Cleanup: remove the `just_used_solve' field from a number of games
[sgt/puzzles] / netslide.c
1 /*
2 * netslide.c: cross between Net and Sixteen, courtesy of Richard
3 * Boulton.
4 */
5
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <assert.h>
10 #include <ctype.h>
11 #include <math.h>
12
13 #include "puzzles.h"
14 #include "tree234.h"
15
16 #define MATMUL(xr,yr,m,x,y) do { \
17 float rx, ry, xx = (x), yy = (y), *mat = (m); \
18 rx = mat[0] * xx + mat[2] * yy; \
19 ry = mat[1] * xx + mat[3] * yy; \
20 (xr) = rx; (yr) = ry; \
21 } while (0)
22
23 /* Direction and other bitfields */
24 #define R 0x01
25 #define U 0x02
26 #define L 0x04
27 #define D 0x08
28 #define FLASHING 0x10
29 #define ACTIVE 0x20
30 /* Corner flags go in the barriers array */
31 #define RU 0x10
32 #define UL 0x20
33 #define LD 0x40
34 #define DR 0x80
35
36 /* Get tile at given coordinate */
37 #define T(state, x, y) ( (y) * (state)->width + (x) )
38
39 /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
40 #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
41 #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
42 #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
43 #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
44 ((n)&3) == 1 ? A(x) : \
45 ((n)&3) == 2 ? F(x) : C(x) )
46
47 /* X and Y displacements */
48 #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
49 #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
50
51 /* Bit count */
52 #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
53 (((x) & 0x02) >> 1) + ((x) & 0x01) )
54
55 #define PREFERRED_TILE_SIZE 48
56 #define TILE_SIZE (ds->tilesize)
57 #define BORDER TILE_SIZE
58 #define TILE_BORDER 1
59 #define WINDOW_OFFSET 0
60
61 #define ANIM_TIME 0.13F
62 #define FLASH_FRAME 0.07F
63
64 enum {
65 COL_BACKGROUND,
66 COL_FLASHING,
67 COL_BORDER,
68 COL_WIRE,
69 COL_ENDPOINT,
70 COL_POWERED,
71 COL_BARRIER,
72 COL_LOWLIGHT,
73 COL_TEXT,
74 NCOLOURS
75 };
76
77 struct game_params {
78 int width;
79 int height;
80 int wrapping;
81 float barrier_probability;
82 int movetarget;
83 };
84
85 struct game_state {
86 int width, height, cx, cy, wrapping, completed;
87 int used_solve;
88 int move_count, movetarget;
89
90 /* position (row or col number, starting at 0) of last move. */
91 int last_move_row, last_move_col;
92
93 /* direction of last move: +1 or -1 */
94 int last_move_dir;
95
96 unsigned char *tiles;
97 unsigned char *barriers;
98 };
99
100 #define OFFSET(x2,y2,x1,y1,dir,state) \
101 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
102 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
103
104 #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
105 #define tile(state, x, y) index(state, (state)->tiles, x, y)
106 #define barrier(state, x, y) index(state, (state)->barriers, x, y)
107
108 struct xyd {
109 int x, y, direction;
110 };
111
112 static int xyd_cmp(void *av, void *bv) {
113 struct xyd *a = (struct xyd *)av;
114 struct xyd *b = (struct xyd *)bv;
115 if (a->x < b->x)
116 return -1;
117 if (a->x > b->x)
118 return +1;
119 if (a->y < b->y)
120 return -1;
121 if (a->y > b->y)
122 return +1;
123 if (a->direction < b->direction)
124 return -1;
125 if (a->direction > b->direction)
126 return +1;
127 return 0;
128 }
129
130 static struct xyd *new_xyd(int x, int y, int direction)
131 {
132 struct xyd *xyd = snew(struct xyd);
133 xyd->x = x;
134 xyd->y = y;
135 xyd->direction = direction;
136 return xyd;
137 }
138
139 static void slide_col(game_state *state, int dir, int col);
140 static void slide_col_int(int w, int h, unsigned char *tiles, int dir, int col);
141 static void slide_row(game_state *state, int dir, int row);
142 static void slide_row_int(int w, int h, unsigned char *tiles, int dir, int row);
143
144 /* ----------------------------------------------------------------------
145 * Manage game parameters.
146 */
147 static game_params *default_params(void)
148 {
149 game_params *ret = snew(game_params);
150
151 ret->width = 3;
152 ret->height = 3;
153 ret->wrapping = FALSE;
154 ret->barrier_probability = 1.0;
155 ret->movetarget = 0;
156
157 return ret;
158 }
159
160 static const struct { int x, y, wrap, bprob; const char* desc; }
161 netslide_presets[] = {
162 {3, 3, FALSE, 1.0, " easy"},
163 {3, 3, FALSE, 0.0, " medium"},
164 {3, 3, TRUE, 0.0, " hard"},
165 {4, 4, FALSE, 1.0, " easy"},
166 {4, 4, FALSE, 0.0, " medium"},
167 {4, 4, TRUE, 0.0, " hard"},
168 {5, 5, FALSE, 1.0, " easy"},
169 {5, 5, FALSE, 0.0, " medium"},
170 {5, 5, TRUE, 0.0, " hard"},
171 };
172
173 static int game_fetch_preset(int i, char **name, game_params **params)
174 {
175 game_params *ret;
176 char str[80];
177
178 if (i < 0 || i >= lenof(netslide_presets))
179 return FALSE;
180
181 ret = snew(game_params);
182 ret->width = netslide_presets[i].x;
183 ret->height = netslide_presets[i].y;
184 ret->wrapping = netslide_presets[i].wrap;
185 ret->barrier_probability = netslide_presets[i].bprob;
186 ret->movetarget = 0;
187
188 sprintf(str, "%dx%d%s", ret->width, ret->height, netslide_presets[i].desc);
189
190 *name = dupstr(str);
191 *params = ret;
192 return TRUE;
193 }
194
195 static void free_params(game_params *params)
196 {
197 sfree(params);
198 }
199
200 static game_params *dup_params(game_params *params)
201 {
202 game_params *ret = snew(game_params);
203 *ret = *params; /* structure copy */
204 return ret;
205 }
206
207 static void decode_params(game_params *ret, char const *string)
208 {
209 char const *p = string;
210
211 ret->wrapping = FALSE;
212 ret->barrier_probability = 0.0;
213 ret->movetarget = 0;
214
215 ret->width = atoi(p);
216 while (*p && isdigit((unsigned char)*p)) p++;
217 if (*p == 'x') {
218 p++;
219 ret->height = atoi(p);
220 while (*p && isdigit((unsigned char)*p)) p++;
221 if ( (ret->wrapping = (*p == 'w')) != 0 )
222 p++;
223 if (*p == 'b') {
224 ret->barrier_probability = atof(++p);
225 while (*p && (isdigit((unsigned char)*p) || *p == '.')) p++;
226 }
227 if (*p == 'm') {
228 ret->movetarget = atoi(++p);
229 }
230 } else {
231 ret->height = ret->width;
232 }
233 }
234
235 static char *encode_params(game_params *params, int full)
236 {
237 char ret[400];
238 int len;
239
240 len = sprintf(ret, "%dx%d", params->width, params->height);
241 if (params->wrapping)
242 ret[len++] = 'w';
243 if (full && params->barrier_probability)
244 len += sprintf(ret+len, "b%g", params->barrier_probability);
245 /* Shuffle limit is part of the limited parameters, because we have to
246 * provide the target move count. */
247 if (params->movetarget)
248 len += sprintf(ret+len, "m%d", params->movetarget);
249 assert(len < lenof(ret));
250 ret[len] = '\0';
251
252 return dupstr(ret);
253 }
254
255 static config_item *game_configure(game_params *params)
256 {
257 config_item *ret;
258 char buf[80];
259
260 ret = snewn(6, config_item);
261
262 ret[0].name = "Width";
263 ret[0].type = C_STRING;
264 sprintf(buf, "%d", params->width);
265 ret[0].sval = dupstr(buf);
266 ret[0].ival = 0;
267
268 ret[1].name = "Height";
269 ret[1].type = C_STRING;
270 sprintf(buf, "%d", params->height);
271 ret[1].sval = dupstr(buf);
272 ret[1].ival = 0;
273
274 ret[2].name = "Walls wrap around";
275 ret[2].type = C_BOOLEAN;
276 ret[2].sval = NULL;
277 ret[2].ival = params->wrapping;
278
279 ret[3].name = "Barrier probability";
280 ret[3].type = C_STRING;
281 sprintf(buf, "%g", params->barrier_probability);
282 ret[3].sval = dupstr(buf);
283 ret[3].ival = 0;
284
285 ret[4].name = "Number of shuffling moves";
286 ret[4].type = C_STRING;
287 sprintf(buf, "%d", params->movetarget);
288 ret[4].sval = dupstr(buf);
289 ret[4].ival = 0;
290
291 ret[5].name = NULL;
292 ret[5].type = C_END;
293 ret[5].sval = NULL;
294 ret[5].ival = 0;
295
296 return ret;
297 }
298
299 static game_params *custom_params(config_item *cfg)
300 {
301 game_params *ret = snew(game_params);
302
303 ret->width = atoi(cfg[0].sval);
304 ret->height = atoi(cfg[1].sval);
305 ret->wrapping = cfg[2].ival;
306 ret->barrier_probability = (float)atof(cfg[3].sval);
307 ret->movetarget = atoi(cfg[4].sval);
308
309 return ret;
310 }
311
312 static char *validate_params(game_params *params, int full)
313 {
314 if (params->width <= 1 || params->height <= 1)
315 return "Width and height must both be greater than one";
316 if (params->barrier_probability < 0)
317 return "Barrier probability may not be negative";
318 if (params->barrier_probability > 1)
319 return "Barrier probability may not be greater than 1";
320 return NULL;
321 }
322
323 /* ----------------------------------------------------------------------
324 * Randomly select a new game description.
325 */
326
327 static char *new_game_desc(game_params *params, random_state *rs,
328 char **aux, int interactive)
329 {
330 tree234 *possibilities, *barriertree;
331 int w, h, x, y, cx, cy, nbarriers;
332 unsigned char *tiles, *barriers;
333 char *desc, *p;
334
335 w = params->width;
336 h = params->height;
337
338 tiles = snewn(w * h, unsigned char);
339 memset(tiles, 0, w * h);
340 barriers = snewn(w * h, unsigned char);
341 memset(barriers, 0, w * h);
342
343 cx = w / 2;
344 cy = h / 2;
345
346 /*
347 * Construct the unshuffled grid.
348 *
349 * To do this, we simply start at the centre point, repeatedly
350 * choose a random possibility out of the available ways to
351 * extend a used square into an unused one, and do it. After
352 * extending the third line out of a square, we remove the
353 * fourth from the possibilities list to avoid any full-cross
354 * squares (which would make the game too easy because they
355 * only have one orientation).
356 *
357 * The slightly worrying thing is the avoidance of full-cross
358 * squares. Can this cause our unsophisticated construction
359 * algorithm to paint itself into a corner, by getting into a
360 * situation where there are some unreached squares and the
361 * only way to reach any of them is to extend a T-piece into a
362 * full cross?
363 *
364 * Answer: no it can't, and here's a proof.
365 *
366 * Any contiguous group of such unreachable squares must be
367 * surrounded on _all_ sides by T-pieces pointing away from the
368 * group. (If not, then there is a square which can be extended
369 * into one of the `unreachable' ones, and so it wasn't
370 * unreachable after all.) In particular, this implies that
371 * each contiguous group of unreachable squares must be
372 * rectangular in shape (any deviation from that yields a
373 * non-T-piece next to an `unreachable' square).
374 *
375 * So we have a rectangle of unreachable squares, with T-pieces
376 * forming a solid border around the rectangle. The corners of
377 * that border must be connected (since every tile connects all
378 * the lines arriving in it), and therefore the border must
379 * form a closed loop around the rectangle.
380 *
381 * But this can't have happened in the first place, since we
382 * _know_ we've avoided creating closed loops! Hence, no such
383 * situation can ever arise, and the naive grid construction
384 * algorithm will guaranteeably result in a complete grid
385 * containing no unreached squares, no full crosses _and_ no
386 * closed loops. []
387 */
388 possibilities = newtree234(xyd_cmp);
389
390 if (cx+1 < w)
391 add234(possibilities, new_xyd(cx, cy, R));
392 if (cy-1 >= 0)
393 add234(possibilities, new_xyd(cx, cy, U));
394 if (cx-1 >= 0)
395 add234(possibilities, new_xyd(cx, cy, L));
396 if (cy+1 < h)
397 add234(possibilities, new_xyd(cx, cy, D));
398
399 while (count234(possibilities) > 0) {
400 int i;
401 struct xyd *xyd;
402 int x1, y1, d1, x2, y2, d2, d;
403
404 /*
405 * Extract a randomly chosen possibility from the list.
406 */
407 i = random_upto(rs, count234(possibilities));
408 xyd = delpos234(possibilities, i);
409 x1 = xyd->x;
410 y1 = xyd->y;
411 d1 = xyd->direction;
412 sfree(xyd);
413
414 OFFSET(x2, y2, x1, y1, d1, params);
415 d2 = F(d1);
416 #ifdef GENERATION_DIAGNOSTICS
417 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
418 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
419 #endif
420
421 /*
422 * Make the connection. (We should be moving to an as yet
423 * unused tile.)
424 */
425 index(params, tiles, x1, y1) |= d1;
426 assert(index(params, tiles, x2, y2) == 0);
427 index(params, tiles, x2, y2) |= d2;
428
429 /*
430 * If we have created a T-piece, remove its last
431 * possibility.
432 */
433 if (COUNT(index(params, tiles, x1, y1)) == 3) {
434 struct xyd xyd1, *xydp;
435
436 xyd1.x = x1;
437 xyd1.y = y1;
438 xyd1.direction = 0x0F ^ index(params, tiles, x1, y1);
439
440 xydp = find234(possibilities, &xyd1, NULL);
441
442 if (xydp) {
443 #ifdef GENERATION_DIAGNOSTICS
444 printf("T-piece; removing (%d,%d,%c)\n",
445 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
446 #endif
447 del234(possibilities, xydp);
448 sfree(xydp);
449 }
450 }
451
452 /*
453 * Remove all other possibilities that were pointing at the
454 * tile we've just moved into.
455 */
456 for (d = 1; d < 0x10; d <<= 1) {
457 int x3, y3, d3;
458 struct xyd xyd1, *xydp;
459
460 OFFSET(x3, y3, x2, y2, d, params);
461 d3 = F(d);
462
463 xyd1.x = x3;
464 xyd1.y = y3;
465 xyd1.direction = d3;
466
467 xydp = find234(possibilities, &xyd1, NULL);
468
469 if (xydp) {
470 #ifdef GENERATION_DIAGNOSTICS
471 printf("Loop avoidance; removing (%d,%d,%c)\n",
472 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
473 #endif
474 del234(possibilities, xydp);
475 sfree(xydp);
476 }
477 }
478
479 /*
480 * Add new possibilities to the list for moving _out_ of
481 * the tile we have just moved into.
482 */
483 for (d = 1; d < 0x10; d <<= 1) {
484 int x3, y3;
485
486 if (d == d2)
487 continue; /* we've got this one already */
488
489 if (!params->wrapping) {
490 if (d == U && y2 == 0)
491 continue;
492 if (d == D && y2 == h-1)
493 continue;
494 if (d == L && x2 == 0)
495 continue;
496 if (d == R && x2 == w-1)
497 continue;
498 }
499
500 OFFSET(x3, y3, x2, y2, d, params);
501
502 if (index(params, tiles, x3, y3))
503 continue; /* this would create a loop */
504
505 #ifdef GENERATION_DIAGNOSTICS
506 printf("New frontier; adding (%d,%d,%c)\n",
507 x2, y2, "0RU3L567D9abcdef"[d]);
508 #endif
509 add234(possibilities, new_xyd(x2, y2, d));
510 }
511 }
512 /* Having done that, we should have no possibilities remaining. */
513 assert(count234(possibilities) == 0);
514 freetree234(possibilities);
515
516 /*
517 * Now compute a list of the possible barrier locations.
518 */
519 barriertree = newtree234(xyd_cmp);
520 for (y = 0; y < h; y++) {
521 for (x = 0; x < w; x++) {
522
523 if (!(index(params, tiles, x, y) & R) &&
524 (params->wrapping || x < w-1))
525 add234(barriertree, new_xyd(x, y, R));
526 if (!(index(params, tiles, x, y) & D) &&
527 (params->wrapping || y < h-1))
528 add234(barriertree, new_xyd(x, y, D));
529 }
530 }
531
532 /*
533 * Save the unshuffled grid in aux.
534 */
535 {
536 char *solution;
537 int i;
538
539 /*
540 * String format is exactly the same as a solve move, so we
541 * can just dupstr this in solve_game().
542 */
543
544 solution = snewn(w * h + 2, char);
545 solution[0] = 'S';
546 for (i = 0; i < w * h; i++)
547 solution[i+1] = "0123456789abcdef"[tiles[i] & 0xF];
548 solution[w*h+1] = '\0';
549
550 *aux = solution;
551 }
552
553 /*
554 * Now shuffle the grid.
555 * FIXME - this simply does a set of random moves to shuffle the pieces,
556 * although we make a token effort to avoid boring cases by avoiding moves
557 * that directly undo the previous one, or that repeat so often as to
558 * turn into fewer moves.
559 *
560 * A better way would be to number all the pieces, generate a placement
561 * for all the numbers as for "sixteen", observing parity constraints if
562 * neccessary, and then place the pieces according to their numbering.
563 * BUT - I'm not sure if this will work, since we disallow movement of
564 * the middle row and column.
565 */
566 {
567 int i;
568 int cols = w - 1;
569 int rows = h - 1;
570 int moves = params->movetarget;
571 int prevdir = -1, prevrowcol = -1, nrepeats = 0;
572 if (!moves) moves = cols * rows * 2;
573 for (i = 0; i < moves; /* incremented conditionally */) {
574 /* Choose a direction: 0,1,2,3 = up, right, down, left. */
575 int dir = random_upto(rs, 4);
576 int rowcol;
577 if (dir % 2 == 0) {
578 int col = random_upto(rs, cols);
579 if (col >= cx) col += 1; /* avoid centre */
580 if (col == prevrowcol) {
581 if (dir == 2-prevdir)
582 continue; /* undoes last move */
583 else if (dir == prevdir && (nrepeats+1)*2 > h)
584 continue; /* makes fewer moves */
585 }
586 slide_col_int(w, h, tiles, 1 - dir, col);
587 rowcol = col;
588 } else {
589 int row = random_upto(rs, rows);
590 if (row >= cy) row += 1; /* avoid centre */
591 if (row == prevrowcol) {
592 if (dir == 4-prevdir)
593 continue; /* undoes last move */
594 else if (dir == prevdir && (nrepeats+1)*2 > w)
595 continue; /* makes fewer moves */
596 }
597 slide_row_int(w, h, tiles, 2 - dir, row);
598 rowcol = row;
599 }
600 if (dir == prevdir && rowcol == prevrowcol)
601 nrepeats++;
602 else
603 nrepeats = 1;
604 prevdir = dir;
605 prevrowcol = rowcol;
606 i++; /* if we got here, the move was accepted */
607 }
608 }
609
610 /*
611 * And now choose barrier locations. (We carefully do this
612 * _after_ shuffling, so that changing the barrier rate in the
613 * params while keeping the random seed the same will give the
614 * same shuffled grid and _only_ change the barrier locations.
615 * Also the way we choose barrier locations, by repeatedly
616 * choosing one possibility from the list until we have enough,
617 * is designed to ensure that raising the barrier rate while
618 * keeping the seed the same will provide a superset of the
619 * previous barrier set - i.e. if you ask for 10 barriers, and
620 * then decide that's still too hard and ask for 20, you'll get
621 * the original 10 plus 10 more, rather than getting 20 new
622 * ones and the chance of remembering your first 10.)
623 */
624 nbarriers = (int)(params->barrier_probability * count234(barriertree));
625 assert(nbarriers >= 0 && nbarriers <= count234(barriertree));
626
627 while (nbarriers > 0) {
628 int i;
629 struct xyd *xyd;
630 int x1, y1, d1, x2, y2, d2;
631
632 /*
633 * Extract a randomly chosen barrier from the list.
634 */
635 i = random_upto(rs, count234(barriertree));
636 xyd = delpos234(barriertree, i);
637
638 assert(xyd != NULL);
639
640 x1 = xyd->x;
641 y1 = xyd->y;
642 d1 = xyd->direction;
643 sfree(xyd);
644
645 OFFSET(x2, y2, x1, y1, d1, params);
646 d2 = F(d1);
647
648 index(params, barriers, x1, y1) |= d1;
649 index(params, barriers, x2, y2) |= d2;
650
651 nbarriers--;
652 }
653
654 /*
655 * Clean up the rest of the barrier list.
656 */
657 {
658 struct xyd *xyd;
659
660 while ( (xyd = delpos234(barriertree, 0)) != NULL)
661 sfree(xyd);
662
663 freetree234(barriertree);
664 }
665
666 /*
667 * Finally, encode the grid into a string game description.
668 *
669 * My syntax is extremely simple: each square is encoded as a
670 * hex digit in which bit 0 means a connection on the right,
671 * bit 1 means up, bit 2 left and bit 3 down. (i.e. the same
672 * encoding as used internally). Each digit is followed by
673 * optional barrier indicators: `v' means a vertical barrier to
674 * the right of it, and `h' means a horizontal barrier below
675 * it.
676 */
677 desc = snewn(w * h * 3 + 1, char);
678 p = desc;
679 for (y = 0; y < h; y++) {
680 for (x = 0; x < w; x++) {
681 *p++ = "0123456789abcdef"[index(params, tiles, x, y)];
682 if ((params->wrapping || x < w-1) &&
683 (index(params, barriers, x, y) & R))
684 *p++ = 'v';
685 if ((params->wrapping || y < h-1) &&
686 (index(params, barriers, x, y) & D))
687 *p++ = 'h';
688 }
689 }
690 assert(p - desc <= w*h*3);
691 *p = '\0';
692
693 sfree(tiles);
694 sfree(barriers);
695
696 return desc;
697 }
698
699 static char *validate_desc(game_params *params, char *desc)
700 {
701 int w = params->width, h = params->height;
702 int i;
703
704 for (i = 0; i < w*h; i++) {
705 if (*desc >= '0' && *desc <= '9')
706 /* OK */;
707 else if (*desc >= 'a' && *desc <= 'f')
708 /* OK */;
709 else if (*desc >= 'A' && *desc <= 'F')
710 /* OK */;
711 else if (!*desc)
712 return "Game description shorter than expected";
713 else
714 return "Game description contained unexpected character";
715 desc++;
716 while (*desc == 'h' || *desc == 'v')
717 desc++;
718 }
719 if (*desc)
720 return "Game description longer than expected";
721
722 return NULL;
723 }
724
725 /* ----------------------------------------------------------------------
726 * Construct an initial game state, given a description and parameters.
727 */
728
729 static game_state *new_game(midend *me, game_params *params, char *desc)
730 {
731 game_state *state;
732 int w, h, x, y;
733
734 assert(params->width > 0 && params->height > 0);
735 assert(params->width > 1 || params->height > 1);
736
737 /*
738 * Create a blank game state.
739 */
740 state = snew(game_state);
741 w = state->width = params->width;
742 h = state->height = params->height;
743 state->cx = state->width / 2;
744 state->cy = state->height / 2;
745 state->wrapping = params->wrapping;
746 state->movetarget = params->movetarget;
747 state->completed = 0;
748 state->used_solve = FALSE;
749 state->move_count = 0;
750 state->last_move_row = -1;
751 state->last_move_col = -1;
752 state->last_move_dir = 0;
753 state->tiles = snewn(state->width * state->height, unsigned char);
754 memset(state->tiles, 0, state->width * state->height);
755 state->barriers = snewn(state->width * state->height, unsigned char);
756 memset(state->barriers, 0, state->width * state->height);
757
758
759 /*
760 * Parse the game description into the grid.
761 */
762 for (y = 0; y < h; y++) {
763 for (x = 0; x < w; x++) {
764 if (*desc >= '0' && *desc <= '9')
765 tile(state, x, y) = *desc - '0';
766 else if (*desc >= 'a' && *desc <= 'f')
767 tile(state, x, y) = *desc - 'a' + 10;
768 else if (*desc >= 'A' && *desc <= 'F')
769 tile(state, x, y) = *desc - 'A' + 10;
770 if (*desc)
771 desc++;
772 while (*desc == 'h' || *desc == 'v') {
773 int x2, y2, d1, d2;
774 if (*desc == 'v')
775 d1 = R;
776 else
777 d1 = D;
778
779 OFFSET(x2, y2, x, y, d1, state);
780 d2 = F(d1);
781
782 barrier(state, x, y) |= d1;
783 barrier(state, x2, y2) |= d2;
784
785 desc++;
786 }
787 }
788 }
789
790 /*
791 * Set up border barriers if this is a non-wrapping game.
792 */
793 if (!state->wrapping) {
794 for (x = 0; x < state->width; x++) {
795 barrier(state, x, 0) |= U;
796 barrier(state, x, state->height-1) |= D;
797 }
798 for (y = 0; y < state->height; y++) {
799 barrier(state, 0, y) |= L;
800 barrier(state, state->width-1, y) |= R;
801 }
802 }
803
804 /*
805 * Set up the barrier corner flags, for drawing barriers
806 * prettily when they meet.
807 */
808 for (y = 0; y < state->height; y++) {
809 for (x = 0; x < state->width; x++) {
810 int dir;
811
812 for (dir = 1; dir < 0x10; dir <<= 1) {
813 int dir2 = A(dir);
814 int x1, y1, x2, y2, x3, y3;
815 int corner = FALSE;
816
817 if (!(barrier(state, x, y) & dir))
818 continue;
819
820 if (barrier(state, x, y) & dir2)
821 corner = TRUE;
822
823 x1 = x + X(dir), y1 = y + Y(dir);
824 if (x1 >= 0 && x1 < state->width &&
825 y1 >= 0 && y1 < state->height &&
826 (barrier(state, x1, y1) & dir2))
827 corner = TRUE;
828
829 x2 = x + X(dir2), y2 = y + Y(dir2);
830 if (x2 >= 0 && x2 < state->width &&
831 y2 >= 0 && y2 < state->height &&
832 (barrier(state, x2, y2) & dir))
833 corner = TRUE;
834
835 if (corner) {
836 barrier(state, x, y) |= (dir << 4);
837 if (x1 >= 0 && x1 < state->width &&
838 y1 >= 0 && y1 < state->height)
839 barrier(state, x1, y1) |= (A(dir) << 4);
840 if (x2 >= 0 && x2 < state->width &&
841 y2 >= 0 && y2 < state->height)
842 barrier(state, x2, y2) |= (C(dir) << 4);
843 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
844 if (x3 >= 0 && x3 < state->width &&
845 y3 >= 0 && y3 < state->height)
846 barrier(state, x3, y3) |= (F(dir) << 4);
847 }
848 }
849 }
850 }
851
852 return state;
853 }
854
855 static game_state *dup_game(game_state *state)
856 {
857 game_state *ret;
858
859 ret = snew(game_state);
860 ret->width = state->width;
861 ret->height = state->height;
862 ret->cx = state->cx;
863 ret->cy = state->cy;
864 ret->wrapping = state->wrapping;
865 ret->movetarget = state->movetarget;
866 ret->completed = state->completed;
867 ret->used_solve = state->used_solve;
868 ret->move_count = state->move_count;
869 ret->last_move_row = state->last_move_row;
870 ret->last_move_col = state->last_move_col;
871 ret->last_move_dir = state->last_move_dir;
872 ret->tiles = snewn(state->width * state->height, unsigned char);
873 memcpy(ret->tiles, state->tiles, state->width * state->height);
874 ret->barriers = snewn(state->width * state->height, unsigned char);
875 memcpy(ret->barriers, state->barriers, state->width * state->height);
876
877 return ret;
878 }
879
880 static void free_game(game_state *state)
881 {
882 sfree(state->tiles);
883 sfree(state->barriers);
884 sfree(state);
885 }
886
887 static char *solve_game(game_state *state, game_state *currstate,
888 char *aux, char **error)
889 {
890 if (!aux) {
891 *error = "Solution not known for this puzzle";
892 return NULL;
893 }
894
895 return dupstr(aux);
896 }
897
898 static char *game_text_format(game_state *state)
899 {
900 return NULL;
901 }
902
903 /* ----------------------------------------------------------------------
904 * Utility routine.
905 */
906
907 /*
908 * Compute which squares are reachable from the centre square, as a
909 * quick visual aid to determining how close the game is to
910 * completion. This is also a simple way to tell if the game _is_
911 * completed - just call this function and see whether every square
912 * is marked active.
913 *
914 * squares in the moving_row and moving_col are always inactive - this
915 * is so that "current" doesn't appear to jump across moving lines.
916 */
917 static unsigned char *compute_active(game_state *state,
918 int moving_row, int moving_col)
919 {
920 unsigned char *active;
921 tree234 *todo;
922 struct xyd *xyd;
923
924 active = snewn(state->width * state->height, unsigned char);
925 memset(active, 0, state->width * state->height);
926
927 /*
928 * We only store (x,y) pairs in todo, but it's easier to reuse
929 * xyd_cmp and just store direction 0 every time.
930 */
931 todo = newtree234(xyd_cmp);
932 index(state, active, state->cx, state->cy) = ACTIVE;
933 add234(todo, new_xyd(state->cx, state->cy, 0));
934
935 while ( (xyd = delpos234(todo, 0)) != NULL) {
936 int x1, y1, d1, x2, y2, d2;
937
938 x1 = xyd->x;
939 y1 = xyd->y;
940 sfree(xyd);
941
942 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
943 OFFSET(x2, y2, x1, y1, d1, state);
944 d2 = F(d1);
945
946 /*
947 * If the next tile in this direction is connected to
948 * us, and there isn't a barrier in the way, and it
949 * isn't already marked active, then mark it active and
950 * add it to the to-examine list.
951 */
952 if ((x2 != moving_col && y2 != moving_row) &&
953 (tile(state, x1, y1) & d1) &&
954 (tile(state, x2, y2) & d2) &&
955 !(barrier(state, x1, y1) & d1) &&
956 !index(state, active, x2, y2)) {
957 index(state, active, x2, y2) = ACTIVE;
958 add234(todo, new_xyd(x2, y2, 0));
959 }
960 }
961 }
962 /* Now we expect the todo list to have shrunk to zero size. */
963 assert(count234(todo) == 0);
964 freetree234(todo);
965
966 return active;
967 }
968
969 struct game_ui {
970 int cur_x, cur_y;
971 int cur_visible;
972 };
973
974 static game_ui *new_ui(game_state *state)
975 {
976 game_ui *ui = snew(game_ui);
977 ui->cur_x = state->width / 2;
978 ui->cur_y = state->height / 2;
979 ui->cur_visible = FALSE;
980
981 return ui;
982 }
983
984 static void free_ui(game_ui *ui)
985 {
986 sfree(ui);
987 }
988
989 static char *encode_ui(game_ui *ui)
990 {
991 return NULL;
992 }
993
994 static void decode_ui(game_ui *ui, char *encoding)
995 {
996 }
997
998 /* ----------------------------------------------------------------------
999 * Process a move.
1000 */
1001
1002 static void slide_row_int(int w, int h, unsigned char *tiles, int dir, int row)
1003 {
1004 int x = dir > 0 ? -1 : w;
1005 int tx = x + dir;
1006 int n = w - 1;
1007 unsigned char endtile = tiles[row * w + tx];
1008 do {
1009 x = tx;
1010 tx = (x + dir + w) % w;
1011 tiles[row * w + x] = tiles[row * w + tx];
1012 } while (--n > 0);
1013 tiles[row * w + tx] = endtile;
1014 }
1015
1016 static void slide_col_int(int w, int h, unsigned char *tiles, int dir, int col)
1017 {
1018 int y = dir > 0 ? -1 : h;
1019 int ty = y + dir;
1020 int n = h - 1;
1021 unsigned char endtile = tiles[ty * w + col];
1022 do {
1023 y = ty;
1024 ty = (y + dir + h) % h;
1025 tiles[y * w + col] = tiles[ty * w + col];
1026 } while (--n > 0);
1027 tiles[ty * w + col] = endtile;
1028 }
1029
1030 static void slide_row(game_state *state, int dir, int row)
1031 {
1032 slide_row_int(state->width, state->height, state->tiles, dir, row);
1033 }
1034
1035 static void slide_col(game_state *state, int dir, int col)
1036 {
1037 slide_col_int(state->width, state->height, state->tiles, dir, col);
1038 }
1039
1040 static void game_changed_state(game_ui *ui, game_state *oldstate,
1041 game_state *newstate)
1042 {
1043 }
1044
1045 struct game_drawstate {
1046 int started;
1047 int width, height;
1048 int tilesize;
1049 unsigned char *visible;
1050 };
1051
1052 static char *interpret_move(game_state *state, game_ui *ui,
1053 game_drawstate *ds, int x, int y, int button)
1054 {
1055 int cx, cy;
1056 int n, dx, dy;
1057 char buf[80];
1058
1059 button &= ~MOD_MASK;
1060
1061 if (button != LEFT_BUTTON && button != RIGHT_BUTTON)
1062 return NULL;
1063
1064 cx = (x - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
1065 cy = (y - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
1066
1067 if (cy >= 0 && cy < state->height && cy != state->cy)
1068 {
1069 if (cx == -1) dx = +1;
1070 else if (cx == state->width) dx = -1;
1071 else return NULL;
1072 n = state->width;
1073 dy = 0;
1074 }
1075 else if (cx >= 0 && cx < state->width && cx != state->cx)
1076 {
1077 if (cy == -1) dy = +1;
1078 else if (cy == state->height) dy = -1;
1079 else return NULL;
1080 n = state->height;
1081 dx = 0;
1082 }
1083 else
1084 return NULL;
1085
1086 /* reverse direction if right hand button is pressed */
1087 if (button == RIGHT_BUTTON)
1088 {
1089 dx = -dx;
1090 dy = -dy;
1091 }
1092
1093 if (dx == 0)
1094 sprintf(buf, "C%d,%d", cx, dy);
1095 else
1096 sprintf(buf, "R%d,%d", cy, dx);
1097 return dupstr(buf);
1098 }
1099
1100 static game_state *execute_move(game_state *from, char *move)
1101 {
1102 game_state *ret;
1103 int c, d, col;
1104
1105 if ((move[0] == 'C' || move[0] == 'R') &&
1106 sscanf(move+1, "%d,%d", &c, &d) == 2 &&
1107 c >= 0 && c < (move[0] == 'C' ? from->width : from->height)) {
1108 col = (move[0] == 'C');
1109 } else if (move[0] == 'S' &&
1110 strlen(move) == from->width * from->height + 1) {
1111 int i;
1112 ret = dup_game(from);
1113 ret->used_solve = TRUE;
1114 ret->completed = ret->move_count = 1;
1115
1116 for (i = 0; i < from->width * from->height; i++) {
1117 c = move[i+1];
1118 if (c >= '0' && c <= '9')
1119 c -= '0';
1120 else if (c >= 'A' && c <= 'F')
1121 c -= 'A' - 10;
1122 else if (c >= 'a' && c <= 'f')
1123 c -= 'a' - 10;
1124 else {
1125 free_game(ret);
1126 return NULL;
1127 }
1128 ret->tiles[i] = c;
1129 }
1130 return ret;
1131 } else
1132 return NULL; /* can't parse move string */
1133
1134 ret = dup_game(from);
1135
1136 if (col)
1137 slide_col(ret, d, c);
1138 else
1139 slide_row(ret, d, c);
1140
1141 ret->move_count++;
1142 ret->last_move_row = col ? -1 : c;
1143 ret->last_move_col = col ? c : -1;
1144 ret->last_move_dir = d;
1145
1146 /*
1147 * See if the game has been completed.
1148 */
1149 if (!ret->completed) {
1150 unsigned char *active = compute_active(ret, -1, -1);
1151 int x1, y1;
1152 int complete = TRUE;
1153
1154 for (x1 = 0; x1 < ret->width; x1++)
1155 for (y1 = 0; y1 < ret->height; y1++)
1156 if (!index(ret, active, x1, y1)) {
1157 complete = FALSE;
1158 goto break_label; /* break out of two loops at once */
1159 }
1160 break_label:
1161
1162 sfree(active);
1163
1164 if (complete)
1165 ret->completed = ret->move_count;
1166 }
1167
1168 return ret;
1169 }
1170
1171 /* ----------------------------------------------------------------------
1172 * Routines for drawing the game position on the screen.
1173 */
1174
1175 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1176 {
1177 game_drawstate *ds = snew(game_drawstate);
1178
1179 ds->started = FALSE;
1180 ds->width = state->width;
1181 ds->height = state->height;
1182 ds->visible = snewn(state->width * state->height, unsigned char);
1183 ds->tilesize = 0; /* not decided yet */
1184 memset(ds->visible, 0xFF, state->width * state->height);
1185
1186 return ds;
1187 }
1188
1189 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1190 {
1191 sfree(ds->visible);
1192 sfree(ds);
1193 }
1194
1195 static void game_compute_size(game_params *params, int tilesize,
1196 int *x, int *y)
1197 {
1198 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1199 struct { int tilesize; } ads, *ds = &ads;
1200 ads.tilesize = tilesize;
1201
1202 *x = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
1203 *y = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
1204 }
1205
1206 static void game_set_size(drawing *dr, game_drawstate *ds,
1207 game_params *params, int tilesize)
1208 {
1209 ds->tilesize = tilesize;
1210 }
1211
1212 static float *game_colours(frontend *fe, int *ncolours)
1213 {
1214 float *ret;
1215
1216 ret = snewn(NCOLOURS * 3, float);
1217 *ncolours = NCOLOURS;
1218
1219 /*
1220 * Basic background colour is whatever the front end thinks is
1221 * a sensible default.
1222 */
1223 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1224
1225 /*
1226 * Wires are black.
1227 */
1228 ret[COL_WIRE * 3 + 0] = 0.0F;
1229 ret[COL_WIRE * 3 + 1] = 0.0F;
1230 ret[COL_WIRE * 3 + 2] = 0.0F;
1231
1232 /*
1233 * Powered wires and powered endpoints are cyan.
1234 */
1235 ret[COL_POWERED * 3 + 0] = 0.0F;
1236 ret[COL_POWERED * 3 + 1] = 1.0F;
1237 ret[COL_POWERED * 3 + 2] = 1.0F;
1238
1239 /*
1240 * Barriers are red.
1241 */
1242 ret[COL_BARRIER * 3 + 0] = 1.0F;
1243 ret[COL_BARRIER * 3 + 1] = 0.0F;
1244 ret[COL_BARRIER * 3 + 2] = 0.0F;
1245
1246 /*
1247 * Unpowered endpoints are blue.
1248 */
1249 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
1250 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
1251 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
1252
1253 /*
1254 * Tile borders are a darker grey than the background.
1255 */
1256 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
1257 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
1258 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
1259
1260 /*
1261 * Flashing tiles are a grey in between those two.
1262 */
1263 ret[COL_FLASHING * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
1264 ret[COL_FLASHING * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
1265 ret[COL_FLASHING * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
1266
1267 ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
1268 ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.8F;
1269 ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.8F;
1270 ret[COL_TEXT * 3 + 0] = 0.0;
1271 ret[COL_TEXT * 3 + 1] = 0.0;
1272 ret[COL_TEXT * 3 + 2] = 0.0;
1273
1274 return ret;
1275 }
1276
1277 static void draw_thick_line(drawing *dr, int x1, int y1, int x2, int y2,
1278 int colour)
1279 {
1280 draw_line(dr, x1-1, y1, x2-1, y2, COL_WIRE);
1281 draw_line(dr, x1+1, y1, x2+1, y2, COL_WIRE);
1282 draw_line(dr, x1, y1-1, x2, y2-1, COL_WIRE);
1283 draw_line(dr, x1, y1+1, x2, y2+1, COL_WIRE);
1284 draw_line(dr, x1, y1, x2, y2, colour);
1285 }
1286
1287 static void draw_rect_coords(drawing *dr, int x1, int y1, int x2, int y2,
1288 int colour)
1289 {
1290 int mx = (x1 < x2 ? x1 : x2);
1291 int my = (y1 < y2 ? y1 : y2);
1292 int dx = (x2 + x1 - 2*mx + 1);
1293 int dy = (y2 + y1 - 2*my + 1);
1294
1295 draw_rect(dr, mx, my, dx, dy, colour);
1296 }
1297
1298 static void draw_barrier_corner(drawing *dr, game_drawstate *ds,
1299 int x, int y, int dir, int phase)
1300 {
1301 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1302 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1303 int x1, y1, dx, dy, dir2;
1304
1305 dir >>= 4;
1306
1307 dir2 = A(dir);
1308 dx = X(dir) + X(dir2);
1309 dy = Y(dir) + Y(dir2);
1310 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1311 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1312
1313 if (phase == 0) {
1314 draw_rect_coords(dr, bx+x1, by+y1,
1315 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
1316 COL_WIRE);
1317 draw_rect_coords(dr, bx+x1, by+y1,
1318 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
1319 COL_WIRE);
1320 } else {
1321 draw_rect_coords(dr, bx+x1, by+y1,
1322 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
1323 COL_BARRIER);
1324 }
1325 }
1326
1327 static void draw_barrier(drawing *dr, game_drawstate *ds,
1328 int x, int y, int dir, int phase)
1329 {
1330 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1331 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1332 int x1, y1, w, h;
1333
1334 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
1335 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
1336 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1337 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1338
1339 if (phase == 0) {
1340 draw_rect(dr, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
1341 } else {
1342 draw_rect(dr, bx+x1, by+y1, w, h, COL_BARRIER);
1343 }
1344 }
1345
1346 static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
1347 int x, int y, int tile, float xshift, float yshift)
1348 {
1349 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x + (xshift * TILE_SIZE);
1350 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y + (yshift * TILE_SIZE);
1351 float cx, cy, ex, ey;
1352 int dir, col;
1353
1354 /*
1355 * When we draw a single tile, we must draw everything up to
1356 * and including the borders around the tile. This means that
1357 * if the neighbouring tiles have connections to those borders,
1358 * we must draw those connections on the borders themselves.
1359 *
1360 * This would be terribly fiddly if we ever had to draw a tile
1361 * while its neighbour was in mid-rotate, because we'd have to
1362 * arrange to _know_ that the neighbour was being rotated and
1363 * hence had an anomalous effect on the redraw of this tile.
1364 * Fortunately, the drawing algorithm avoids ever calling us in
1365 * this circumstance: we're either drawing lots of straight
1366 * tiles at game start or after a move is complete, or we're
1367 * repeatedly drawing only the rotating tile. So no problem.
1368 */
1369
1370 /*
1371 * So. First blank the tile out completely: draw a big
1372 * rectangle in border colour, and a smaller rectangle in
1373 * background colour to fill it in.
1374 */
1375 draw_rect(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
1376 COL_BORDER);
1377 draw_rect(dr, bx+TILE_BORDER, by+TILE_BORDER,
1378 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
1379 tile & FLASHING ? COL_FLASHING : COL_BACKGROUND);
1380
1381 /*
1382 * Draw the wires.
1383 */
1384 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
1385 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
1386 for (dir = 1; dir < 0x10; dir <<= 1) {
1387 if (tile & dir) {
1388 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1389 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1390 draw_thick_line(dr, bx+(int)cx, by+(int)cy,
1391 bx+(int)(cx+ex), by+(int)(cy+ey),
1392 COL_WIRE);
1393 }
1394 }
1395 for (dir = 1; dir < 0x10; dir <<= 1) {
1396 if (tile & dir) {
1397 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1398 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1399 draw_line(dr, bx+(int)cx, by+(int)cy,
1400 bx+(int)(cx+ex), by+(int)(cy+ey), col);
1401 }
1402 }
1403
1404 /*
1405 * Draw the box in the middle. We do this in blue if the tile
1406 * is an unpowered endpoint, in cyan if the tile is a powered
1407 * endpoint, in black if the tile is the centrepiece, and
1408 * otherwise not at all.
1409 */
1410 col = -1;
1411 if (x == state->cx && y == state->cy)
1412 col = COL_WIRE;
1413 else if (COUNT(tile) == 1) {
1414 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
1415 }
1416 if (col >= 0) {
1417 int i, points[8];
1418
1419 points[0] = +1; points[1] = +1;
1420 points[2] = +1; points[3] = -1;
1421 points[4] = -1; points[5] = -1;
1422 points[6] = -1; points[7] = +1;
1423
1424 for (i = 0; i < 8; i += 2) {
1425 ex = (TILE_SIZE * 0.24F) * points[i];
1426 ey = (TILE_SIZE * 0.24F) * points[i+1];
1427 points[i] = bx+(int)(cx+ex);
1428 points[i+1] = by+(int)(cy+ey);
1429 }
1430
1431 draw_polygon(dr, points, 4, col, COL_WIRE);
1432 }
1433
1434 /*
1435 * Draw the points on the border if other tiles are connected
1436 * to us.
1437 */
1438 for (dir = 1; dir < 0x10; dir <<= 1) {
1439 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
1440
1441 dx = X(dir);
1442 dy = Y(dir);
1443
1444 ox = x + dx;
1445 oy = y + dy;
1446
1447 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
1448 continue;
1449
1450 if (!(tile(state, ox, oy) & F(dir)))
1451 continue;
1452
1453 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
1454 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
1455 lx = dx * (TILE_BORDER-1);
1456 ly = dy * (TILE_BORDER-1);
1457 vx = (dy ? 1 : 0);
1458 vy = (dx ? 1 : 0);
1459
1460 if (xshift == 0.0 && yshift == 0.0 && (tile & dir)) {
1461 /*
1462 * If we are fully connected to the other tile, we must
1463 * draw right across the tile border. (We can use our
1464 * own ACTIVE state to determine what colour to do this
1465 * in: if we are fully connected to the other tile then
1466 * the two ACTIVE states will be the same.)
1467 */
1468 draw_rect_coords(dr, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
1469 draw_rect_coords(dr, px, py, px+lx, py+ly,
1470 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
1471 } else {
1472 /*
1473 * The other tile extends into our border, but isn't
1474 * actually connected to us. Just draw a single black
1475 * dot.
1476 */
1477 draw_rect_coords(dr, px, py, px, py, COL_WIRE);
1478 }
1479 }
1480
1481 draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1482 }
1483
1484 static void draw_tile_barriers(drawing *dr, game_drawstate *ds,
1485 game_state *state, int x, int y)
1486 {
1487 int phase;
1488 int dir;
1489 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1490 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1491 /*
1492 * Draw barrier corners, and then barriers.
1493 */
1494 for (phase = 0; phase < 2; phase++) {
1495 for (dir = 1; dir < 0x10; dir <<= 1)
1496 if (barrier(state, x, y) & (dir << 4))
1497 draw_barrier_corner(dr, ds, x, y, dir << 4, phase);
1498 for (dir = 1; dir < 0x10; dir <<= 1)
1499 if (barrier(state, x, y) & dir)
1500 draw_barrier(dr, ds, x, y, dir, phase);
1501 }
1502
1503 draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1504 }
1505
1506 static void draw_arrow(drawing *dr, game_drawstate *ds,
1507 int x, int y, int xdx, int xdy)
1508 {
1509 int coords[14];
1510 int ydy = -xdx, ydx = xdy;
1511
1512 x = x * TILE_SIZE + BORDER + WINDOW_OFFSET;
1513 y = y * TILE_SIZE + BORDER + WINDOW_OFFSET;
1514
1515 #define POINT(n, xx, yy) ( \
1516 coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \
1517 coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy)
1518
1519 POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */
1520 POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */
1521 POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */
1522 POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */
1523 POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */
1524 POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */
1525 POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */
1526
1527 draw_polygon(dr, coords, 7, COL_LOWLIGHT, COL_TEXT);
1528 }
1529
1530 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1531 game_state *state, int dir, game_ui *ui, float t, float ft)
1532 {
1533 int x, y, tx, ty, frame;
1534 unsigned char *active;
1535 float xshift = 0.0;
1536 float yshift = 0.0;
1537
1538 /*
1539 * Clear the screen and draw the exterior barrier lines if this
1540 * is our first call.
1541 */
1542 if (!ds->started) {
1543 int phase;
1544
1545 ds->started = TRUE;
1546
1547 draw_rect(dr, 0, 0,
1548 BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1549 BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1550 COL_BACKGROUND);
1551 draw_update(dr, 0, 0,
1552 BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1553 BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1554
1555 for (phase = 0; phase < 2; phase++) {
1556
1557 for (x = 0; x < ds->width; x++) {
1558 if (barrier(state, x, 0) & UL)
1559 draw_barrier_corner(dr, ds, x, -1, LD, phase);
1560 if (barrier(state, x, 0) & RU)
1561 draw_barrier_corner(dr, ds, x, -1, DR, phase);
1562 if (barrier(state, x, 0) & U)
1563 draw_barrier(dr, ds, x, -1, D, phase);
1564 if (barrier(state, x, ds->height-1) & DR)
1565 draw_barrier_corner(dr, ds, x, ds->height, RU, phase);
1566 if (barrier(state, x, ds->height-1) & LD)
1567 draw_barrier_corner(dr, ds, x, ds->height, UL, phase);
1568 if (barrier(state, x, ds->height-1) & D)
1569 draw_barrier(dr, ds, x, ds->height, U, phase);
1570 }
1571
1572 for (y = 0; y < ds->height; y++) {
1573 if (barrier(state, 0, y) & UL)
1574 draw_barrier_corner(dr, ds, -1, y, RU, phase);
1575 if (barrier(state, 0, y) & LD)
1576 draw_barrier_corner(dr, ds, -1, y, DR, phase);
1577 if (barrier(state, 0, y) & L)
1578 draw_barrier(dr, ds, -1, y, R, phase);
1579 if (barrier(state, ds->width-1, y) & RU)
1580 draw_barrier_corner(dr, ds, ds->width, y, UL, phase);
1581 if (barrier(state, ds->width-1, y) & DR)
1582 draw_barrier_corner(dr, ds, ds->width, y, LD, phase);
1583 if (barrier(state, ds->width-1, y) & R)
1584 draw_barrier(dr, ds, ds->width, y, L, phase);
1585 }
1586 }
1587
1588 /*
1589 * Arrows for making moves.
1590 */
1591 for (x = 0; x < ds->width; x++) {
1592 if (x == state->cx) continue;
1593 draw_arrow(dr, ds, x, 0, +1, 0);
1594 draw_arrow(dr, ds, x+1, ds->height, -1, 0);
1595 }
1596 for (y = 0; y < ds->height; y++) {
1597 if (y == state->cy) continue;
1598 draw_arrow(dr, ds, ds->width, y, 0, +1);
1599 draw_arrow(dr, ds, 0, y+1, 0, -1);
1600 }
1601 }
1602
1603 /* Check if this is an undo. If so, we will need to run any animation
1604 * backwards.
1605 */
1606 if (oldstate && oldstate->move_count > state->move_count) {
1607 game_state * tmpstate = state;
1608 state = oldstate;
1609 oldstate = tmpstate;
1610 t = ANIM_TIME - t;
1611 }
1612
1613 tx = ty = -1;
1614 if (oldstate && (t < ANIM_TIME)) {
1615 /*
1616 * We're animating a slide, of row/column number
1617 * state->last_move_pos, in direction
1618 * state->last_move_dir
1619 */
1620 xshift = state->last_move_row == -1 ? 0.0 :
1621 (1 - t / ANIM_TIME) * state->last_move_dir;
1622 yshift = state->last_move_col == -1 ? 0.0 :
1623 (1 - t / ANIM_TIME) * state->last_move_dir;
1624 }
1625
1626 frame = -1;
1627 if (ft > 0) {
1628 /*
1629 * We're animating a completion flash. Find which frame
1630 * we're at.
1631 */
1632 frame = (int)(ft / FLASH_FRAME);
1633 }
1634
1635 /*
1636 * Draw any tile which differs from the way it was last drawn.
1637 */
1638 if (xshift != 0.0 || yshift != 0.0) {
1639 active = compute_active(state,
1640 state->last_move_row, state->last_move_col);
1641 } else {
1642 active = compute_active(state, -1, -1);
1643 }
1644
1645 clip(dr,
1646 BORDER + WINDOW_OFFSET, BORDER + WINDOW_OFFSET,
1647 TILE_SIZE * state->width + TILE_BORDER,
1648 TILE_SIZE * state->height + TILE_BORDER);
1649
1650 for (x = 0; x < ds->width; x++)
1651 for (y = 0; y < ds->height; y++) {
1652 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1653
1654 /*
1655 * In a completion flash, we adjust the FLASHING bit
1656 * depending on our distance from the centre point and
1657 * the frame number.
1658 */
1659 if (frame >= 0) {
1660 int xdist, ydist, dist;
1661 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1662 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1663 dist = (xdist > ydist ? xdist : ydist);
1664
1665 if (frame >= dist && frame < dist+4) {
1666 int flash = (frame - dist) & 1;
1667 flash = flash ? FLASHING : 0;
1668 c = (c &~ FLASHING) | flash;
1669 }
1670 }
1671
1672 if (index(state, ds->visible, x, y) != c ||
1673 index(state, ds->visible, x, y) == 0xFF ||
1674 (x == state->last_move_col || y == state->last_move_row))
1675 {
1676 float xs = (y == state->last_move_row ? xshift : 0.0);
1677 float ys = (x == state->last_move_col ? yshift : 0.0);
1678
1679 draw_tile(dr, ds, state, x, y, c, xs, ys);
1680 if (xs < 0 && x == 0)
1681 draw_tile(dr, ds, state, state->width, y, c, xs, ys);
1682 else if (xs > 0 && x == state->width - 1)
1683 draw_tile(dr, ds, state, -1, y, c, xs, ys);
1684 else if (ys < 0 && y == 0)
1685 draw_tile(dr, ds, state, x, state->height, c, xs, ys);
1686 else if (ys > 0 && y == state->height - 1)
1687 draw_tile(dr, ds, state, x, -1, c, xs, ys);
1688
1689 if (x == state->last_move_col || y == state->last_move_row)
1690 index(state, ds->visible, x, y) = 0xFF;
1691 else
1692 index(state, ds->visible, x, y) = c;
1693 }
1694 }
1695
1696 for (x = 0; x < ds->width; x++)
1697 for (y = 0; y < ds->height; y++)
1698 draw_tile_barriers(dr, ds, state, x, y);
1699
1700 unclip(dr);
1701
1702 /*
1703 * Update the status bar.
1704 */
1705 {
1706 char statusbuf[256];
1707 int i, n, a;
1708
1709 n = state->width * state->height;
1710 for (i = a = 0; i < n; i++)
1711 if (active[i])
1712 a++;
1713
1714 if (state->used_solve)
1715 sprintf(statusbuf, "Moves since auto-solve: %d",
1716 state->move_count - state->completed);
1717 else
1718 sprintf(statusbuf, "%sMoves: %d",
1719 (state->completed ? "COMPLETED! " : ""),
1720 (state->completed ? state->completed : state->move_count));
1721
1722 if (state->movetarget)
1723 sprintf(statusbuf + strlen(statusbuf), " (target %d)",
1724 state->movetarget);
1725
1726 sprintf(statusbuf + strlen(statusbuf), " Active: %d/%d", a, n);
1727
1728 status_bar(dr, statusbuf);
1729 }
1730
1731 sfree(active);
1732 }
1733
1734 static float game_anim_length(game_state *oldstate,
1735 game_state *newstate, int dir, game_ui *ui)
1736 {
1737 return ANIM_TIME;
1738 }
1739
1740 static float game_flash_length(game_state *oldstate,
1741 game_state *newstate, int dir, game_ui *ui)
1742 {
1743 /*
1744 * If the game has just been completed, we display a completion
1745 * flash.
1746 */
1747 if (!oldstate->completed && newstate->completed &&
1748 !oldstate->used_solve && !newstate->used_solve) {
1749 int size;
1750 size = 0;
1751 if (size < newstate->cx+1)
1752 size = newstate->cx+1;
1753 if (size < newstate->cy+1)
1754 size = newstate->cy+1;
1755 if (size < newstate->width - newstate->cx)
1756 size = newstate->width - newstate->cx;
1757 if (size < newstate->height - newstate->cy)
1758 size = newstate->height - newstate->cy;
1759 return FLASH_FRAME * (size+4);
1760 }
1761
1762 return 0.0F;
1763 }
1764
1765 static int game_timing_state(game_state *state, game_ui *ui)
1766 {
1767 return FALSE;
1768 }
1769
1770 static void game_print_size(game_params *params, float *x, float *y)
1771 {
1772 }
1773
1774 static void game_print(drawing *dr, game_state *state, int tilesize)
1775 {
1776 }
1777
1778 #ifdef COMBINED
1779 #define thegame netslide
1780 #endif
1781
1782 const struct game thegame = {
1783 "Netslide", "games.netslide",
1784 default_params,
1785 game_fetch_preset,
1786 decode_params,
1787 encode_params,
1788 free_params,
1789 dup_params,
1790 TRUE, game_configure, custom_params,
1791 validate_params,
1792 new_game_desc,
1793 validate_desc,
1794 new_game,
1795 dup_game,
1796 free_game,
1797 TRUE, solve_game,
1798 FALSE, game_text_format,
1799 new_ui,
1800 free_ui,
1801 encode_ui,
1802 decode_ui,
1803 game_changed_state,
1804 interpret_move,
1805 execute_move,
1806 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1807 game_colours,
1808 game_new_drawstate,
1809 game_free_drawstate,
1810 game_redraw,
1811 game_anim_length,
1812 game_flash_length,
1813 FALSE, FALSE, game_print_size, game_print,
1814 TRUE, /* wants_statusbar */
1815 FALSE, game_timing_state,
1816 0, /* flags */
1817 };