Stop the analysis pass in Loopy's redraw routine from being
[sgt/puzzles] / netslide.c
1 /*
2 * netslide.c: cross between Net and Sixteen, courtesy of Richard
3 * Boulton.
4 */
5
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <assert.h>
10 #include <ctype.h>
11 #include <math.h>
12
13 #include "puzzles.h"
14 #include "tree234.h"
15
16 #define MATMUL(xr,yr,m,x,y) do { \
17 float rx, ry, xx = (x), yy = (y), *mat = (m); \
18 rx = mat[0] * xx + mat[2] * yy; \
19 ry = mat[1] * xx + mat[3] * yy; \
20 (xr) = rx; (yr) = ry; \
21 } while (0)
22
23 /* Direction and other bitfields */
24 #define R 0x01
25 #define U 0x02
26 #define L 0x04
27 #define D 0x08
28 #define FLASHING 0x10
29 #define ACTIVE 0x20
30 /* Corner flags go in the barriers array */
31 #define RU 0x10
32 #define UL 0x20
33 #define LD 0x40
34 #define DR 0x80
35
36 /* Get tile at given coordinate */
37 #define T(state, x, y) ( (y) * (state)->width + (x) )
38
39 /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
40 #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
41 #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
42 #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
43 #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
44 ((n)&3) == 1 ? A(x) : \
45 ((n)&3) == 2 ? F(x) : C(x) )
46
47 /* X and Y displacements */
48 #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
49 #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
50
51 /* Bit count */
52 #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
53 (((x) & 0x02) >> 1) + ((x) & 0x01) )
54
55 #define PREFERRED_TILE_SIZE 48
56 #define TILE_SIZE (ds->tilesize)
57 #define BORDER TILE_SIZE
58 #define TILE_BORDER 1
59 #define WINDOW_OFFSET 0
60
61 #define ANIM_TIME 0.13F
62 #define FLASH_FRAME 0.07F
63
64 enum {
65 COL_BACKGROUND,
66 COL_FLASHING,
67 COL_BORDER,
68 COL_WIRE,
69 COL_ENDPOINT,
70 COL_POWERED,
71 COL_BARRIER,
72 COL_LOWLIGHT,
73 COL_TEXT,
74 NCOLOURS
75 };
76
77 struct game_params {
78 int width;
79 int height;
80 int wrapping;
81 float barrier_probability;
82 int movetarget;
83 };
84
85 struct game_state {
86 int width, height, cx, cy, wrapping, completed;
87 int used_solve;
88 int move_count, movetarget;
89
90 /* position (row or col number, starting at 0) of last move. */
91 int last_move_row, last_move_col;
92
93 /* direction of last move: +1 or -1 */
94 int last_move_dir;
95
96 unsigned char *tiles;
97 unsigned char *barriers;
98 };
99
100 #define OFFSET(x2,y2,x1,y1,dir,state) \
101 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
102 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
103
104 #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
105 #define tile(state, x, y) index(state, (state)->tiles, x, y)
106 #define barrier(state, x, y) index(state, (state)->barriers, x, y)
107
108 struct xyd {
109 int x, y, direction;
110 };
111
112 static int xyd_cmp(void *av, void *bv) {
113 struct xyd *a = (struct xyd *)av;
114 struct xyd *b = (struct xyd *)bv;
115 if (a->x < b->x)
116 return -1;
117 if (a->x > b->x)
118 return +1;
119 if (a->y < b->y)
120 return -1;
121 if (a->y > b->y)
122 return +1;
123 if (a->direction < b->direction)
124 return -1;
125 if (a->direction > b->direction)
126 return +1;
127 return 0;
128 }
129
130 static struct xyd *new_xyd(int x, int y, int direction)
131 {
132 struct xyd *xyd = snew(struct xyd);
133 xyd->x = x;
134 xyd->y = y;
135 xyd->direction = direction;
136 return xyd;
137 }
138
139 static void slide_col(game_state *state, int dir, int col);
140 static void slide_col_int(int w, int h, unsigned char *tiles, int dir, int col);
141 static void slide_row(game_state *state, int dir, int row);
142 static void slide_row_int(int w, int h, unsigned char *tiles, int dir, int row);
143
144 /* ----------------------------------------------------------------------
145 * Manage game parameters.
146 */
147 static game_params *default_params(void)
148 {
149 game_params *ret = snew(game_params);
150
151 ret->width = 3;
152 ret->height = 3;
153 ret->wrapping = FALSE;
154 ret->barrier_probability = 1.0;
155 ret->movetarget = 0;
156
157 return ret;
158 }
159
160 static const struct { int x, y, wrap, bprob; const char* desc; }
161 netslide_presets[] = {
162 {3, 3, FALSE, 1, " easy"},
163 {3, 3, FALSE, 0, " medium"},
164 {3, 3, TRUE, 0, " hard"},
165 {4, 4, FALSE, 1, " easy"},
166 {4, 4, FALSE, 0, " medium"},
167 {4, 4, TRUE, 0, " hard"},
168 {5, 5, FALSE, 1, " easy"},
169 {5, 5, FALSE, 0, " medium"},
170 {5, 5, TRUE, 0, " hard"},
171 };
172
173 static int game_fetch_preset(int i, char **name, game_params **params)
174 {
175 game_params *ret;
176 char str[80];
177
178 if (i < 0 || i >= lenof(netslide_presets))
179 return FALSE;
180
181 ret = snew(game_params);
182 ret->width = netslide_presets[i].x;
183 ret->height = netslide_presets[i].y;
184 ret->wrapping = netslide_presets[i].wrap;
185 ret->barrier_probability = (float)netslide_presets[i].bprob;
186 ret->movetarget = 0;
187
188 sprintf(str, "%dx%d%s", ret->width, ret->height, netslide_presets[i].desc);
189
190 *name = dupstr(str);
191 *params = ret;
192 return TRUE;
193 }
194
195 static void free_params(game_params *params)
196 {
197 sfree(params);
198 }
199
200 static game_params *dup_params(game_params *params)
201 {
202 game_params *ret = snew(game_params);
203 *ret = *params; /* structure copy */
204 return ret;
205 }
206
207 static void decode_params(game_params *ret, char const *string)
208 {
209 char const *p = string;
210
211 ret->wrapping = FALSE;
212 ret->barrier_probability = 0.0;
213 ret->movetarget = 0;
214
215 ret->width = atoi(p);
216 while (*p && isdigit((unsigned char)*p)) p++;
217 if (*p == 'x') {
218 p++;
219 ret->height = atoi(p);
220 while (*p && isdigit((unsigned char)*p)) p++;
221 if ( (ret->wrapping = (*p == 'w')) != 0 )
222 p++;
223 if (*p == 'b') {
224 ret->barrier_probability = (float)atof(++p);
225 while (*p && (isdigit((unsigned char)*p) || *p == '.')) p++;
226 }
227 if (*p == 'm') {
228 ret->movetarget = atoi(++p);
229 }
230 } else {
231 ret->height = ret->width;
232 }
233 }
234
235 static char *encode_params(game_params *params, int full)
236 {
237 char ret[400];
238 int len;
239
240 len = sprintf(ret, "%dx%d", params->width, params->height);
241 if (params->wrapping)
242 ret[len++] = 'w';
243 if (full && params->barrier_probability)
244 len += sprintf(ret+len, "b%g", params->barrier_probability);
245 /* Shuffle limit is part of the limited parameters, because we have to
246 * provide the target move count. */
247 if (params->movetarget)
248 len += sprintf(ret+len, "m%d", params->movetarget);
249 assert(len < lenof(ret));
250 ret[len] = '\0';
251
252 return dupstr(ret);
253 }
254
255 static config_item *game_configure(game_params *params)
256 {
257 config_item *ret;
258 char buf[80];
259
260 ret = snewn(6, config_item);
261
262 ret[0].name = "Width";
263 ret[0].type = C_STRING;
264 sprintf(buf, "%d", params->width);
265 ret[0].sval = dupstr(buf);
266 ret[0].ival = 0;
267
268 ret[1].name = "Height";
269 ret[1].type = C_STRING;
270 sprintf(buf, "%d", params->height);
271 ret[1].sval = dupstr(buf);
272 ret[1].ival = 0;
273
274 ret[2].name = "Walls wrap around";
275 ret[2].type = C_BOOLEAN;
276 ret[2].sval = NULL;
277 ret[2].ival = params->wrapping;
278
279 ret[3].name = "Barrier probability";
280 ret[3].type = C_STRING;
281 sprintf(buf, "%g", params->barrier_probability);
282 ret[3].sval = dupstr(buf);
283 ret[3].ival = 0;
284
285 ret[4].name = "Number of shuffling moves";
286 ret[4].type = C_STRING;
287 sprintf(buf, "%d", params->movetarget);
288 ret[4].sval = dupstr(buf);
289 ret[4].ival = 0;
290
291 ret[5].name = NULL;
292 ret[5].type = C_END;
293 ret[5].sval = NULL;
294 ret[5].ival = 0;
295
296 return ret;
297 }
298
299 static game_params *custom_params(config_item *cfg)
300 {
301 game_params *ret = snew(game_params);
302
303 ret->width = atoi(cfg[0].sval);
304 ret->height = atoi(cfg[1].sval);
305 ret->wrapping = cfg[2].ival;
306 ret->barrier_probability = (float)atof(cfg[3].sval);
307 ret->movetarget = atoi(cfg[4].sval);
308
309 return ret;
310 }
311
312 static char *validate_params(game_params *params, int full)
313 {
314 if (params->width <= 1 || params->height <= 1)
315 return "Width and height must both be greater than one";
316 if (params->barrier_probability < 0)
317 return "Barrier probability may not be negative";
318 if (params->barrier_probability > 1)
319 return "Barrier probability may not be greater than 1";
320 return NULL;
321 }
322
323 /* ----------------------------------------------------------------------
324 * Randomly select a new game description.
325 */
326
327 static char *new_game_desc(game_params *params, random_state *rs,
328 char **aux, int interactive)
329 {
330 tree234 *possibilities, *barriertree;
331 int w, h, x, y, cx, cy, nbarriers;
332 unsigned char *tiles, *barriers;
333 char *desc, *p;
334
335 w = params->width;
336 h = params->height;
337
338 tiles = snewn(w * h, unsigned char);
339 memset(tiles, 0, w * h);
340 barriers = snewn(w * h, unsigned char);
341 memset(barriers, 0, w * h);
342
343 cx = w / 2;
344 cy = h / 2;
345
346 /*
347 * Construct the unshuffled grid.
348 *
349 * To do this, we simply start at the centre point, repeatedly
350 * choose a random possibility out of the available ways to
351 * extend a used square into an unused one, and do it. After
352 * extending the third line out of a square, we remove the
353 * fourth from the possibilities list to avoid any full-cross
354 * squares (which would make the game too easy because they
355 * only have one orientation).
356 *
357 * The slightly worrying thing is the avoidance of full-cross
358 * squares. Can this cause our unsophisticated construction
359 * algorithm to paint itself into a corner, by getting into a
360 * situation where there are some unreached squares and the
361 * only way to reach any of them is to extend a T-piece into a
362 * full cross?
363 *
364 * Answer: no it can't, and here's a proof.
365 *
366 * Any contiguous group of such unreachable squares must be
367 * surrounded on _all_ sides by T-pieces pointing away from the
368 * group. (If not, then there is a square which can be extended
369 * into one of the `unreachable' ones, and so it wasn't
370 * unreachable after all.) In particular, this implies that
371 * each contiguous group of unreachable squares must be
372 * rectangular in shape (any deviation from that yields a
373 * non-T-piece next to an `unreachable' square).
374 *
375 * So we have a rectangle of unreachable squares, with T-pieces
376 * forming a solid border around the rectangle. The corners of
377 * that border must be connected (since every tile connects all
378 * the lines arriving in it), and therefore the border must
379 * form a closed loop around the rectangle.
380 *
381 * But this can't have happened in the first place, since we
382 * _know_ we've avoided creating closed loops! Hence, no such
383 * situation can ever arise, and the naive grid construction
384 * algorithm will guaranteeably result in a complete grid
385 * containing no unreached squares, no full crosses _and_ no
386 * closed loops. []
387 */
388 possibilities = newtree234(xyd_cmp);
389
390 if (cx+1 < w)
391 add234(possibilities, new_xyd(cx, cy, R));
392 if (cy-1 >= 0)
393 add234(possibilities, new_xyd(cx, cy, U));
394 if (cx-1 >= 0)
395 add234(possibilities, new_xyd(cx, cy, L));
396 if (cy+1 < h)
397 add234(possibilities, new_xyd(cx, cy, D));
398
399 while (count234(possibilities) > 0) {
400 int i;
401 struct xyd *xyd;
402 int x1, y1, d1, x2, y2, d2, d;
403
404 /*
405 * Extract a randomly chosen possibility from the list.
406 */
407 i = random_upto(rs, count234(possibilities));
408 xyd = delpos234(possibilities, i);
409 x1 = xyd->x;
410 y1 = xyd->y;
411 d1 = xyd->direction;
412 sfree(xyd);
413
414 OFFSET(x2, y2, x1, y1, d1, params);
415 d2 = F(d1);
416 #ifdef GENERATION_DIAGNOSTICS
417 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
418 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
419 #endif
420
421 /*
422 * Make the connection. (We should be moving to an as yet
423 * unused tile.)
424 */
425 index(params, tiles, x1, y1) |= d1;
426 assert(index(params, tiles, x2, y2) == 0);
427 index(params, tiles, x2, y2) |= d2;
428
429 /*
430 * If we have created a T-piece, remove its last
431 * possibility.
432 */
433 if (COUNT(index(params, tiles, x1, y1)) == 3) {
434 struct xyd xyd1, *xydp;
435
436 xyd1.x = x1;
437 xyd1.y = y1;
438 xyd1.direction = 0x0F ^ index(params, tiles, x1, y1);
439
440 xydp = find234(possibilities, &xyd1, NULL);
441
442 if (xydp) {
443 #ifdef GENERATION_DIAGNOSTICS
444 printf("T-piece; removing (%d,%d,%c)\n",
445 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
446 #endif
447 del234(possibilities, xydp);
448 sfree(xydp);
449 }
450 }
451
452 /*
453 * Remove all other possibilities that were pointing at the
454 * tile we've just moved into.
455 */
456 for (d = 1; d < 0x10; d <<= 1) {
457 int x3, y3, d3;
458 struct xyd xyd1, *xydp;
459
460 OFFSET(x3, y3, x2, y2, d, params);
461 d3 = F(d);
462
463 xyd1.x = x3;
464 xyd1.y = y3;
465 xyd1.direction = d3;
466
467 xydp = find234(possibilities, &xyd1, NULL);
468
469 if (xydp) {
470 #ifdef GENERATION_DIAGNOSTICS
471 printf("Loop avoidance; removing (%d,%d,%c)\n",
472 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
473 #endif
474 del234(possibilities, xydp);
475 sfree(xydp);
476 }
477 }
478
479 /*
480 * Add new possibilities to the list for moving _out_ of
481 * the tile we have just moved into.
482 */
483 for (d = 1; d < 0x10; d <<= 1) {
484 int x3, y3;
485
486 if (d == d2)
487 continue; /* we've got this one already */
488
489 if (!params->wrapping) {
490 if (d == U && y2 == 0)
491 continue;
492 if (d == D && y2 == h-1)
493 continue;
494 if (d == L && x2 == 0)
495 continue;
496 if (d == R && x2 == w-1)
497 continue;
498 }
499
500 OFFSET(x3, y3, x2, y2, d, params);
501
502 if (index(params, tiles, x3, y3))
503 continue; /* this would create a loop */
504
505 #ifdef GENERATION_DIAGNOSTICS
506 printf("New frontier; adding (%d,%d,%c)\n",
507 x2, y2, "0RU3L567D9abcdef"[d]);
508 #endif
509 add234(possibilities, new_xyd(x2, y2, d));
510 }
511 }
512 /* Having done that, we should have no possibilities remaining. */
513 assert(count234(possibilities) == 0);
514 freetree234(possibilities);
515
516 /*
517 * Now compute a list of the possible barrier locations.
518 */
519 barriertree = newtree234(xyd_cmp);
520 for (y = 0; y < h; y++) {
521 for (x = 0; x < w; x++) {
522
523 if (!(index(params, tiles, x, y) & R) &&
524 (params->wrapping || x < w-1))
525 add234(barriertree, new_xyd(x, y, R));
526 if (!(index(params, tiles, x, y) & D) &&
527 (params->wrapping || y < h-1))
528 add234(barriertree, new_xyd(x, y, D));
529 }
530 }
531
532 /*
533 * Save the unshuffled grid in aux.
534 */
535 {
536 char *solution;
537 int i;
538
539 /*
540 * String format is exactly the same as a solve move, so we
541 * can just dupstr this in solve_game().
542 */
543
544 solution = snewn(w * h + 2, char);
545 solution[0] = 'S';
546 for (i = 0; i < w * h; i++)
547 solution[i+1] = "0123456789abcdef"[tiles[i] & 0xF];
548 solution[w*h+1] = '\0';
549
550 *aux = solution;
551 }
552
553 /*
554 * Now shuffle the grid.
555 * FIXME - this simply does a set of random moves to shuffle the pieces,
556 * although we make a token effort to avoid boring cases by avoiding moves
557 * that directly undo the previous one, or that repeat so often as to
558 * turn into fewer moves.
559 *
560 * A better way would be to number all the pieces, generate a placement
561 * for all the numbers as for "sixteen", observing parity constraints if
562 * neccessary, and then place the pieces according to their numbering.
563 * BUT - I'm not sure if this will work, since we disallow movement of
564 * the middle row and column.
565 */
566 {
567 int i;
568 int cols = w - 1;
569 int rows = h - 1;
570 int moves = params->movetarget;
571 int prevdir = -1, prevrowcol = -1, nrepeats = 0;
572 if (!moves) moves = cols * rows * 2;
573 for (i = 0; i < moves; /* incremented conditionally */) {
574 /* Choose a direction: 0,1,2,3 = up, right, down, left. */
575 int dir = random_upto(rs, 4);
576 int rowcol;
577 if (dir % 2 == 0) {
578 int col = random_upto(rs, cols);
579 if (col >= cx) col += 1; /* avoid centre */
580 if (col == prevrowcol) {
581 if (dir == 2-prevdir)
582 continue; /* undoes last move */
583 else if (dir == prevdir && (nrepeats+1)*2 > h)
584 continue; /* makes fewer moves */
585 }
586 slide_col_int(w, h, tiles, 1 - dir, col);
587 rowcol = col;
588 } else {
589 int row = random_upto(rs, rows);
590 if (row >= cy) row += 1; /* avoid centre */
591 if (row == prevrowcol) {
592 if (dir == 4-prevdir)
593 continue; /* undoes last move */
594 else if (dir == prevdir && (nrepeats+1)*2 > w)
595 continue; /* makes fewer moves */
596 }
597 slide_row_int(w, h, tiles, 2 - dir, row);
598 rowcol = row;
599 }
600 if (dir == prevdir && rowcol == prevrowcol)
601 nrepeats++;
602 else
603 nrepeats = 1;
604 prevdir = dir;
605 prevrowcol = rowcol;
606 i++; /* if we got here, the move was accepted */
607 }
608 }
609
610 /*
611 * And now choose barrier locations. (We carefully do this
612 * _after_ shuffling, so that changing the barrier rate in the
613 * params while keeping the random seed the same will give the
614 * same shuffled grid and _only_ change the barrier locations.
615 * Also the way we choose barrier locations, by repeatedly
616 * choosing one possibility from the list until we have enough,
617 * is designed to ensure that raising the barrier rate while
618 * keeping the seed the same will provide a superset of the
619 * previous barrier set - i.e. if you ask for 10 barriers, and
620 * then decide that's still too hard and ask for 20, you'll get
621 * the original 10 plus 10 more, rather than getting 20 new
622 * ones and the chance of remembering your first 10.)
623 */
624 nbarriers = (int)(params->barrier_probability * count234(barriertree));
625 assert(nbarriers >= 0 && nbarriers <= count234(barriertree));
626
627 while (nbarriers > 0) {
628 int i;
629 struct xyd *xyd;
630 int x1, y1, d1, x2, y2, d2;
631
632 /*
633 * Extract a randomly chosen barrier from the list.
634 */
635 i = random_upto(rs, count234(barriertree));
636 xyd = delpos234(barriertree, i);
637
638 assert(xyd != NULL);
639
640 x1 = xyd->x;
641 y1 = xyd->y;
642 d1 = xyd->direction;
643 sfree(xyd);
644
645 OFFSET(x2, y2, x1, y1, d1, params);
646 d2 = F(d1);
647
648 index(params, barriers, x1, y1) |= d1;
649 index(params, barriers, x2, y2) |= d2;
650
651 nbarriers--;
652 }
653
654 /*
655 * Clean up the rest of the barrier list.
656 */
657 {
658 struct xyd *xyd;
659
660 while ( (xyd = delpos234(barriertree, 0)) != NULL)
661 sfree(xyd);
662
663 freetree234(barriertree);
664 }
665
666 /*
667 * Finally, encode the grid into a string game description.
668 *
669 * My syntax is extremely simple: each square is encoded as a
670 * hex digit in which bit 0 means a connection on the right,
671 * bit 1 means up, bit 2 left and bit 3 down. (i.e. the same
672 * encoding as used internally). Each digit is followed by
673 * optional barrier indicators: `v' means a vertical barrier to
674 * the right of it, and `h' means a horizontal barrier below
675 * it.
676 */
677 desc = snewn(w * h * 3 + 1, char);
678 p = desc;
679 for (y = 0; y < h; y++) {
680 for (x = 0; x < w; x++) {
681 *p++ = "0123456789abcdef"[index(params, tiles, x, y)];
682 if ((params->wrapping || x < w-1) &&
683 (index(params, barriers, x, y) & R))
684 *p++ = 'v';
685 if ((params->wrapping || y < h-1) &&
686 (index(params, barriers, x, y) & D))
687 *p++ = 'h';
688 }
689 }
690 assert(p - desc <= w*h*3);
691 *p = '\0';
692
693 sfree(tiles);
694 sfree(barriers);
695
696 return desc;
697 }
698
699 static char *validate_desc(game_params *params, char *desc)
700 {
701 int w = params->width, h = params->height;
702 int i;
703
704 for (i = 0; i < w*h; i++) {
705 if (*desc >= '0' && *desc <= '9')
706 /* OK */;
707 else if (*desc >= 'a' && *desc <= 'f')
708 /* OK */;
709 else if (*desc >= 'A' && *desc <= 'F')
710 /* OK */;
711 else if (!*desc)
712 return "Game description shorter than expected";
713 else
714 return "Game description contained unexpected character";
715 desc++;
716 while (*desc == 'h' || *desc == 'v')
717 desc++;
718 }
719 if (*desc)
720 return "Game description longer than expected";
721
722 return NULL;
723 }
724
725 /* ----------------------------------------------------------------------
726 * Construct an initial game state, given a description and parameters.
727 */
728
729 static game_state *new_game(midend *me, game_params *params, char *desc)
730 {
731 game_state *state;
732 int w, h, x, y;
733
734 assert(params->width > 0 && params->height > 0);
735 assert(params->width > 1 || params->height > 1);
736
737 /*
738 * Create a blank game state.
739 */
740 state = snew(game_state);
741 w = state->width = params->width;
742 h = state->height = params->height;
743 state->cx = state->width / 2;
744 state->cy = state->height / 2;
745 state->wrapping = params->wrapping;
746 state->movetarget = params->movetarget;
747 state->completed = 0;
748 state->used_solve = FALSE;
749 state->move_count = 0;
750 state->last_move_row = -1;
751 state->last_move_col = -1;
752 state->last_move_dir = 0;
753 state->tiles = snewn(state->width * state->height, unsigned char);
754 memset(state->tiles, 0, state->width * state->height);
755 state->barriers = snewn(state->width * state->height, unsigned char);
756 memset(state->barriers, 0, state->width * state->height);
757
758
759 /*
760 * Parse the game description into the grid.
761 */
762 for (y = 0; y < h; y++) {
763 for (x = 0; x < w; x++) {
764 if (*desc >= '0' && *desc <= '9')
765 tile(state, x, y) = *desc - '0';
766 else if (*desc >= 'a' && *desc <= 'f')
767 tile(state, x, y) = *desc - 'a' + 10;
768 else if (*desc >= 'A' && *desc <= 'F')
769 tile(state, x, y) = *desc - 'A' + 10;
770 if (*desc)
771 desc++;
772 while (*desc == 'h' || *desc == 'v') {
773 int x2, y2, d1, d2;
774 if (*desc == 'v')
775 d1 = R;
776 else
777 d1 = D;
778
779 OFFSET(x2, y2, x, y, d1, state);
780 d2 = F(d1);
781
782 barrier(state, x, y) |= d1;
783 barrier(state, x2, y2) |= d2;
784
785 desc++;
786 }
787 }
788 }
789
790 /*
791 * Set up border barriers if this is a non-wrapping game.
792 */
793 if (!state->wrapping) {
794 for (x = 0; x < state->width; x++) {
795 barrier(state, x, 0) |= U;
796 barrier(state, x, state->height-1) |= D;
797 }
798 for (y = 0; y < state->height; y++) {
799 barrier(state, 0, y) |= L;
800 barrier(state, state->width-1, y) |= R;
801 }
802 }
803
804 /*
805 * Set up the barrier corner flags, for drawing barriers
806 * prettily when they meet.
807 */
808 for (y = 0; y < state->height; y++) {
809 for (x = 0; x < state->width; x++) {
810 int dir;
811
812 for (dir = 1; dir < 0x10; dir <<= 1) {
813 int dir2 = A(dir);
814 int x1, y1, x2, y2, x3, y3;
815 int corner = FALSE;
816
817 if (!(barrier(state, x, y) & dir))
818 continue;
819
820 if (barrier(state, x, y) & dir2)
821 corner = TRUE;
822
823 x1 = x + X(dir), y1 = y + Y(dir);
824 if (x1 >= 0 && x1 < state->width &&
825 y1 >= 0 && y1 < state->height &&
826 (barrier(state, x1, y1) & dir2))
827 corner = TRUE;
828
829 x2 = x + X(dir2), y2 = y + Y(dir2);
830 if (x2 >= 0 && x2 < state->width &&
831 y2 >= 0 && y2 < state->height &&
832 (barrier(state, x2, y2) & dir))
833 corner = TRUE;
834
835 if (corner) {
836 barrier(state, x, y) |= (dir << 4);
837 if (x1 >= 0 && x1 < state->width &&
838 y1 >= 0 && y1 < state->height)
839 barrier(state, x1, y1) |= (A(dir) << 4);
840 if (x2 >= 0 && x2 < state->width &&
841 y2 >= 0 && y2 < state->height)
842 barrier(state, x2, y2) |= (C(dir) << 4);
843 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
844 if (x3 >= 0 && x3 < state->width &&
845 y3 >= 0 && y3 < state->height)
846 barrier(state, x3, y3) |= (F(dir) << 4);
847 }
848 }
849 }
850 }
851
852 return state;
853 }
854
855 static game_state *dup_game(game_state *state)
856 {
857 game_state *ret;
858
859 ret = snew(game_state);
860 ret->width = state->width;
861 ret->height = state->height;
862 ret->cx = state->cx;
863 ret->cy = state->cy;
864 ret->wrapping = state->wrapping;
865 ret->movetarget = state->movetarget;
866 ret->completed = state->completed;
867 ret->used_solve = state->used_solve;
868 ret->move_count = state->move_count;
869 ret->last_move_row = state->last_move_row;
870 ret->last_move_col = state->last_move_col;
871 ret->last_move_dir = state->last_move_dir;
872 ret->tiles = snewn(state->width * state->height, unsigned char);
873 memcpy(ret->tiles, state->tiles, state->width * state->height);
874 ret->barriers = snewn(state->width * state->height, unsigned char);
875 memcpy(ret->barriers, state->barriers, state->width * state->height);
876
877 return ret;
878 }
879
880 static void free_game(game_state *state)
881 {
882 sfree(state->tiles);
883 sfree(state->barriers);
884 sfree(state);
885 }
886
887 static char *solve_game(game_state *state, game_state *currstate,
888 char *aux, char **error)
889 {
890 if (!aux) {
891 *error = "Solution not known for this puzzle";
892 return NULL;
893 }
894
895 return dupstr(aux);
896 }
897
898 static int game_can_format_as_text_now(game_params *params)
899 {
900 return TRUE;
901 }
902
903 static char *game_text_format(game_state *state)
904 {
905 return NULL;
906 }
907
908 /* ----------------------------------------------------------------------
909 * Utility routine.
910 */
911
912 /*
913 * Compute which squares are reachable from the centre square, as a
914 * quick visual aid to determining how close the game is to
915 * completion. This is also a simple way to tell if the game _is_
916 * completed - just call this function and see whether every square
917 * is marked active.
918 *
919 * squares in the moving_row and moving_col are always inactive - this
920 * is so that "current" doesn't appear to jump across moving lines.
921 */
922 static unsigned char *compute_active(game_state *state,
923 int moving_row, int moving_col)
924 {
925 unsigned char *active;
926 tree234 *todo;
927 struct xyd *xyd;
928
929 active = snewn(state->width * state->height, unsigned char);
930 memset(active, 0, state->width * state->height);
931
932 /*
933 * We only store (x,y) pairs in todo, but it's easier to reuse
934 * xyd_cmp and just store direction 0 every time.
935 */
936 todo = newtree234(xyd_cmp);
937 index(state, active, state->cx, state->cy) = ACTIVE;
938 add234(todo, new_xyd(state->cx, state->cy, 0));
939
940 while ( (xyd = delpos234(todo, 0)) != NULL) {
941 int x1, y1, d1, x2, y2, d2;
942
943 x1 = xyd->x;
944 y1 = xyd->y;
945 sfree(xyd);
946
947 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
948 OFFSET(x2, y2, x1, y1, d1, state);
949 d2 = F(d1);
950
951 /*
952 * If the next tile in this direction is connected to
953 * us, and there isn't a barrier in the way, and it
954 * isn't already marked active, then mark it active and
955 * add it to the to-examine list.
956 */
957 if ((x2 != moving_col && y2 != moving_row) &&
958 (tile(state, x1, y1) & d1) &&
959 (tile(state, x2, y2) & d2) &&
960 !(barrier(state, x1, y1) & d1) &&
961 !index(state, active, x2, y2)) {
962 index(state, active, x2, y2) = ACTIVE;
963 add234(todo, new_xyd(x2, y2, 0));
964 }
965 }
966 }
967 /* Now we expect the todo list to have shrunk to zero size. */
968 assert(count234(todo) == 0);
969 freetree234(todo);
970
971 return active;
972 }
973
974 struct game_ui {
975 int cur_x, cur_y;
976 int cur_visible;
977 };
978
979 static game_ui *new_ui(game_state *state)
980 {
981 game_ui *ui = snew(game_ui);
982 ui->cur_x = 0;
983 ui->cur_y = -1;
984 ui->cur_visible = FALSE;
985
986 return ui;
987 }
988
989 static void free_ui(game_ui *ui)
990 {
991 sfree(ui);
992 }
993
994 static char *encode_ui(game_ui *ui)
995 {
996 return NULL;
997 }
998
999 static void decode_ui(game_ui *ui, char *encoding)
1000 {
1001 }
1002
1003 /* ----------------------------------------------------------------------
1004 * Process a move.
1005 */
1006
1007 static void slide_row_int(int w, int h, unsigned char *tiles, int dir, int row)
1008 {
1009 int x = dir > 0 ? -1 : w;
1010 int tx = x + dir;
1011 int n = w - 1;
1012 unsigned char endtile = tiles[row * w + tx];
1013 do {
1014 x = tx;
1015 tx = (x + dir + w) % w;
1016 tiles[row * w + x] = tiles[row * w + tx];
1017 } while (--n > 0);
1018 tiles[row * w + tx] = endtile;
1019 }
1020
1021 static void slide_col_int(int w, int h, unsigned char *tiles, int dir, int col)
1022 {
1023 int y = dir > 0 ? -1 : h;
1024 int ty = y + dir;
1025 int n = h - 1;
1026 unsigned char endtile = tiles[ty * w + col];
1027 do {
1028 y = ty;
1029 ty = (y + dir + h) % h;
1030 tiles[y * w + col] = tiles[ty * w + col];
1031 } while (--n > 0);
1032 tiles[ty * w + col] = endtile;
1033 }
1034
1035 static void slide_row(game_state *state, int dir, int row)
1036 {
1037 slide_row_int(state->width, state->height, state->tiles, dir, row);
1038 }
1039
1040 static void slide_col(game_state *state, int dir, int col)
1041 {
1042 slide_col_int(state->width, state->height, state->tiles, dir, col);
1043 }
1044
1045 static void game_changed_state(game_ui *ui, game_state *oldstate,
1046 game_state *newstate)
1047 {
1048 }
1049
1050 struct game_drawstate {
1051 int started;
1052 int width, height;
1053 int tilesize;
1054 unsigned char *visible;
1055 int cur_x, cur_y;
1056 };
1057
1058 static char *interpret_move(game_state *state, game_ui *ui,
1059 const game_drawstate *ds, int x, int y, int button)
1060 {
1061 int cx, cy;
1062 int dx, dy;
1063 char buf[80];
1064
1065 button &= ~MOD_MASK;
1066
1067 if (IS_CURSOR_MOVE(button)) {
1068 int cpos, diff = 0;
1069 cpos = c2pos(state->width, state->height, ui->cur_x, ui->cur_y);
1070 diff = c2diff(state->width, state->height, ui->cur_x, ui->cur_y, button);
1071
1072 if (diff != 0) {
1073 do { /* we might have to do this more than once to skip missing arrows */
1074 cpos += diff;
1075 pos2c(state->width, state->height, cpos, &ui->cur_x, &ui->cur_y);
1076 } while (ui->cur_x == state->cx || ui->cur_y == state->cy);
1077 }
1078
1079 ui->cur_visible = 1;
1080 return "";
1081 }
1082
1083 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
1084 cx = (x - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
1085 cy = (y - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
1086 ui->cur_visible = 0;
1087 } else if (IS_CURSOR_SELECT(button)) {
1088 if (ui->cur_visible) {
1089 cx = ui->cur_x;
1090 cy = ui->cur_y;
1091 } else {
1092 /* 'click' when cursor is invisible just makes cursor visible. */
1093 ui->cur_visible = 1;
1094 return "";
1095 }
1096 } else
1097 return NULL;
1098
1099 if (cy >= 0 && cy < state->height && cy != state->cy)
1100 {
1101 if (cx == -1) dx = +1;
1102 else if (cx == state->width) dx = -1;
1103 else return NULL;
1104 dy = 0;
1105 }
1106 else if (cx >= 0 && cx < state->width && cx != state->cx)
1107 {
1108 if (cy == -1) dy = +1;
1109 else if (cy == state->height) dy = -1;
1110 else return NULL;
1111 dx = 0;
1112 }
1113 else
1114 return NULL;
1115
1116 /* reverse direction if right hand button is pressed */
1117 if (button == RIGHT_BUTTON)
1118 {
1119 dx = -dx;
1120 dy = -dy;
1121 }
1122
1123 if (dx == 0)
1124 sprintf(buf, "C%d,%d", cx, dy);
1125 else
1126 sprintf(buf, "R%d,%d", cy, dx);
1127 return dupstr(buf);
1128 }
1129
1130 static game_state *execute_move(game_state *from, char *move)
1131 {
1132 game_state *ret;
1133 int c, d, col;
1134
1135 if ((move[0] == 'C' || move[0] == 'R') &&
1136 sscanf(move+1, "%d,%d", &c, &d) == 2 &&
1137 c >= 0 && c < (move[0] == 'C' ? from->width : from->height)) {
1138 col = (move[0] == 'C');
1139 } else if (move[0] == 'S' &&
1140 strlen(move) == from->width * from->height + 1) {
1141 int i;
1142 ret = dup_game(from);
1143 ret->used_solve = TRUE;
1144 ret->completed = ret->move_count = 1;
1145
1146 for (i = 0; i < from->width * from->height; i++) {
1147 c = move[i+1];
1148 if (c >= '0' && c <= '9')
1149 c -= '0';
1150 else if (c >= 'A' && c <= 'F')
1151 c -= 'A' - 10;
1152 else if (c >= 'a' && c <= 'f')
1153 c -= 'a' - 10;
1154 else {
1155 free_game(ret);
1156 return NULL;
1157 }
1158 ret->tiles[i] = c;
1159 }
1160 return ret;
1161 } else
1162 return NULL; /* can't parse move string */
1163
1164 ret = dup_game(from);
1165
1166 if (col)
1167 slide_col(ret, d, c);
1168 else
1169 slide_row(ret, d, c);
1170
1171 ret->move_count++;
1172 ret->last_move_row = col ? -1 : c;
1173 ret->last_move_col = col ? c : -1;
1174 ret->last_move_dir = d;
1175
1176 /*
1177 * See if the game has been completed.
1178 */
1179 if (!ret->completed) {
1180 unsigned char *active = compute_active(ret, -1, -1);
1181 int x1, y1;
1182 int complete = TRUE;
1183
1184 for (x1 = 0; x1 < ret->width; x1++)
1185 for (y1 = 0; y1 < ret->height; y1++)
1186 if (!index(ret, active, x1, y1)) {
1187 complete = FALSE;
1188 goto break_label; /* break out of two loops at once */
1189 }
1190 break_label:
1191
1192 sfree(active);
1193
1194 if (complete)
1195 ret->completed = ret->move_count;
1196 }
1197
1198 return ret;
1199 }
1200
1201 /* ----------------------------------------------------------------------
1202 * Routines for drawing the game position on the screen.
1203 */
1204
1205 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1206 {
1207 game_drawstate *ds = snew(game_drawstate);
1208
1209 ds->started = FALSE;
1210 ds->width = state->width;
1211 ds->height = state->height;
1212 ds->visible = snewn(state->width * state->height, unsigned char);
1213 ds->tilesize = 0; /* not decided yet */
1214 memset(ds->visible, 0xFF, state->width * state->height);
1215 ds->cur_x = ds->cur_y = -1;
1216
1217 return ds;
1218 }
1219
1220 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1221 {
1222 sfree(ds->visible);
1223 sfree(ds);
1224 }
1225
1226 static void game_compute_size(game_params *params, int tilesize,
1227 int *x, int *y)
1228 {
1229 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1230 struct { int tilesize; } ads, *ds = &ads;
1231 ads.tilesize = tilesize;
1232
1233 *x = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
1234 *y = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
1235 }
1236
1237 static void game_set_size(drawing *dr, game_drawstate *ds,
1238 game_params *params, int tilesize)
1239 {
1240 ds->tilesize = tilesize;
1241 }
1242
1243 static float *game_colours(frontend *fe, int *ncolours)
1244 {
1245 float *ret;
1246
1247 ret = snewn(NCOLOURS * 3, float);
1248 *ncolours = NCOLOURS;
1249
1250 /*
1251 * Basic background colour is whatever the front end thinks is
1252 * a sensible default.
1253 */
1254 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1255
1256 /*
1257 * Wires are black.
1258 */
1259 ret[COL_WIRE * 3 + 0] = 0.0F;
1260 ret[COL_WIRE * 3 + 1] = 0.0F;
1261 ret[COL_WIRE * 3 + 2] = 0.0F;
1262
1263 /*
1264 * Powered wires and powered endpoints are cyan.
1265 */
1266 ret[COL_POWERED * 3 + 0] = 0.0F;
1267 ret[COL_POWERED * 3 + 1] = 1.0F;
1268 ret[COL_POWERED * 3 + 2] = 1.0F;
1269
1270 /*
1271 * Barriers are red.
1272 */
1273 ret[COL_BARRIER * 3 + 0] = 1.0F;
1274 ret[COL_BARRIER * 3 + 1] = 0.0F;
1275 ret[COL_BARRIER * 3 + 2] = 0.0F;
1276
1277 /*
1278 * Unpowered endpoints are blue.
1279 */
1280 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
1281 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
1282 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
1283
1284 /*
1285 * Tile borders are a darker grey than the background.
1286 */
1287 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
1288 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
1289 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
1290
1291 /*
1292 * Flashing tiles are a grey in between those two.
1293 */
1294 ret[COL_FLASHING * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
1295 ret[COL_FLASHING * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
1296 ret[COL_FLASHING * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
1297
1298 ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
1299 ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.8F;
1300 ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.8F;
1301 ret[COL_TEXT * 3 + 0] = 0.0;
1302 ret[COL_TEXT * 3 + 1] = 0.0;
1303 ret[COL_TEXT * 3 + 2] = 0.0;
1304
1305 return ret;
1306 }
1307
1308 static void draw_filled_line(drawing *dr, int x1, int y1, int x2, int y2,
1309 int colour)
1310 {
1311 draw_line(dr, x1-1, y1, x2-1, y2, COL_WIRE);
1312 draw_line(dr, x1+1, y1, x2+1, y2, COL_WIRE);
1313 draw_line(dr, x1, y1-1, x2, y2-1, COL_WIRE);
1314 draw_line(dr, x1, y1+1, x2, y2+1, COL_WIRE);
1315 draw_line(dr, x1, y1, x2, y2, colour);
1316 }
1317
1318 static void draw_rect_coords(drawing *dr, int x1, int y1, int x2, int y2,
1319 int colour)
1320 {
1321 int mx = (x1 < x2 ? x1 : x2);
1322 int my = (y1 < y2 ? y1 : y2);
1323 int dx = (x2 + x1 - 2*mx + 1);
1324 int dy = (y2 + y1 - 2*my + 1);
1325
1326 draw_rect(dr, mx, my, dx, dy, colour);
1327 }
1328
1329 static void draw_barrier_corner(drawing *dr, game_drawstate *ds,
1330 int x, int y, int dir, int phase)
1331 {
1332 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1333 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1334 int x1, y1, dx, dy, dir2;
1335
1336 dir >>= 4;
1337
1338 dir2 = A(dir);
1339 dx = X(dir) + X(dir2);
1340 dy = Y(dir) + Y(dir2);
1341 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1342 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1343
1344 if (phase == 0) {
1345 draw_rect_coords(dr, bx+x1, by+y1,
1346 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
1347 COL_WIRE);
1348 draw_rect_coords(dr, bx+x1, by+y1,
1349 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
1350 COL_WIRE);
1351 } else {
1352 draw_rect_coords(dr, bx+x1, by+y1,
1353 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
1354 COL_BARRIER);
1355 }
1356 }
1357
1358 static void draw_barrier(drawing *dr, game_drawstate *ds,
1359 int x, int y, int dir, int phase)
1360 {
1361 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1362 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1363 int x1, y1, w, h;
1364
1365 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
1366 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
1367 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1368 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1369
1370 if (phase == 0) {
1371 draw_rect(dr, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
1372 } else {
1373 draw_rect(dr, bx+x1, by+y1, w, h, COL_BARRIER);
1374 }
1375 }
1376
1377 static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
1378 int x, int y, int tile, float xshift, float yshift)
1379 {
1380 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x + (int)(xshift * TILE_SIZE);
1381 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y + (int)(yshift * TILE_SIZE);
1382 float cx, cy, ex, ey;
1383 int dir, col;
1384
1385 /*
1386 * When we draw a single tile, we must draw everything up to
1387 * and including the borders around the tile. This means that
1388 * if the neighbouring tiles have connections to those borders,
1389 * we must draw those connections on the borders themselves.
1390 *
1391 * This would be terribly fiddly if we ever had to draw a tile
1392 * while its neighbour was in mid-rotate, because we'd have to
1393 * arrange to _know_ that the neighbour was being rotated and
1394 * hence had an anomalous effect on the redraw of this tile.
1395 * Fortunately, the drawing algorithm avoids ever calling us in
1396 * this circumstance: we're either drawing lots of straight
1397 * tiles at game start or after a move is complete, or we're
1398 * repeatedly drawing only the rotating tile. So no problem.
1399 */
1400
1401 /*
1402 * So. First blank the tile out completely: draw a big
1403 * rectangle in border colour, and a smaller rectangle in
1404 * background colour to fill it in.
1405 */
1406 draw_rect(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
1407 COL_BORDER);
1408 draw_rect(dr, bx+TILE_BORDER, by+TILE_BORDER,
1409 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
1410 tile & FLASHING ? COL_FLASHING : COL_BACKGROUND);
1411
1412 /*
1413 * Draw the wires.
1414 */
1415 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
1416 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
1417 for (dir = 1; dir < 0x10; dir <<= 1) {
1418 if (tile & dir) {
1419 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1420 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1421 draw_filled_line(dr, bx+(int)cx, by+(int)cy,
1422 bx+(int)(cx+ex), by+(int)(cy+ey),
1423 COL_WIRE);
1424 }
1425 }
1426 for (dir = 1; dir < 0x10; dir <<= 1) {
1427 if (tile & dir) {
1428 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1429 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1430 draw_line(dr, bx+(int)cx, by+(int)cy,
1431 bx+(int)(cx+ex), by+(int)(cy+ey), col);
1432 }
1433 }
1434
1435 /*
1436 * Draw the box in the middle. We do this in blue if the tile
1437 * is an unpowered endpoint, in cyan if the tile is a powered
1438 * endpoint, in black if the tile is the centrepiece, and
1439 * otherwise not at all.
1440 */
1441 col = -1;
1442 if (x == state->cx && y == state->cy)
1443 col = COL_WIRE;
1444 else if (COUNT(tile) == 1) {
1445 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
1446 }
1447 if (col >= 0) {
1448 int i, points[8];
1449
1450 points[0] = +1; points[1] = +1;
1451 points[2] = +1; points[3] = -1;
1452 points[4] = -1; points[5] = -1;
1453 points[6] = -1; points[7] = +1;
1454
1455 for (i = 0; i < 8; i += 2) {
1456 ex = (TILE_SIZE * 0.24F) * points[i];
1457 ey = (TILE_SIZE * 0.24F) * points[i+1];
1458 points[i] = bx+(int)(cx+ex);
1459 points[i+1] = by+(int)(cy+ey);
1460 }
1461
1462 draw_polygon(dr, points, 4, col, COL_WIRE);
1463 }
1464
1465 /*
1466 * Draw the points on the border if other tiles are connected
1467 * to us.
1468 */
1469 for (dir = 1; dir < 0x10; dir <<= 1) {
1470 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
1471
1472 dx = X(dir);
1473 dy = Y(dir);
1474
1475 ox = x + dx;
1476 oy = y + dy;
1477
1478 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
1479 continue;
1480
1481 if (!(tile(state, ox, oy) & F(dir)))
1482 continue;
1483
1484 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
1485 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
1486 lx = dx * (TILE_BORDER-1);
1487 ly = dy * (TILE_BORDER-1);
1488 vx = (dy ? 1 : 0);
1489 vy = (dx ? 1 : 0);
1490
1491 if (xshift == 0.0 && yshift == 0.0 && (tile & dir)) {
1492 /*
1493 * If we are fully connected to the other tile, we must
1494 * draw right across the tile border. (We can use our
1495 * own ACTIVE state to determine what colour to do this
1496 * in: if we are fully connected to the other tile then
1497 * the two ACTIVE states will be the same.)
1498 */
1499 draw_rect_coords(dr, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
1500 draw_rect_coords(dr, px, py, px+lx, py+ly,
1501 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
1502 } else {
1503 /*
1504 * The other tile extends into our border, but isn't
1505 * actually connected to us. Just draw a single black
1506 * dot.
1507 */
1508 draw_rect_coords(dr, px, py, px, py, COL_WIRE);
1509 }
1510 }
1511
1512 draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1513 }
1514
1515 static void draw_tile_barriers(drawing *dr, game_drawstate *ds,
1516 game_state *state, int x, int y)
1517 {
1518 int phase;
1519 int dir;
1520 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1521 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1522 /*
1523 * Draw barrier corners, and then barriers.
1524 */
1525 for (phase = 0; phase < 2; phase++) {
1526 for (dir = 1; dir < 0x10; dir <<= 1)
1527 if (barrier(state, x, y) & (dir << 4))
1528 draw_barrier_corner(dr, ds, x, y, dir << 4, phase);
1529 for (dir = 1; dir < 0x10; dir <<= 1)
1530 if (barrier(state, x, y) & dir)
1531 draw_barrier(dr, ds, x, y, dir, phase);
1532 }
1533
1534 draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1535 }
1536
1537 static void draw_arrow(drawing *dr, game_drawstate *ds,
1538 int x, int y, int xdx, int xdy, int cur)
1539 {
1540 int coords[14];
1541 int ydy = -xdx, ydx = xdy;
1542
1543 x = x * TILE_SIZE + BORDER + WINDOW_OFFSET;
1544 y = y * TILE_SIZE + BORDER + WINDOW_OFFSET;
1545
1546 #define POINT(n, xx, yy) ( \
1547 coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \
1548 coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy)
1549
1550 POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */
1551 POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */
1552 POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */
1553 POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */
1554 POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */
1555 POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */
1556 POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */
1557
1558 draw_polygon(dr, coords, 7, cur ? COL_POWERED : COL_LOWLIGHT, COL_TEXT);
1559 }
1560
1561 static void draw_arrow_for_cursor(drawing *dr, game_drawstate *ds,
1562 int cur_x, int cur_y, int cur)
1563 {
1564 if (cur_x == -1 && cur_y == -1)
1565 return; /* 'no cursur here */
1566 else if (cur_x == -1) /* LH column. */
1567 draw_arrow(dr, ds, 0, cur_y+1, 0, -1, cur);
1568 else if (cur_x == ds->width) /* RH column */
1569 draw_arrow(dr, ds, ds->width, cur_y, 0, +1, cur);
1570 else if (cur_y == -1) /* Top row */
1571 draw_arrow(dr, ds, cur_x, 0, +1, 0, cur);
1572 else if (cur_y == ds->height) /* Bottom row */
1573 draw_arrow(dr, ds, cur_x+1, ds->height, -1, 0, cur);
1574 else
1575 assert(!"Invalid cursor position");
1576
1577 draw_update(dr,
1578 cur_x * TILE_SIZE + BORDER + WINDOW_OFFSET,
1579 cur_y * TILE_SIZE + BORDER + WINDOW_OFFSET,
1580 TILE_SIZE, TILE_SIZE);
1581 }
1582
1583 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1584 game_state *state, int dir, game_ui *ui, float t, float ft)
1585 {
1586 int x, y, frame;
1587 unsigned char *active;
1588 float xshift = 0.0;
1589 float yshift = 0.0;
1590 int cur_x = -1, cur_y = -1;
1591
1592 /*
1593 * Clear the screen and draw the exterior barrier lines if this
1594 * is our first call.
1595 */
1596 if (!ds->started) {
1597 int phase;
1598
1599 ds->started = TRUE;
1600
1601 draw_rect(dr, 0, 0,
1602 BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1603 BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1604 COL_BACKGROUND);
1605 draw_update(dr, 0, 0,
1606 BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1607 BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1608
1609 for (phase = 0; phase < 2; phase++) {
1610
1611 for (x = 0; x < ds->width; x++) {
1612 if (barrier(state, x, 0) & UL)
1613 draw_barrier_corner(dr, ds, x, -1, LD, phase);
1614 if (barrier(state, x, 0) & RU)
1615 draw_barrier_corner(dr, ds, x, -1, DR, phase);
1616 if (barrier(state, x, 0) & U)
1617 draw_barrier(dr, ds, x, -1, D, phase);
1618 if (barrier(state, x, ds->height-1) & DR)
1619 draw_barrier_corner(dr, ds, x, ds->height, RU, phase);
1620 if (barrier(state, x, ds->height-1) & LD)
1621 draw_barrier_corner(dr, ds, x, ds->height, UL, phase);
1622 if (barrier(state, x, ds->height-1) & D)
1623 draw_barrier(dr, ds, x, ds->height, U, phase);
1624 }
1625
1626 for (y = 0; y < ds->height; y++) {
1627 if (barrier(state, 0, y) & UL)
1628 draw_barrier_corner(dr, ds, -1, y, RU, phase);
1629 if (barrier(state, 0, y) & LD)
1630 draw_barrier_corner(dr, ds, -1, y, DR, phase);
1631 if (barrier(state, 0, y) & L)
1632 draw_barrier(dr, ds, -1, y, R, phase);
1633 if (barrier(state, ds->width-1, y) & RU)
1634 draw_barrier_corner(dr, ds, ds->width, y, UL, phase);
1635 if (barrier(state, ds->width-1, y) & DR)
1636 draw_barrier_corner(dr, ds, ds->width, y, LD, phase);
1637 if (barrier(state, ds->width-1, y) & R)
1638 draw_barrier(dr, ds, ds->width, y, L, phase);
1639 }
1640 }
1641
1642 /*
1643 * Arrows for making moves.
1644 */
1645 for (x = 0; x < ds->width; x++) {
1646 if (x == state->cx) continue;
1647 draw_arrow(dr, ds, x, 0, +1, 0, 0);
1648 draw_arrow(dr, ds, x+1, ds->height, -1, 0, 0);
1649 }
1650 for (y = 0; y < ds->height; y++) {
1651 if (y == state->cy) continue;
1652 draw_arrow(dr, ds, ds->width, y, 0, +1, 0);
1653 draw_arrow(dr, ds, 0, y+1, 0, -1, 0);
1654 }
1655 }
1656 if (ui->cur_visible) {
1657 cur_x = ui->cur_x; cur_y = ui->cur_y;
1658 }
1659 if (cur_x != ds->cur_x || cur_y != ds->cur_y) {
1660 /* Cursor has changed; redraw two (prev and curr) arrows. */
1661 assert(cur_x != state->cx && cur_y != state->cy);
1662
1663 draw_arrow_for_cursor(dr, ds, cur_x, cur_y, 1);
1664 draw_arrow_for_cursor(dr, ds, ds->cur_x, ds->cur_y, 0);
1665 ds->cur_x = cur_x; ds->cur_y = cur_y;
1666 }
1667
1668 /* Check if this is an undo. If so, we will need to run any animation
1669 * backwards.
1670 */
1671 if (oldstate && oldstate->move_count > state->move_count) {
1672 game_state * tmpstate = state;
1673 state = oldstate;
1674 oldstate = tmpstate;
1675 t = ANIM_TIME - t;
1676 }
1677
1678 if (oldstate && (t < ANIM_TIME)) {
1679 /*
1680 * We're animating a slide, of row/column number
1681 * state->last_move_pos, in direction
1682 * state->last_move_dir
1683 */
1684 xshift = state->last_move_row == -1 ? 0.0F :
1685 (1 - t / ANIM_TIME) * state->last_move_dir;
1686 yshift = state->last_move_col == -1 ? 0.0F :
1687 (1 - t / ANIM_TIME) * state->last_move_dir;
1688 }
1689
1690 frame = -1;
1691 if (ft > 0) {
1692 /*
1693 * We're animating a completion flash. Find which frame
1694 * we're at.
1695 */
1696 frame = (int)(ft / FLASH_FRAME);
1697 }
1698
1699 /*
1700 * Draw any tile which differs from the way it was last drawn.
1701 */
1702 if (xshift != 0.0 || yshift != 0.0) {
1703 active = compute_active(state,
1704 state->last_move_row, state->last_move_col);
1705 } else {
1706 active = compute_active(state, -1, -1);
1707 }
1708
1709 clip(dr,
1710 BORDER + WINDOW_OFFSET, BORDER + WINDOW_OFFSET,
1711 TILE_SIZE * state->width + TILE_BORDER,
1712 TILE_SIZE * state->height + TILE_BORDER);
1713
1714 for (x = 0; x < ds->width; x++)
1715 for (y = 0; y < ds->height; y++) {
1716 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1717
1718 /*
1719 * In a completion flash, we adjust the FLASHING bit
1720 * depending on our distance from the centre point and
1721 * the frame number.
1722 */
1723 if (frame >= 0) {
1724 int xdist, ydist, dist;
1725 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1726 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1727 dist = (xdist > ydist ? xdist : ydist);
1728
1729 if (frame >= dist && frame < dist+4) {
1730 int flash = (frame - dist) & 1;
1731 flash = flash ? FLASHING : 0;
1732 c = (c &~ FLASHING) | flash;
1733 }
1734 }
1735
1736 if (index(state, ds->visible, x, y) != c ||
1737 index(state, ds->visible, x, y) == 0xFF ||
1738 (x == state->last_move_col || y == state->last_move_row))
1739 {
1740 float xs = (y == state->last_move_row ? xshift : (float)0.0);
1741 float ys = (x == state->last_move_col ? yshift : (float)0.0);
1742
1743 draw_tile(dr, ds, state, x, y, c, xs, ys);
1744 if (xs < 0 && x == 0)
1745 draw_tile(dr, ds, state, state->width, y, c, xs, ys);
1746 else if (xs > 0 && x == state->width - 1)
1747 draw_tile(dr, ds, state, -1, y, c, xs, ys);
1748 else if (ys < 0 && y == 0)
1749 draw_tile(dr, ds, state, x, state->height, c, xs, ys);
1750 else if (ys > 0 && y == state->height - 1)
1751 draw_tile(dr, ds, state, x, -1, c, xs, ys);
1752
1753 if (x == state->last_move_col || y == state->last_move_row)
1754 index(state, ds->visible, x, y) = 0xFF;
1755 else
1756 index(state, ds->visible, x, y) = c;
1757 }
1758 }
1759
1760 for (x = 0; x < ds->width; x++)
1761 for (y = 0; y < ds->height; y++)
1762 draw_tile_barriers(dr, ds, state, x, y);
1763
1764 unclip(dr);
1765
1766 /*
1767 * Update the status bar.
1768 */
1769 {
1770 char statusbuf[256];
1771 int i, n, a;
1772
1773 n = state->width * state->height;
1774 for (i = a = 0; i < n; i++)
1775 if (active[i])
1776 a++;
1777
1778 if (state->used_solve)
1779 sprintf(statusbuf, "Moves since auto-solve: %d",
1780 state->move_count - state->completed);
1781 else
1782 sprintf(statusbuf, "%sMoves: %d",
1783 (state->completed ? "COMPLETED! " : ""),
1784 (state->completed ? state->completed : state->move_count));
1785
1786 if (state->movetarget)
1787 sprintf(statusbuf + strlen(statusbuf), " (target %d)",
1788 state->movetarget);
1789
1790 sprintf(statusbuf + strlen(statusbuf), " Active: %d/%d", a, n);
1791
1792 status_bar(dr, statusbuf);
1793 }
1794
1795 sfree(active);
1796 }
1797
1798 static float game_anim_length(game_state *oldstate,
1799 game_state *newstate, int dir, game_ui *ui)
1800 {
1801 return ANIM_TIME;
1802 }
1803
1804 static float game_flash_length(game_state *oldstate,
1805 game_state *newstate, int dir, game_ui *ui)
1806 {
1807 /*
1808 * If the game has just been completed, we display a completion
1809 * flash.
1810 */
1811 if (!oldstate->completed && newstate->completed &&
1812 !oldstate->used_solve && !newstate->used_solve) {
1813 int size;
1814 size = 0;
1815 if (size < newstate->cx+1)
1816 size = newstate->cx+1;
1817 if (size < newstate->cy+1)
1818 size = newstate->cy+1;
1819 if (size < newstate->width - newstate->cx)
1820 size = newstate->width - newstate->cx;
1821 if (size < newstate->height - newstate->cy)
1822 size = newstate->height - newstate->cy;
1823 return FLASH_FRAME * (size+4);
1824 }
1825
1826 return 0.0F;
1827 }
1828
1829 static int game_status(game_state *state)
1830 {
1831 return state->completed ? +1 : 0;
1832 }
1833
1834 static int game_timing_state(game_state *state, game_ui *ui)
1835 {
1836 return FALSE;
1837 }
1838
1839 static void game_print_size(game_params *params, float *x, float *y)
1840 {
1841 }
1842
1843 static void game_print(drawing *dr, game_state *state, int tilesize)
1844 {
1845 }
1846
1847 #ifdef COMBINED
1848 #define thegame netslide
1849 #endif
1850
1851 const struct game thegame = {
1852 "Netslide", "games.netslide", "netslide",
1853 default_params,
1854 game_fetch_preset,
1855 decode_params,
1856 encode_params,
1857 free_params,
1858 dup_params,
1859 TRUE, game_configure, custom_params,
1860 validate_params,
1861 new_game_desc,
1862 validate_desc,
1863 new_game,
1864 dup_game,
1865 free_game,
1866 TRUE, solve_game,
1867 FALSE, game_can_format_as_text_now, game_text_format,
1868 new_ui,
1869 free_ui,
1870 encode_ui,
1871 decode_ui,
1872 game_changed_state,
1873 interpret_move,
1874 execute_move,
1875 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1876 game_colours,
1877 game_new_drawstate,
1878 game_free_drawstate,
1879 game_redraw,
1880 game_anim_length,
1881 game_flash_length,
1882 game_status,
1883 FALSE, FALSE, game_print_size, game_print,
1884 TRUE, /* wants_statusbar */
1885 FALSE, game_timing_state,
1886 0, /* flags */
1887 };
1888
1889 /* vim: set shiftwidth=4 tabstop=8: */