->barrier_probability > 1)
326 return "Barrier probability may not be greater than 1";
327 return NULL;
328 }
329
330 /* ----------------------------------------------------------------------
331 * Randomly select a new game description.
332 */
333
334 static char *new_game_desc(game_params *params, random_state *rs,
335 game_aux_info **aux, int interactive)
336 {
337 tree234 *possibilities, *barriertree;
338 int w, h, x, y, cx, cy, nbarriers;
339 unsigned char *tiles, *barriers;
340 char *desc, *p;
341
342 w = params->width;
343 h = params->height;
344
345 tiles = snewn(w * h, unsigned char);
346 memset(tiles, 0, w * h);
347 barriers = snewn(w * h, unsigned char);
348 memset(barriers, 0, w * h);
349
350 cx = w / 2;
351 cy = h / 2;
352
353 /*
354 * Construct the unshuffled grid.
355 *
356 * To do this, we simply start at the centre point, repeatedly
357 * choose a random possibility out of the available ways to
358 * extend a used square into an unused one, and do it. After
359 * extending the third line out of a square, we remove the
360 * fourth from the possibilities list to avoid any full-cross
361 * squares (which would make the game too easy because they
362 * only have one orientation).
363 *
364 * The slightly worrying thing is the avoidance of full-cross
365 * squares. Can this cause our unsophisticated construction
366 * algorithm to paint itself into a corner, by getting into a
367 * situation where there are some unreached squares and the
368 * only way to reach any of them is to extend a T-piece into a
369 * full cross?
370 *
371 * Answer: no it can't, and here's a proof.
372 *
373 * Any contiguous group of such unreachable squares must be
374 * surrounded on _all_ sides by T-pieces pointing away from the
375 * group. (If not, then there is a square which can be extended
376 * into one of the `unreachable' ones, and so it wasn't
377 * unreachable after all.) In particular, this implies that
378 * each contiguous group of unreachable squares must be
379 * rectangular in shape (any deviation from that yields a
380 * non-T-piece next to an `unreachable' square).
381 *
382 * So we have a rectangle of unreachable squares, with T-pieces
383 * forming a solid border around the rectangle. The corners of
384 * that border must be connected (since every tile connects all
385 * the lines arriving in it), and therefore the border must
386 * form a closed loop around the rectangle.
387 *
388 * But this can't have happened in the first place, since we
389 * _know_ we've avoided creating closed loops! Hence, no such
390 * situation can ever arise, and the naive grid construction
391 * algorithm will guaranteeably result in a complete grid
392 * containing no unreached squares, no full crosses _and_ no
393 * closed loops. []
394 */
395 possibilities = newtree234(xyd_cmp);
396
397 if (cx+1 < w)
398 add234(possibilities, new_xyd(cx, cy, R));
399 if (cy-1 >= 0)
400 add234(possibilities, new_xyd(cx, cy, U));
401 if (cx-1 >= 0)
402 add234(possibilities, new_xyd(cx, cy, L));
403 if (cy+1 < h)
404 add234(possibilities, new_xyd(cx, cy, D));
405
406 while (count234(possibilities) > 0) {
407 int i;
408 struct xyd *xyd;
409 int x1, y1, d1, x2, y2, d2, d;
410
411 /*
412 * Extract a randomly chosen possibility from the list.
413 */
414 i = random_upto(rs, count234(possibilities));
415 xyd = delpos234(possibilities, i);
416 x1 = xyd->x;
417 y1 = xyd->y;
418 d1 = xyd->direction;
419 sfree(xyd);
420
421 OFFSET(x2, y2, x1, y1, d1, params);
422 d2 = F(d1);
423 #ifdef DEBUG
424 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
425 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
426 #endif
427
428 /*
429 * Make the connection. (We should be moving to an as yet
430 * unused tile.)
431 */
432 index(params, tiles, x1, y1) |= d1;
433 assert(index(params, tiles, x2, y2) == 0);
434 index(params, tiles, x2, y2) |= d2;
435
436 /*
437 * If we have created a T-piece, remove its last
438 * possibility.
439 */
440 if (COUNT(index(params, tiles, x1, y1)) == 3) {
441 struct xyd xyd1, *xydp;
442
443 xyd1.x = x1;
444 xyd1.y = y1;
445 xyd1.direction = 0x0F ^ index(params, tiles, x1, y1);
446
447 xydp = find234(possibilities, &xyd1, NULL);
448
449 if (xydp) {
450 #ifdef DEBUG
451 printf("T-piece; removing (%d,%d,%c)\n",
452 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
453 #endif
454 del234(possibilities, xydp);
455 sfree(xydp);
456 }
457 }
458
459 /*
460 * Remove all other possibilities that were pointing at the
461 * tile we've just moved into.
462 */
463 for (d = 1; d < 0x10; d <<= 1) {
464 int x3, y3, d3;
465 struct xyd xyd1, *xydp;
466
467 OFFSET(x3, y3, x2, y2, d, params);
468 d3 = F(d);
469
470 xyd1.x = x3;
471 xyd1.y = y3;
472 xyd1.direction = d3;
473
474 xydp = find234(possibilities, &xyd1, NULL);
475
476 if (xydp) {
477 #ifdef DEBUG
478 printf("Loop avoidance; removing (%d,%d,%c)\n",
479 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
480 #endif
481 del234(possibilities, xydp);
482 sfree(xydp);
483 }
484 }
485
486 /*
487 * Add new possibilities to the list for moving _out_ of
488 * the tile we have just moved into.
489 */
490 for (d = 1; d < 0x10; d <<= 1) {
491 int x3, y3;
492
493 if (d == d2)
494 continue; /* we've got this one already */
495
496 if (!params->wrapping) {
497 if (d == U && y2 == 0)
498 continue;
499 if (d == D && y2 == h-1)
500 continue;
501 if (d == L && x2 == 0)
502 continue;
503 if (d == R && x2 == w-1)
504 continue;
505 }
506
507 OFFSET(x3, y3, x2, y2, d, params);
508
509 if (index(params, tiles, x3, y3))
510 continue; /* this would create a loop */
511
512 #ifdef DEBUG
513 printf("New frontier; adding (%d,%d,%c)\n",
514 x2, y2, "0RU3L567D9abcdef"[d]);
515 #endif
516 add234(possibilities, new_xyd(x2, y2, d));
517 }
518 }
519 /* Having done that, we should have no possibilities remaining. */
520 assert(count234(possibilities) == 0);
521 freetree234(possibilities);
522
523 /*
524 * Now compute a list of the possible barrier locations.
525 */
526 barriertree = newtree234(xyd_cmp);
527 for (y = 0; y < h; y++) {
528 for (x = 0; x < w; x++) {
529
530 if (!(index(params, tiles, x, y) & R) &&
531 (params->wrapping || x < w-1))
532 add234(barriertree, new_xyd(x, y, R));
533 if (!(index(params, tiles, x, y) & D) &&
534 (params->wrapping || y < h-1))
535 add234(barriertree, new_xyd(x, y, D));
536 }
537 }
538
539 /*
540 * Save the unshuffled grid. We do this using a separate
541 * reference-counted structure since it's a large chunk of
542 * memory which we don't want to have to replicate in every
543 * game state while playing.
544 */
545 {
546 game_aux_info *solution;
547
548 solution = snew(game_aux_info);
549 solution->width = w;
550 solution->height = h;
551 solution->tiles = snewn(w * h, unsigned char);
552 memcpy(solution->tiles, tiles, w * h);
553
554 *aux = solution;
555 }
556
557 /*
558 * Now shuffle the grid.
559 * FIXME - this simply does a set of random moves to shuffle the pieces,
560 * although we make a token effort to avoid boring cases by avoiding moves
561 * that directly undo the previous one, or that repeat so often as to
562 * turn into fewer moves.
563 *
564 * A better way would be to number all the pieces, generate a placement
565 * for all the numbers as for "sixteen", observing parity constraints if
566 * neccessary, and then place the pieces according to their numbering.
567 * BUT - I'm not sure if this will work, since we disallow movement of
568 * the middle row and column.
569 */
570 {
571 int i;
572 int cols = w - 1;
573 int rows = h - 1;
574 int moves = params->movetarget;
575 int prevdir = -1, prevrowcol = -1, nrepeats = 0;
576 if (!moves) moves = cols * rows * 2;
577 for (i = 0; i < moves; /* incremented conditionally */) {
578 /* Choose a direction: 0,1,2,3 = up, right, down, left. */
579 int dir = random_upto(rs, 4);
580 int rowcol;
581 if (dir % 2 == 0) {
582 int col = random_upto(rs, cols);
583 if (col >= cx) col += 1; /* avoid centre */
584 if (col == prevrowcol) {
585 if (dir == 2-prevdir)
586 continue; /* undoes last move */
587 else if ((nrepeats+1)*2 > h)
588 continue; /* makes fewer moves */
589 }
590 slide_col_int(w, h, tiles, 1 - dir, col);
591 rowcol = col;
592 } else {
593 int row = random_upto(rs, rows);
594 if (row >= cy) row += 1; /* avoid centre */
595 if (row == prevrowcol) {
596 if (dir == 4-prevdir)
597 continue; /* undoes last move */
598 else if ((nrepeats+1)*2 > w)
599 continue; /* makes fewer moves */
600 }
601 slide_row_int(w, h, tiles, 2 - dir, row);
602 rowcol = row;
603 }
604 if (dir == prevdir && rowcol == prevrowcol)
605 nrepeats++;
606 else
607 nrepeats = 1;
608 prevdir = dir;
609 prevrowcol = rowcol;
610 i++; /* if we got here, the move was accepted */
611 }
612 }
613
614 /*
615 * And now choose barrier locations. (We carefully do this
616 * _after_ shuffling, so that changing the barrier rate in the
617 * params while keeping the random seed the same will give the
618 * same shuffled grid and _only_ change the barrier locations.
619 * Also the way we choose barrier locations, by repeatedly
620 * choosing one possibility from the list until we have enough,
621 * is designed to ensure that raising the barrier rate while
622 * keeping the seed the same will provide a superset of the
623 * previous barrier set - i.e. if you ask for 10 barriers, and
624 * then decide that's still too hard and ask for 20, you'll get
625 * the original 10 plus 10 more, rather than getting 20 new
626 * ones and the chance of remembering your first 10.)
627 */
628 nbarriers = (int)(params->barrier_probability * count234(barriertree));
629 assert(nbarriers >= 0 && nbarriers <= count234(barriertree));
630
631 while (nbarriers > 0) {
632 int i;
633 struct xyd *xyd;
634 int x1, y1, d1, x2, y2, d2;
635
636 /*
637 * Extract a randomly chosen barrier from the list.
638 */
639 i = random_upto(rs, count234(barriertree));
640 xyd = delpos234(barriertree, i);
641
642 assert(xyd != NULL);
643
644 x1 = xyd->x;
645 y1 = xyd->y;
646 d1 = xyd->direction;
647 sfree(xyd);
648
649 OFFSET(x2, y2, x1, y1, d1, params);
650 d2 = F(d1);
651
652 index(params, barriers, x1, y1) |= d1;
653 index(params, barriers, x2, y2) |= d2;
654
655 nbarriers--;
656 }
657
658 /*
659 * Clean up the rest of the barrier list.
660 */
661 {
662 struct xyd *xyd;
663
664 while ( (xyd = delpos234(barriertree, 0)) != NULL)
665 sfree(xyd);
666
667 freetree234(barriertree);
668 }
669
670 /*
671 * Finally, encode the grid into a string game description.
672 *
673 * My syntax is extremely simple: each square is encoded as a
674 * hex digit in which bit 0 means a connection on the right,
675 * bit 1 means up, bit 2 left and bit 3 down. (i.e. the same
676 * encoding as used internally). Each digit is followed by
677 * optional barrier indicators: `v' means a vertical barrier to
678 * the right of it, and `h' means a horizontal barrier below
679 * it.
680 */
681 desc = snewn(w * h * 3 + 1, char);
682 p = desc;
683 for (y = 0; y < h; y++) {
684 for (x = 0; x < w; x++) {
685 *p++ = "0123456789abcdef"[index(params, tiles, x, y)];
686 if ((params->wrapping || x < w-1) &&
687 (index(params, barriers, x, y) & R))
688 *p++ = 'v';
689 if ((params->wrapping || y < h-1) &&
690 (index(params, barriers, x, y) & D))
691 *p++ = 'h';
692 }
693 }
694 assert(p - desc <= w*h*3);
695 *p = '\0';
696
697 sfree(tiles);
698 sfree(barriers);
699
700 return desc;
701 }
702
703 static void game_free_aux_info(game_aux_info *aux)
704 {
705 sfree(aux->tiles);
706 sfree(aux);
707 }
708
709 static char *validate_desc(game_params *params, char *desc)
710 {
711 int w = params->width, h = params->height;
712 int i;
713
714 for (i = 0; i < w*h; i++) {
715 if (*desc >= '0' && *desc <= '9')
716 /* OK */;
717 else if (*desc >= 'a' && *desc <= 'f')
718 /* OK */;
719 else if (*desc >= 'A' && *desc <= 'F')
720 /* OK */;
721 else if (!*desc)
722 return "Game description shorter than expected";
723 else
724 return "Game description contained unexpected character";
725 desc++;
726 while (*desc == 'h' || *desc == 'v')
727 desc++;
728 }
729 if (*desc)
730 return "Game description longer than expected";
731
732 return NULL;
733 }
734
735 /* ----------------------------------------------------------------------
736 * Construct an initial game state, given a description and parameters.
737 */
738
739 static game_state *new_game(midend_data *me, game_params *params, char *desc)
740 {
741 game_state *state;
742 int w, h, x, y;
743
744 assert(params->width > 0 && params->height > 0);
745 assert(params->width > 1 || params->height > 1);
746
747 /*
748 * Create a blank game state.
749 */
750 state = snew(game_state);
751 w = state->width = params->width;
752 h = state->height = params->height;
753 state->cx = state->width / 2;
754 state->cy = state->height / 2;
755 state->wrapping = params->wrapping;
756 state->movetarget = params->movetarget;
757 state->completed = 0;
758 state->used_solve = state->just_used_solve = FALSE;
759 state->move_count = 0;
760 state->last_move_row = -1;
761 state->last_move_col = -1;
762 state->last_move_dir = 0;
763 state->tiles = snewn(state->width * state->height, unsigned char);
764 memset(state->tiles, 0, state->width * state->height);
765 state->barriers = snewn(state->width * state->height, unsigned char);
766 memset(state->barriers, 0, state->width * state->height);
767
768
769 /*
770 * Parse the game description into the grid.
771 */
772 for (y = 0; y < h; y++) {
773 for (x = 0; x < w; x++) {
774 if (*desc >= '0' && *desc <= '9')
775 tile(state, x, y) = *desc - '0';
776 else if (*desc >= 'a' && *desc <= 'f')
777 tile(state, x, y) = *desc - 'a' + 10;
778 else if (*desc >= 'A' && *desc <= 'F')
779 tile(state, x, y) = *desc - 'A' + 10;
780 if (*desc)
781 desc++;
782 while (*desc == 'h' || *desc == 'v') {
783 int x2, y2, d1, d2;
784 if (*desc == 'v')
785 d1 = R;
786 else
787 d1 = D;
788
789 OFFSET(x2, y2, x, y, d1, state);
790 d2 = F(d1);
791
792 barrier(state, x, y) |= d1;
793 barrier(state, x2, y2) |= d2;
794
795 desc++;
796 }
797 }
798 }
799
800 /*
801 * Set up border barriers if this is a non-wrapping game.
802 */
803 if (!state->wrapping) {
804 for (x = 0; x < state->width; x++) {
805 barrier(state, x, 0) |= U;
806 barrier(state, x, state->height-1) |= D;
807 }
808 for (y = 0; y < state->height; y++) {
809 barrier(state, 0, y) |= L;
810 barrier(state, state->width-1, y) |= R;
811 }
812 }
813
814 /*
815 * Set up the barrier corner flags, for drawing barriers
816 * prettily when they meet.
817 */
818 for (y = 0; y < state->height; y++) {
819 for (x = 0; x < state->width; x++) {
820 int dir;
821
822 for (dir = 1; dir < 0x10; dir <<= 1) {
823 int dir2 = A(dir);
824 int x1, y1, x2, y2, x3, y3;
825 int corner = FALSE;
826
827 if (!(barrier(state, x, y) & dir))
828 continue;
829
830 if (barrier(state, x, y) & dir2)
831 corner = TRUE;
832
833 x1 = x + X(dir), y1 = y + Y(dir);
834 if (x1 >= 0 && x1 < state->width &&
835 y1 >= 0 && y1 < state->height &&
836 (barrier(state, x1, y1) & dir2))
837 corner = TRUE;
838
839 x2 = x + X(dir2), y2 = y + Y(dir2);
840 if (x2 >= 0 && x2 < state->width &&
841 y2 >= 0 && y2 < state->height &&
842 (barrier(state, x2, y2) & dir))
843 corner = TRUE;
844
845 if (corner) {
846 barrier(state, x, y) |= (dir << 4);
847 if (x1 >= 0 && x1 < state->width &&
848 y1 >= 0 && y1 < state->height)
849 barrier(state, x1, y1) |= (A(dir) << 4);
850 if (x2 >= 0 && x2 < state->width &&
851 y2 >= 0 && y2 < state->height)
852 barrier(state, x2, y2) |= (C(dir) << 4);
853 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
854 if (x3 >= 0 && x3 < state->width &&
855 y3 >= 0 && y3 < state->height)
856 barrier(state, x3, y3) |= (F(dir) << 4);
857 }
858 }
859 }
860 }
861
862 return state;
863 }
864
865 static game_state *dup_game(game_state *state)
866 {
867 game_state *ret;
868
869 ret = snew(game_state);
870 ret->width = state->width;
871 ret->height = state->height;
872 ret->cx = state->cx;
873 ret->cy = state->cy;
874 ret->wrapping = state->wrapping;
875 ret->movetarget = state->movetarget;
876 ret->completed = state->completed;
877 ret->used_solve = state->used_solve;
878 ret->just_used_solve = state->just_used_solve;
879 ret->move_count = state->move_count;
880 ret->last_move_row = state->last_move_row;
881 ret->last_move_col = state->last_move_col;
882 ret->last_move_dir = state->last_move_dir;
883 ret->tiles = snewn(state->width * state->height, unsigned char);
884 memcpy(ret->tiles, state->tiles, state->width * state->height);
885 ret->barriers = snewn(state->width * state->height, unsigned char);
886 memcpy(ret->barriers, state->barriers, state->width * state->height);
887
888 return ret;
889 }
890
891 static void free_game(game_state *state)
892 {
893 sfree(state->tiles);
894 sfree(state->barriers);
895 sfree(state);
896 }
897
898 static game_state *solve_game(game_state *state, game_aux_info *aux,
899 char **error)
900 {
901 game_state *ret;
902
903 if (!aux) {
904 *error = "Solution not known for this puzzle";
905 return NULL;
906 }
907
908 assert(aux->width == state->width);
909 assert(aux->height == state->height);
910 ret = dup_game(state);
911 memcpy(ret->tiles, aux->tiles, ret->width * ret->height);
912 ret->used_solve = ret->just_used_solve = TRUE;
913 ret->completed = ret->move_count = 1;
914
915 return ret;
916 }
917
918 static char *game_text_format(game_state *state)
919 {
920 return NULL;
921 }
922
923 /* ----------------------------------------------------------------------
924 * Utility routine.
925 */
926
927 /*
928 * Compute which squares are reachable from the centre square, as a
929 * quick visual aid to determining how close the game is to
930 * completion. This is also a simple way to tell if the game _is_
931 * completed - just call this function and see whether every square
932 * is marked active.
933 *
934 * squares in the moving_row and moving_col are always inactive - this
935 * is so that "current" doesn't appear to jump across moving lines.
936 */
937 static unsigned char *compute_active(game_state *state,
938 int moving_row, int moving_col)
939 {
940 unsigned char *active;
941 tree234 *todo;
942 struct xyd *xyd;
943
944 active = snewn(state->width * state->height, unsigned char);
945 memset(active, 0, state->width * state->height);
946
947 /*
948 * We only store (x,y) pairs in todo, but it's easier to reuse
949 * xyd_cmp and just store direction 0 every time.
950 */
951 todo = newtree234(xyd_cmp);
952 index(state, active, state->cx, state->cy) = ACTIVE;
953 add234(todo, new_xyd(state->cx, state->cy, 0));
954
955 while ( (xyd = delpos234(todo, 0)) != NULL) {
956 int x1, y1, d1, x2, y2, d2;
957
958 x1 = xyd->x;
959 y1 = xyd->y;
960 sfree(xyd);
961
962 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
963 OFFSET(x2, y2, x1, y1, d1, state);
964 d2 = F(d1);
965
966 /*
967 * If the next tile in this direction is connected to
968 * us, and there isn't a barrier in the way, and it
969 * isn't already marked active, then mark it active and
970 * add it to the to-examine list.
971 */
972 if ((x2 != moving_col && y2 != moving_row) &&
973 (tile(state, x1, y1) & d1) &&
974 (tile(state, x2, y2) & d2) &&
975 !(barrier(state, x1, y1) & d1) &&
976 !index(state, active, x2, y2)) {
977 index(state, active, x2, y2) = ACTIVE;
978 add234(todo, new_xyd(x2, y2, 0));
979 }
980 }
981 }
982 /* Now we expect the todo list to have shrunk to zero size. */
983 assert(count234(todo) == 0);
984 freetree234(todo);
985
986 return active;
987 }
988
989 struct game_ui {
990 int cur_x, cur_y;
991 int cur_visible;
992 };
993
994 static game_ui *new_ui(game_state *state)
995 {
996 game_ui *ui = snew(game_ui);
997 ui->cur_x = state->width / 2;
998 ui->cur_y = state->height / 2;
999 ui->cur_visible = FALSE;
1000
1001 return ui;
1002 }
1003
1004 static void free_ui(game_ui *ui)
1005 {
1006 sfree(ui);
1007 }
1008
1009 /* ----------------------------------------------------------------------
1010 * Process a move.
1011 */
1012
1013 static void slide_row_int(int w, int h, unsigned char *tiles, int dir, int row)
1014 {
1015 int x = dir > 0 ? -1 : w;
1016 int tx = x + dir;
1017 int n = w - 1;
1018 unsigned char endtile = tiles[row * w + tx];
1019 do {
1020 x = tx;
1021 tx = (x + dir + w) % w;
1022 tiles[row * w + x] = tiles[row * w + tx];
1023 } while (--n > 0);
1024 tiles[row * w + tx] = endtile;
1025 }
1026
1027 static void slide_col_int(int w, int h, unsigned char *tiles, int dir, int col)
1028 {
1029 int y = dir > 0 ? -1 : h;
1030 int ty = y + dir;
1031 int n = h - 1;
1032 unsigned char endtile = tiles[ty * w + col];
1033 do {
1034 y = ty;
1035 ty = (y + dir + h) % h;
1036 tiles[y * w + col] = tiles[ty * w + col];
1037 } while (--n > 0);
1038 tiles[ty * w + col] = endtile;
1039 }
1040
1041 static void slide_row(game_state *state, int dir, int row)
1042 {
1043 slide_row_int(state->width, state->height, state->tiles, dir, row);
1044 }
1045
1046 static void slide_col(game_state *state, int dir, int col)
1047 {
1048 slide_col_int(state->width, state->height, state->tiles, dir, col);
1049 }
1050
1051 static game_state *make_move(game_state *state, game_ui *ui,
1052 game_drawstate *ds, int x, int y, int button)
1053 {
1054 int cx, cy;
1055 int n, dx, dy;
1056 game_state *ret;
1057
1058 button &= ~MOD_MASK;
1059
1060 if (button != LEFT_BUTTON && button != RIGHT_BUTTON)
1061 return NULL;
1062
1063 cx = (x - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
1064 cy = (y - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
1065
1066 if (cy >= 0 && cy < state->height && cy != state->cy)
1067 {
1068 if (cx == -1) dx = +1;
1069 else if (cx == state->width) dx = -1;
1070 else return NULL;
1071 n = state->width;
1072 dy = 0;
1073 }
1074 else if (cx >= 0 && cx < state->width && cx != state->cx)
1075 {
1076 if (cy == -1) dy = +1;
1077 else if (cy == state->height) dy = -1;
1078 else return NULL;
1079 n = state->height;
1080 dx = 0;
1081 }
1082 else
1083 return NULL;
1084
1085 /* reverse direction if right hand button is pressed */
1086 if (button == RIGHT_BUTTON)
1087 {
1088 dx = -dx;
1089 dy = -dy;
1090 }
1091
1092 ret = dup_game(state);
1093 ret->just_used_solve = FALSE;
1094
1095 if (dx == 0) slide_col(ret, dy, cx);
1096 else slide_row(ret, dx, cy);
1097
1098 ret->move_count++;
1099 ret->last_move_row = dx ? cy : -1;
1100 ret->last_move_col = dx ? -1 : cx;
1101 ret->last_move_dir = dx + dy;
1102
1103 /*
1104 * See if the game has been completed.
1105 */
1106 if (!ret->completed) {
1107 unsigned char *active = compute_active(ret, -1, -1);
1108 int x1, y1;
1109 int complete = TRUE;
1110
1111 for (x1 = 0; x1 < ret->width; x1++)
1112 for (y1 = 0; y1 < ret->height; y1++)
1113 if (!index(ret, active, x1, y1)) {
1114 complete = FALSE;
1115 goto break_label; /* break out of two loops at once */
1116 }
1117 break_label:
1118
1119 sfree(active);
1120
1121 if (complete)
1122 ret->completed = ret->move_count;
1123 }
1124
1125 return ret;
1126 }
1127
1128 /* ----------------------------------------------------------------------
1129 * Routines for drawing the game position on the screen.
1130 */
1131
1132 struct game_drawstate {
1133 int started;
1134 int width, height;
1135 unsigned char *visible;
1136 };
1137
1138 static game_drawstate *game_new_drawstate(game_state *state)
1139 {
1140 game_drawstate *ds = snew(game_drawstate);
1141
1142 ds->started = FALSE;
1143 ds->width = state->width;
1144 ds->height = state->height;
1145 ds->visible = snewn(state->width * state->height, unsigned char);
1146 memset(ds->visible, 0xFF, state->width * state->height);
1147
1148 return ds;
1149 }
1150
1151 static void game_free_drawstate(game_drawstate *ds)
1152 {
1153 sfree(ds->visible);
1154 sfree(ds);
1155 }
1156
1157 static void game_size(game_params *params, int *x, int *y)
1158 {
1159 *x = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
1160 *y = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
1161 }
1162
1163 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
1164 {
1165 float *ret;
1166
1167 ret = snewn(NCOLOURS * 3, float);
1168 *ncolours = NCOLOURS;
1169
1170 /*
1171 * Basic background colour is whatever the front end thinks is
1172 * a sensible default.
1173 */
1174 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1175
1176 /*
1177 * Wires are black.
1178 */
1179 ret[COL_WIRE * 3 + 0] = 0.0F;
1180 ret[COL_WIRE * 3 + 1] = 0.0F;
1181 ret[COL_WIRE * 3 + 2] = 0.0F;
1182
1183 /*
1184 * Powered wires and powered endpoints are cyan.
1185 */
1186 ret[COL_POWERED * 3 + 0] = 0.0F;
1187 ret[COL_POWERED * 3 + 1] = 1.0F;
1188 ret[COL_POWERED * 3 + 2] = 1.0F;
1189
1190 /*
1191 * Barriers are red.
1192 */
1193 ret[COL_BARRIER * 3 + 0] = 1.0F;
1194 ret[COL_BARRIER * 3 + 1] = 0.0F;
1195 ret[COL_BARRIER * 3 + 2] = 0.0F;
1196
1197 /*
1198 * Unpowered endpoints are blue.
1199 */
1200 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
1201 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
1202 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
1203
1204 /*
1205 * Tile borders are a darker grey than the background.
1206 */
1207 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
1208 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
1209 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
1210
1211 /*
1212 * Flashing tiles are a grey in between those two.
1213 */
1214 ret[COL_FLASHING * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
1215 ret[COL_FLASHING * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
1216 ret[COL_FLASHING * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
1217
1218 ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
1219 ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.8F;
1220 ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.8F;
1221 ret[COL_TEXT * 3 + 0] = 0.0;
1222 ret[COL_TEXT * 3 + 1] = 0.0;
1223 ret[COL_TEXT * 3 + 2] = 0.0;
1224
1225 return ret;
1226 }
1227
1228 static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
1229 int colour)
1230 {
1231 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
1232 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
1233 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
1234 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
1235 draw_line(fe, x1, y1, x2, y2, colour);
1236 }
1237
1238 static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
1239 int colour)
1240 {
1241 int mx = (x1 < x2 ? x1 : x2);
1242 int my = (y1 < y2 ? y1 : y2);
1243 int dx = (x2 + x1 - 2*mx + 1);
1244 int dy = (y2 + y1 - 2*my + 1);
1245
1246 draw_rect(fe, mx, my, dx, dy, colour);
1247 }
1248
1249 static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
1250 {
1251 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1252 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1253 int x1, y1, dx, dy, dir2;
1254
1255 dir >>= 4;
1256
1257 dir2 = A(dir);
1258 dx = X(dir) + X(dir2);
1259 dy = Y(dir) + Y(dir2);
1260 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1261 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1262
1263 if (phase == 0) {
1264 draw_rect_coords(fe, bx+x1, by+y1,
1265 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
1266 COL_WIRE);
1267 draw_rect_coords(fe, bx+x1, by+y1,
1268 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
1269 COL_WIRE);
1270 } else {
1271 draw_rect_coords(fe, bx+x1, by+y1,
1272 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
1273 COL_BARRIER);
1274 }
1275 }
1276
1277 static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
1278 {
1279 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1280 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1281 int x1, y1, w, h;
1282
1283 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
1284 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
1285 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1286 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1287
1288 if (phase == 0) {
1289 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
1290 } else {
1291 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
1292 }
1293 }
1294
1295 static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
1296 float xshift, float yshift)
1297 {
1298 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x + (xshift * TILE_SIZE);
1299 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y + (yshift * TILE_SIZE);
1300 float cx, cy, ex, ey;
1301 int dir, col;
1302
1303 /*
1304 * When we draw a single tile, we must draw everything up to
1305 * and including the borders around the tile. This means that
1306 * if the neighbouring tiles have connections to those borders,
1307 * we must draw those connections on the borders themselves.
1308 *
1309 * This would be terribly fiddly if we ever had to draw a tile
1310 * while its neighbour was in mid-rotate, because we'd have to
1311 * arrange to _know_ that the neighbour was being rotated and
1312 * hence had an anomalous effect on the redraw of this tile.
1313 * Fortunately, the drawing algorithm avoids ever calling us in
1314 * this circumstance: we're either drawing lots of straight
1315 * tiles at game start or after a move is complete, or we're
1316 * repeatedly drawing only the rotating tile. So no problem.
1317 */
1318
1319 /*
1320 * So. First blank the tile out completely: draw a big
1321 * rectangle in border colour, and a smaller rectangle in
1322 * background colour to fill it in.
1323 */
1324 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
1325 COL_BORDER);
1326 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
1327 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
1328 tile & FLASHING ? COL_FLASHING : COL_BACKGROUND);
1329
1330 /*
1331 * Draw the wires.
1332 */
1333 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
1334 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
1335 for (dir = 1; dir < 0x10; dir <<= 1) {
1336 if (tile & dir) {
1337 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1338 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1339 draw_thick_line(fe, bx+(int)cx, by+(int)cy,
1340 bx+(int)(cx+ex), by+(int)(cy+ey),
1341 COL_WIRE);
1342 }
1343 }
1344 for (dir = 1; dir < 0x10; dir <<= 1) {
1345 if (tile & dir) {
1346 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1347 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1348 draw_line(fe, bx+(int)cx, by+(int)cy,
1349 bx+(int)(cx+ex), by+(int)(cy+ey), col);
1350 }
1351 }
1352
1353 /*
1354 * Draw the box in the middle. We do this in blue if the tile
1355 * is an unpowered endpoint, in cyan if the tile is a powered
1356 * endpoint, in black if the tile is the centrepiece, and
1357 * otherwise not at all.
1358 */
1359 col = -1;
1360 if (x == state->cx && y == state->cy)
1361 col = COL_WIRE;
1362 else if (COUNT(tile) == 1) {
1363 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
1364 }
1365 if (col >= 0) {
1366 int i, points[8];
1367
1368 points[0] = +1; points[1] = +1;
1369 points[2] = +1; points[3] = -1;
1370 points[4] = -1; points[5] = -1;
1371 points[6] = -1; points[7] = +1;
1372
1373 for (i = 0; i < 8; i += 2) {
1374 ex = (TILE_SIZE * 0.24F) * points[i];
1375 ey = (TILE_SIZE * 0.24F) * points[i+1];
1376 points[i] = bx+(int)(cx+ex);
1377 points[i+1] = by+(int)(cy+ey);
1378 }
1379
1380 draw_polygon(fe, points, 4, TRUE, col);
1381 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
1382 }
1383
1384 /*
1385 * Draw the points on the border if other tiles are connected
1386 * to us.
1387 */
1388 for (dir = 1; dir < 0x10; dir <<= 1) {
1389 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
1390
1391 dx = X(dir);
1392 dy = Y(dir);
1393
1394 ox = x + dx;
1395 oy = y + dy;
1396
1397 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
1398 continue;
1399
1400 if (!(tile(state, ox, oy) & F(dir)))
1401 continue;
1402
1403 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
1404 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
1405 lx = dx * (TILE_BORDER-1);
1406 ly = dy * (TILE_BORDER-1);
1407 vx = (dy ? 1 : 0);
1408 vy = (dx ? 1 : 0);
1409
1410 if (xshift == 0.0 && yshift == 0.0 && (tile & dir)) {
1411 /*
1412 * If we are fully connected to the other tile, we must
1413 * draw right across the tile border. (We can use our
1414 * own ACTIVE state to determine what colour to do this
1415 * in: if we are fully connected to the other tile then
1416 * the two ACTIVE states will be the same.)
1417 */
1418 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
1419 draw_rect_coords(fe, px, py, px+lx, py+ly,
1420 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
1421 } else {
1422 /*
1423 * The other tile extends into our border, but isn't
1424 * actually connected to us. Just draw a single black
1425 * dot.
1426 */
1427 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
1428 }
1429 }
1430
1431 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1432 }
1433
1434 static void draw_tile_barriers(frontend *fe, game_state *state, int x, int y)
1435 {
1436 int phase;
1437 int dir;
1438 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1439 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1440 /*
1441 * Draw barrier corners, and then barriers.
1442 */
1443 for (phase = 0; phase < 2; phase++) {
1444 for (dir = 1; dir < 0x10; dir <<= 1)
1445 if (barrier(state, x, y) & (dir << 4))
1446 draw_barrier_corner(fe, x, y, dir << 4, phase);
1447 for (dir = 1; dir < 0x10; dir <<= 1)
1448 if (barrier(state, x, y) & dir)
1449 draw_barrier(fe, x, y, dir, phase);
1450 }
1451
1452 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1453 }
1454
1455 static void draw_arrow(frontend *fe, int x, int y, int xdx, int xdy)
1456 {
1457 int coords[14];
1458 int ydy = -xdx, ydx = xdy;
1459
1460 x = x * TILE_SIZE + BORDER + WINDOW_OFFSET;
1461 y = y * TILE_SIZE + BORDER + WINDOW_OFFSET;
1462
1463 #define POINT(n, xx, yy) ( \
1464 coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \
1465 coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy)
1466
1467 POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */
1468 POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */
1469 POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */
1470 POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */
1471 POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */
1472 POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */
1473 POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */
1474
1475 draw_polygon(fe, coords, 7, TRUE, COL_LOWLIGHT);
1476 draw_polygon(fe, coords, 7, FALSE, COL_TEXT);
1477 }
1478
1479 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1480 game_state *state, int dir, game_ui *ui, float t, float ft)
1481 {
1482 int x, y, tx, ty, frame;
1483 unsigned char *active;
1484 float xshift = 0.0;
1485 float yshift = 0.0;
1486
1487 /*
1488 * Clear the screen and draw the exterior barrier lines if this
1489 * is our first call.
1490 */
1491 if (!ds->started) {
1492 int phase;
1493
1494 ds->started = TRUE;
1495
1496 draw_rect(fe, 0, 0,
1497 BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1498 BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1499 COL_BACKGROUND);
1500 draw_update(fe, 0, 0,
1501 BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1502 BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1503
1504 for (phase = 0; phase < 2; phase++) {
1505
1506 for (x = 0; x < ds->width; x++) {
1507 if (barrier(state, x, 0) & UL)
1508 draw_barrier_corner(fe, x, -1, LD, phase);
1509 if (barrier(state, x, 0) & RU)
1510 draw_barrier_corner(fe, x, -1, DR, phase);
1511 if (barrier(state, x, 0) & U)
1512 draw_barrier(fe, x, -1, D, phase);
1513 if (barrier(state, x, ds->height-1) & DR)
1514 draw_barrier_corner(fe, x, ds->height, RU, phase);
1515 if (barrier(state, x, ds->height-1) & LD)
1516 draw_barrier_corner(fe, x, ds->height, UL, phase);
1517 if (barrier(state, x, ds->height-1) & D)
1518 draw_barrier(fe, x, ds->height, U, phase);
1519 }
1520
1521 for (y = 0; y < ds->height; y++) {
1522 if (barrier(state, 0, y) & UL)
1523 draw_barrier_corner(fe, -1, y, RU, phase);
1524 if (barrier(state, 0, y) & LD)
1525 draw_barrier_corner(fe, -1, y, DR, phase);
1526 if (barrier(state, 0, y) & L)
1527 draw_barrier(fe, -1, y, R, phase);
1528 if (barrier(state, ds->width-1, y) & RU)
1529 draw_barrier_corner(fe, ds->width, y, UL, phase);
1530 if (barrier(state, ds->width-1, y) & DR)
1531 draw_barrier_corner(fe, ds->width, y, LD, phase);
1532 if (barrier(state, ds->width-1, y) & R)
1533 draw_barrier(fe, ds->width, y, L, phase);
1534 }
1535 }
1536
1537 /*
1538 * Arrows for making moves.
1539 */
1540 for (x = 0; x < ds->width; x++) {
1541 if (x == state->cx) continue;
1542 draw_arrow(fe, x, 0, +1, 0);
1543 draw_arrow(fe, x+1, ds->height, -1, 0);
1544 }
1545 for (y = 0; y < ds->height; y++) {
1546 if (y == state->cy) continue;
1547 draw_arrow(fe, ds->width, y, 0, +1);
1548 draw_arrow(fe, 0, y+1, 0, -1);
1549 }
1550 }
1551
1552 /* Check if this is an undo. If so, we will need to run any animation
1553 * backwards.
1554 */
1555 if (oldstate && oldstate->move_count > state->move_count) {
1556 game_state * tmpstate = state;
1557 state = oldstate;
1558 oldstate = tmpstate;
1559 t = ANIM_TIME - t;
1560 }
1561
1562 tx = ty = -1;
1563 if (oldstate && (t < ANIM_TIME)) {
1564 /*
1565 * We're animating a slide, of row/column number
1566 * state->last_move_pos, in direction
1567 * state->last_move_dir
1568 */
1569 xshift = state->last_move_row == -1 ? 0.0 :
1570 (1 - t / ANIM_TIME) * state->last_move_dir;
1571 yshift = state->last_move_col == -1 ? 0.0 :
1572 (1 - t / ANIM_TIME) * state->last_move_dir;
1573 }
1574
1575 frame = -1;
1576 if (ft > 0) {
1577 /*
1578 * We're animating a completion flash. Find which frame
1579 * we're at.
1580 */
1581 frame = (int)(ft / FLASH_FRAME);
1582 }
1583
1584 /*
1585 * Draw any tile which differs from the way it was last drawn.
1586 */
1587 if (xshift != 0.0 || yshift != 0.0) {
1588 active = compute_active(state,
1589 state->last_move_row, state->last_move_col);
1590 } else {
1591 active = compute_active(state, -1, -1);
1592 }
1593
1594 clip(fe,
1595 BORDER + WINDOW_OFFSET, BORDER + WINDOW_OFFSET,
1596 TILE_SIZE * state->width + TILE_BORDER,
1597 TILE_SIZE * state->height + TILE_BORDER);
1598
1599 for (x = 0; x < ds->width; x++)
1600 for (y = 0; y < ds->height; y++) {
1601 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1602
1603 /*
1604 * In a completion flash, we adjust the FLASHING bit
1605 * depending on our distance from the centre point and
1606 * the frame number.
1607 */
1608 if (frame >= 0) {
1609 int xdist, ydist, dist;
1610 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1611 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1612 dist = (xdist > ydist ? xdist : ydist);
1613
1614 if (frame >= dist && frame < dist+4) {
1615 int flash = (frame - dist) & 1;
1616 flash = flash ? FLASHING : 0;
1617 c = (c &~ FLASHING) | flash;
1618 }
1619 }
1620
1621 if (index(state, ds->visible, x, y) != c ||
1622 index(state, ds->visible, x, y) == 0xFF ||
1623 (x == state->last_move_col || y == state->last_move_row))
1624 {
1625 float xs = (y == state->last_move_row ? xshift : 0.0);
1626 float ys = (x == state->last_move_col ? yshift : 0.0);
1627
1628 draw_tile(fe, state, x, y, c, xs, ys);
1629 if (xs < 0 && x == 0)
1630 draw_tile(fe, state, state->width, y, c, xs, ys);
1631 else if (xs > 0 && x == state->width - 1)
1632 draw_tile(fe, state, -1, y, c, xs, ys);
1633 else if (ys < 0 && y == 0)
1634 draw_tile(fe, state, x, state->height, c, xs, ys);
1635 else if (ys > 0 && y == state->height - 1)
1636 draw_tile(fe, state, x, -1, c, xs, ys);
1637
1638 if (x == state->last_move_col || y == state->last_move_row)
1639 index(state, ds->visible, x, y) = 0xFF;
1640 else
1641 index(state, ds->visible, x, y) = c;
1642 }
1643 }
1644
1645 for (x = 0; x < ds->width; x++)
1646 for (y = 0; y < ds->height; y++)
1647 draw_tile_barriers(fe, state, x, y);
1648
1649 unclip(fe);
1650
1651 /*
1652 * Update the status bar.
1653 */
1654 {
1655 char statusbuf[256];
1656 int i, n, a;
1657
1658 n = state->width * state->height;
1659 for (i = a = 0; i < n; i++)
1660 if (active[i])
1661 a++;
1662
1663 if (state->used_solve)
1664 sprintf(statusbuf, "Moves since auto-solve: %d",
1665 state->move_count - state->completed);
1666 else
1667 sprintf(statusbuf, "%sMoves: %d",
1668 (state->completed ? "COMPLETED! " : ""),
1669 (state->completed ? state->completed : state->move_count));
1670
1671 if (state->movetarget)
1672 sprintf(statusbuf + strlen(statusbuf), " (target %d)",
1673 state->movetarget);
1674
1675 sprintf(statusbuf + strlen(statusbuf), " Active: %d/%d", a, n);
1676
1677 status_bar(fe, statusbuf);
1678 }
1679
1680 sfree(active);
1681 }
1682
1683 static float game_anim_length(game_state *oldstate,
1684 game_state *newstate, int dir, game_ui *ui)
1685 {
1686 /*
1687 * Don't animate an auto-solve move.
1688 */
1689 if ((dir > 0 && newstate->just_used_solve) ||
1690 (dir < 0 && oldstate->just_used_solve))
1691 return 0.0F;
1692
1693 return ANIM_TIME;
1694 }
1695
1696 static float game_flash_length(game_state *oldstate,
1697 game_state *newstate, int dir, game_ui *ui)
1698 {
1699 /*
1700 * If the game has just been completed, we display a completion
1701 * flash.
1702 */
1703 if (!oldstate->completed && newstate->completed &&
1704 !oldstate->used_solve && !newstate->used_solve) {
1705 int size;
1706 size = 0;
1707 if (size < newstate->cx+1)
1708 size = newstate->cx+1;
1709 if (size < newstate->cy+1)
1710 size = newstate->cy+1;
1711 if (size < newstate->width - newstate->cx)
1712 size = newstate->width - newstate->cx;
1713 if (size < newstate->height - newstate->cy)
1714 size = newstate->height - newstate->cy;
1715 return FLASH_FRAME * (size+4);
1716 }
1717
1718 return 0.0F;
1719 }
1720
1721 static int game_wants_statusbar(void)
1722 {
1723 return TRUE;
1724 }
1725
1726 static int game_timing_state(game_state *state)
1727 {
1728 return FALSE;
1729 }
1730
1731 #ifdef COMBINED
1732 #define thegame netslide
1733 #endif
1734
1735 const struct game thegame = {
1736 "Netslide", "games.netslide",
1737 default_params,
1738 game_fetch_preset,
1739 decode_params,
1740 encode_params,
1741 free_params,
1742 dup_params,
1743 TRUE, game_configure, custom_params,
1744 validate_params,
1745 new_game_desc,
1746 game_free_aux_info,
1747 validate_desc,
1748 new_game,
1749 dup_game,
1750 free_game,
1751 TRUE, solve_game,
1752 FALSE, game_text_format,
1753 new_ui,
1754 free_ui,
1755 make_move,
1756 game_size,
1757 game_colours,
1758 game_new_drawstate,
1759 game_free_drawstate,
1760 game_redraw,
1761 game_anim_length,
1762 game_flash_length,
1763 game_wants_statusbar,
1764 FALSE, game_timing_state,
1765 };