Introduced a new function in every game which formats a game_state
[sgt/puzzles] / solo.c
1 /*
2 * solo.c: the number-placing puzzle most popularly known as `Sudoku'.
3 *
4 * TODO:
5 *
6 * - it might still be nice to do some prioritisation on the
7 * removal of numbers from the grid
8 * + one possibility is to try to minimise the maximum number
9 * of filled squares in any block, which in particular ought
10 * to enforce never leaving a completely filled block in the
11 * puzzle as presented.
12 *
13 * - alternative interface modes
14 * + sudoku.com's Windows program has a palette of possible
15 * entries; you select a palette entry first and then click
16 * on the square you want it to go in, thus enabling
17 * mouse-only play. Useful for PDAs! I don't think it's
18 * actually incompatible with the current highlight-then-type
19 * approach: you _either_ highlight a palette entry and then
20 * click, _or_ you highlight a square and then type. At most
21 * one thing is ever highlighted at a time, so there's no way
22 * to confuse the two.
23 * + `pencil marks' might be useful for more subtle forms of
24 * deduction, now we can create puzzles that require them.
25 */
26
27 /*
28 * Solo puzzles need to be square overall (since each row and each
29 * column must contain one of every digit), but they need not be
30 * subdivided the same way internally. I am going to adopt a
31 * convention whereby I _always_ refer to `r' as the number of rows
32 * of _big_ divisions, and `c' as the number of columns of _big_
33 * divisions. Thus, a 2c by 3r puzzle looks something like this:
34 *
35 * 4 5 1 | 2 6 3
36 * 6 3 2 | 5 4 1
37 * ------+------ (Of course, you can't subdivide it the other way
38 * 1 4 5 | 6 3 2 or you'll get clashes; observe that the 4 in the
39 * 3 2 6 | 4 1 5 top left would conflict with the 4 in the second
40 * ------+------ box down on the left-hand side.)
41 * 5 1 4 | 3 2 6
42 * 2 6 3 | 1 5 4
43 *
44 * The need for a strong naming convention should now be clear:
45 * each small box is two rows of digits by three columns, while the
46 * overall puzzle has three rows of small boxes by two columns. So
47 * I will (hopefully) consistently use `r' to denote the number of
48 * rows _of small boxes_ (here 3), which is also the number of
49 * columns of digits in each small box; and `c' vice versa (here
50 * 2).
51 *
52 * I'm also going to choose arbitrarily to list c first wherever
53 * possible: the above is a 2x3 puzzle, not a 3x2 one.
54 */
55
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <assert.h>
60 #include <ctype.h>
61 #include <math.h>
62
63 #ifdef STANDALONE_SOLVER
64 #include <stdarg.h>
65 int solver_show_working;
66 #endif
67
68 #include "puzzles.h"
69
70 #define max(x,y) ((x)>(y)?(x):(y))
71
72 /*
73 * To save space, I store digits internally as unsigned char. This
74 * imposes a hard limit of 255 on the order of the puzzle. Since
75 * even a 5x5 takes unacceptably long to generate, I don't see this
76 * as a serious limitation unless something _really_ impressive
77 * happens in computing technology; but here's a typedef anyway for
78 * general good practice.
79 */
80 typedef unsigned char digit;
81 #define ORDER_MAX 255
82
83 #define TILE_SIZE 32
84 #define BORDER 18
85
86 #define FLASH_TIME 0.4F
87
88 enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF4 };
89
90 enum { DIFF_BLOCK, DIFF_SIMPLE, DIFF_INTERSECT,
91 DIFF_SET, DIFF_RECURSIVE, DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE };
92
93 enum {
94 COL_BACKGROUND,
95 COL_GRID,
96 COL_CLUE,
97 COL_USER,
98 COL_HIGHLIGHT,
99 NCOLOURS
100 };
101
102 struct game_params {
103 int c, r, symm, diff;
104 };
105
106 struct game_state {
107 int c, r;
108 digit *grid;
109 unsigned char *immutable; /* marks which digits are clues */
110 int completed;
111 };
112
113 static game_params *default_params(void)
114 {
115 game_params *ret = snew(game_params);
116
117 ret->c = ret->r = 3;
118 ret->symm = SYMM_ROT2; /* a plausible default */
119 ret->diff = DIFF_SIMPLE; /* so is this */
120
121 return ret;
122 }
123
124 static void free_params(game_params *params)
125 {
126 sfree(params);
127 }
128
129 static game_params *dup_params(game_params *params)
130 {
131 game_params *ret = snew(game_params);
132 *ret = *params; /* structure copy */
133 return ret;
134 }
135
136 static int game_fetch_preset(int i, char **name, game_params **params)
137 {
138 static struct {
139 char *title;
140 game_params params;
141 } presets[] = {
142 { "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK } },
143 { "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE } },
144 { "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE } },
145 { "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT } },
146 { "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET } },
147 { "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE } },
148 { "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE } },
149 };
150
151 if (i < 0 || i >= lenof(presets))
152 return FALSE;
153
154 *name = dupstr(presets[i].title);
155 *params = dup_params(&presets[i].params);
156
157 return TRUE;
158 }
159
160 static game_params *decode_params(char const *string)
161 {
162 game_params *ret = default_params();
163
164 ret->c = ret->r = atoi(string);
165 ret->symm = SYMM_ROT2;
166 while (*string && isdigit((unsigned char)*string)) string++;
167 if (*string == 'x') {
168 string++;
169 ret->r = atoi(string);
170 while (*string && isdigit((unsigned char)*string)) string++;
171 }
172 while (*string) {
173 if (*string == 'r' || *string == 'm' || *string == 'a') {
174 int sn, sc;
175 sc = *string++;
176 sn = atoi(string);
177 while (*string && isdigit((unsigned char)*string)) string++;
178 if (sc == 'm' && sn == 4)
179 ret->symm = SYMM_REF4;
180 if (sc == 'r' && sn == 4)
181 ret->symm = SYMM_ROT4;
182 if (sc == 'r' && sn == 2)
183 ret->symm = SYMM_ROT2;
184 if (sc == 'a')
185 ret->symm = SYMM_NONE;
186 } else if (*string == 'd') {
187 string++;
188 if (*string == 't') /* trivial */
189 string++, ret->diff = DIFF_BLOCK;
190 else if (*string == 'b') /* basic */
191 string++, ret->diff = DIFF_SIMPLE;
192 else if (*string == 'i') /* intermediate */
193 string++, ret->diff = DIFF_INTERSECT;
194 else if (*string == 'a') /* advanced */
195 string++, ret->diff = DIFF_SET;
196 } else
197 string++; /* eat unknown character */
198 }
199
200 return ret;
201 }
202
203 static char *encode_params(game_params *params)
204 {
205 char str[80];
206
207 /*
208 * Symmetry is a game generation preference and hence is left
209 * out of the encoding. Users can add it back in as they see
210 * fit.
211 */
212 sprintf(str, "%dx%d", params->c, params->r);
213 return dupstr(str);
214 }
215
216 static config_item *game_configure(game_params *params)
217 {
218 config_item *ret;
219 char buf[80];
220
221 ret = snewn(5, config_item);
222
223 ret[0].name = "Columns of sub-blocks";
224 ret[0].type = C_STRING;
225 sprintf(buf, "%d", params->c);
226 ret[0].sval = dupstr(buf);
227 ret[0].ival = 0;
228
229 ret[1].name = "Rows of sub-blocks";
230 ret[1].type = C_STRING;
231 sprintf(buf, "%d", params->r);
232 ret[1].sval = dupstr(buf);
233 ret[1].ival = 0;
234
235 ret[2].name = "Symmetry";
236 ret[2].type = C_CHOICES;
237 ret[2].sval = ":None:2-way rotation:4-way rotation:4-way mirror";
238 ret[2].ival = params->symm;
239
240 ret[3].name = "Difficulty";
241 ret[3].type = C_CHOICES;
242 ret[3].sval = ":Trivial:Basic:Intermediate:Advanced";
243 ret[3].ival = params->diff;
244
245 ret[4].name = NULL;
246 ret[4].type = C_END;
247 ret[4].sval = NULL;
248 ret[4].ival = 0;
249
250 return ret;
251 }
252
253 static game_params *custom_params(config_item *cfg)
254 {
255 game_params *ret = snew(game_params);
256
257 ret->c = atoi(cfg[0].sval);
258 ret->r = atoi(cfg[1].sval);
259 ret->symm = cfg[2].ival;
260 ret->diff = cfg[3].ival;
261
262 return ret;
263 }
264
265 static char *validate_params(game_params *params)
266 {
267 if (params->c < 2 || params->r < 2)
268 return "Both dimensions must be at least 2";
269 if (params->c > ORDER_MAX || params->r > ORDER_MAX)
270 return "Dimensions greater than "STR(ORDER_MAX)" are not supported";
271 return NULL;
272 }
273
274 /* ----------------------------------------------------------------------
275 * Full recursive Solo solver.
276 *
277 * The algorithm for this solver is shamelessly copied from a
278 * Python solver written by Andrew Wilkinson (which is GPLed, but
279 * I've reused only ideas and no code). It mostly just does the
280 * obvious recursive thing: pick an empty square, put one of the
281 * possible digits in it, recurse until all squares are filled,
282 * backtrack and change some choices if necessary.
283 *
284 * The clever bit is that every time it chooses which square to
285 * fill in next, it does so by counting the number of _possible_
286 * numbers that can go in each square, and it prioritises so that
287 * it picks a square with the _lowest_ number of possibilities. The
288 * idea is that filling in lots of the obvious bits (particularly
289 * any squares with only one possibility) will cut down on the list
290 * of possibilities for other squares and hence reduce the enormous
291 * search space as much as possible as early as possible.
292 *
293 * In practice the algorithm appeared to work very well; run on
294 * sample problems from the Times it completed in well under a
295 * second on my G5 even when written in Python, and given an empty
296 * grid (so that in principle it would enumerate _all_ solved
297 * grids!) it found the first valid solution just as quickly. So
298 * with a bit more randomisation I see no reason not to use this as
299 * my grid generator.
300 */
301
302 /*
303 * Internal data structure used in solver to keep track of
304 * progress.
305 */
306 struct rsolve_coord { int x, y, r; };
307 struct rsolve_usage {
308 int c, r, cr; /* cr == c*r */
309 /* grid is a copy of the input grid, modified as we go along */
310 digit *grid;
311 /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
312 unsigned char *row;
313 /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
314 unsigned char *col;
315 /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
316 unsigned char *blk;
317 /* This lists all the empty spaces remaining in the grid. */
318 struct rsolve_coord *spaces;
319 int nspaces;
320 /* If we need randomisation in the solve, this is our random state. */
321 random_state *rs;
322 /* Number of solutions so far found, and maximum number we care about. */
323 int solns, maxsolns;
324 };
325
326 /*
327 * The real recursive step in the solving function.
328 */
329 static void rsolve_real(struct rsolve_usage *usage, digit *grid)
330 {
331 int c = usage->c, r = usage->r, cr = usage->cr;
332 int i, j, n, sx, sy, bestm, bestr;
333 int *digits;
334
335 /*
336 * Firstly, check for completion! If there are no spaces left
337 * in the grid, we have a solution.
338 */
339 if (usage->nspaces == 0) {
340 if (!usage->solns) {
341 /*
342 * This is our first solution, so fill in the output grid.
343 */
344 memcpy(grid, usage->grid, cr * cr);
345 }
346 usage->solns++;
347 return;
348 }
349
350 /*
351 * Otherwise, there must be at least one space. Find the most
352 * constrained space, using the `r' field as a tie-breaker.
353 */
354 bestm = cr+1; /* so that any space will beat it */
355 bestr = 0;
356 i = sx = sy = -1;
357 for (j = 0; j < usage->nspaces; j++) {
358 int x = usage->spaces[j].x, y = usage->spaces[j].y;
359 int m;
360
361 /*
362 * Find the number of digits that could go in this space.
363 */
364 m = 0;
365 for (n = 0; n < cr; n++)
366 if (!usage->row[y*cr+n] && !usage->col[x*cr+n] &&
367 !usage->blk[((y/c)*c+(x/r))*cr+n])
368 m++;
369
370 if (m < bestm || (m == bestm && usage->spaces[j].r < bestr)) {
371 bestm = m;
372 bestr = usage->spaces[j].r;
373 sx = x;
374 sy = y;
375 i = j;
376 }
377 }
378
379 /*
380 * Swap that square into the final place in the spaces array,
381 * so that decrementing nspaces will remove it from the list.
382 */
383 if (i != usage->nspaces-1) {
384 struct rsolve_coord t;
385 t = usage->spaces[usage->nspaces-1];
386 usage->spaces[usage->nspaces-1] = usage->spaces[i];
387 usage->spaces[i] = t;
388 }
389
390 /*
391 * Now we've decided which square to start our recursion at,
392 * simply go through all possible values, shuffling them
393 * randomly first if necessary.
394 */
395 digits = snewn(bestm, int);
396 j = 0;
397 for (n = 0; n < cr; n++)
398 if (!usage->row[sy*cr+n] && !usage->col[sx*cr+n] &&
399 !usage->blk[((sy/c)*c+(sx/r))*cr+n]) {
400 digits[j++] = n+1;
401 }
402
403 if (usage->rs) {
404 /* shuffle */
405 for (i = j; i > 1; i--) {
406 int p = random_upto(usage->rs, i);
407 if (p != i-1) {
408 int t = digits[p];
409 digits[p] = digits[i-1];
410 digits[i-1] = t;
411 }
412 }
413 }
414
415 /* And finally, go through the digit list and actually recurse. */
416 for (i = 0; i < j; i++) {
417 n = digits[i];
418
419 /* Update the usage structure to reflect the placing of this digit. */
420 usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
421 usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = TRUE;
422 usage->grid[sy*cr+sx] = n;
423 usage->nspaces--;
424
425 /* Call the solver recursively. */
426 rsolve_real(usage, grid);
427
428 /*
429 * If we have seen as many solutions as we need, terminate
430 * all processing immediately.
431 */
432 if (usage->solns >= usage->maxsolns)
433 break;
434
435 /* Revert the usage structure. */
436 usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
437 usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = FALSE;
438 usage->grid[sy*cr+sx] = 0;
439 usage->nspaces++;
440 }
441
442 sfree(digits);
443 }
444
445 /*
446 * Entry point to solver. You give it dimensions and a starting
447 * grid, which is simply an array of N^4 digits. In that array, 0
448 * means an empty square, and 1..N mean a clue square.
449 *
450 * Return value is the number of solutions found; searching will
451 * stop after the provided `max'. (Thus, you can pass max==1 to
452 * indicate that you only care about finding _one_ solution, or
453 * max==2 to indicate that you want to know the difference between
454 * a unique and non-unique solution.) The input parameter `grid' is
455 * also filled in with the _first_ (or only) solution found by the
456 * solver.
457 */
458 static int rsolve(int c, int r, digit *grid, random_state *rs, int max)
459 {
460 struct rsolve_usage *usage;
461 int x, y, cr = c*r;
462 int ret;
463
464 /*
465 * Create an rsolve_usage structure.
466 */
467 usage = snew(struct rsolve_usage);
468
469 usage->c = c;
470 usage->r = r;
471 usage->cr = cr;
472
473 usage->grid = snewn(cr * cr, digit);
474 memcpy(usage->grid, grid, cr * cr);
475
476 usage->row = snewn(cr * cr, unsigned char);
477 usage->col = snewn(cr * cr, unsigned char);
478 usage->blk = snewn(cr * cr, unsigned char);
479 memset(usage->row, FALSE, cr * cr);
480 memset(usage->col, FALSE, cr * cr);
481 memset(usage->blk, FALSE, cr * cr);
482
483 usage->spaces = snewn(cr * cr, struct rsolve_coord);
484 usage->nspaces = 0;
485
486 usage->solns = 0;
487 usage->maxsolns = max;
488
489 usage->rs = rs;
490
491 /*
492 * Now fill it in with data from the input grid.
493 */
494 for (y = 0; y < cr; y++) {
495 for (x = 0; x < cr; x++) {
496 int v = grid[y*cr+x];
497 if (v == 0) {
498 usage->spaces[usage->nspaces].x = x;
499 usage->spaces[usage->nspaces].y = y;
500 if (rs)
501 usage->spaces[usage->nspaces].r = random_bits(rs, 31);
502 else
503 usage->spaces[usage->nspaces].r = usage->nspaces;
504 usage->nspaces++;
505 } else {
506 usage->row[y*cr+v-1] = TRUE;
507 usage->col[x*cr+v-1] = TRUE;
508 usage->blk[((y/c)*c+(x/r))*cr+v-1] = TRUE;
509 }
510 }
511 }
512
513 /*
514 * Run the real recursive solving function.
515 */
516 rsolve_real(usage, grid);
517 ret = usage->solns;
518
519 /*
520 * Clean up the usage structure now we have our answer.
521 */
522 sfree(usage->spaces);
523 sfree(usage->blk);
524 sfree(usage->col);
525 sfree(usage->row);
526 sfree(usage->grid);
527 sfree(usage);
528
529 /*
530 * And return.
531 */
532 return ret;
533 }
534
535 /* ----------------------------------------------------------------------
536 * End of recursive solver code.
537 */
538
539 /* ----------------------------------------------------------------------
540 * Less capable non-recursive solver. This one is used to check
541 * solubility of a grid as we gradually remove numbers from it: by
542 * verifying a grid using this solver we can ensure it isn't _too_
543 * hard (e.g. does not actually require guessing and backtracking).
544 *
545 * It supports a variety of specific modes of reasoning. By
546 * enabling or disabling subsets of these modes we can arrange a
547 * range of difficulty levels.
548 */
549
550 /*
551 * Modes of reasoning currently supported:
552 *
553 * - Positional elimination: a number must go in a particular
554 * square because all the other empty squares in a given
555 * row/col/blk are ruled out.
556 *
557 * - Numeric elimination: a square must have a particular number
558 * in because all the other numbers that could go in it are
559 * ruled out.
560 *
561 * - Intersectional analysis: given two domains which overlap
562 * (hence one must be a block, and the other can be a row or
563 * col), if the possible locations for a particular number in
564 * one of the domains can be narrowed down to the overlap, then
565 * that number can be ruled out everywhere but the overlap in
566 * the other domain too.
567 *
568 * - Set elimination: if there is a subset of the empty squares
569 * within a domain such that the union of the possible numbers
570 * in that subset has the same size as the subset itself, then
571 * those numbers can be ruled out everywhere else in the domain.
572 * (For example, if there are five empty squares and the
573 * possible numbers in each are 12, 23, 13, 134 and 1345, then
574 * the first three empty squares form such a subset: the numbers
575 * 1, 2 and 3 _must_ be in those three squares in some
576 * permutation, and hence we can deduce none of them can be in
577 * the fourth or fifth squares.)
578 * + You can also see this the other way round, concentrating
579 * on numbers rather than squares: if there is a subset of
580 * the unplaced numbers within a domain such that the union
581 * of all their possible positions has the same size as the
582 * subset itself, then all other numbers can be ruled out for
583 * those positions. However, it turns out that this is
584 * exactly equivalent to the first formulation at all times:
585 * there is a 1-1 correspondence between suitable subsets of
586 * the unplaced numbers and suitable subsets of the unfilled
587 * places, found by taking the _complement_ of the union of
588 * the numbers' possible positions (or the spaces' possible
589 * contents).
590 */
591
592 /*
593 * Within this solver, I'm going to transform all y-coordinates by
594 * inverting the significance of the block number and the position
595 * within the block. That is, we will start with the top row of
596 * each block in order, then the second row of each block in order,
597 * etc.
598 *
599 * This transformation has the enormous advantage that it means
600 * every row, column _and_ block is described by an arithmetic
601 * progression of coordinates within the cubic array, so that I can
602 * use the same very simple function to do blockwise, row-wise and
603 * column-wise elimination.
604 */
605 #define YTRANS(y) (((y)%c)*r+(y)/c)
606 #define YUNTRANS(y) (((y)%r)*c+(y)/r)
607
608 struct nsolve_usage {
609 int c, r, cr;
610 /*
611 * We set up a cubic array, indexed by x, y and digit; each
612 * element of this array is TRUE or FALSE according to whether
613 * or not that digit _could_ in principle go in that position.
614 *
615 * The way to index this array is cube[(x*cr+y)*cr+n-1].
616 * y-coordinates in here are transformed.
617 */
618 unsigned char *cube;
619 /*
620 * This is the grid in which we write down our final
621 * deductions. y-coordinates in here are _not_ transformed.
622 */
623 digit *grid;
624 /*
625 * Now we keep track, at a slightly higher level, of what we
626 * have yet to work out, to prevent doing the same deduction
627 * many times.
628 */
629 /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
630 unsigned char *row;
631 /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
632 unsigned char *col;
633 /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
634 unsigned char *blk;
635 };
636 #define cubepos(x,y,n) (((x)*usage->cr+(y))*usage->cr+(n)-1)
637 #define cube(x,y,n) (usage->cube[cubepos(x,y,n)])
638
639 /*
640 * Function called when we are certain that a particular square has
641 * a particular number in it. The y-coordinate passed in here is
642 * transformed.
643 */
644 static void nsolve_place(struct nsolve_usage *usage, int x, int y, int n)
645 {
646 int c = usage->c, r = usage->r, cr = usage->cr;
647 int i, j, bx, by;
648
649 assert(cube(x,y,n));
650
651 /*
652 * Rule out all other numbers in this square.
653 */
654 for (i = 1; i <= cr; i++)
655 if (i != n)
656 cube(x,y,i) = FALSE;
657
658 /*
659 * Rule out this number in all other positions in the row.
660 */
661 for (i = 0; i < cr; i++)
662 if (i != y)
663 cube(x,i,n) = FALSE;
664
665 /*
666 * Rule out this number in all other positions in the column.
667 */
668 for (i = 0; i < cr; i++)
669 if (i != x)
670 cube(i,y,n) = FALSE;
671
672 /*
673 * Rule out this number in all other positions in the block.
674 */
675 bx = (x/r)*r;
676 by = y % r;
677 for (i = 0; i < r; i++)
678 for (j = 0; j < c; j++)
679 if (bx+i != x || by+j*r != y)
680 cube(bx+i,by+j*r,n) = FALSE;
681
682 /*
683 * Enter the number in the result grid.
684 */
685 usage->grid[YUNTRANS(y)*cr+x] = n;
686
687 /*
688 * Cross out this number from the list of numbers left to place
689 * in its row, its column and its block.
690 */
691 usage->row[y*cr+n-1] = usage->col[x*cr+n-1] =
692 usage->blk[((y%r)*c+(x/r))*cr+n-1] = TRUE;
693 }
694
695 static int nsolve_elim(struct nsolve_usage *usage, int start, int step
696 #ifdef STANDALONE_SOLVER
697 , char *fmt, ...
698 #endif
699 )
700 {
701 int c = usage->c, r = usage->r, cr = c*r;
702 int fpos, m, i;
703
704 /*
705 * Count the number of set bits within this section of the
706 * cube.
707 */
708 m = 0;
709 fpos = -1;
710 for (i = 0; i < cr; i++)
711 if (usage->cube[start+i*step]) {
712 fpos = start+i*step;
713 m++;
714 }
715
716 if (m == 1) {
717 int x, y, n;
718 assert(fpos >= 0);
719
720 n = 1 + fpos % cr;
721 y = fpos / cr;
722 x = y / cr;
723 y %= cr;
724
725 if (!usage->grid[YUNTRANS(y)*cr+x]) {
726 #ifdef STANDALONE_SOLVER
727 if (solver_show_working) {
728 va_list ap;
729 va_start(ap, fmt);
730 vprintf(fmt, ap);
731 va_end(ap);
732 printf(":\n placing %d at (%d,%d)\n",
733 n, 1+x, 1+YUNTRANS(y));
734 }
735 #endif
736 nsolve_place(usage, x, y, n);
737 return TRUE;
738 }
739 }
740
741 return FALSE;
742 }
743
744 static int nsolve_intersect(struct nsolve_usage *usage,
745 int start1, int step1, int start2, int step2
746 #ifdef STANDALONE_SOLVER
747 , char *fmt, ...
748 #endif
749 )
750 {
751 int c = usage->c, r = usage->r, cr = c*r;
752 int ret, i;
753
754 /*
755 * Loop over the first domain and see if there's any set bit
756 * not also in the second.
757 */
758 for (i = 0; i < cr; i++) {
759 int p = start1+i*step1;
760 if (usage->cube[p] &&
761 !(p >= start2 && p < start2+cr*step2 &&
762 (p - start2) % step2 == 0))
763 return FALSE; /* there is, so we can't deduce */
764 }
765
766 /*
767 * We have determined that all set bits in the first domain are
768 * within its overlap with the second. So loop over the second
769 * domain and remove all set bits that aren't also in that
770 * overlap; return TRUE iff we actually _did_ anything.
771 */
772 ret = FALSE;
773 for (i = 0; i < cr; i++) {
774 int p = start2+i*step2;
775 if (usage->cube[p] &&
776 !(p >= start1 && p < start1+cr*step1 && (p - start1) % step1 == 0))
777 {
778 #ifdef STANDALONE_SOLVER
779 if (solver_show_working) {
780 int px, py, pn;
781
782 if (!ret) {
783 va_list ap;
784 va_start(ap, fmt);
785 vprintf(fmt, ap);
786 va_end(ap);
787 printf(":\n");
788 }
789
790 pn = 1 + p % cr;
791 py = p / cr;
792 px = py / cr;
793 py %= cr;
794
795 printf(" ruling out %d at (%d,%d)\n",
796 pn, 1+px, 1+YUNTRANS(py));
797 }
798 #endif
799 ret = TRUE; /* we did something */
800 usage->cube[p] = 0;
801 }
802 }
803
804 return ret;
805 }
806
807 static int nsolve_set(struct nsolve_usage *usage,
808 int start, int step1, int step2
809 #ifdef STANDALONE_SOLVER
810 , char *fmt, ...
811 #endif
812 )
813 {
814 int c = usage->c, r = usage->r, cr = c*r;
815 int i, j, n, count;
816 unsigned char *grid = snewn(cr*cr, unsigned char);
817 unsigned char *rowidx = snewn(cr, unsigned char);
818 unsigned char *colidx = snewn(cr, unsigned char);
819 unsigned char *set = snewn(cr, unsigned char);
820
821 /*
822 * We are passed a cr-by-cr matrix of booleans. Our first job
823 * is to winnow it by finding any definite placements - i.e.
824 * any row with a solitary 1 - and discarding that row and the
825 * column containing the 1.
826 */
827 memset(rowidx, TRUE, cr);
828 memset(colidx, TRUE, cr);
829 for (i = 0; i < cr; i++) {
830 int count = 0, first = -1;
831 for (j = 0; j < cr; j++)
832 if (usage->cube[start+i*step1+j*step2])
833 first = j, count++;
834 if (count == 0) {
835 /*
836 * This condition actually marks a completely insoluble
837 * (i.e. internally inconsistent) puzzle. We return and
838 * report no progress made.
839 */
840 return FALSE;
841 }
842 if (count == 1)
843 rowidx[i] = colidx[first] = FALSE;
844 }
845
846 /*
847 * Convert each of rowidx/colidx from a list of 0s and 1s to a
848 * list of the indices of the 1s.
849 */
850 for (i = j = 0; i < cr; i++)
851 if (rowidx[i])
852 rowidx[j++] = i;
853 n = j;
854 for (i = j = 0; i < cr; i++)
855 if (colidx[i])
856 colidx[j++] = i;
857 assert(n == j);
858
859 /*
860 * And create the smaller matrix.
861 */
862 for (i = 0; i < n; i++)
863 for (j = 0; j < n; j++)
864 grid[i*cr+j] = usage->cube[start+rowidx[i]*step1+colidx[j]*step2];
865
866 /*
867 * Having done that, we now have a matrix in which every row
868 * has at least two 1s in. Now we search to see if we can find
869 * a rectangle of zeroes (in the set-theoretic sense of
870 * `rectangle', i.e. a subset of rows crossed with a subset of
871 * columns) whose width and height add up to n.
872 */
873
874 memset(set, 0, n);
875 count = 0;
876 while (1) {
877 /*
878 * We have a candidate set. If its size is <=1 or >=n-1
879 * then we move on immediately.
880 */
881 if (count > 1 && count < n-1) {
882 /*
883 * The number of rows we need is n-count. See if we can
884 * find that many rows which each have a zero in all
885 * the positions listed in `set'.
886 */
887 int rows = 0;
888 for (i = 0; i < n; i++) {
889 int ok = TRUE;
890 for (j = 0; j < n; j++)
891 if (set[j] && grid[i*cr+j]) {
892 ok = FALSE;
893 break;
894 }
895 if (ok)
896 rows++;
897 }
898
899 /*
900 * We expect never to be able to get _more_ than
901 * n-count suitable rows: this would imply that (for
902 * example) there are four numbers which between them
903 * have at most three possible positions, and hence it
904 * indicates a faulty deduction before this point or
905 * even a bogus clue.
906 */
907 assert(rows <= n - count);
908 if (rows >= n - count) {
909 int progress = FALSE;
910
911 /*
912 * We've got one! Now, for each row which _doesn't_
913 * satisfy the criterion, eliminate all its set
914 * bits in the positions _not_ listed in `set'.
915 * Return TRUE (meaning progress has been made) if
916 * we successfully eliminated anything at all.
917 *
918 * This involves referring back through
919 * rowidx/colidx in order to work out which actual
920 * positions in the cube to meddle with.
921 */
922 for (i = 0; i < n; i++) {
923 int ok = TRUE;
924 for (j = 0; j < n; j++)
925 if (set[j] && grid[i*cr+j]) {
926 ok = FALSE;
927 break;
928 }
929 if (!ok) {
930 for (j = 0; j < n; j++)
931 if (!set[j] && grid[i*cr+j]) {
932 int fpos = (start+rowidx[i]*step1+
933 colidx[j]*step2);
934 #ifdef STANDALONE_SOLVER
935 if (solver_show_working) {
936 int px, py, pn;
937
938 if (!progress) {
939 va_list ap;
940 va_start(ap, fmt);
941 vprintf(fmt, ap);
942 va_end(ap);
943 printf(":\n");
944 }
945
946 pn = 1 + fpos % cr;
947 py = fpos / cr;
948 px = py / cr;
949 py %= cr;
950
951 printf(" ruling out %d at (%d,%d)\n",
952 pn, 1+px, 1+YUNTRANS(py));
953 }
954 #endif
955 progress = TRUE;
956 usage->cube[fpos] = FALSE;
957 }
958 }
959 }
960
961 if (progress) {
962 sfree(set);
963 sfree(colidx);
964 sfree(rowidx);
965 sfree(grid);
966 return TRUE;
967 }
968 }
969 }
970
971 /*
972 * Binary increment: change the rightmost 0 to a 1, and
973 * change all 1s to the right of it to 0s.
974 */
975 i = n;
976 while (i > 0 && set[i-1])
977 set[--i] = 0, count--;
978 if (i > 0)
979 set[--i] = 1, count++;
980 else
981 break; /* done */
982 }
983
984 sfree(set);
985 sfree(colidx);
986 sfree(rowidx);
987 sfree(grid);
988
989 return FALSE;
990 }
991
992 static int nsolve(int c, int r, digit *grid)
993 {
994 struct nsolve_usage *usage;
995 int cr = c*r;
996 int x, y, n;
997 int diff = DIFF_BLOCK;
998
999 /*
1000 * Set up a usage structure as a clean slate (everything
1001 * possible).
1002 */
1003 usage = snew(struct nsolve_usage);
1004 usage->c = c;
1005 usage->r = r;
1006 usage->cr = cr;
1007 usage->cube = snewn(cr*cr*cr, unsigned char);
1008 usage->grid = grid; /* write straight back to the input */
1009 memset(usage->cube, TRUE, cr*cr*cr);
1010
1011 usage->row = snewn(cr * cr, unsigned char);
1012 usage->col = snewn(cr * cr, unsigned char);
1013 usage->blk = snewn(cr * cr, unsigned char);
1014 memset(usage->row, FALSE, cr * cr);
1015 memset(usage->col, FALSE, cr * cr);
1016 memset(usage->blk, FALSE, cr * cr);
1017
1018 /*
1019 * Place all the clue numbers we are given.
1020 */
1021 for (x = 0; x < cr; x++)
1022 for (y = 0; y < cr; y++)
1023 if (grid[y*cr+x])
1024 nsolve_place(usage, x, YTRANS(y), grid[y*cr+x]);
1025
1026 /*
1027 * Now loop over the grid repeatedly trying all permitted modes
1028 * of reasoning. The loop terminates if we complete an
1029 * iteration without making any progress; we then return
1030 * failure or success depending on whether the grid is full or
1031 * not.
1032 */
1033 while (1) {
1034 /*
1035 * I'd like to write `continue;' inside each of the
1036 * following loops, so that the solver returns here after
1037 * making some progress. However, I can't specify that I
1038 * want to continue an outer loop rather than the innermost
1039 * one, so I'm apologetically resorting to a goto.
1040 */
1041 cont:
1042
1043 /*
1044 * Blockwise positional elimination.
1045 */
1046 for (x = 0; x < cr; x += r)
1047 for (y = 0; y < r; y++)
1048 for (n = 1; n <= cr; n++)
1049 if (!usage->blk[(y*c+(x/r))*cr+n-1] &&
1050 nsolve_elim(usage, cubepos(x,y,n), r*cr
1051 #ifdef STANDALONE_SOLVER
1052 , "positional elimination,"
1053 " block (%d,%d)", 1+x/r, 1+y
1054 #endif
1055 )) {
1056 diff = max(diff, DIFF_BLOCK);
1057 goto cont;
1058 }
1059
1060 /*
1061 * Row-wise positional elimination.
1062 */
1063 for (y = 0; y < cr; y++)
1064 for (n = 1; n <= cr; n++)
1065 if (!usage->row[y*cr+n-1] &&
1066 nsolve_elim(usage, cubepos(0,y,n), cr*cr
1067 #ifdef STANDALONE_SOLVER
1068 , "positional elimination,"
1069 " row %d", 1+YUNTRANS(y)
1070 #endif
1071 )) {
1072 diff = max(diff, DIFF_SIMPLE);
1073 goto cont;
1074 }
1075 /*
1076 * Column-wise positional elimination.
1077 */
1078 for (x = 0; x < cr; x++)
1079 for (n = 1; n <= cr; n++)
1080 if (!usage->col[x*cr+n-1] &&
1081 nsolve_elim(usage, cubepos(x,0,n), cr
1082 #ifdef STANDALONE_SOLVER
1083 , "positional elimination," " column %d", 1+x
1084 #endif
1085 )) {
1086 diff = max(diff, DIFF_SIMPLE);
1087 goto cont;
1088 }
1089
1090 /*
1091 * Numeric elimination.
1092 */
1093 for (x = 0; x < cr; x++)
1094 for (y = 0; y < cr; y++)
1095 if (!usage->grid[YUNTRANS(y)*cr+x] &&
1096 nsolve_elim(usage, cubepos(x,y,1), 1
1097 #ifdef STANDALONE_SOLVER
1098 , "numeric elimination at (%d,%d)", 1+x,
1099 1+YUNTRANS(y)
1100 #endif
1101 )) {
1102 diff = max(diff, DIFF_SIMPLE);
1103 goto cont;
1104 }
1105
1106 /*
1107 * Intersectional analysis, rows vs blocks.
1108 */
1109 for (y = 0; y < cr; y++)
1110 for (x = 0; x < cr; x += r)
1111 for (n = 1; n <= cr; n++)
1112 if (!usage->row[y*cr+n-1] &&
1113 !usage->blk[((y%r)*c+(x/r))*cr+n-1] &&
1114 (nsolve_intersect(usage, cubepos(0,y,n), cr*cr,
1115 cubepos(x,y%r,n), r*cr
1116 #ifdef STANDALONE_SOLVER
1117 , "intersectional analysis,"
1118 " row %d vs block (%d,%d)",
1119 1+YUNTRANS(y), 1+x/r, 1+y%r
1120 #endif
1121 ) ||
1122 nsolve_intersect(usage, cubepos(x,y%r,n), r*cr,
1123 cubepos(0,y,n), cr*cr
1124 #ifdef STANDALONE_SOLVER
1125 , "intersectional analysis,"
1126 " block (%d,%d) vs row %d",
1127 1+x/r, 1+y%r, 1+YUNTRANS(y)
1128 #endif
1129 ))) {
1130 diff = max(diff, DIFF_INTERSECT);
1131 goto cont;
1132 }
1133
1134 /*
1135 * Intersectional analysis, columns vs blocks.
1136 */
1137 for (x = 0; x < cr; x++)
1138 for (y = 0; y < r; y++)
1139 for (n = 1; n <= cr; n++)
1140 if (!usage->col[x*cr+n-1] &&
1141 !usage->blk[(y*c+(x/r))*cr+n-1] &&
1142 (nsolve_intersect(usage, cubepos(x,0,n), cr,
1143 cubepos((x/r)*r,y,n), r*cr
1144 #ifdef STANDALONE_SOLVER
1145 , "intersectional analysis,"
1146 " column %d vs block (%d,%d)",
1147 1+x, 1+x/r, 1+y
1148 #endif
1149 ) ||
1150 nsolve_intersect(usage, cubepos((x/r)*r,y,n), r*cr,
1151 cubepos(x,0,n), cr
1152 #ifdef STANDALONE_SOLVER
1153 , "intersectional analysis,"
1154 " block (%d,%d) vs column %d",
1155 1+x/r, 1+y, 1+x
1156 #endif
1157 ))) {
1158 diff = max(diff, DIFF_INTERSECT);
1159 goto cont;
1160 }
1161
1162 /*
1163 * Blockwise set elimination.
1164 */
1165 for (x = 0; x < cr; x += r)
1166 for (y = 0; y < r; y++)
1167 if (nsolve_set(usage, cubepos(x,y,1), r*cr, 1
1168 #ifdef STANDALONE_SOLVER
1169 , "set elimination, block (%d,%d)", 1+x/r, 1+y
1170 #endif
1171 )) {
1172 diff = max(diff, DIFF_SET);
1173 goto cont;
1174 }
1175
1176 /*
1177 * Row-wise set elimination.
1178 */
1179 for (y = 0; y < cr; y++)
1180 if (nsolve_set(usage, cubepos(0,y,1), cr*cr, 1
1181 #ifdef STANDALONE_SOLVER
1182 , "set elimination, row %d", 1+YUNTRANS(y)
1183 #endif
1184 )) {
1185 diff = max(diff, DIFF_SET);
1186 goto cont;
1187 }
1188
1189 /*
1190 * Column-wise set elimination.
1191 */
1192 for (x = 0; x < cr; x++)
1193 if (nsolve_set(usage, cubepos(x,0,1), cr, 1
1194 #ifdef STANDALONE_SOLVER
1195 , "set elimination, column %d", 1+x
1196 #endif
1197 )) {
1198 diff = max(diff, DIFF_SET);
1199 goto cont;
1200 }
1201
1202 /*
1203 * If we reach here, we have made no deductions in this
1204 * iteration, so the algorithm terminates.
1205 */
1206 break;
1207 }
1208
1209 sfree(usage->cube);
1210 sfree(usage->row);
1211 sfree(usage->col);
1212 sfree(usage->blk);
1213 sfree(usage);
1214
1215 for (x = 0; x < cr; x++)
1216 for (y = 0; y < cr; y++)
1217 if (!grid[y*cr+x])
1218 return DIFF_IMPOSSIBLE;
1219 return diff;
1220 }
1221
1222 /* ----------------------------------------------------------------------
1223 * End of non-recursive solver code.
1224 */
1225
1226 /*
1227 * Check whether a grid contains a valid complete puzzle.
1228 */
1229 static int check_valid(int c, int r, digit *grid)
1230 {
1231 int cr = c*r;
1232 unsigned char *used;
1233 int x, y, n;
1234
1235 used = snewn(cr, unsigned char);
1236
1237 /*
1238 * Check that each row contains precisely one of everything.
1239 */
1240 for (y = 0; y < cr; y++) {
1241 memset(used, FALSE, cr);
1242 for (x = 0; x < cr; x++)
1243 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
1244 used[grid[y*cr+x]-1] = TRUE;
1245 for (n = 0; n < cr; n++)
1246 if (!used[n]) {
1247 sfree(used);
1248 return FALSE;
1249 }
1250 }
1251
1252 /*
1253 * Check that each column contains precisely one of everything.
1254 */
1255 for (x = 0; x < cr; x++) {
1256 memset(used, FALSE, cr);
1257 for (y = 0; y < cr; y++)
1258 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
1259 used[grid[y*cr+x]-1] = TRUE;
1260 for (n = 0; n < cr; n++)
1261 if (!used[n]) {
1262 sfree(used);
1263 return FALSE;
1264 }
1265 }
1266
1267 /*
1268 * Check that each block contains precisely one of everything.
1269 */
1270 for (x = 0; x < cr; x += r) {
1271 for (y = 0; y < cr; y += c) {
1272 int xx, yy;
1273 memset(used, FALSE, cr);
1274 for (xx = x; xx < x+r; xx++)
1275 for (yy = 0; yy < y+c; yy++)
1276 if (grid[yy*cr+xx] > 0 && grid[yy*cr+xx] <= cr)
1277 used[grid[yy*cr+xx]-1] = TRUE;
1278 for (n = 0; n < cr; n++)
1279 if (!used[n]) {
1280 sfree(used);
1281 return FALSE;
1282 }
1283 }
1284 }
1285
1286 sfree(used);
1287 return TRUE;
1288 }
1289
1290 static void symmetry_limit(game_params *params, int *xlim, int *ylim, int s)
1291 {
1292 int c = params->c, r = params->r, cr = c*r;
1293
1294 switch (s) {
1295 case SYMM_NONE:
1296 *xlim = *ylim = cr;
1297 break;
1298 case SYMM_ROT2:
1299 *xlim = (cr+1) / 2;
1300 *ylim = cr;
1301 break;
1302 case SYMM_REF4:
1303 case SYMM_ROT4:
1304 *xlim = *ylim = (cr+1) / 2;
1305 break;
1306 }
1307 }
1308
1309 static int symmetries(game_params *params, int x, int y, int *output, int s)
1310 {
1311 int c = params->c, r = params->r, cr = c*r;
1312 int i = 0;
1313
1314 *output++ = x;
1315 *output++ = y;
1316 i++;
1317
1318 switch (s) {
1319 case SYMM_NONE:
1320 break; /* just x,y is all we need */
1321 case SYMM_REF4:
1322 case SYMM_ROT4:
1323 switch (s) {
1324 case SYMM_REF4:
1325 *output++ = cr - 1 - x;
1326 *output++ = y;
1327 i++;
1328
1329 *output++ = x;
1330 *output++ = cr - 1 - y;
1331 i++;
1332 break;
1333 case SYMM_ROT4:
1334 *output++ = cr - 1 - y;
1335 *output++ = x;
1336 i++;
1337
1338 *output++ = y;
1339 *output++ = cr - 1 - x;
1340 i++;
1341 break;
1342 }
1343 /* fall through */
1344 case SYMM_ROT2:
1345 *output++ = cr - 1 - x;
1346 *output++ = cr - 1 - y;
1347 i++;
1348 break;
1349 }
1350
1351 return i;
1352 }
1353
1354 static char *new_game_seed(game_params *params, random_state *rs)
1355 {
1356 int c = params->c, r = params->r, cr = c*r;
1357 int area = cr*cr;
1358 digit *grid, *grid2;
1359 struct xy { int x, y; } *locs;
1360 int nlocs;
1361 int ret;
1362 char *seed;
1363 int coords[16], ncoords;
1364 int xlim, ylim;
1365 int maxdiff;
1366
1367 /*
1368 * Adjust the maximum difficulty level to be consistent with
1369 * the puzzle size: all 2x2 puzzles appear to be Trivial
1370 * (DIFF_BLOCK) so we cannot hold out for even a Basic
1371 * (DIFF_SIMPLE) one.
1372 */
1373 maxdiff = params->diff;
1374 if (c == 2 && r == 2)
1375 maxdiff = DIFF_BLOCK;
1376
1377 grid = snewn(area, digit);
1378 locs = snewn(area, struct xy);
1379 grid2 = snewn(area, digit);
1380
1381 /*
1382 * Loop until we get a grid of the required difficulty. This is
1383 * nasty, but it seems to be unpleasantly hard to generate
1384 * difficult grids otherwise.
1385 */
1386 do {
1387 /*
1388 * Start the recursive solver with an empty grid to generate a
1389 * random solved state.
1390 */
1391 memset(grid, 0, area);
1392 ret = rsolve(c, r, grid, rs, 1);
1393 assert(ret == 1);
1394 assert(check_valid(c, r, grid));
1395
1396 /*
1397 * Now we have a solved grid, start removing things from it
1398 * while preserving solubility.
1399 */
1400 symmetry_limit(params, &xlim, &ylim, params->symm);
1401 while (1) {
1402 int x, y, i, j;
1403
1404 /*
1405 * Iterate over the grid and enumerate all the filled
1406 * squares we could empty.
1407 */
1408 nlocs = 0;
1409
1410 for (x = 0; x < xlim; x++)
1411 for (y = 0; y < ylim; y++)
1412 if (grid[y*cr+x]) {
1413 locs[nlocs].x = x;
1414 locs[nlocs].y = y;
1415 nlocs++;
1416 }
1417
1418 /*
1419 * Now shuffle that list.
1420 */
1421 for (i = nlocs; i > 1; i--) {
1422 int p = random_upto(rs, i);
1423 if (p != i-1) {
1424 struct xy t = locs[p];
1425 locs[p] = locs[i-1];
1426 locs[i-1] = t;
1427 }
1428 }
1429
1430 /*
1431 * Now loop over the shuffled list and, for each element,
1432 * see whether removing that element (and its reflections)
1433 * from the grid will still leave the grid soluble by
1434 * nsolve.
1435 */
1436 for (i = 0; i < nlocs; i++) {
1437 x = locs[i].x;
1438 y = locs[i].y;
1439
1440 memcpy(grid2, grid, area);
1441 ncoords = symmetries(params, x, y, coords, params->symm);
1442 for (j = 0; j < ncoords; j++)
1443 grid2[coords[2*j+1]*cr+coords[2*j]] = 0;
1444
1445 if (nsolve(c, r, grid2) <= maxdiff) {
1446 for (j = 0; j < ncoords; j++)
1447 grid[coords[2*j+1]*cr+coords[2*j]] = 0;
1448 break;
1449 }
1450 }
1451
1452 if (i == nlocs) {
1453 /*
1454 * There was nothing we could remove without destroying
1455 * solvability.
1456 */
1457 break;
1458 }
1459 }
1460
1461 memcpy(grid2, grid, area);
1462 } while (nsolve(c, r, grid2) != maxdiff);
1463
1464 sfree(grid2);
1465 sfree(locs);
1466
1467 /*
1468 * Now we have the grid as it will be presented to the user.
1469 * Encode it in a game seed.
1470 */
1471 {
1472 char *p;
1473 int run, i;
1474
1475 seed = snewn(5 * area, char);
1476 p = seed;
1477 run = 0;
1478 for (i = 0; i <= area; i++) {
1479 int n = (i < area ? grid[i] : -1);
1480
1481 if (!n)
1482 run++;
1483 else {
1484 if (run) {
1485 while (run > 0) {
1486 int c = 'a' - 1 + run;
1487 if (run > 26)
1488 c = 'z';
1489 *p++ = c;
1490 run -= c - ('a' - 1);
1491 }
1492 } else {
1493 /*
1494 * If there's a number in the very top left or
1495 * bottom right, there's no point putting an
1496 * unnecessary _ before or after it.
1497 */
1498 if (p > seed && n > 0)
1499 *p++ = '_';
1500 }
1501 if (n > 0)
1502 p += sprintf(p, "%d", n);
1503 run = 0;
1504 }
1505 }
1506 assert(p - seed < 5 * area);
1507 *p++ = '\0';
1508 seed = sresize(seed, p - seed, char);
1509 }
1510
1511 sfree(grid);
1512
1513 return seed;
1514 }
1515
1516 static char *validate_seed(game_params *params, char *seed)
1517 {
1518 int area = params->r * params->r * params->c * params->c;
1519 int squares = 0;
1520
1521 while (*seed) {
1522 int n = *seed++;
1523 if (n >= 'a' && n <= 'z') {
1524 squares += n - 'a' + 1;
1525 } else if (n == '_') {
1526 /* do nothing */;
1527 } else if (n > '0' && n <= '9') {
1528 squares++;
1529 while (*seed >= '0' && *seed <= '9')
1530 seed++;
1531 } else
1532 return "Invalid character in game specification";
1533 }
1534
1535 if (squares < area)
1536 return "Not enough data to fill grid";
1537
1538 if (squares > area)
1539 return "Too much data to fit in grid";
1540
1541 return NULL;
1542 }
1543
1544 static game_state *new_game(game_params *params, char *seed)
1545 {
1546 game_state *state = snew(game_state);
1547 int c = params->c, r = params->r, cr = c*r, area = cr * cr;
1548 int i;
1549
1550 state->c = params->c;
1551 state->r = params->r;
1552
1553 state->grid = snewn(area, digit);
1554 state->immutable = snewn(area, unsigned char);
1555 memset(state->immutable, FALSE, area);
1556
1557 state->completed = FALSE;
1558
1559 i = 0;
1560 while (*seed) {
1561 int n = *seed++;
1562 if (n >= 'a' && n <= 'z') {
1563 int run = n - 'a' + 1;
1564 assert(i + run <= area);
1565 while (run-- > 0)
1566 state->grid[i++] = 0;
1567 } else if (n == '_') {
1568 /* do nothing */;
1569 } else if (n > '0' && n <= '9') {
1570 assert(i < area);
1571 state->immutable[i] = TRUE;
1572 state->grid[i++] = atoi(seed-1);
1573 while (*seed >= '0' && *seed <= '9')
1574 seed++;
1575 } else {
1576 assert(!"We can't get here");
1577 }
1578 }
1579 assert(i == area);
1580
1581 return state;
1582 }
1583
1584 static game_state *dup_game(game_state *state)
1585 {
1586 game_state *ret = snew(game_state);
1587 int c = state->c, r = state->r, cr = c*r, area = cr * cr;
1588
1589 ret->c = state->c;
1590 ret->r = state->r;
1591
1592 ret->grid = snewn(area, digit);
1593 memcpy(ret->grid, state->grid, area);
1594
1595 ret->immutable = snewn(area, unsigned char);
1596 memcpy(ret->immutable, state->immutable, area);
1597
1598 ret->completed = state->completed;
1599
1600 return ret;
1601 }
1602
1603 static void free_game(game_state *state)
1604 {
1605 sfree(state->immutable);
1606 sfree(state->grid);
1607 sfree(state);
1608 }
1609
1610 static char *grid_text_format(int c, int r, digit *grid)
1611 {
1612 int cr = c*r;
1613 int x, y;
1614 int maxlen;
1615 char *ret, *p;
1616
1617 /*
1618 * There are cr lines of digits, plus r-1 lines of block
1619 * separators. Each line contains cr digits, cr-1 separating
1620 * spaces, and c-1 two-character block separators. Thus, the
1621 * total length of a line is 2*cr+2*c-3 (not counting the
1622 * newline), and there are cr+r-1 of them.
1623 */
1624 maxlen = (cr+r-1) * (2*cr+2*c-2);
1625 ret = snewn(maxlen+1, char);
1626 p = ret;
1627
1628 for (y = 0; y < cr; y++) {
1629 for (x = 0; x < cr; x++) {
1630 int ch = grid[y * cr + x];
1631 if (ch == 0)
1632 ch = ' ';
1633 else if (ch <= 9)
1634 ch = '0' + ch;
1635 else
1636 ch = 'a' + ch-10;
1637 *p++ = ch;
1638 if (x+1 < cr) {
1639 *p++ = ' ';
1640 if ((x+1) % r == 0) {
1641 *p++ = '|';
1642 *p++ = ' ';
1643 }
1644 }
1645 }
1646 *p++ = '\n';
1647 if (y+1 < cr && (y+1) % c == 0) {
1648 for (x = 0; x < cr; x++) {
1649 *p++ = '-';
1650 if (x+1 < cr) {
1651 *p++ = '-';
1652 if ((x+1) % r == 0) {
1653 *p++ = '+';
1654 *p++ = '-';
1655 }
1656 }
1657 }
1658 *p++ = '\n';
1659 }
1660 }
1661
1662 assert(p - ret == maxlen);
1663 *p = '\0';
1664 return ret;
1665 }
1666
1667 static char *game_text_format(game_state *state)
1668 {
1669 return grid_text_format(state->c, state->r, state->grid);
1670 }
1671
1672 struct game_ui {
1673 /*
1674 * These are the coordinates of the currently highlighted
1675 * square on the grid, or -1,-1 if there isn't one. When there
1676 * is, pressing a valid number or letter key or Space will
1677 * enter that number or letter in the grid.
1678 */
1679 int hx, hy;
1680 };
1681
1682 static game_ui *new_ui(game_state *state)
1683 {
1684 game_ui *ui = snew(game_ui);
1685
1686 ui->hx = ui->hy = -1;
1687
1688 return ui;
1689 }
1690
1691 static void free_ui(game_ui *ui)
1692 {
1693 sfree(ui);
1694 }
1695
1696 static game_state *make_move(game_state *from, game_ui *ui, int x, int y,
1697 int button)
1698 {
1699 int c = from->c, r = from->r, cr = c*r;
1700 int tx, ty;
1701 game_state *ret;
1702
1703 tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
1704 ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
1705
1706 if (tx >= 0 && tx < cr && ty >= 0 && ty < cr && button == LEFT_BUTTON) {
1707 if (tx == ui->hx && ty == ui->hy) {
1708 ui->hx = ui->hy = -1;
1709 } else {
1710 ui->hx = tx;
1711 ui->hy = ty;
1712 }
1713 return from; /* UI activity occurred */
1714 }
1715
1716 if (ui->hx != -1 && ui->hy != -1 &&
1717 ((button >= '1' && button <= '9' && button - '0' <= cr) ||
1718 (button >= 'a' && button <= 'z' && button - 'a' + 10 <= cr) ||
1719 (button >= 'A' && button <= 'Z' && button - 'A' + 10 <= cr) ||
1720 button == ' ')) {
1721 int n = button - '0';
1722 if (button >= 'A' && button <= 'Z')
1723 n = button - 'A' + 10;
1724 if (button >= 'a' && button <= 'z')
1725 n = button - 'a' + 10;
1726 if (button == ' ')
1727 n = 0;
1728
1729 if (from->immutable[ui->hy*cr+ui->hx])
1730 return NULL; /* can't overwrite this square */
1731
1732 ret = dup_game(from);
1733 ret->grid[ui->hy*cr+ui->hx] = n;
1734 ui->hx = ui->hy = -1;
1735
1736 /*
1737 * We've made a real change to the grid. Check to see
1738 * if the game has been completed.
1739 */
1740 if (!ret->completed && check_valid(c, r, ret->grid)) {
1741 ret->completed = TRUE;
1742 }
1743
1744 return ret; /* made a valid move */
1745 }
1746
1747 return NULL;
1748 }
1749
1750 /* ----------------------------------------------------------------------
1751 * Drawing routines.
1752 */
1753
1754 struct game_drawstate {
1755 int started;
1756 int c, r, cr;
1757 digit *grid;
1758 unsigned char *hl;
1759 };
1760
1761 #define XSIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
1762 #define YSIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
1763
1764 static void game_size(game_params *params, int *x, int *y)
1765 {
1766 int c = params->c, r = params->r, cr = c*r;
1767
1768 *x = XSIZE(cr);
1769 *y = YSIZE(cr);
1770 }
1771
1772 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
1773 {
1774 float *ret = snewn(3 * NCOLOURS, float);
1775
1776 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1777
1778 ret[COL_GRID * 3 + 0] = 0.0F;
1779 ret[COL_GRID * 3 + 1] = 0.0F;
1780 ret[COL_GRID * 3 + 2] = 0.0F;
1781
1782 ret[COL_CLUE * 3 + 0] = 0.0F;
1783 ret[COL_CLUE * 3 + 1] = 0.0F;
1784 ret[COL_CLUE * 3 + 2] = 0.0F;
1785
1786 ret[COL_USER * 3 + 0] = 0.0F;
1787 ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
1788 ret[COL_USER * 3 + 2] = 0.0F;
1789
1790 ret[COL_HIGHLIGHT * 3 + 0] = 0.85F * ret[COL_BACKGROUND * 3 + 0];
1791 ret[COL_HIGHLIGHT * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
1792 ret[COL_HIGHLIGHT * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
1793
1794 *ncolours = NCOLOURS;
1795 return ret;
1796 }
1797
1798 static game_drawstate *game_new_drawstate(game_state *state)
1799 {
1800 struct game_drawstate *ds = snew(struct game_drawstate);
1801 int c = state->c, r = state->r, cr = c*r;
1802
1803 ds->started = FALSE;
1804 ds->c = c;
1805 ds->r = r;
1806 ds->cr = cr;
1807 ds->grid = snewn(cr*cr, digit);
1808 memset(ds->grid, 0, cr*cr);
1809 ds->hl = snewn(cr*cr, unsigned char);
1810 memset(ds->hl, 0, cr*cr);
1811
1812 return ds;
1813 }
1814
1815 static void game_free_drawstate(game_drawstate *ds)
1816 {
1817 sfree(ds->hl);
1818 sfree(ds->grid);
1819 sfree(ds);
1820 }
1821
1822 static void draw_number(frontend *fe, game_drawstate *ds, game_state *state,
1823 int x, int y, int hl)
1824 {
1825 int c = state->c, r = state->r, cr = c*r;
1826 int tx, ty;
1827 int cx, cy, cw, ch;
1828 char str[2];
1829
1830 if (ds->grid[y*cr+x] == state->grid[y*cr+x] && ds->hl[y*cr+x] == hl)
1831 return; /* no change required */
1832
1833 tx = BORDER + x * TILE_SIZE + 2;
1834 ty = BORDER + y * TILE_SIZE + 2;
1835
1836 cx = tx;
1837 cy = ty;
1838 cw = TILE_SIZE-3;
1839 ch = TILE_SIZE-3;
1840
1841 if (x % r)
1842 cx--, cw++;
1843 if ((x+1) % r)
1844 cw++;
1845 if (y % c)
1846 cy--, ch++;
1847 if ((y+1) % c)
1848 ch++;
1849
1850 clip(fe, cx, cy, cw, ch);
1851
1852 /* background needs erasing? */
1853 if (ds->grid[y*cr+x] || ds->hl[y*cr+x] != hl)
1854 draw_rect(fe, cx, cy, cw, ch, hl ? COL_HIGHLIGHT : COL_BACKGROUND);
1855
1856 /* new number needs drawing? */
1857 if (state->grid[y*cr+x]) {
1858 str[1] = '\0';
1859 str[0] = state->grid[y*cr+x] + '0';
1860 if (str[0] > '9')
1861 str[0] += 'a' - ('9'+1);
1862 draw_text(fe, tx + TILE_SIZE/2, ty + TILE_SIZE/2,
1863 FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
1864 state->immutable[y*cr+x] ? COL_CLUE : COL_USER, str);
1865 }
1866
1867 unclip(fe);
1868
1869 draw_update(fe, cx, cy, cw, ch);
1870
1871 ds->grid[y*cr+x] = state->grid[y*cr+x];
1872 ds->hl[y*cr+x] = hl;
1873 }
1874
1875 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1876 game_state *state, int dir, game_ui *ui,
1877 float animtime, float flashtime)
1878 {
1879 int c = state->c, r = state->r, cr = c*r;
1880 int x, y;
1881
1882 if (!ds->started) {
1883 /*
1884 * The initial contents of the window are not guaranteed
1885 * and can vary with front ends. To be on the safe side,
1886 * all games should start by drawing a big
1887 * background-colour rectangle covering the whole window.
1888 */
1889 draw_rect(fe, 0, 0, XSIZE(cr), YSIZE(cr), COL_BACKGROUND);
1890
1891 /*
1892 * Draw the grid.
1893 */
1894 for (x = 0; x <= cr; x++) {
1895 int thick = (x % r ? 0 : 1);
1896 draw_rect(fe, BORDER + x*TILE_SIZE - thick, BORDER-1,
1897 1+2*thick, cr*TILE_SIZE+3, COL_GRID);
1898 }
1899 for (y = 0; y <= cr; y++) {
1900 int thick = (y % c ? 0 : 1);
1901 draw_rect(fe, BORDER-1, BORDER + y*TILE_SIZE - thick,
1902 cr*TILE_SIZE+3, 1+2*thick, COL_GRID);
1903 }
1904 }
1905
1906 /*
1907 * Draw any numbers which need redrawing.
1908 */
1909 for (x = 0; x < cr; x++) {
1910 for (y = 0; y < cr; y++) {
1911 draw_number(fe, ds, state, x, y,
1912 (x == ui->hx && y == ui->hy) ||
1913 (flashtime > 0 &&
1914 (flashtime <= FLASH_TIME/3 ||
1915 flashtime >= FLASH_TIME*2/3)));
1916 }
1917 }
1918
1919 /*
1920 * Update the _entire_ grid if necessary.
1921 */
1922 if (!ds->started) {
1923 draw_update(fe, 0, 0, XSIZE(cr), YSIZE(cr));
1924 ds->started = TRUE;
1925 }
1926 }
1927
1928 static float game_anim_length(game_state *oldstate, game_state *newstate,
1929 int dir)
1930 {
1931 return 0.0F;
1932 }
1933
1934 static float game_flash_length(game_state *oldstate, game_state *newstate,
1935 int dir)
1936 {
1937 if (!oldstate->completed && newstate->completed)
1938 return FLASH_TIME;
1939 return 0.0F;
1940 }
1941
1942 static int game_wants_statusbar(void)
1943 {
1944 return FALSE;
1945 }
1946
1947 #ifdef COMBINED
1948 #define thegame solo
1949 #endif
1950
1951 const struct game thegame = {
1952 "Solo", "games.solo",
1953 default_params,
1954 game_fetch_preset,
1955 decode_params,
1956 encode_params,
1957 free_params,
1958 dup_params,
1959 TRUE, game_configure, custom_params,
1960 validate_params,
1961 new_game_seed,
1962 validate_seed,
1963 new_game,
1964 dup_game,
1965 free_game,
1966 TRUE, game_text_format,
1967 new_ui,
1968 free_ui,
1969 make_move,
1970 game_size,
1971 game_colours,
1972 game_new_drawstate,
1973 game_free_drawstate,
1974 game_redraw,
1975 game_anim_length,
1976 game_flash_length,
1977 game_wants_statusbar,
1978 };
1979
1980 #ifdef STANDALONE_SOLVER
1981
1982 /*
1983 * gcc -DSTANDALONE_SOLVER -o solosolver solo.c malloc.c
1984 */
1985
1986 void frontend_default_colour(frontend *fe, float *output) {}
1987 void draw_text(frontend *fe, int x, int y, int fonttype, int fontsize,
1988 int align, int colour, char *text) {}
1989 void draw_rect(frontend *fe, int x, int y, int w, int h, int colour) {}
1990 void draw_line(frontend *fe, int x1, int y1, int x2, int y2, int colour) {}
1991 void draw_polygon(frontend *fe, int *coords, int npoints,
1992 int fill, int colour) {}
1993 void clip(frontend *fe, int x, int y, int w, int h) {}
1994 void unclip(frontend *fe) {}
1995 void start_draw(frontend *fe) {}
1996 void draw_update(frontend *fe, int x, int y, int w, int h) {}
1997 void end_draw(frontend *fe) {}
1998 unsigned long random_bits(random_state *state, int bits)
1999 { assert(!"Shouldn't get randomness"); return 0; }
2000 unsigned long random_upto(random_state *state, unsigned long limit)
2001 { assert(!"Shouldn't get randomness"); return 0; }
2002
2003 void fatal(char *fmt, ...)
2004 {
2005 va_list ap;
2006
2007 fprintf(stderr, "fatal error: ");
2008
2009 va_start(ap, fmt);
2010 vfprintf(stderr, fmt, ap);
2011 va_end(ap);
2012
2013 fprintf(stderr, "\n");
2014 exit(1);
2015 }
2016
2017 int main(int argc, char **argv)
2018 {
2019 game_params *p;
2020 game_state *s;
2021 int recurse = TRUE;
2022 char *id = NULL, *seed, *err;
2023 int y, x;
2024 int grade = FALSE;
2025
2026 while (--argc > 0) {
2027 char *p = *++argv;
2028 if (!strcmp(p, "-r")) {
2029 recurse = TRUE;
2030 } else if (!strcmp(p, "-n")) {
2031 recurse = FALSE;
2032 } else if (!strcmp(p, "-v")) {
2033 solver_show_working = TRUE;
2034 recurse = FALSE;
2035 } else if (!strcmp(p, "-g")) {
2036 grade = TRUE;
2037 recurse = FALSE;
2038 } else if (*p == '-') {
2039 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0]);
2040 return 1;
2041 } else {
2042 id = p;
2043 }
2044 }
2045
2046 if (!id) {
2047 fprintf(stderr, "usage: %s [-n | -r | -g | -v] <game_id>\n", argv[0]);
2048 return 1;
2049 }
2050
2051 seed = strchr(id, ':');
2052 if (!seed) {
2053 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
2054 return 1;
2055 }
2056 *seed++ = '\0';
2057
2058 p = decode_params(id);
2059 err = validate_seed(p, seed);
2060 if (err) {
2061 fprintf(stderr, "%s: %s\n", argv[0], err);
2062 return 1;
2063 }
2064 s = new_game(p, seed);
2065
2066 if (recurse) {
2067 int ret = rsolve(p->c, p->r, s->grid, NULL, 2);
2068 if (ret > 1) {
2069 fprintf(stderr, "%s: rsolve: multiple solutions detected\n",
2070 argv[0]);
2071 }
2072 } else {
2073 int ret = nsolve(p->c, p->r, s->grid);
2074 if (grade) {
2075 if (ret == DIFF_IMPOSSIBLE) {
2076 /*
2077 * Now resort to rsolve to determine whether it's
2078 * really soluble.
2079 */
2080 ret = rsolve(p->c, p->r, s->grid, NULL, 2);
2081 if (ret == 0)
2082 ret = DIFF_IMPOSSIBLE;
2083 else if (ret == 1)
2084 ret = DIFF_RECURSIVE;
2085 else
2086 ret = DIFF_AMBIGUOUS;
2087 }
2088 printf("Difficulty rating: %s\n",
2089 ret==DIFF_BLOCK ? "Trivial (blockwise positional elimination only)":
2090 ret==DIFF_SIMPLE ? "Basic (row/column/number elimination required)":
2091 ret==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)":
2092 ret==DIFF_SET ? "Advanced (set elimination required)":
2093 ret==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)":
2094 ret==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)":
2095 ret==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)":
2096 "INTERNAL ERROR: unrecognised difficulty code");
2097 }
2098 }
2099
2100 printf("%s\n", grid_text_format(p->c, p->r, s->grid));
2101
2102 return 0;
2103 }
2104
2105 #endif