Stop the analysis pass in Loopy's redraw routine from being
[sgt/puzzles] / solo.c
1 /*
2 * solo.c: the number-placing puzzle most popularly known as `Sudoku'.
3 *
4 * TODO:
5 *
6 * - reports from users are that `Trivial'-mode puzzles are still
7 * rather hard compared to newspapers' easy ones, so some better
8 * low-end difficulty grading would be nice
9 * + it's possible that really easy puzzles always have
10 * _several_ things you can do, so don't make you hunt too
11 * hard for the one deduction you can currently make
12 * + it's also possible that easy puzzles require fewer
13 * cross-eliminations: perhaps there's a higher incidence of
14 * things you can deduce by looking only at (say) rows,
15 * rather than things you have to check both rows and columns
16 * for
17 * + but really, what I need to do is find some really easy
18 * puzzles and _play_ them, to see what's actually easy about
19 * them
20 * + while I'm revamping this area, filling in the _last_
21 * number in a nearly-full row or column should certainly be
22 * permitted even at the lowest difficulty level.
23 * + also Owen noticed that `Basic' grids requiring numeric
24 * elimination are actually very hard, so I wonder if a
25 * difficulty gradation between that and positional-
26 * elimination-only might be in order
27 * + but it's not good to have _too_ many difficulty levels, or
28 * it'll take too long to randomly generate a given level.
29 *
30 * - it might still be nice to do some prioritisation on the
31 * removal of numbers from the grid
32 * + one possibility is to try to minimise the maximum number
33 * of filled squares in any block, which in particular ought
34 * to enforce never leaving a completely filled block in the
35 * puzzle as presented.
36 *
37 * - alternative interface modes
38 * + sudoku.com's Windows program has a palette of possible
39 * entries; you select a palette entry first and then click
40 * on the square you want it to go in, thus enabling
41 * mouse-only play. Useful for PDAs! I don't think it's
42 * actually incompatible with the current highlight-then-type
43 * approach: you _either_ highlight a palette entry and then
44 * click, _or_ you highlight a square and then type. At most
45 * one thing is ever highlighted at a time, so there's no way
46 * to confuse the two.
47 * + then again, I don't actually like sudoku.com's interface;
48 * it's too much like a paint package whereas I prefer to
49 * think of Solo as a text editor.
50 * + another PDA-friendly possibility is a drag interface:
51 * _drag_ numbers from the palette into the grid squares.
52 * Thought experiments suggest I'd prefer that to the
53 * sudoku.com approach, but I haven't actually tried it.
54 */
55
56 /*
57 * Solo puzzles need to be square overall (since each row and each
58 * column must contain one of every digit), but they need not be
59 * subdivided the same way internally. I am going to adopt a
60 * convention whereby I _always_ refer to `r' as the number of rows
61 * of _big_ divisions, and `c' as the number of columns of _big_
62 * divisions. Thus, a 2c by 3r puzzle looks something like this:
63 *
64 * 4 5 1 | 2 6 3
65 * 6 3 2 | 5 4 1
66 * ------+------ (Of course, you can't subdivide it the other way
67 * 1 4 5 | 6 3 2 or you'll get clashes; observe that the 4 in the
68 * 3 2 6 | 4 1 5 top left would conflict with the 4 in the second
69 * ------+------ box down on the left-hand side.)
70 * 5 1 4 | 3 2 6
71 * 2 6 3 | 1 5 4
72 *
73 * The need for a strong naming convention should now be clear:
74 * each small box is two rows of digits by three columns, while the
75 * overall puzzle has three rows of small boxes by two columns. So
76 * I will (hopefully) consistently use `r' to denote the number of
77 * rows _of small boxes_ (here 3), which is also the number of
78 * columns of digits in each small box; and `c' vice versa (here
79 * 2).
80 *
81 * I'm also going to choose arbitrarily to list c first wherever
82 * possible: the above is a 2x3 puzzle, not a 3x2 one.
83 */
84
85 #include <stdio.h>
86 #include <stdlib.h>
87 #include <string.h>
88 #include <assert.h>
89 #include <ctype.h>
90 #include <math.h>
91
92 #ifdef STANDALONE_SOLVER
93 #include <stdarg.h>
94 int solver_show_working, solver_recurse_depth;
95 #endif
96
97 #include "puzzles.h"
98
99 /*
100 * To save space, I store digits internally as unsigned char. This
101 * imposes a hard limit of 255 on the order of the puzzle. Since
102 * even a 5x5 takes unacceptably long to generate, I don't see this
103 * as a serious limitation unless something _really_ impressive
104 * happens in computing technology; but here's a typedef anyway for
105 * general good practice.
106 */
107 typedef unsigned char digit;
108 #define ORDER_MAX 255
109
110 #define PREFERRED_TILE_SIZE 48
111 #define TILE_SIZE (ds->tilesize)
112 #define BORDER (TILE_SIZE / 2)
113 #define GRIDEXTRA max((TILE_SIZE / 32),1)
114
115 #define FLASH_TIME 0.4F
116
117 enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF2, SYMM_REF2D, SYMM_REF4,
118 SYMM_REF4D, SYMM_REF8 };
119
120 enum { DIFF_BLOCK,
121 DIFF_SIMPLE, DIFF_INTERSECT, DIFF_SET, DIFF_EXTREME, DIFF_RECURSIVE,
122 DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE };
123
124 enum { DIFF_KSINGLE, DIFF_KMINMAX, DIFF_KSUMS, DIFF_KINTERSECT };
125
126 enum {
127 COL_BACKGROUND,
128 COL_XDIAGONALS,
129 COL_GRID,
130 COL_CLUE,
131 COL_USER,
132 COL_HIGHLIGHT,
133 COL_ERROR,
134 COL_PENCIL,
135 COL_KILLER,
136 NCOLOURS
137 };
138
139 /*
140 * To determine all possible ways to reach a given sum by adding two or
141 * three numbers from 1..9, each of which occurs exactly once in the sum,
142 * these arrays contain a list of bitmasks for each sum value, where if
143 * bit N is set, it means that N occurs in the sum. Each list is
144 * terminated by a zero if it is shorter than the size of the array.
145 */
146 #define MAX_2SUMS 5
147 #define MAX_3SUMS 8
148 #define MAX_4SUMS 12
149 unsigned long sum_bits2[18][MAX_2SUMS];
150 unsigned long sum_bits3[25][MAX_3SUMS];
151 unsigned long sum_bits4[31][MAX_4SUMS];
152
153 static int find_sum_bits(unsigned long *array, int idx, int value_left,
154 int addends_left, int min_addend,
155 unsigned long bitmask_so_far)
156 {
157 int i;
158 assert(addends_left >= 2);
159
160 for (i = min_addend; i < value_left; i++) {
161 unsigned long new_bitmask = bitmask_so_far | (1L << i);
162 assert(bitmask_so_far != new_bitmask);
163
164 if (addends_left == 2) {
165 int j = value_left - i;
166 if (j <= i)
167 break;
168 if (j > 9)
169 continue;
170 array[idx++] = new_bitmask | (1L << j);
171 } else
172 idx = find_sum_bits(array, idx, value_left - i,
173 addends_left - 1, i + 1,
174 new_bitmask);
175 }
176 return idx;
177 }
178
179 static void precompute_sum_bits(void)
180 {
181 int i;
182 for (i = 3; i < 31; i++) {
183 int j;
184 if (i < 18) {
185 j = find_sum_bits(sum_bits2[i], 0, i, 2, 1, 0);
186 assert (j <= MAX_2SUMS);
187 if (j < MAX_2SUMS)
188 sum_bits2[i][j] = 0;
189 }
190 if (i < 25) {
191 j = find_sum_bits(sum_bits3[i], 0, i, 3, 1, 0);
192 assert (j <= MAX_3SUMS);
193 if (j < MAX_3SUMS)
194 sum_bits3[i][j] = 0;
195 }
196 j = find_sum_bits(sum_bits4[i], 0, i, 4, 1, 0);
197 assert (j <= MAX_4SUMS);
198 if (j < MAX_4SUMS)
199 sum_bits4[i][j] = 0;
200 }
201 }
202
203 struct game_params {
204 /*
205 * For a square puzzle, `c' and `r' indicate the puzzle
206 * parameters as described above.
207 *
208 * A jigsaw-style puzzle is indicated by r==1, in which case c
209 * can be whatever it likes (there is no constraint on
210 * compositeness - a 7x7 jigsaw sudoku makes perfect sense).
211 */
212 int c, r, symm, diff, kdiff;
213 int xtype; /* require all digits in X-diagonals */
214 int killer;
215 };
216
217 struct block_structure {
218 int refcount;
219
220 /*
221 * For text formatting, we do need c and r here.
222 */
223 int c, r, area;
224
225 /*
226 * For any square index, whichblock[i] gives its block index.
227 *
228 * For 0 <= b,i < cr, blocks[b][i] gives the index of the ith
229 * square in block b. nr_squares[b] gives the number of squares
230 * in block b (also the number of valid elements in blocks[b]).
231 *
232 * blocks_data holds the data pointed to by blocks.
233 *
234 * nr_squares may be NULL for block structures where all blocks are
235 * the same size.
236 */
237 int *whichblock, **blocks, *nr_squares, *blocks_data;
238 int nr_blocks, max_nr_squares;
239
240 #ifdef STANDALONE_SOLVER
241 /*
242 * Textual descriptions of each block. For normal Sudoku these
243 * are of the form "(1,3)"; for jigsaw they are "starting at
244 * (5,7)". So the sensible usage in both cases is to say
245 * "elimination within block %s" with one of these strings.
246 *
247 * Only blocknames itself needs individually freeing; it's all
248 * one block.
249 */
250 char **blocknames;
251 #endif
252 };
253
254 struct game_state {
255 /*
256 * For historical reasons, I use `cr' to denote the overall
257 * width/height of the puzzle. It was a natural notation when
258 * all puzzles were divided into blocks in a grid, but doesn't
259 * really make much sense given jigsaw puzzles. However, the
260 * obvious `n' is heavily used in the solver to describe the
261 * index of a number being placed, so `cr' will have to stay.
262 */
263 int cr;
264 struct block_structure *blocks;
265 struct block_structure *kblocks; /* Blocks for killer puzzles. */
266 int xtype, killer;
267 digit *grid, *kgrid;
268 unsigned char *pencil; /* c*r*c*r elements */
269 unsigned char *immutable; /* marks which digits are clues */
270 int completed, cheated;
271 };
272
273 static game_params *default_params(void)
274 {
275 game_params *ret = snew(game_params);
276
277 ret->c = ret->r = 3;
278 ret->xtype = FALSE;
279 ret->killer = FALSE;
280 ret->symm = SYMM_ROT2; /* a plausible default */
281 ret->diff = DIFF_BLOCK; /* so is this */
282 ret->kdiff = DIFF_KINTERSECT; /* so is this */
283
284 return ret;
285 }
286
287 static void free_params(game_params *params)
288 {
289 sfree(params);
290 }
291
292 static game_params *dup_params(game_params *params)
293 {
294 game_params *ret = snew(game_params);
295 *ret = *params; /* structure copy */
296 return ret;
297 }
298
299 static int game_fetch_preset(int i, char **name, game_params **params)
300 {
301 static struct {
302 char *title;
303 game_params params;
304 } presets[] = {
305 { "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK, DIFF_KMINMAX, FALSE, FALSE } },
306 { "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
307 { "3x3 Trivial", { 3, 3, SYMM_ROT2, DIFF_BLOCK, DIFF_KMINMAX, FALSE, FALSE } },
308 { "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
309 { "3x3 Basic X", { 3, 3, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, TRUE } },
310 { "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT, DIFF_KMINMAX, FALSE, FALSE } },
311 { "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET, DIFF_KMINMAX, FALSE, FALSE } },
312 { "3x3 Advanced X", { 3, 3, SYMM_ROT2, DIFF_SET, DIFF_KMINMAX, TRUE } },
313 { "3x3 Extreme", { 3, 3, SYMM_ROT2, DIFF_EXTREME, DIFF_KMINMAX, FALSE, FALSE } },
314 { "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE, DIFF_KMINMAX, FALSE, FALSE } },
315 { "3x3 Killer", { 3, 3, SYMM_NONE, DIFF_BLOCK, DIFF_KINTERSECT, FALSE, TRUE } },
316 { "9 Jigsaw Basic", { 9, 1, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
317 { "9 Jigsaw Basic X", { 9, 1, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, TRUE } },
318 { "9 Jigsaw Advanced", { 9, 1, SYMM_ROT2, DIFF_SET, DIFF_KMINMAX, FALSE, FALSE } },
319 #ifndef SLOW_SYSTEM
320 { "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
321 { "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
322 #endif
323 };
324
325 if (i < 0 || i >= lenof(presets))
326 return FALSE;
327
328 *name = dupstr(presets[i].title);
329 *params = dup_params(&presets[i].params);
330
331 return TRUE;
332 }
333
334 static void decode_params(game_params *ret, char const *string)
335 {
336 int seen_r = FALSE;
337
338 ret->c = ret->r = atoi(string);
339 ret->xtype = FALSE;
340 ret->killer = FALSE;
341 while (*string && isdigit((unsigned char)*string)) string++;
342 if (*string == 'x') {
343 string++;
344 ret->r = atoi(string);
345 seen_r = TRUE;
346 while (*string && isdigit((unsigned char)*string)) string++;
347 }
348 while (*string) {
349 if (*string == 'j') {
350 string++;
351 if (seen_r)
352 ret->c *= ret->r;
353 ret->r = 1;
354 } else if (*string == 'x') {
355 string++;
356 ret->xtype = TRUE;
357 } else if (*string == 'k') {
358 string++;
359 ret->killer = TRUE;
360 } else if (*string == 'r' || *string == 'm' || *string == 'a') {
361 int sn, sc, sd;
362 sc = *string++;
363 if (sc == 'm' && *string == 'd') {
364 sd = TRUE;
365 string++;
366 } else {
367 sd = FALSE;
368 }
369 sn = atoi(string);
370 while (*string && isdigit((unsigned char)*string)) string++;
371 if (sc == 'm' && sn == 8)
372 ret->symm = SYMM_REF8;
373 if (sc == 'm' && sn == 4)
374 ret->symm = sd ? SYMM_REF4D : SYMM_REF4;
375 if (sc == 'm' && sn == 2)
376 ret->symm = sd ? SYMM_REF2D : SYMM_REF2;
377 if (sc == 'r' && sn == 4)
378 ret->symm = SYMM_ROT4;
379 if (sc == 'r' && sn == 2)
380 ret->symm = SYMM_ROT2;
381 if (sc == 'a')
382 ret->symm = SYMM_NONE;
383 } else if (*string == 'd') {
384 string++;
385 if (*string == 't') /* trivial */
386 string++, ret->diff = DIFF_BLOCK;
387 else if (*string == 'b') /* basic */
388 string++, ret->diff = DIFF_SIMPLE;
389 else if (*string == 'i') /* intermediate */
390 string++, ret->diff = DIFF_INTERSECT;
391 else if (*string == 'a') /* advanced */
392 string++, ret->diff = DIFF_SET;
393 else if (*string == 'e') /* extreme */
394 string++, ret->diff = DIFF_EXTREME;
395 else if (*string == 'u') /* unreasonable */
396 string++, ret->diff = DIFF_RECURSIVE;
397 } else
398 string++; /* eat unknown character */
399 }
400 }
401
402 static char *encode_params(game_params *params, int full)
403 {
404 char str[80];
405
406 if (params->r > 1)
407 sprintf(str, "%dx%d", params->c, params->r);
408 else
409 sprintf(str, "%dj", params->c);
410 if (params->xtype)
411 strcat(str, "x");
412 if (params->killer)
413 strcat(str, "k");
414
415 if (full) {
416 switch (params->symm) {
417 case SYMM_REF8: strcat(str, "m8"); break;
418 case SYMM_REF4: strcat(str, "m4"); break;
419 case SYMM_REF4D: strcat(str, "md4"); break;
420 case SYMM_REF2: strcat(str, "m2"); break;
421 case SYMM_REF2D: strcat(str, "md2"); break;
422 case SYMM_ROT4: strcat(str, "r4"); break;
423 /* case SYMM_ROT2: strcat(str, "r2"); break; [default] */
424 case SYMM_NONE: strcat(str, "a"); break;
425 }
426 switch (params->diff) {
427 /* case DIFF_BLOCK: strcat(str, "dt"); break; [default] */
428 case DIFF_SIMPLE: strcat(str, "db"); break;
429 case DIFF_INTERSECT: strcat(str, "di"); break;
430 case DIFF_SET: strcat(str, "da"); break;
431 case DIFF_EXTREME: strcat(str, "de"); break;
432 case DIFF_RECURSIVE: strcat(str, "du"); break;
433 }
434 }
435 return dupstr(str);
436 }
437
438 static config_item *game_configure(game_params *params)
439 {
440 config_item *ret;
441 char buf[80];
442
443 ret = snewn(8, config_item);
444
445 ret[0].name = "Columns of sub-blocks";
446 ret[0].type = C_STRING;
447 sprintf(buf, "%d", params->c);
448 ret[0].sval = dupstr(buf);
449 ret[0].ival = 0;
450
451 ret[1].name = "Rows of sub-blocks";
452 ret[1].type = C_STRING;
453 sprintf(buf, "%d", params->r);
454 ret[1].sval = dupstr(buf);
455 ret[1].ival = 0;
456
457 ret[2].name = "\"X\" (require every number in each main diagonal)";
458 ret[2].type = C_BOOLEAN;
459 ret[2].sval = NULL;
460 ret[2].ival = params->xtype;
461
462 ret[3].name = "Jigsaw (irregularly shaped sub-blocks)";
463 ret[3].type = C_BOOLEAN;
464 ret[3].sval = NULL;
465 ret[3].ival = (params->r == 1);
466
467 ret[4].name = "Killer (digit sums)";
468 ret[4].type = C_BOOLEAN;
469 ret[4].sval = NULL;
470 ret[4].ival = params->killer;
471
472 ret[5].name = "Symmetry";
473 ret[5].type = C_CHOICES;
474 ret[5].sval = ":None:2-way rotation:4-way rotation:2-way mirror:"
475 "2-way diagonal mirror:4-way mirror:4-way diagonal mirror:"
476 "8-way mirror";
477 ret[5].ival = params->symm;
478
479 ret[6].name = "Difficulty";
480 ret[6].type = C_CHOICES;
481 ret[6].sval = ":Trivial:Basic:Intermediate:Advanced:Extreme:Unreasonable";
482 ret[6].ival = params->diff;
483
484 ret[7].name = NULL;
485 ret[7].type = C_END;
486 ret[7].sval = NULL;
487 ret[7].ival = 0;
488
489 return ret;
490 }
491
492 static game_params *custom_params(config_item *cfg)
493 {
494 game_params *ret = snew(game_params);
495
496 ret->c = atoi(cfg[0].sval);
497 ret->r = atoi(cfg[1].sval);
498 ret->xtype = cfg[2].ival;
499 if (cfg[3].ival) {
500 ret->c *= ret->r;
501 ret->r = 1;
502 }
503 ret->killer = cfg[4].ival;
504 ret->symm = cfg[5].ival;
505 ret->diff = cfg[6].ival;
506 ret->kdiff = DIFF_KINTERSECT;
507
508 return ret;
509 }
510
511 static char *validate_params(game_params *params, int full)
512 {
513 if (params->c < 2)
514 return "Both dimensions must be at least 2";
515 if (params->c > ORDER_MAX || params->r > ORDER_MAX)
516 return "Dimensions greater than "STR(ORDER_MAX)" are not supported";
517 if ((params->c * params->r) > 31)
518 return "Unable to support more than 31 distinct symbols in a puzzle";
519 if (params->killer && params->c * params->r > 9)
520 return "Killer puzzle dimensions must be smaller than 10.";
521 return NULL;
522 }
523
524 /*
525 * ----------------------------------------------------------------------
526 * Block structure functions.
527 */
528
529 static struct block_structure *alloc_block_structure(int c, int r, int area,
530 int max_nr_squares,
531 int nr_blocks)
532 {
533 int i;
534 struct block_structure *b = snew(struct block_structure);
535
536 b->refcount = 1;
537 b->nr_blocks = nr_blocks;
538 b->max_nr_squares = max_nr_squares;
539 b->c = c; b->r = r; b->area = area;
540 b->whichblock = snewn(area, int);
541 b->blocks_data = snewn(nr_blocks * max_nr_squares, int);
542 b->blocks = snewn(nr_blocks, int *);
543 b->nr_squares = snewn(nr_blocks, int);
544
545 for (i = 0; i < nr_blocks; i++)
546 b->blocks[i] = b->blocks_data + i*max_nr_squares;
547
548 #ifdef STANDALONE_SOLVER
549 b->blocknames = (char **)smalloc(c*r*(sizeof(char *)+80));
550 for (i = 0; i < c * r; i++)
551 b->blocknames[i] = NULL;
552 #endif
553 return b;
554 }
555
556 static void free_block_structure(struct block_structure *b)
557 {
558 if (--b->refcount == 0) {
559 sfree(b->whichblock);
560 sfree(b->blocks);
561 sfree(b->blocks_data);
562 #ifdef STANDALONE_SOLVER
563 sfree(b->blocknames);
564 #endif
565 sfree(b->nr_squares);
566 sfree(b);
567 }
568 }
569
570 static struct block_structure *dup_block_structure(struct block_structure *b)
571 {
572 struct block_structure *nb;
573 int i;
574
575 nb = alloc_block_structure(b->c, b->r, b->area, b->max_nr_squares,
576 b->nr_blocks);
577 memcpy(nb->nr_squares, b->nr_squares, b->nr_blocks * sizeof *b->nr_squares);
578 memcpy(nb->whichblock, b->whichblock, b->area * sizeof *b->whichblock);
579 memcpy(nb->blocks_data, b->blocks_data,
580 b->nr_blocks * b->max_nr_squares * sizeof *b->blocks_data);
581 for (i = 0; i < b->nr_blocks; i++)
582 nb->blocks[i] = nb->blocks_data + i*nb->max_nr_squares;
583
584 #ifdef STANDALONE_SOLVER
585 memcpy(nb->blocknames, b->blocknames, b->c * b->r *(sizeof(char *)+80));
586 {
587 int i;
588 for (i = 0; i < b->c * b->r; i++)
589 if (b->blocknames[i] == NULL)
590 nb->blocknames[i] = NULL;
591 else
592 nb->blocknames[i] = ((char *)nb->blocknames) + (b->blocknames[i] - (char *)b->blocknames);
593 }
594 #endif
595 return nb;
596 }
597
598 static void split_block(struct block_structure *b, int *squares, int nr_squares)
599 {
600 int i, j;
601 int previous_block = b->whichblock[squares[0]];
602 int newblock = b->nr_blocks;
603
604 assert(b->max_nr_squares >= nr_squares);
605 assert(b->nr_squares[previous_block] > nr_squares);
606
607 b->nr_blocks++;
608 b->blocks_data = sresize(b->blocks_data,
609 b->nr_blocks * b->max_nr_squares, int);
610 b->nr_squares = sresize(b->nr_squares, b->nr_blocks, int);
611 sfree(b->blocks);
612 b->blocks = snewn(b->nr_blocks, int *);
613 for (i = 0; i < b->nr_blocks; i++)
614 b->blocks[i] = b->blocks_data + i*b->max_nr_squares;
615 for (i = 0; i < nr_squares; i++) {
616 assert(b->whichblock[squares[i]] == previous_block);
617 b->whichblock[squares[i]] = newblock;
618 b->blocks[newblock][i] = squares[i];
619 }
620 for (i = j = 0; i < b->nr_squares[previous_block]; i++) {
621 int k;
622 int sq = b->blocks[previous_block][i];
623 for (k = 0; k < nr_squares; k++)
624 if (squares[k] == sq)
625 break;
626 if (k == nr_squares)
627 b->blocks[previous_block][j++] = sq;
628 }
629 b->nr_squares[previous_block] -= nr_squares;
630 b->nr_squares[newblock] = nr_squares;
631 }
632
633 static void remove_from_block(struct block_structure *blocks, int b, int n)
634 {
635 int i, j;
636 blocks->whichblock[n] = -1;
637 for (i = j = 0; i < blocks->nr_squares[b]; i++)
638 if (blocks->blocks[b][i] != n)
639 blocks->blocks[b][j++] = blocks->blocks[b][i];
640 assert(j+1 == i);
641 blocks->nr_squares[b]--;
642 }
643
644 /* ----------------------------------------------------------------------
645 * Solver.
646 *
647 * This solver is used for two purposes:
648 * + to check solubility of a grid as we gradually remove numbers
649 * from it
650 * + to solve an externally generated puzzle when the user selects
651 * `Solve'.
652 *
653 * It supports a variety of specific modes of reasoning. By
654 * enabling or disabling subsets of these modes we can arrange a
655 * range of difficulty levels.
656 */
657
658 /*
659 * Modes of reasoning currently supported:
660 *
661 * - Positional elimination: a number must go in a particular
662 * square because all the other empty squares in a given
663 * row/col/blk are ruled out.
664 *
665 * - Killer minmax elimination: for killer-type puzzles, a number
666 * is impossible if choosing it would cause the sum in a killer
667 * region to be guaranteed to be too large or too small.
668 *
669 * - Numeric elimination: a square must have a particular number
670 * in because all the other numbers that could go in it are
671 * ruled out.
672 *
673 * - Intersectional analysis: given two domains which overlap
674 * (hence one must be a block, and the other can be a row or
675 * col), if the possible locations for a particular number in
676 * one of the domains can be narrowed down to the overlap, then
677 * that number can be ruled out everywhere but the overlap in
678 * the other domain too.
679 *
680 * - Set elimination: if there is a subset of the empty squares
681 * within a domain such that the union of the possible numbers
682 * in that subset has the same size as the subset itself, then
683 * those numbers can be ruled out everywhere else in the domain.
684 * (For example, if there are five empty squares and the
685 * possible numbers in each are 12, 23, 13, 134 and 1345, then
686 * the first three empty squares form such a subset: the numbers
687 * 1, 2 and 3 _must_ be in those three squares in some
688 * permutation, and hence we can deduce none of them can be in
689 * the fourth or fifth squares.)
690 * + You can also see this the other way round, concentrating
691 * on numbers rather than squares: if there is a subset of
692 * the unplaced numbers within a domain such that the union
693 * of all their possible positions has the same size as the
694 * subset itself, then all other numbers can be ruled out for
695 * those positions. However, it turns out that this is
696 * exactly equivalent to the first formulation at all times:
697 * there is a 1-1 correspondence between suitable subsets of
698 * the unplaced numbers and suitable subsets of the unfilled
699 * places, found by taking the _complement_ of the union of
700 * the numbers' possible positions (or the spaces' possible
701 * contents).
702 *
703 * - Forcing chains (see comment for solver_forcing().)
704 *
705 * - Recursion. If all else fails, we pick one of the currently
706 * most constrained empty squares and take a random guess at its
707 * contents, then continue solving on that basis and see if we
708 * get any further.
709 */
710
711 struct solver_usage {
712 int cr;
713 struct block_structure *blocks, *kblocks, *extra_cages;
714 /*
715 * We set up a cubic array, indexed by x, y and digit; each
716 * element of this array is TRUE or FALSE according to whether
717 * or not that digit _could_ in principle go in that position.
718 *
719 * The way to index this array is cube[(y*cr+x)*cr+n-1]; there
720 * are macros below to help with this.
721 */
722 unsigned char *cube;
723 /*
724 * This is the grid in which we write down our final
725 * deductions. y-coordinates in here are _not_ transformed.
726 */
727 digit *grid;
728 /*
729 * For killer-type puzzles, kclues holds the secondary clue for
730 * each cage. For derived cages, the clue is in extra_clues.
731 */
732 digit *kclues, *extra_clues;
733 /*
734 * Now we keep track, at a slightly higher level, of what we
735 * have yet to work out, to prevent doing the same deduction
736 * many times.
737 */
738 /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
739 unsigned char *row;
740 /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
741 unsigned char *col;
742 /* blk[i*cr+n-1] TRUE if digit n has been placed in block i */
743 unsigned char *blk;
744 /* diag[i*cr+n-1] TRUE if digit n has been placed in diagonal i */
745 unsigned char *diag; /* diag 0 is \, 1 is / */
746
747 int *regions;
748 int nr_regions;
749 int **sq2region;
750 };
751 #define cubepos2(xy,n) ((xy)*usage->cr+(n)-1)
752 #define cubepos(x,y,n) cubepos2((y)*usage->cr+(x),n)
753 #define cube(x,y,n) (usage->cube[cubepos(x,y,n)])
754 #define cube2(xy,n) (usage->cube[cubepos2(xy,n)])
755
756 #define ondiag0(xy) ((xy) % (cr+1) == 0)
757 #define ondiag1(xy) ((xy) % (cr-1) == 0 && (xy) > 0 && (xy) < cr*cr-1)
758 #define diag0(i) ((i) * (cr+1))
759 #define diag1(i) ((i+1) * (cr-1))
760
761 /*
762 * Function called when we are certain that a particular square has
763 * a particular number in it. The y-coordinate passed in here is
764 * transformed.
765 */
766 static void solver_place(struct solver_usage *usage, int x, int y, int n)
767 {
768 int cr = usage->cr;
769 int sqindex = y*cr+x;
770 int i, bi;
771
772 assert(cube(x,y,n));
773
774 /*
775 * Rule out all other numbers in this square.
776 */
777 for (i = 1; i <= cr; i++)
778 if (i != n)
779 cube(x,y,i) = FALSE;
780
781 /*
782 * Rule out this number in all other positions in the row.
783 */
784 for (i = 0; i < cr; i++)
785 if (i != y)
786 cube(x,i,n) = FALSE;
787
788 /*
789 * Rule out this number in all other positions in the column.
790 */
791 for (i = 0; i < cr; i++)
792 if (i != x)
793 cube(i,y,n) = FALSE;
794
795 /*
796 * Rule out this number in all other positions in the block.
797 */
798 bi = usage->blocks->whichblock[sqindex];
799 for (i = 0; i < cr; i++) {
800 int bp = usage->blocks->blocks[bi][i];
801 if (bp != sqindex)
802 cube2(bp,n) = FALSE;
803 }
804
805 /*
806 * Enter the number in the result grid.
807 */
808 usage->grid[sqindex] = n;
809
810 /*
811 * Cross out this number from the list of numbers left to place
812 * in its row, its column and its block.
813 */
814 usage->row[y*cr+n-1] = usage->col[x*cr+n-1] =
815 usage->blk[bi*cr+n-1] = TRUE;
816
817 if (usage->diag) {
818 if (ondiag0(sqindex)) {
819 for (i = 0; i < cr; i++)
820 if (diag0(i) != sqindex)
821 cube2(diag0(i),n) = FALSE;
822 usage->diag[n-1] = TRUE;
823 }
824 if (ondiag1(sqindex)) {
825 for (i = 0; i < cr; i++)
826 if (diag1(i) != sqindex)
827 cube2(diag1(i),n) = FALSE;
828 usage->diag[cr+n-1] = TRUE;
829 }
830 }
831 }
832
833 #if defined STANDALONE_SOLVER && defined __GNUC__
834 /*
835 * Forward-declare the functions taking printf-like format arguments
836 * with __attribute__((format)) so as to ensure the argument syntax
837 * gets debugged.
838 */
839 struct solver_scratch;
840 static int solver_elim(struct solver_usage *usage, int *indices,
841 char *fmt, ...) __attribute__((format(printf,3,4)));
842 static int solver_intersect(struct solver_usage *usage,
843 int *indices1, int *indices2, char *fmt, ...)
844 __attribute__((format(printf,4,5)));
845 static int solver_set(struct solver_usage *usage,
846 struct solver_scratch *scratch,
847 int *indices, char *fmt, ...)
848 __attribute__((format(printf,4,5)));
849 #endif
850
851 static int solver_elim(struct solver_usage *usage, int *indices
852 #ifdef STANDALONE_SOLVER
853 , char *fmt, ...
854 #endif
855 )
856 {
857 int cr = usage->cr;
858 int fpos, m, i;
859
860 /*
861 * Count the number of set bits within this section of the
862 * cube.
863 */
864 m = 0;
865 fpos = -1;
866 for (i = 0; i < cr; i++)
867 if (usage->cube[indices[i]]) {
868 fpos = indices[i];
869 m++;
870 }
871
872 if (m == 1) {
873 int x, y, n;
874 assert(fpos >= 0);
875
876 n = 1 + fpos % cr;
877 x = fpos / cr;
878 y = x / cr;
879 x %= cr;
880
881 if (!usage->grid[y*cr+x]) {
882 #ifdef STANDALONE_SOLVER
883 if (solver_show_working) {
884 va_list ap;
885 printf("%*s", solver_recurse_depth*4, "");
886 va_start(ap, fmt);
887 vprintf(fmt, ap);
888 va_end(ap);
889 printf(":\n%*s placing %d at (%d,%d)\n",
890 solver_recurse_depth*4, "", n, 1+x, 1+y);
891 }
892 #endif
893 solver_place(usage, x, y, n);
894 return +1;
895 }
896 } else if (m == 0) {
897 #ifdef STANDALONE_SOLVER
898 if (solver_show_working) {
899 va_list ap;
900 printf("%*s", solver_recurse_depth*4, "");
901 va_start(ap, fmt);
902 vprintf(fmt, ap);
903 va_end(ap);
904 printf(":\n%*s no possibilities available\n",
905 solver_recurse_depth*4, "");
906 }
907 #endif
908 return -1;
909 }
910
911 return 0;
912 }
913
914 static int solver_intersect(struct solver_usage *usage,
915 int *indices1, int *indices2
916 #ifdef STANDALONE_SOLVER
917 , char *fmt, ...
918 #endif
919 )
920 {
921 int cr = usage->cr;
922 int ret, i, j;
923
924 /*
925 * Loop over the first domain and see if there's any set bit
926 * not also in the second.
927 */
928 for (i = j = 0; i < cr; i++) {
929 int p = indices1[i];
930 while (j < cr && indices2[j] < p)
931 j++;
932 if (usage->cube[p]) {
933 if (j < cr && indices2[j] == p)
934 continue; /* both domains contain this index */
935 else
936 return 0; /* there is, so we can't deduce */
937 }
938 }
939
940 /*
941 * We have determined that all set bits in the first domain are
942 * within its overlap with the second. So loop over the second
943 * domain and remove all set bits that aren't also in that
944 * overlap; return +1 iff we actually _did_ anything.
945 */
946 ret = 0;
947 for (i = j = 0; i < cr; i++) {
948 int p = indices2[i];
949 while (j < cr && indices1[j] < p)
950 j++;
951 if (usage->cube[p] && (j >= cr || indices1[j] != p)) {
952 #ifdef STANDALONE_SOLVER
953 if (solver_show_working) {
954 int px, py, pn;
955
956 if (!ret) {
957 va_list ap;
958 printf("%*s", solver_recurse_depth*4, "");
959 va_start(ap, fmt);
960 vprintf(fmt, ap);
961 va_end(ap);
962 printf(":\n");
963 }
964
965 pn = 1 + p % cr;
966 px = p / cr;
967 py = px / cr;
968 px %= cr;
969
970 printf("%*s ruling out %d at (%d,%d)\n",
971 solver_recurse_depth*4, "", pn, 1+px, 1+py);
972 }
973 #endif
974 ret = +1; /* we did something */
975 usage->cube[p] = 0;
976 }
977 }
978
979 return ret;
980 }
981
982 struct solver_scratch {
983 unsigned char *grid, *rowidx, *colidx, *set;
984 int *neighbours, *bfsqueue;
985 int *indexlist, *indexlist2;
986 #ifdef STANDALONE_SOLVER
987 int *bfsprev;
988 #endif
989 };
990
991 static int solver_set(struct solver_usage *usage,
992 struct solver_scratch *scratch,
993 int *indices
994 #ifdef STANDALONE_SOLVER
995 , char *fmt, ...
996 #endif
997 )
998 {
999 int cr = usage->cr;
1000 int i, j, n, count;
1001 unsigned char *grid = scratch->grid;
1002 unsigned char *rowidx = scratch->rowidx;
1003 unsigned char *colidx = scratch->colidx;
1004 unsigned char *set = scratch->set;
1005
1006 /*
1007 * We are passed a cr-by-cr matrix of booleans. Our first job
1008 * is to winnow it by finding any definite placements - i.e.
1009 * any row with a solitary 1 - and discarding that row and the
1010 * column containing the 1.
1011 */
1012 memset(rowidx, TRUE, cr);
1013 memset(colidx, TRUE, cr);
1014 for (i = 0; i < cr; i++) {
1015 int count = 0, first = -1;
1016 for (j = 0; j < cr; j++)
1017 if (usage->cube[indices[i*cr+j]])
1018 first = j, count++;
1019
1020 /*
1021 * If count == 0, then there's a row with no 1s at all and
1022 * the puzzle is internally inconsistent. However, we ought
1023 * to have caught this already during the simpler reasoning
1024 * methods, so we can safely fail an assertion if we reach
1025 * this point here.
1026 */
1027 assert(count > 0);
1028 if (count == 1)
1029 rowidx[i] = colidx[first] = FALSE;
1030 }
1031
1032 /*
1033 * Convert each of rowidx/colidx from a list of 0s and 1s to a
1034 * list of the indices of the 1s.
1035 */
1036 for (i = j = 0; i < cr; i++)
1037 if (rowidx[i])
1038 rowidx[j++] = i;
1039 n = j;
1040 for (i = j = 0; i < cr; i++)
1041 if (colidx[i])
1042 colidx[j++] = i;
1043 assert(n == j);
1044
1045 /*
1046 * And create the smaller matrix.
1047 */
1048 for (i = 0; i < n; i++)
1049 for (j = 0; j < n; j++)
1050 grid[i*cr+j] = usage->cube[indices[rowidx[i]*cr+colidx[j]]];
1051
1052 /*
1053 * Having done that, we now have a matrix in which every row
1054 * has at least two 1s in. Now we search to see if we can find
1055 * a rectangle of zeroes (in the set-theoretic sense of
1056 * `rectangle', i.e. a subset of rows crossed with a subset of
1057 * columns) whose width and height add up to n.
1058 */
1059
1060 memset(set, 0, n);
1061 count = 0;
1062 while (1) {
1063 /*
1064 * We have a candidate set. If its size is <=1 or >=n-1
1065 * then we move on immediately.
1066 */
1067 if (count > 1 && count < n-1) {
1068 /*
1069 * The number of rows we need is n-count. See if we can
1070 * find that many rows which each have a zero in all
1071 * the positions listed in `set'.
1072 */
1073 int rows = 0;
1074 for (i = 0; i < n; i++) {
1075 int ok = TRUE;
1076 for (j = 0; j < n; j++)
1077 if (set[j] && grid[i*cr+j]) {
1078 ok = FALSE;
1079 break;
1080 }
1081 if (ok)
1082 rows++;
1083 }
1084
1085 /*
1086 * We expect never to be able to get _more_ than
1087 * n-count suitable rows: this would imply that (for
1088 * example) there are four numbers which between them
1089 * have at most three possible positions, and hence it
1090 * indicates a faulty deduction before this point or
1091 * even a bogus clue.
1092 */
1093 if (rows > n - count) {
1094 #ifdef STANDALONE_SOLVER
1095 if (solver_show_working) {
1096 va_list ap;
1097 printf("%*s", solver_recurse_depth*4,
1098 "");
1099 va_start(ap, fmt);
1100 vprintf(fmt, ap);
1101 va_end(ap);
1102 printf(":\n%*s contradiction reached\n",
1103 solver_recurse_depth*4, "");
1104 }
1105 #endif
1106 return -1;
1107 }
1108
1109 if (rows >= n - count) {
1110 int progress = FALSE;
1111
1112 /*
1113 * We've got one! Now, for each row which _doesn't_
1114 * satisfy the criterion, eliminate all its set
1115 * bits in the positions _not_ listed in `set'.
1116 * Return +1 (meaning progress has been made) if we
1117 * successfully eliminated anything at all.
1118 *
1119 * This involves referring back through
1120 * rowidx/colidx in order to work out which actual
1121 * positions in the cube to meddle with.
1122 */
1123 for (i = 0; i < n; i++) {
1124 int ok = TRUE;
1125 for (j = 0; j < n; j++)
1126 if (set[j] && grid[i*cr+j]) {
1127 ok = FALSE;
1128 break;
1129 }
1130 if (!ok) {
1131 for (j = 0; j < n; j++)
1132 if (!set[j] && grid[i*cr+j]) {
1133 int fpos = indices[rowidx[i]*cr+colidx[j]];
1134 #ifdef STANDALONE_SOLVER
1135 if (solver_show_working) {
1136 int px, py, pn;
1137
1138 if (!progress) {
1139 va_list ap;
1140 printf("%*s", solver_recurse_depth*4,
1141 "");
1142 va_start(ap, fmt);
1143 vprintf(fmt, ap);
1144 va_end(ap);
1145 printf(":\n");
1146 }
1147
1148 pn = 1 + fpos % cr;
1149 px = fpos / cr;
1150 py = px / cr;
1151 px %= cr;
1152
1153 printf("%*s ruling out %d at (%d,%d)\n",
1154 solver_recurse_depth*4, "",
1155 pn, 1+px, 1+py);
1156 }
1157 #endif
1158 progress = TRUE;
1159 usage->cube[fpos] = FALSE;
1160 }
1161 }
1162 }
1163
1164 if (progress) {
1165 return +1;
1166 }
1167 }
1168 }
1169
1170 /*
1171 * Binary increment: change the rightmost 0 to a 1, and
1172 * change all 1s to the right of it to 0s.
1173 */
1174 i = n;
1175 while (i > 0 && set[i-1])
1176 set[--i] = 0, count--;
1177 if (i > 0)
1178 set[--i] = 1, count++;
1179 else
1180 break; /* done */
1181 }
1182
1183 return 0;
1184 }
1185
1186 /*
1187 * Look for forcing chains. A forcing chain is a path of
1188 * pairwise-exclusive squares (i.e. each pair of adjacent squares
1189 * in the path are in the same row, column or block) with the
1190 * following properties:
1191 *
1192 * (a) Each square on the path has precisely two possible numbers.
1193 *
1194 * (b) Each pair of squares which are adjacent on the path share
1195 * at least one possible number in common.
1196 *
1197 * (c) Each square in the middle of the path shares _both_ of its
1198 * numbers with at least one of its neighbours (not the same
1199 * one with both neighbours).
1200 *
1201 * These together imply that at least one of the possible number
1202 * choices at one end of the path forces _all_ the rest of the
1203 * numbers along the path. In order to make real use of this, we
1204 * need further properties:
1205 *
1206 * (c) Ruling out some number N from the square at one end of the
1207 * path forces the square at the other end to take the same
1208 * number N.
1209 *
1210 * (d) The two end squares are both in line with some third
1211 * square.
1212 *
1213 * (e) That third square currently has N as a possibility.
1214 *
1215 * If we can find all of that lot, we can deduce that at least one
1216 * of the two ends of the forcing chain has number N, and that
1217 * therefore the mutually adjacent third square does not.
1218 *
1219 * To find forcing chains, we're going to start a bfs at each
1220 * suitable square, once for each of its two possible numbers.
1221 */
1222 static int solver_forcing(struct solver_usage *usage,
1223 struct solver_scratch *scratch)
1224 {
1225 int cr = usage->cr;
1226 int *bfsqueue = scratch->bfsqueue;
1227 #ifdef STANDALONE_SOLVER
1228 int *bfsprev = scratch->bfsprev;
1229 #endif
1230 unsigned char *number = scratch->grid;
1231 int *neighbours = scratch->neighbours;
1232 int x, y;
1233
1234 for (y = 0; y < cr; y++)
1235 for (x = 0; x < cr; x++) {
1236 int count, t, n;
1237
1238 /*
1239 * If this square doesn't have exactly two candidate
1240 * numbers, don't try it.
1241 *
1242 * In this loop we also sum the candidate numbers,
1243 * which is a nasty hack to allow us to quickly find
1244 * `the other one' (since we will shortly know there
1245 * are exactly two).
1246 */
1247 for (count = t = 0, n = 1; n <= cr; n++)
1248 if (cube(x, y, n))
1249 count++, t += n;
1250 if (count != 2)
1251 continue;
1252
1253 /*
1254 * Now attempt a bfs for each candidate.
1255 */
1256 for (n = 1; n <= cr; n++)
1257 if (cube(x, y, n)) {
1258 int orign, currn, head, tail;
1259
1260 /*
1261 * Begin a bfs.
1262 */
1263 orign = n;
1264
1265 memset(number, cr+1, cr*cr);
1266 head = tail = 0;
1267 bfsqueue[tail++] = y*cr+x;
1268 #ifdef STANDALONE_SOLVER
1269 bfsprev[y*cr+x] = -1;
1270 #endif
1271 number[y*cr+x] = t - n;
1272
1273 while (head < tail) {
1274 int xx, yy, nneighbours, xt, yt, i;
1275
1276 xx = bfsqueue[head++];
1277 yy = xx / cr;
1278 xx %= cr;
1279
1280 currn = number[yy*cr+xx];
1281
1282 /*
1283 * Find neighbours of yy,xx.
1284 */
1285 nneighbours = 0;
1286 for (yt = 0; yt < cr; yt++)
1287 neighbours[nneighbours++] = yt*cr+xx;
1288 for (xt = 0; xt < cr; xt++)
1289 neighbours[nneighbours++] = yy*cr+xt;
1290 xt = usage->blocks->whichblock[yy*cr+xx];
1291 for (yt = 0; yt < cr; yt++)
1292 neighbours[nneighbours++] = usage->blocks->blocks[xt][yt];
1293 if (usage->diag) {
1294 int sqindex = yy*cr+xx;
1295 if (ondiag0(sqindex)) {
1296 for (i = 0; i < cr; i++)
1297 neighbours[nneighbours++] = diag0(i);
1298 }
1299 if (ondiag1(sqindex)) {
1300 for (i = 0; i < cr; i++)
1301 neighbours[nneighbours++] = diag1(i);
1302 }
1303 }
1304
1305 /*
1306 * Try visiting each of those neighbours.
1307 */
1308 for (i = 0; i < nneighbours; i++) {
1309 int cc, tt, nn;
1310
1311 xt = neighbours[i] % cr;
1312 yt = neighbours[i] / cr;
1313
1314 /*
1315 * We need this square to not be
1316 * already visited, and to include
1317 * currn as a possible number.
1318 */
1319 if (number[yt*cr+xt] <= cr)
1320 continue;
1321 if (!cube(xt, yt, currn))
1322 continue;
1323
1324 /*
1325 * Don't visit _this_ square a second
1326 * time!
1327 */
1328 if (xt == xx && yt == yy)
1329 continue;
1330
1331 /*
1332 * To continue with the bfs, we need
1333 * this square to have exactly two
1334 * possible numbers.
1335 */
1336 for (cc = tt = 0, nn = 1; nn <= cr; nn++)
1337 if (cube(xt, yt, nn))
1338 cc++, tt += nn;
1339 if (cc == 2) {
1340 bfsqueue[tail++] = yt*cr+xt;
1341 #ifdef STANDALONE_SOLVER
1342 bfsprev[yt*cr+xt] = yy*cr+xx;
1343 #endif
1344 number[yt*cr+xt] = tt - currn;
1345 }
1346
1347 /*
1348 * One other possibility is that this
1349 * might be the square in which we can
1350 * make a real deduction: if it's
1351 * adjacent to x,y, and currn is equal
1352 * to the original number we ruled out.
1353 */
1354 if (currn == orign &&
1355 (xt == x || yt == y ||
1356 (usage->blocks->whichblock[yt*cr+xt] == usage->blocks->whichblock[y*cr+x]) ||
1357 (usage->diag && ((ondiag0(yt*cr+xt) && ondiag0(y*cr+x)) ||
1358 (ondiag1(yt*cr+xt) && ondiag1(y*cr+x)))))) {
1359 #ifdef STANDALONE_SOLVER
1360 if (solver_show_working) {
1361 char *sep = "";
1362 int xl, yl;
1363 printf("%*sforcing chain, %d at ends of ",
1364 solver_recurse_depth*4, "", orign);
1365 xl = xx;
1366 yl = yy;
1367 while (1) {
1368 printf("%s(%d,%d)", sep, 1+xl,
1369 1+yl);
1370 xl = bfsprev[yl*cr+xl];
1371 if (xl < 0)
1372 break;
1373 yl = xl / cr;
1374 xl %= cr;
1375 sep = "-";
1376 }
1377 printf("\n%*s ruling out %d at (%d,%d)\n",
1378 solver_recurse_depth*4, "",
1379 orign, 1+xt, 1+yt);
1380 }
1381 #endif
1382 cube(xt, yt, orign) = FALSE;
1383 return 1;
1384 }
1385 }
1386 }
1387 }
1388 }
1389
1390 return 0;
1391 }
1392
1393 static int solver_killer_minmax(struct solver_usage *usage,
1394 struct block_structure *cages, digit *clues,
1395 int b
1396 #ifdef STANDALONE_SOLVER
1397 , const char *extra
1398 #endif
1399 )
1400 {
1401 int cr = usage->cr;
1402 int i;
1403 int ret = 0;
1404 int nsquares = cages->nr_squares[b];
1405
1406 if (clues[b] == 0)
1407 return 0;
1408
1409 for (i = 0; i < nsquares; i++) {
1410 int n, x = cages->blocks[b][i];
1411
1412 for (n = 1; n <= cr; n++)
1413 if (cube2(x, n)) {
1414 int maxval = 0, minval = 0;
1415 int j;
1416 for (j = 0; j < nsquares; j++) {
1417 int m;
1418 int y = cages->blocks[b][j];
1419 if (i == j)
1420 continue;
1421 for (m = 1; m <= cr; m++)
1422 if (cube2(y, m)) {
1423 minval += m;
1424 break;
1425 }
1426 for (m = cr; m > 0; m--)
1427 if (cube2(y, m)) {
1428 maxval += m;
1429 break;
1430 }
1431 }
1432 if (maxval + n < clues[b]) {
1433 cube2(x, n) = FALSE;
1434 ret = 1;
1435 #ifdef STANDALONE_SOLVER
1436 if (solver_show_working)
1437 printf("%*s ruling out %d at (%d,%d) as too low %s\n",
1438 solver_recurse_depth*4, "killer minmax analysis",
1439 n, 1 + x%cr, 1 + x/cr, extra);
1440 #endif
1441 }
1442 if (minval + n > clues[b]) {
1443 cube2(x, n) = FALSE;
1444 ret = 1;
1445 #ifdef STANDALONE_SOLVER
1446 if (solver_show_working)
1447 printf("%*s ruling out %d at (%d,%d) as too high %s\n",
1448 solver_recurse_depth*4, "killer minmax analysis",
1449 n, 1 + x%cr, 1 + x/cr, extra);
1450 #endif
1451 }
1452 }
1453 }
1454 return ret;
1455 }
1456
1457 static int solver_killer_sums(struct solver_usage *usage, int b,
1458 struct block_structure *cages, int clue,
1459 int cage_is_region
1460 #ifdef STANDALONE_SOLVER
1461 , const char *cage_type
1462 #endif
1463 )
1464 {
1465 int cr = usage->cr;
1466 int i, ret, max_sums;
1467 int nsquares = cages->nr_squares[b];
1468 unsigned long *sumbits, possible_addends;
1469
1470 if (clue == 0) {
1471 assert(nsquares == 0);
1472 return 0;
1473 }
1474 assert(nsquares > 0);
1475
1476 if (nsquares < 2 || nsquares > 4)
1477 return 0;
1478
1479 if (!cage_is_region) {
1480 int known_row = -1, known_col = -1, known_block = -1;
1481 /*
1482 * Verify that the cage lies entirely within one region,
1483 * so that using the precomputed sums is valid.
1484 */
1485 for (i = 0; i < nsquares; i++) {
1486 int x = cages->blocks[b][i];
1487
1488 assert(usage->grid[x] == 0);
1489
1490 if (i == 0) {
1491 known_row = x/cr;
1492 known_col = x%cr;
1493 known_block = usage->blocks->whichblock[x];
1494 } else {
1495 if (known_row != x/cr)
1496 known_row = -1;
1497 if (known_col != x%cr)
1498 known_col = -1;
1499 if (known_block != usage->blocks->whichblock[x])
1500 known_block = -1;
1501 }
1502 }
1503 if (known_block == -1 && known_col == -1 && known_row == -1)
1504 return 0;
1505 }
1506 if (nsquares == 2) {
1507 if (clue < 3 || clue > 17)
1508 return -1;
1509
1510 sumbits = sum_bits2[clue];
1511 max_sums = MAX_2SUMS;
1512 } else if (nsquares == 3) {
1513 if (clue < 6 || clue > 24)
1514 return -1;
1515
1516 sumbits = sum_bits3[clue];
1517 max_sums = MAX_3SUMS;
1518 } else {
1519 if (clue < 10 || clue > 30)
1520 return -1;
1521
1522 sumbits = sum_bits4[clue];
1523 max_sums = MAX_4SUMS;
1524 }
1525 /*
1526 * For every possible way to get the sum, see if there is
1527 * one square in the cage that disallows all the required
1528 * addends. If we find one such square, this way to compute
1529 * the sum is impossible.
1530 */
1531 possible_addends = 0;
1532 for (i = 0; i < max_sums; i++) {
1533 int j;
1534 unsigned long bits = sumbits[i];
1535
1536 if (bits == 0)
1537 break;
1538
1539 for (j = 0; j < nsquares; j++) {
1540 int n;
1541 unsigned long square_bits = bits;
1542 int x = cages->blocks[b][j];
1543 for (n = 1; n <= cr; n++)
1544 if (!cube2(x, n))
1545 square_bits &= ~(1L << n);
1546 if (square_bits == 0) {
1547 break;
1548 }
1549 }
1550 if (j == nsquares)
1551 possible_addends |= bits;
1552 }
1553 /*
1554 * Now we know which addends can possibly be used to
1555 * compute the sum. Remove all other digits from the
1556 * set of possibilities.
1557 */
1558 if (possible_addends == 0)
1559 return -1;
1560
1561 ret = 0;
1562 for (i = 0; i < nsquares; i++) {
1563 int n;
1564 int x = cages->blocks[b][i];
1565 for (n = 1; n <= cr; n++) {
1566 if (!cube2(x, n))
1567 continue;
1568 if ((possible_addends & (1 << n)) == 0) {
1569 cube2(x, n) = FALSE;
1570 ret = 1;
1571 #ifdef STANDALONE_SOLVER
1572 if (solver_show_working) {
1573 printf("%*s using %s\n",
1574 solver_recurse_depth*4, "killer sums analysis",
1575 cage_type);
1576 printf("%*s ruling out %d at (%d,%d) due to impossible %d-sum\n",
1577 solver_recurse_depth*4, "",
1578 n, 1 + x%cr, 1 + x/cr, nsquares);
1579 }
1580 #endif
1581 }
1582 }
1583 }
1584 return ret;
1585 }
1586
1587 static int filter_whole_cages(struct solver_usage *usage, int *squares, int n,
1588 int *filtered_sum)
1589 {
1590 int b, i, j, off;
1591 *filtered_sum = 0;
1592
1593 /* First, filter squares with a clue. */
1594 for (i = j = 0; i < n; i++)
1595 if (usage->grid[squares[i]])
1596 *filtered_sum += usage->grid[squares[i]];
1597 else
1598 squares[j++] = squares[i];
1599 n = j;
1600
1601 /*
1602 * Filter all cages that are covered entirely by the list of
1603 * squares.
1604 */
1605 off = 0;
1606 for (b = 0; b < usage->kblocks->nr_blocks && off < n; b++) {
1607 int b_squares = usage->kblocks->nr_squares[b];
1608 int matched = 0;
1609
1610 if (b_squares == 0)
1611 continue;
1612
1613 /*
1614 * Find all squares of block b that lie in our list,
1615 * and make them contiguous at off, which is the current position
1616 * in the output list.
1617 */
1618 for (i = 0; i < b_squares; i++) {
1619 for (j = off; j < n; j++)
1620 if (squares[j] == usage->kblocks->blocks[b][i]) {
1621 int t = squares[off + matched];
1622 squares[off + matched] = squares[j];
1623 squares[j] = t;
1624 matched++;
1625 break;
1626 }
1627 }
1628 /* If so, filter out all squares of b from the list. */
1629 if (matched != usage->kblocks->nr_squares[b]) {
1630 off += matched;
1631 continue;
1632 }
1633 memmove(squares + off, squares + off + matched,
1634 (n - off - matched) * sizeof *squares);
1635 n -= matched;
1636
1637 *filtered_sum += usage->kclues[b];
1638 }
1639 assert(off == n);
1640 return off;
1641 }
1642
1643 static struct solver_scratch *solver_new_scratch(struct solver_usage *usage)
1644 {
1645 struct solver_scratch *scratch = snew(struct solver_scratch);
1646 int cr = usage->cr;
1647 scratch->grid = snewn(cr*cr, unsigned char);
1648 scratch->rowidx = snewn(cr, unsigned char);
1649 scratch->colidx = snewn(cr, unsigned char);
1650 scratch->set = snewn(cr, unsigned char);
1651 scratch->neighbours = snewn(5*cr, int);
1652 scratch->bfsqueue = snewn(cr*cr, int);
1653 #ifdef STANDALONE_SOLVER
1654 scratch->bfsprev = snewn(cr*cr, int);
1655 #endif
1656 scratch->indexlist = snewn(cr*cr, int); /* used for set elimination */
1657 scratch->indexlist2 = snewn(cr, int); /* only used for intersect() */
1658 return scratch;
1659 }
1660
1661 static void solver_free_scratch(struct solver_scratch *scratch)
1662 {
1663 #ifdef STANDALONE_SOLVER
1664 sfree(scratch->bfsprev);
1665 #endif
1666 sfree(scratch->bfsqueue);
1667 sfree(scratch->neighbours);
1668 sfree(scratch->set);
1669 sfree(scratch->colidx);
1670 sfree(scratch->rowidx);
1671 sfree(scratch->grid);
1672 sfree(scratch->indexlist);
1673 sfree(scratch->indexlist2);
1674 sfree(scratch);
1675 }
1676
1677 /*
1678 * Used for passing information about difficulty levels between the solver
1679 * and its callers.
1680 */
1681 struct difficulty {
1682 /* Maximum levels allowed. */
1683 int maxdiff, maxkdiff;
1684 /* Levels reached by the solver. */
1685 int diff, kdiff;
1686 };
1687
1688 static void solver(int cr, struct block_structure *blocks,
1689 struct block_structure *kblocks, int xtype,
1690 digit *grid, digit *kgrid, struct difficulty *dlev)
1691 {
1692 struct solver_usage *usage;
1693 struct solver_scratch *scratch;
1694 int x, y, b, i, n, ret;
1695 int diff = DIFF_BLOCK;
1696 int kdiff = DIFF_KSINGLE;
1697
1698 /*
1699 * Set up a usage structure as a clean slate (everything
1700 * possible).
1701 */
1702 usage = snew(struct solver_usage);
1703 usage->cr = cr;
1704 usage->blocks = blocks;
1705 if (kblocks) {
1706 usage->kblocks = dup_block_structure(kblocks);
1707 usage->extra_cages = alloc_block_structure (kblocks->c, kblocks->r,
1708 cr * cr, cr, cr * cr);
1709 usage->extra_clues = snewn(cr*cr, digit);
1710 } else {
1711 usage->kblocks = usage->extra_cages = NULL;
1712 usage->extra_clues = NULL;
1713 }
1714 usage->cube = snewn(cr*cr*cr, unsigned char);
1715 usage->grid = grid; /* write straight back to the input */
1716 if (kgrid) {
1717 int nclues;
1718
1719 assert(kblocks);
1720 nclues = kblocks->nr_blocks;
1721 /*
1722 * Allow for expansion of the killer regions, the absolute
1723 * limit is obviously one region per square.
1724 */
1725 usage->kclues = snewn(cr*cr, digit);
1726 for (i = 0; i < nclues; i++) {
1727 for (n = 0; n < kblocks->nr_squares[i]; n++)
1728 if (kgrid[kblocks->blocks[i][n]] != 0)
1729 usage->kclues[i] = kgrid[kblocks->blocks[i][n]];
1730 assert(usage->kclues[i] > 0);
1731 }
1732 memset(usage->kclues + nclues, 0, cr*cr - nclues);
1733 } else {
1734 usage->kclues = NULL;
1735 }
1736
1737 memset(usage->cube, TRUE, cr*cr*cr);
1738
1739 usage->row = snewn(cr * cr, unsigned char);
1740 usage->col = snewn(cr * cr, unsigned char);
1741 usage->blk = snewn(cr * cr, unsigned char);
1742 memset(usage->row, FALSE, cr * cr);
1743 memset(usage->col, FALSE, cr * cr);
1744 memset(usage->blk, FALSE, cr * cr);
1745
1746 if (xtype) {
1747 usage->diag = snewn(cr * 2, unsigned char);
1748 memset(usage->diag, FALSE, cr * 2);
1749 } else
1750 usage->diag = NULL;
1751
1752 usage->nr_regions = cr * 3 + (xtype ? 2 : 0);
1753 usage->regions = snewn(cr * usage->nr_regions, int);
1754 usage->sq2region = snewn(cr * cr * 3, int *);
1755
1756 for (n = 0; n < cr; n++) {
1757 for (i = 0; i < cr; i++) {
1758 x = n*cr+i;
1759 y = i*cr+n;
1760 b = usage->blocks->blocks[n][i];
1761 usage->regions[cr*n*3 + i] = x;
1762 usage->regions[cr*n*3 + cr + i] = y;
1763 usage->regions[cr*n*3 + 2*cr + i] = b;
1764 usage->sq2region[x*3] = usage->regions + cr*n*3;
1765 usage->sq2region[y*3 + 1] = usage->regions + cr*n*3 + cr;
1766 usage->sq2region[b*3 + 2] = usage->regions + cr*n*3 + 2*cr;
1767 }
1768 }
1769
1770 scratch = solver_new_scratch(usage);
1771
1772 /*
1773 * Place all the clue numbers we are given.
1774 */
1775 for (x = 0; x < cr; x++)
1776 for (y = 0; y < cr; y++) {
1777 int n = grid[y*cr+x];
1778 if (n) {
1779 if (!cube(x,y,n)) {
1780 diff = DIFF_IMPOSSIBLE;
1781 goto got_result;
1782 }
1783 solver_place(usage, x, y, grid[y*cr+x]);
1784 }
1785 }
1786
1787 /*
1788 * Now loop over the grid repeatedly trying all permitted modes
1789 * of reasoning. The loop terminates if we complete an
1790 * iteration without making any progress; we then return
1791 * failure or success depending on whether the grid is full or
1792 * not.
1793 */
1794 while (1) {
1795 /*
1796 * I'd like to write `continue;' inside each of the
1797 * following loops, so that the solver returns here after
1798 * making some progress. However, I can't specify that I
1799 * want to continue an outer loop rather than the innermost
1800 * one, so I'm apologetically resorting to a goto.
1801 */
1802 cont:
1803
1804 /*
1805 * Blockwise positional elimination.
1806 */
1807 for (b = 0; b < cr; b++)
1808 for (n = 1; n <= cr; n++)
1809 if (!usage->blk[b*cr+n-1]) {
1810 for (i = 0; i < cr; i++)
1811 scratch->indexlist[i] = cubepos2(usage->blocks->blocks[b][i],n);
1812 ret = solver_elim(usage, scratch->indexlist
1813 #ifdef STANDALONE_SOLVER
1814 , "positional elimination,"
1815 " %d in block %s", n,
1816 usage->blocks->blocknames[b]
1817 #endif
1818 );
1819 if (ret < 0) {
1820 diff = DIFF_IMPOSSIBLE;
1821 goto got_result;
1822 } else if (ret > 0) {
1823 diff = max(diff, DIFF_BLOCK);
1824 goto cont;
1825 }
1826 }
1827
1828 if (usage->kclues != NULL) {
1829 int changed = FALSE;
1830
1831 /*
1832 * First, bring the kblocks into a more useful form: remove
1833 * all filled-in squares, and reduce the sum by their values.
1834 * Walk in reverse order, since otherwise remove_from_block
1835 * can move element past our loop counter.
1836 */
1837 for (b = 0; b < usage->kblocks->nr_blocks; b++)
1838 for (i = usage->kblocks->nr_squares[b] -1; i >= 0; i--) {
1839 int x = usage->kblocks->blocks[b][i];
1840 int t = usage->grid[x];
1841
1842 if (t == 0)
1843 continue;
1844 remove_from_block(usage->kblocks, b, x);
1845 if (t > usage->kclues[b]) {
1846 diff = DIFF_IMPOSSIBLE;
1847 goto got_result;
1848 }
1849 usage->kclues[b] -= t;
1850 /*
1851 * Since cages are regions, this tells us something
1852 * about the other squares in the cage.
1853 */
1854 for (n = 0; n < usage->kblocks->nr_squares[b]; n++) {
1855 cube2(usage->kblocks->blocks[b][n], t) = FALSE;
1856 }
1857 }
1858
1859 /*
1860 * The most trivial kind of solver for killer puzzles: fill
1861 * single-square cages.
1862 */
1863 for (b = 0; b < usage->kblocks->nr_blocks; b++) {
1864 int squares = usage->kblocks->nr_squares[b];
1865 if (squares == 1) {
1866 int v = usage->kclues[b];
1867 if (v < 1 || v > cr) {
1868 diff = DIFF_IMPOSSIBLE;
1869 goto got_result;
1870 }
1871 x = usage->kblocks->blocks[b][0] % cr;
1872 y = usage->kblocks->blocks[b][0] / cr;
1873 if (!cube(x, y, v)) {
1874 diff = DIFF_IMPOSSIBLE;
1875 goto got_result;
1876 }
1877 solver_place(usage, x, y, v);
1878
1879 #ifdef STANDALONE_SOLVER
1880 if (solver_show_working) {
1881 printf("%*s placing %d at (%d,%d)\n",
1882 solver_recurse_depth*4, "killer single-square cage",
1883 v, 1 + x%cr, 1 + x/cr);
1884 }
1885 #endif
1886 changed = TRUE;
1887 }
1888 }
1889
1890 if (changed) {
1891 kdiff = max(kdiff, DIFF_KSINGLE);
1892 goto cont;
1893 }
1894 }
1895 if (dlev->maxkdiff >= DIFF_KINTERSECT && usage->kclues != NULL) {
1896 int changed = FALSE;
1897 /*
1898 * Now, create the extra_cages information. Every full region
1899 * (row, column, or block) has the same sum total (45 for 3x3
1900 * puzzles. After we try to cover these regions with cages that
1901 * lie entirely within them, any squares that remain must bring
1902 * the total to this known value, and so they form additional
1903 * cages which aren't immediately evident in the displayed form
1904 * of the puzzle.
1905 */
1906 usage->extra_cages->nr_blocks = 0;
1907 for (i = 0; i < 3; i++) {
1908 for (n = 0; n < cr; n++) {
1909 int *region = usage->regions + cr*n*3 + i*cr;
1910 int sum = cr * (cr + 1) / 2;
1911 int nsquares = cr;
1912 int filtered;
1913 int n_extra = usage->extra_cages->nr_blocks;
1914 int *extra_list = usage->extra_cages->blocks[n_extra];
1915 memcpy(extra_list, region, cr * sizeof *extra_list);
1916
1917 nsquares = filter_whole_cages(usage, extra_list, nsquares, &filtered);
1918 sum -= filtered;
1919 if (nsquares == cr || nsquares == 0)
1920 continue;
1921 if (dlev->maxdiff >= DIFF_RECURSIVE) {
1922 if (sum <= 0) {
1923 dlev->diff = DIFF_IMPOSSIBLE;
1924 goto got_result;
1925 }
1926 }
1927 assert(sum > 0);
1928
1929 if (nsquares == 1) {
1930 if (sum > cr) {
1931 diff = DIFF_IMPOSSIBLE;
1932 goto got_result;
1933 }
1934 x = extra_list[0] % cr;
1935 y = extra_list[0] / cr;
1936 if (!cube(x, y, sum)) {
1937 diff = DIFF_IMPOSSIBLE;
1938 goto got_result;
1939 }
1940 solver_place(usage, x, y, sum);
1941 changed = TRUE;
1942 #ifdef STANDALONE_SOLVER
1943 if (solver_show_working) {
1944 printf("%*s placing %d at (%d,%d)\n",
1945 solver_recurse_depth*4, "killer single-square deduced cage",
1946 sum, 1 + x, 1 + y);
1947 }
1948 #endif
1949 }
1950
1951 b = usage->kblocks->whichblock[extra_list[0]];
1952 for (x = 1; x < nsquares; x++)
1953 if (usage->kblocks->whichblock[extra_list[x]] != b)
1954 break;
1955 if (x == nsquares) {
1956 assert(usage->kblocks->nr_squares[b] > nsquares);
1957 split_block(usage->kblocks, extra_list, nsquares);
1958 assert(usage->kblocks->nr_squares[usage->kblocks->nr_blocks - 1] == nsquares);
1959 usage->kclues[usage->kblocks->nr_blocks - 1] = sum;
1960 usage->kclues[b] -= sum;
1961 } else {
1962 usage->extra_cages->nr_squares[n_extra] = nsquares;
1963 usage->extra_cages->nr_blocks++;
1964 usage->extra_clues[n_extra] = sum;
1965 }
1966 }
1967 }
1968 if (changed) {
1969 kdiff = max(kdiff, DIFF_KINTERSECT);
1970 goto cont;
1971 }
1972 }
1973
1974 /*
1975 * Another simple killer-type elimination. For every square in a
1976 * cage, find the minimum and maximum possible sums of all the
1977 * other squares in the same cage, and rule out possibilities
1978 * for the given square based on whether they are guaranteed to
1979 * cause the sum to be either too high or too low.
1980 * This is a special case of trying all possible sums across a
1981 * region, which is a recursive algorithm. We should probably
1982 * implement it for a higher difficulty level.
1983 */
1984 if (dlev->maxkdiff >= DIFF_KMINMAX && usage->kclues != NULL) {
1985 int changed = FALSE;
1986 for (b = 0; b < usage->kblocks->nr_blocks; b++) {
1987 int ret = solver_killer_minmax(usage, usage->kblocks,
1988 usage->kclues, b
1989 #ifdef STANDALONE_SOLVER
1990 , ""
1991 #endif
1992 );
1993 if (ret < 0) {
1994 diff = DIFF_IMPOSSIBLE;
1995 goto got_result;
1996 } else if (ret > 0)
1997 changed = TRUE;
1998 }
1999 for (b = 0; b < usage->extra_cages->nr_blocks; b++) {
2000 int ret = solver_killer_minmax(usage, usage->extra_cages,
2001 usage->extra_clues, b
2002 #ifdef STANDALONE_SOLVER
2003 , "using deduced cages"
2004 #endif
2005 );
2006 if (ret < 0) {
2007 diff = DIFF_IMPOSSIBLE;
2008 goto got_result;
2009 } else if (ret > 0)
2010 changed = TRUE;
2011 }
2012 if (changed) {
2013 kdiff = max(kdiff, DIFF_KMINMAX);
2014 goto cont;
2015 }
2016 }
2017
2018 /*
2019 * Try to use knowledge of which numbers can be used to generate
2020 * a given sum.
2021 * This can only be used if a cage lies entirely within a region.
2022 */
2023 if (dlev->maxkdiff >= DIFF_KSUMS && usage->kclues != NULL) {
2024 int changed = FALSE;
2025
2026 for (b = 0; b < usage->kblocks->nr_blocks; b++) {
2027 int ret = solver_killer_sums(usage, b, usage->kblocks,
2028 usage->kclues[b], TRUE
2029 #ifdef STANDALONE_SOLVER
2030 , "regular clues"
2031 #endif
2032 );
2033 if (ret > 0) {
2034 changed = TRUE;
2035 kdiff = max(kdiff, DIFF_KSUMS);
2036 } else if (ret < 0) {
2037 diff = DIFF_IMPOSSIBLE;
2038 goto got_result;
2039 }
2040 }
2041
2042 for (b = 0; b < usage->extra_cages->nr_blocks; b++) {
2043 int ret = solver_killer_sums(usage, b, usage->extra_cages,
2044 usage->extra_clues[b], FALSE
2045 #ifdef STANDALONE_SOLVER
2046 , "deduced clues"
2047 #endif
2048 );
2049 if (ret > 0) {
2050 changed = TRUE;
2051 kdiff = max(kdiff, DIFF_KSUMS);
2052 } else if (ret < 0) {
2053 diff = DIFF_IMPOSSIBLE;
2054 goto got_result;
2055 }
2056 }
2057
2058 if (changed)
2059 goto cont;
2060 }
2061
2062 if (dlev->maxdiff <= DIFF_BLOCK)
2063 break;
2064
2065 /*
2066 * Row-wise positional elimination.
2067 */
2068 for (y = 0; y < cr; y++)
2069 for (n = 1; n <= cr; n++)
2070 if (!usage->row[y*cr+n-1]) {
2071 for (x = 0; x < cr; x++)
2072 scratch->indexlist[x] = cubepos(x, y, n);
2073 ret = solver_elim(usage, scratch->indexlist
2074 #ifdef STANDALONE_SOLVER
2075 , "positional elimination,"
2076 " %d in row %d", n, 1+y
2077 #endif
2078 );
2079 if (ret < 0) {
2080 diff = DIFF_IMPOSSIBLE;
2081 goto got_result;
2082 } else if (ret > 0) {
2083 diff = max(diff, DIFF_SIMPLE);
2084 goto cont;
2085 }
2086 }
2087 /*
2088 * Column-wise positional elimination.
2089 */
2090 for (x = 0; x < cr; x++)
2091 for (n = 1; n <= cr; n++)
2092 if (!usage->col[x*cr+n-1]) {
2093 for (y = 0; y < cr; y++)
2094 scratch->indexlist[y] = cubepos(x, y, n);
2095 ret = solver_elim(usage, scratch->indexlist
2096 #ifdef STANDALONE_SOLVER
2097 , "positional elimination,"
2098 " %d in column %d", n, 1+x
2099 #endif
2100 );
2101 if (ret < 0) {
2102 diff = DIFF_IMPOSSIBLE;
2103 goto got_result;
2104 } else if (ret > 0) {
2105 diff = max(diff, DIFF_SIMPLE);
2106 goto cont;
2107 }
2108 }
2109
2110 /*
2111 * X-diagonal positional elimination.
2112 */
2113 if (usage->diag) {
2114 for (n = 1; n <= cr; n++)
2115 if (!usage->diag[n-1]) {
2116 for (i = 0; i < cr; i++)
2117 scratch->indexlist[i] = cubepos2(diag0(i), n);
2118 ret = solver_elim(usage, scratch->indexlist
2119 #ifdef STANDALONE_SOLVER
2120 , "positional elimination,"
2121 " %d in \\-diagonal", n
2122 #endif
2123 );
2124 if (ret < 0) {
2125 diff = DIFF_IMPOSSIBLE;
2126 goto got_result;
2127 } else if (ret > 0) {
2128 diff = max(diff, DIFF_SIMPLE);
2129 goto cont;
2130 }
2131 }
2132 for (n = 1; n <= cr; n++)
2133 if (!usage->diag[cr+n-1]) {
2134 for (i = 0; i < cr; i++)
2135 scratch->indexlist[i] = cubepos2(diag1(i), n);
2136 ret = solver_elim(usage, scratch->indexlist
2137 #ifdef STANDALONE_SOLVER
2138 , "positional elimination,"
2139 " %d in /-diagonal", n
2140 #endif
2141 );
2142 if (ret < 0) {
2143 diff = DIFF_IMPOSSIBLE;
2144 goto got_result;
2145 } else if (ret > 0) {
2146 diff = max(diff, DIFF_SIMPLE);
2147 goto cont;
2148 }
2149 }
2150 }
2151
2152 /*
2153 * Numeric elimination.
2154 */
2155 for (x = 0; x < cr; x++)
2156 for (y = 0; y < cr; y++)
2157 if (!usage->grid[y*cr+x]) {
2158 for (n = 1; n <= cr; n++)
2159 scratch->indexlist[n-1] = cubepos(x, y, n);
2160 ret = solver_elim(usage, scratch->indexlist
2161 #ifdef STANDALONE_SOLVER
2162 , "numeric elimination at (%d,%d)",
2163 1+x, 1+y
2164 #endif
2165 );
2166 if (ret < 0) {
2167 diff = DIFF_IMPOSSIBLE;
2168 goto got_result;
2169 } else if (ret > 0) {
2170 diff = max(diff, DIFF_SIMPLE);
2171 goto cont;
2172 }
2173 }
2174
2175 if (dlev->maxdiff <= DIFF_SIMPLE)
2176 break;
2177
2178 /*
2179 * Intersectional analysis, rows vs blocks.
2180 */
2181 for (y = 0; y < cr; y++)
2182 for (b = 0; b < cr; b++)
2183 for (n = 1; n <= cr; n++) {
2184 if (usage->row[y*cr+n-1] ||
2185 usage->blk[b*cr+n-1])
2186 continue;
2187 for (i = 0; i < cr; i++) {
2188 scratch->indexlist[i] = cubepos(i, y, n);
2189 scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
2190 }
2191 /*
2192 * solver_intersect() never returns -1.
2193 */
2194 if (solver_intersect(usage, scratch->indexlist,
2195 scratch->indexlist2
2196 #ifdef STANDALONE_SOLVER
2197 , "intersectional analysis,"
2198 " %d in row %d vs block %s",
2199 n, 1+y, usage->blocks->blocknames[b]
2200 #endif
2201 ) ||
2202 solver_intersect(usage, scratch->indexlist2,
2203 scratch->indexlist
2204 #ifdef STANDALONE_SOLVER
2205 , "intersectional analysis,"
2206 " %d in block %s vs row %d",
2207 n, usage->blocks->blocknames[b], 1+y
2208 #endif
2209 )) {
2210 diff = max(diff, DIFF_INTERSECT);
2211 goto cont;
2212 }
2213 }
2214
2215 /*
2216 * Intersectional analysis, columns vs blocks.
2217 */
2218 for (x = 0; x < cr; x++)
2219 for (b = 0; b < cr; b++)
2220 for (n = 1; n <= cr; n++) {
2221 if (usage->col[x*cr+n-1] ||
2222 usage->blk[b*cr+n-1])
2223 continue;
2224 for (i = 0; i < cr; i++) {
2225 scratch->indexlist[i] = cubepos(x, i, n);
2226 scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
2227 }
2228 if (solver_intersect(usage, scratch->indexlist,
2229 scratch->indexlist2
2230 #ifdef STANDALONE_SOLVER
2231 , "intersectional analysis,"
2232 " %d in column %d vs block %s",
2233 n, 1+x, usage->blocks->blocknames[b]
2234 #endif
2235 ) ||
2236 solver_intersect(usage, scratch->indexlist2,
2237 scratch->indexlist
2238 #ifdef STANDALONE_SOLVER
2239 , "intersectional analysis,"
2240 " %d in block %s vs column %d",
2241 n, usage->blocks->blocknames[b], 1+x
2242 #endif
2243 )) {
2244 diff = max(diff, DIFF_INTERSECT);
2245 goto cont;
2246 }
2247 }
2248
2249 if (usage->diag) {
2250 /*
2251 * Intersectional analysis, \-diagonal vs blocks.
2252 */
2253 for (b = 0; b < cr; b++)
2254 for (n = 1; n <= cr; n++) {
2255 if (usage->diag[n-1] ||
2256 usage->blk[b*cr+n-1])
2257 continue;
2258 for (i = 0; i < cr; i++) {
2259 scratch->indexlist[i] = cubepos2(diag0(i), n);
2260 scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
2261 }
2262 if (solver_intersect(usage, scratch->indexlist,
2263 scratch->indexlist2
2264 #ifdef STANDALONE_SOLVER
2265 , "intersectional analysis,"
2266 " %d in \\-diagonal vs block %s",
2267 n, usage->blocks->blocknames[b]
2268 #endif
2269 ) ||
2270 solver_intersect(usage, scratch->indexlist2,
2271 scratch->indexlist
2272 #ifdef STANDALONE_SOLVER
2273 , "intersectional analysis,"
2274 " %d in block %s vs \\-diagonal",
2275 n, usage->blocks->blocknames[b]
2276 #endif
2277 )) {
2278 diff = max(diff, DIFF_INTERSECT);
2279 goto cont;
2280 }
2281 }
2282
2283 /*
2284 * Intersectional analysis, /-diagonal vs blocks.
2285 */
2286 for (b = 0; b < cr; b++)
2287 for (n = 1; n <= cr; n++) {
2288 if (usage->diag[cr+n-1] ||
2289 usage->blk[b*cr+n-1])
2290 continue;
2291 for (i = 0; i < cr; i++) {
2292 scratch->indexlist[i] = cubepos2(diag1(i), n);
2293 scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
2294 }
2295 if (solver_intersect(usage, scratch->indexlist,
2296 scratch->indexlist2
2297 #ifdef STANDALONE_SOLVER
2298 , "intersectional analysis,"
2299 " %d in /-diagonal vs block %s",
2300 n, usage->blocks->blocknames[b]
2301 #endif
2302 ) ||
2303 solver_intersect(usage, scratch->indexlist2,
2304 scratch->indexlist
2305 #ifdef STANDALONE_SOLVER
2306 , "intersectional analysis,"
2307 " %d in block %s vs /-diagonal",
2308 n, usage->blocks->blocknames[b]
2309 #endif
2310 )) {
2311 diff = max(diff, DIFF_INTERSECT);
2312 goto cont;
2313 }
2314 }
2315 }
2316
2317 if (dlev->maxdiff <= DIFF_INTERSECT)
2318 break;
2319
2320 /*
2321 * Blockwise set elimination.
2322 */
2323 for (b = 0; b < cr; b++) {
2324 for (i = 0; i < cr; i++)
2325 for (n = 1; n <= cr; n++)
2326 scratch->indexlist[i*cr+n-1] = cubepos2(usage->blocks->blocks[b][i], n);
2327 ret = solver_set(usage, scratch, scratch->indexlist
2328 #ifdef STANDALONE_SOLVER
2329 , "set elimination, block %s",
2330 usage->blocks->blocknames[b]
2331 #endif
2332 );
2333 if (ret < 0) {
2334 diff = DIFF_IMPOSSIBLE;
2335 goto got_result;
2336 } else if (ret > 0) {
2337 diff = max(diff, DIFF_SET);
2338 goto cont;
2339 }
2340 }
2341
2342 /*
2343 * Row-wise set elimination.
2344 */
2345 for (y = 0; y < cr; y++) {
2346 for (x = 0; x < cr; x++)
2347 for (n = 1; n <= cr; n++)
2348 scratch->indexlist[x*cr+n-1] = cubepos(x, y, n);
2349 ret = solver_set(usage, scratch, scratch->indexlist
2350 #ifdef STANDALONE_SOLVER
2351 , "set elimination, row %d", 1+y
2352 #endif
2353 );
2354 if (ret < 0) {
2355 diff = DIFF_IMPOSSIBLE;
2356 goto got_result;
2357 } else if (ret > 0) {
2358 diff = max(diff, DIFF_SET);
2359 goto cont;
2360 }
2361 }
2362
2363 /*
2364 * Column-wise set elimination.
2365 */
2366 for (x = 0; x < cr; x++) {
2367 for (y = 0; y < cr; y++)
2368 for (n = 1; n <= cr; n++)
2369 scratch->indexlist[y*cr+n-1] = cubepos(x, y, n);
2370 ret = solver_set(usage, scratch, scratch->indexlist
2371 #ifdef STANDALONE_SOLVER
2372 , "set elimination, column %d", 1+x
2373 #endif
2374 );
2375 if (ret < 0) {
2376 diff = DIFF_IMPOSSIBLE;
2377 goto got_result;
2378 } else if (ret > 0) {
2379 diff = max(diff, DIFF_SET);
2380 goto cont;
2381 }
2382 }
2383
2384 if (usage->diag) {
2385 /*
2386 * \-diagonal set elimination.
2387 */
2388 for (i = 0; i < cr; i++)
2389 for (n = 1; n <= cr; n++)
2390 scratch->indexlist[i*cr+n-1] = cubepos2(diag0(i), n);
2391 ret = solver_set(usage, scratch, scratch->indexlist
2392 #ifdef STANDALONE_SOLVER
2393 , "set elimination, \\-diagonal"
2394 #endif
2395 );
2396 if (ret < 0) {
2397 diff = DIFF_IMPOSSIBLE;
2398 goto got_result;
2399 } else if (ret > 0) {
2400 diff = max(diff, DIFF_SET);
2401 goto cont;
2402 }
2403
2404 /*
2405 * /-diagonal set elimination.
2406 */
2407 for (i = 0; i < cr; i++)
2408 for (n = 1; n <= cr; n++)
2409 scratch->indexlist[i*cr+n-1] = cubepos2(diag1(i), n);
2410 ret = solver_set(usage, scratch, scratch->indexlist
2411 #ifdef STANDALONE_SOLVER
2412 , "set elimination, /-diagonal"
2413 #endif
2414 );
2415 if (ret < 0) {
2416 diff = DIFF_IMPOSSIBLE;
2417 goto got_result;
2418 } else if (ret > 0) {
2419 diff = max(diff, DIFF_SET);
2420 goto cont;
2421 }
2422 }
2423
2424 if (dlev->maxdiff <= DIFF_SET)
2425 break;
2426
2427 /*
2428 * Row-vs-column set elimination on a single number.
2429 */
2430 for (n = 1; n <= cr; n++) {
2431 for (y = 0; y < cr; y++)
2432 for (x = 0; x < cr; x++)
2433 scratch->indexlist[y*cr+x] = cubepos(x, y, n);
2434 ret = solver_set(usage, scratch, scratch->indexlist
2435 #ifdef STANDALONE_SOLVER
2436 , "positional set elimination, number %d", n
2437 #endif
2438 );
2439 if (ret < 0) {
2440 diff = DIFF_IMPOSSIBLE;
2441 goto got_result;
2442 } else if (ret > 0) {
2443 diff = max(diff, DIFF_EXTREME);
2444 goto cont;
2445 }
2446 }
2447
2448 /*
2449 * Forcing chains.
2450 */
2451 if (solver_forcing(usage, scratch)) {
2452 diff = max(diff, DIFF_EXTREME);
2453 goto cont;
2454 }
2455
2456 /*
2457 * If we reach here, we have made no deductions in this
2458 * iteration, so the algorithm terminates.
2459 */
2460 break;
2461 }
2462
2463 /*
2464 * Last chance: if we haven't fully solved the puzzle yet, try
2465 * recursing based on guesses for a particular square. We pick
2466 * one of the most constrained empty squares we can find, which
2467 * has the effect of pruning the search tree as much as
2468 * possible.
2469 */
2470 if (dlev->maxdiff >= DIFF_RECURSIVE) {
2471 int best, bestcount;
2472
2473 best = -1;
2474 bestcount = cr+1;
2475
2476 for (y = 0; y < cr; y++)
2477 for (x = 0; x < cr; x++)
2478 if (!grid[y*cr+x]) {
2479 int count;
2480
2481 /*
2482 * An unfilled square. Count the number of
2483 * possible digits in it.
2484 */
2485 count = 0;
2486 for (n = 1; n <= cr; n++)
2487 if (cube(x,y,n))
2488 count++;
2489
2490 /*
2491 * We should have found any impossibilities
2492 * already, so this can safely be an assert.
2493 */
2494 assert(count > 1);
2495
2496 if (count < bestcount) {
2497 bestcount = count;
2498 best = y*cr+x;
2499 }
2500 }
2501
2502 if (best != -1) {
2503 int i, j;
2504 digit *list, *ingrid, *outgrid;
2505
2506 diff = DIFF_IMPOSSIBLE; /* no solution found yet */
2507
2508 /*
2509 * Attempt recursion.
2510 */
2511 y = best / cr;
2512 x = best % cr;
2513
2514 list = snewn(cr, digit);
2515 ingrid = snewn(cr * cr, digit);
2516 outgrid = snewn(cr * cr, digit);
2517 memcpy(ingrid, grid, cr * cr);
2518
2519 /* Make a list of the possible digits. */
2520 for (j = 0, n = 1; n <= cr; n++)
2521 if (cube(x,y,n))
2522 list[j++] = n;
2523
2524 #ifdef STANDALONE_SOLVER
2525 if (solver_show_working) {
2526 char *sep = "";
2527 printf("%*srecursing on (%d,%d) [",
2528 solver_recurse_depth*4, "", x + 1, y + 1);
2529 for (i = 0; i < j; i++) {
2530 printf("%s%d", sep, list[i]);
2531 sep = " or ";
2532 }
2533 printf("]\n");
2534 }
2535 #endif
2536
2537 /*
2538 * And step along the list, recursing back into the
2539 * main solver at every stage.
2540 */
2541 for (i = 0; i < j; i++) {
2542 memcpy(outgrid, ingrid, cr * cr);
2543 outgrid[y*cr+x] = list[i];
2544
2545 #ifdef STANDALONE_SOLVER
2546 if (solver_show_working)
2547 printf("%*sguessing %d at (%d,%d)\n",
2548 solver_recurse_depth*4, "", list[i], x + 1, y + 1);
2549 solver_recurse_depth++;
2550 #endif
2551
2552 solver(cr, blocks, kblocks, xtype, outgrid, kgrid, dlev);
2553
2554 #ifdef STANDALONE_SOLVER
2555 solver_recurse_depth--;
2556 if (solver_show_working) {
2557 printf("%*sretracting %d at (%d,%d)\n",
2558 solver_recurse_depth*4, "", list[i], x + 1, y + 1);
2559 }
2560 #endif
2561
2562 /*
2563 * If we have our first solution, copy it into the
2564 * grid we will return.
2565 */
2566 if (diff == DIFF_IMPOSSIBLE && dlev->diff != DIFF_IMPOSSIBLE)
2567 memcpy(grid, outgrid, cr*cr);
2568
2569 if (dlev->diff == DIFF_AMBIGUOUS)
2570 diff = DIFF_AMBIGUOUS;
2571 else if (dlev->diff == DIFF_IMPOSSIBLE)
2572 /* do not change our return value */;
2573 else {
2574 /* the recursion turned up exactly one solution */
2575 if (diff == DIFF_IMPOSSIBLE)
2576 diff = DIFF_RECURSIVE;
2577 else
2578 diff = DIFF_AMBIGUOUS;
2579 }
2580
2581 /*
2582 * As soon as we've found more than one solution,
2583 * give up immediately.
2584 */
2585 if (diff == DIFF_AMBIGUOUS)
2586 break;
2587 }
2588
2589 sfree(outgrid);
2590 sfree(ingrid);
2591 sfree(list);
2592 }
2593
2594 } else {
2595 /*
2596 * We're forbidden to use recursion, so we just see whether
2597 * our grid is fully solved, and return DIFF_IMPOSSIBLE
2598 * otherwise.
2599 */
2600 for (y = 0; y < cr; y++)
2601 for (x = 0; x < cr; x++)
2602 if (!grid[y*cr+x])
2603 diff = DIFF_IMPOSSIBLE;
2604 }
2605
2606 got_result:
2607 dlev->diff = diff;
2608 dlev->kdiff = kdiff;
2609
2610 #ifdef STANDALONE_SOLVER
2611 if (solver_show_working)
2612 printf("%*s%s found\n",
2613 solver_recurse_depth*4, "",
2614 diff == DIFF_IMPOSSIBLE ? "no solution" :
2615 diff == DIFF_AMBIGUOUS ? "multiple solutions" :
2616 "one solution");
2617 #endif
2618
2619 sfree(usage->sq2region);
2620 sfree(usage->regions);
2621 sfree(usage->cube);
2622 sfree(usage->row);
2623 sfree(usage->col);
2624 sfree(usage->blk);
2625 if (usage->kblocks) {
2626 free_block_structure(usage->kblocks);
2627 free_block_structure(usage->extra_cages);
2628 sfree(usage->extra_clues);
2629 }
2630 if (usage->kclues) sfree(usage->kclues);
2631 sfree(usage);
2632
2633 solver_free_scratch(scratch);
2634 }
2635
2636 /* ----------------------------------------------------------------------
2637 * End of solver code.
2638 */
2639
2640 /* ----------------------------------------------------------------------
2641 * Killer set generator.
2642 */
2643
2644 /* ----------------------------------------------------------------------
2645 * Solo filled-grid generator.
2646 *
2647 * This grid generator works by essentially trying to solve a grid
2648 * starting from no clues, and not worrying that there's more than
2649 * one possible solution. Unfortunately, it isn't computationally
2650 * feasible to do this by calling the above solver with an empty
2651 * grid, because that one needs to allocate a lot of scratch space
2652 * at every recursion level. Instead, I have a much simpler
2653 * algorithm which I shamelessly copied from a Python solver
2654 * written by Andrew Wilkinson (which is GPLed, but I've reused
2655 * only ideas and no code). It mostly just does the obvious
2656 * recursive thing: pick an empty square, put one of the possible
2657 * digits in it, recurse until all squares are filled, backtrack
2658 * and change some choices if necessary.
2659 *
2660 * The clever bit is that every time it chooses which square to
2661 * fill in next, it does so by counting the number of _possible_
2662 * numbers that can go in each square, and it prioritises so that
2663 * it picks a square with the _lowest_ number of possibilities. The
2664 * idea is that filling in lots of the obvious bits (particularly
2665 * any squares with only one possibility) will cut down on the list
2666 * of possibilities for other squares and hence reduce the enormous
2667 * search space as much as possible as early as possible.
2668 *
2669 * The use of bit sets implies that we support puzzles up to a size of
2670 * 32x32 (less if anyone finds a 16-bit machine to compile this on).
2671 */
2672
2673 /*
2674 * Internal data structure used in gridgen to keep track of
2675 * progress.
2676 */
2677 struct gridgen_coord { int x, y, r; };
2678 struct gridgen_usage {
2679 int cr;
2680 struct block_structure *blocks, *kblocks;
2681 /* grid is a copy of the input grid, modified as we go along */
2682 digit *grid;
2683 /*
2684 * Bitsets. In each of them, bit n is set if digit n has been placed
2685 * in the corresponding region. row, col and blk are used for all
2686 * puzzles. cge is used only for killer puzzles, and diag is used
2687 * only for x-type puzzles.
2688 * All of these have cr entries, except diag which only has 2,
2689 * and cge, which has as many entries as kblocks.
2690 */
2691 unsigned int *row, *col, *blk, *cge, *diag;
2692 /* This lists all the empty spaces remaining in the grid. */
2693 struct gridgen_coord *spaces;
2694 int nspaces;
2695 /* If we need randomisation in the solve, this is our random state. */
2696 random_state *rs;
2697 };
2698
2699 static void gridgen_place(struct gridgen_usage *usage, int x, int y, digit n)
2700 {
2701 unsigned int bit = 1 << n;
2702 int cr = usage->cr;
2703 usage->row[y] |= bit;
2704 usage->col[x] |= bit;
2705 usage->blk[usage->blocks->whichblock[y*cr+x]] |= bit;
2706 if (usage->cge)
2707 usage->cge[usage->kblocks->whichblock[y*cr+x]] |= bit;
2708 if (usage->diag) {
2709 if (ondiag0(y*cr+x))
2710 usage->diag[0] |= bit;
2711 if (ondiag1(y*cr+x))
2712 usage->diag[1] |= bit;
2713 }
2714 usage->grid[y*cr+x] = n;
2715 }
2716
2717 static void gridgen_remove(struct gridgen_usage *usage, int x, int y, digit n)
2718 {
2719 unsigned int mask = ~(1 << n);
2720 int cr = usage->cr;
2721 usage->row[y] &= mask;
2722 usage->col[x] &= mask;
2723 usage->blk[usage->blocks->whichblock[y*cr+x]] &= mask;
2724 if (usage->cge)
2725 usage->cge[usage->kblocks->whichblock[y*cr+x]] &= mask;
2726 if (usage->diag) {
2727 if (ondiag0(y*cr+x))
2728 usage->diag[0] &= mask;
2729 if (ondiag1(y*cr+x))
2730 usage->diag[1] &= mask;
2731 }
2732 usage->grid[y*cr+x] = 0;
2733 }
2734
2735 #define N_SINGLE 32
2736
2737 /*
2738 * The real recursive step in the generating function.
2739 *
2740 * Return values: 1 means solution found, 0 means no solution
2741 * found on this branch.
2742 */
2743 static int gridgen_real(struct gridgen_usage *usage, digit *grid, int *steps)
2744 {
2745 int cr = usage->cr;
2746 int i, j, n, sx, sy, bestm, bestr, ret;
2747 int *digits;
2748 unsigned int used;
2749
2750 /*
2751 * Firstly, check for completion! If there are no spaces left
2752 * in the grid, we have a solution.
2753 */
2754 if (usage->nspaces == 0)
2755 return TRUE;
2756
2757 /*
2758 * Next, abandon generation if we went over our steps limit.
2759 */
2760 if (*steps <= 0)
2761 return FALSE;
2762 (*steps)--;
2763
2764 /*
2765 * Otherwise, there must be at least one space. Find the most
2766 * constrained space, using the `r' field as a tie-breaker.
2767 */
2768 bestm = cr+1; /* so that any space will beat it */
2769 bestr = 0;
2770 used = ~0;
2771 i = sx = sy = -1;
2772 for (j = 0; j < usage->nspaces; j++) {
2773 int x = usage->spaces[j].x, y = usage->spaces[j].y;
2774 unsigned int used_xy;
2775 int m;
2776
2777 m = usage->blocks->whichblock[y*cr+x];
2778 used_xy = usage->row[y] | usage->col[x] | usage->blk[m];
2779 if (usage->cge != NULL)
2780 used_xy |= usage->cge[usage->kblocks->whichblock[y*cr+x]];
2781 if (usage->cge != NULL)
2782 used_xy |= usage->cge[usage->kblocks->whichblock[y*cr+x]];
2783 if (usage->diag != NULL) {
2784 if (ondiag0(y*cr+x))
2785 used_xy |= usage->diag[0];
2786 if (ondiag1(y*cr+x))
2787 used_xy |= usage->diag[1];
2788 }
2789
2790 /*
2791 * Find the number of digits that could go in this space.
2792 */
2793 m = 0;
2794 for (n = 1; n <= cr; n++) {
2795 unsigned int bit = 1 << n;
2796 if ((used_xy & bit) == 0)
2797 m++;
2798 }
2799 if (m < bestm || (m == bestm && usage->spaces[j].r < bestr)) {
2800 bestm = m;
2801 bestr = usage->spaces[j].r;
2802 sx = x;
2803 sy = y;
2804 i = j;
2805 used = used_xy;
2806 }
2807 }
2808
2809 /*
2810 * Swap that square into the final place in the spaces array,
2811 * so that decrementing nspaces will remove it from the list.
2812 */
2813 if (i != usage->nspaces-1) {
2814 struct gridgen_coord t;
2815 t = usage->spaces[usage->nspaces-1];
2816 usage->spaces[usage->nspaces-1] = usage->spaces[i];
2817 usage->spaces[i] = t;
2818 }
2819
2820 /*
2821 * Now we've decided which square to start our recursion at,
2822 * simply go through all possible values, shuffling them
2823 * randomly first if necessary.
2824 */
2825 digits = snewn(bestm, int);
2826
2827 j = 0;
2828 for (n = 1; n <= cr; n++) {
2829 unsigned int bit = 1 << n;
2830
2831 if ((used & bit) == 0)
2832 digits[j++] = n;
2833 }
2834
2835 if (usage->rs)
2836 shuffle(digits, j, sizeof(*digits), usage->rs);
2837
2838 /* And finally, go through the digit list and actually recurse. */
2839 ret = FALSE;
2840 for (i = 0; i < j; i++) {
2841 n = digits[i];
2842
2843 /* Update the usage structure to reflect the placing of this digit. */
2844 gridgen_place(usage, sx, sy, n);
2845 usage->nspaces--;
2846
2847 /* Call the solver recursively. Stop when we find a solution. */
2848 if (gridgen_real(usage, grid, steps)) {
2849 ret = TRUE;
2850 break;
2851 }
2852
2853 /* Revert the usage structure. */
2854 gridgen_remove(usage, sx, sy, n);
2855 usage->nspaces++;
2856 }
2857
2858 sfree(digits);
2859 return ret;
2860 }
2861
2862 /*
2863 * Entry point to generator. You give it parameters and a starting
2864 * grid, which is simply an array of cr*cr digits.
2865 */
2866 static int gridgen(int cr, struct block_structure *blocks,
2867 struct block_structure *kblocks, int xtype,
2868 digit *grid, random_state *rs, int maxsteps)
2869 {
2870 struct gridgen_usage *usage;
2871 int x, y, ret;
2872
2873 /*
2874 * Clear the grid to start with.
2875 */
2876 memset(grid, 0, cr*cr);
2877
2878 /*
2879 * Create a gridgen_usage structure.
2880 */
2881 usage = snew(struct gridgen_usage);
2882
2883 usage->cr = cr;
2884 usage->blocks = blocks;
2885
2886 usage->grid = grid;
2887
2888 usage->row = snewn(cr, unsigned int);
2889 usage->col = snewn(cr, unsigned int);
2890 usage->blk = snewn(cr, unsigned int);
2891 if (kblocks != NULL) {
2892 usage->kblocks = kblocks;
2893 usage->cge = snewn(usage->kblocks->nr_blocks, unsigned int);
2894 memset(usage->cge, FALSE, kblocks->nr_blocks * sizeof *usage->cge);
2895 } else {
2896 usage->cge = NULL;
2897 }
2898
2899 memset(usage->row, 0, cr * sizeof *usage->row);
2900 memset(usage->col, 0, cr * sizeof *usage->col);
2901 memset(usage->blk, 0, cr * sizeof *usage->blk);
2902
2903 if (xtype) {
2904 usage->diag = snewn(2, unsigned int);
2905 memset(usage->diag, 0, 2 * sizeof *usage->diag);
2906 } else {
2907 usage->diag = NULL;
2908 }
2909
2910 /*
2911 * Begin by filling in the whole top row with randomly chosen
2912 * numbers. This cannot introduce any bias or restriction on
2913 * the available grids, since we already know those numbers
2914 * are all distinct so all we're doing is choosing their
2915 * labels.
2916 */
2917 for (x = 0; x < cr; x++)
2918 grid[x] = x+1;
2919 shuffle(grid, cr, sizeof(*grid), rs);
2920 for (x = 0; x < cr; x++)
2921 gridgen_place(usage, x, 0, grid[x]);
2922
2923 usage->spaces = snewn(cr * cr, struct gridgen_coord);
2924 usage->nspaces = 0;
2925
2926 usage->rs = rs;
2927
2928 /*
2929 * Initialise the list of grid spaces, taking care to leave
2930 * out the row I've already filled in above.
2931 */
2932 for (y = 1; y < cr; y++) {
2933 for (x = 0; x < cr; x++) {
2934 usage->spaces[usage->nspaces].x = x;
2935 usage->spaces[usage->nspaces].y = y;
2936 usage->spaces[usage->nspaces].r = random_bits(rs, 31);
2937 usage->nspaces++;
2938 }
2939 }
2940
2941 /*
2942 * Run the real generator function.
2943 */
2944 ret = gridgen_real(usage, grid, &maxsteps);
2945
2946 /*
2947 * Clean up the usage structure now we have our answer.
2948 */
2949 sfree(usage->spaces);
2950 sfree(usage->cge);
2951 sfree(usage->blk);
2952 sfree(usage->col);
2953 sfree(usage->row);
2954 sfree(usage);
2955
2956 return ret;
2957 }
2958
2959 /* ----------------------------------------------------------------------
2960 * End of grid generator code.
2961 */
2962
2963 /*
2964 * Check whether a grid contains a valid complete puzzle.
2965 */
2966 static int check_valid(int cr, struct block_structure *blocks,
2967 struct block_structure *kblocks, int xtype, digit *grid)
2968 {
2969 unsigned char *used;
2970 int x, y, i, j, n;
2971
2972 used = snewn(cr, unsigned char);
2973
2974 /*
2975 * Check that each row contains precisely one of everything.
2976 */
2977 for (y = 0; y < cr; y++) {
2978 memset(used, FALSE, cr);
2979 for (x = 0; x < cr; x++)
2980 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
2981 used[grid[y*cr+x]-1] = TRUE;
2982 for (n = 0; n < cr; n++)
2983 if (!used[n]) {
2984 sfree(used);
2985 return FALSE;
2986 }
2987 }
2988
2989 /*
2990 * Check that each column contains precisely one of everything.
2991 */
2992 for (x = 0; x < cr; x++) {
2993 memset(used, FALSE, cr);
2994 for (y = 0; y < cr; y++)
2995 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
2996 used[grid[y*cr+x]-1] = TRUE;
2997 for (n = 0; n < cr; n++)
2998 if (!used[n]) {
2999 sfree(used);
3000 return FALSE;
3001 }
3002 }
3003
3004 /*
3005 * Check that each block contains precisely one of everything.
3006 */
3007 for (i = 0; i < cr; i++) {
3008 memset(used, FALSE, cr);
3009 for (j = 0; j < cr; j++)
3010 if (grid[blocks->blocks[i][j]] > 0 &&
3011 grid[blocks->blocks[i][j]] <= cr)
3012 used[grid[blocks->blocks[i][j]]-1] = TRUE;
3013 for (n = 0; n < cr; n++)
3014 if (!used[n]) {
3015 sfree(used);
3016 return FALSE;
3017 }
3018 }
3019
3020 /*
3021 * Check that each Killer cage, if any, contains at most one of
3022 * everything.
3023 */
3024 if (kblocks) {
3025 for (i = 0; i < kblocks->nr_blocks; i++) {
3026 memset(used, FALSE, cr);
3027 for (j = 0; j < kblocks->nr_squares[i]; j++)
3028 if (grid[kblocks->blocks[i][j]] > 0 &&
3029 grid[kblocks->blocks[i][j]] <= cr) {
3030 if (used[grid[kblocks->blocks[i][j]]-1]) {
3031 sfree(used);
3032 return FALSE;
3033 }
3034 used[grid[kblocks->blocks[i][j]]-1] = TRUE;
3035 }
3036 }
3037 }
3038
3039 /*
3040 * Check that each diagonal contains precisely one of everything.
3041 */
3042 if (xtype) {
3043 memset(used, FALSE, cr);
3044 for (i = 0; i < cr; i++)
3045 if (grid[diag0(i)] > 0 && grid[diag0(i)] <= cr)
3046 used[grid[diag0(i)]-1] = TRUE;
3047 for (n = 0; n < cr; n++)
3048 if (!used[n]) {
3049 sfree(used);
3050 return FALSE;
3051 }
3052 for (i = 0; i < cr; i++)
3053 if (grid[diag1(i)] > 0 && grid[diag1(i)] <= cr)
3054 used[grid[diag1(i)]-1] = TRUE;
3055 for (n = 0; n < cr; n++)
3056 if (!used[n]) {
3057 sfree(used);
3058 return FALSE;
3059 }
3060 }
3061
3062 sfree(used);
3063 return TRUE;
3064 }
3065
3066 static int symmetries(game_params *params, int x, int y, int *output, int s)
3067 {
3068 int c = params->c, r = params->r, cr = c*r;
3069 int i = 0;
3070
3071 #define ADD(x,y) (*output++ = (x), *output++ = (y), i++)
3072
3073 ADD(x, y);
3074
3075 switch (s) {
3076 case SYMM_NONE:
3077 break; /* just x,y is all we need */
3078 case SYMM_ROT2:
3079 ADD(cr - 1 - x, cr - 1 - y);
3080 break;
3081 case SYMM_ROT4:
3082 ADD(cr - 1 - y, x);
3083 ADD(y, cr - 1 - x);
3084 ADD(cr - 1 - x, cr - 1 - y);
3085 break;
3086 case SYMM_REF2:
3087 ADD(cr - 1 - x, y);
3088 break;
3089 case SYMM_REF2D:
3090 ADD(y, x);
3091 break;
3092 case SYMM_REF4:
3093 ADD(cr - 1 - x, y);
3094 ADD(x, cr - 1 - y);
3095 ADD(cr - 1 - x, cr - 1 - y);
3096 break;
3097 case SYMM_REF4D:
3098 ADD(y, x);
3099 ADD(cr - 1 - x, cr - 1 - y);
3100 ADD(cr - 1 - y, cr - 1 - x);
3101 break;
3102 case SYMM_REF8:
3103 ADD(cr - 1 - x, y);
3104 ADD(x, cr - 1 - y);
3105 ADD(cr - 1 - x, cr - 1 - y);
3106 ADD(y, x);
3107 ADD(y, cr - 1 - x);
3108 ADD(cr - 1 - y, x);
3109 ADD(cr - 1 - y, cr - 1 - x);
3110 break;
3111 }
3112
3113 #undef ADD
3114
3115 return i;
3116 }
3117
3118 static char *encode_solve_move(int cr, digit *grid)
3119 {
3120 int i, len;
3121 char *ret, *p, *sep;
3122
3123 /*
3124 * It's surprisingly easy to work out _exactly_ how long this
3125 * string needs to be. To decimal-encode all the numbers from 1
3126 * to n:
3127 *
3128 * - every number has a units digit; total is n.
3129 * - all numbers above 9 have a tens digit; total is max(n-9,0).
3130 * - all numbers above 99 have a hundreds digit; total is max(n-99,0).
3131 * - and so on.
3132 */
3133 len = 0;
3134 for (i = 1; i <= cr; i *= 10)
3135 len += max(cr - i + 1, 0);
3136 len += cr; /* don't forget the commas */
3137 len *= cr; /* there are cr rows of these */
3138
3139 /*
3140 * Now len is one bigger than the total size of the
3141 * comma-separated numbers (because we counted an
3142 * additional leading comma). We need to have a leading S
3143 * and a trailing NUL, so we're off by one in total.
3144 */
3145 len++;
3146
3147 ret = snewn(len, char);
3148 p = ret;
3149 *p++ = 'S';
3150 sep = "";
3151 for (i = 0; i < cr*cr; i++) {
3152 p += sprintf(p, "%s%d", sep, grid[i]);
3153 sep = ",";
3154 }
3155 *p++ = '\0';
3156 assert(p - ret == len);
3157
3158 return ret;
3159 }
3160
3161 static void dsf_to_blocks(int *dsf, struct block_structure *blocks,
3162 int min_expected, int max_expected)
3163 {
3164 int cr = blocks->c * blocks->r, area = cr * cr;
3165 int i, nb = 0;
3166
3167 for (i = 0; i < area; i++)
3168 blocks->whichblock[i] = -1;
3169 for (i = 0; i < area; i++) {
3170 int j = dsf_canonify(dsf, i);
3171 if (blocks->whichblock[j] < 0)
3172 blocks->whichblock[j] = nb++;
3173 blocks->whichblock[i] = blocks->whichblock[j];
3174 }
3175 assert(nb >= min_expected && nb <= max_expected);
3176 blocks->nr_blocks = nb;
3177 }
3178
3179 static void make_blocks_from_whichblock(struct block_structure *blocks)
3180 {
3181 int i;
3182
3183 for (i = 0; i < blocks->nr_blocks; i++) {
3184 blocks->blocks[i][blocks->max_nr_squares-1] = 0;
3185 blocks->nr_squares[i] = 0;
3186 }
3187 for (i = 0; i < blocks->area; i++) {
3188 int b = blocks->whichblock[i];
3189 int j = blocks->blocks[b][blocks->max_nr_squares-1]++;
3190 assert(j < blocks->max_nr_squares);
3191 blocks->blocks[b][j] = i;
3192 blocks->nr_squares[b]++;
3193 }
3194 }
3195
3196 static char *encode_block_structure_desc(char *p, struct block_structure *blocks)
3197 {
3198 int i, currrun = 0;
3199 int c = blocks->c, r = blocks->r, cr = c * r;
3200
3201 /*
3202 * Encode the block structure. We do this by encoding
3203 * the pattern of dividing lines: first we iterate
3204 * over the cr*(cr-1) internal vertical grid lines in
3205 * ordinary reading order, then over the cr*(cr-1)
3206 * internal horizontal ones in transposed reading
3207 * order.
3208 *
3209 * We encode the number of non-lines between the
3210 * lines; _ means zero (two adjacent divisions), a
3211 * means 1, ..., y means 25, and z means 25 non-lines
3212 * _and no following line_ (so that za means 26, zb 27
3213 * etc).
3214 */
3215 for (i = 0; i <= 2*cr*(cr-1); i++) {
3216 int x, y, p0, p1, edge;
3217
3218 if (i == 2*cr*(cr-1)) {
3219 edge = TRUE; /* terminating virtual edge */
3220 } else {
3221 if (i < cr*(cr-1)) {
3222 y = i/(cr-1);
3223 x = i%(cr-1);
3224 p0 = y*cr+x;
3225 p1 = y*cr+x+1;
3226 } else {
3227 x = i/(cr-1) - cr;
3228 y = i%(cr-1);
3229 p0 = y*cr+x;
3230 p1 = (y+1)*cr+x;
3231 }
3232 edge = (blocks->whichblock[p0] != blocks->whichblock[p1]);
3233 }
3234
3235 if (edge) {
3236 while (currrun > 25)
3237 *p++ = 'z', currrun -= 25;
3238 if (currrun)
3239 *p++ = 'a'-1 + currrun;
3240 else
3241 *p++ = '_';
3242 currrun = 0;
3243 } else
3244 currrun++;
3245 }
3246 return p;
3247 }
3248
3249 static char *encode_grid(char *desc, digit *grid, int area)
3250 {
3251 int run, i;
3252 char *p = desc;
3253
3254 run = 0;
3255 for (i = 0; i <= area; i++) {
3256 int n = (i < area ? grid[i] : -1);
3257
3258 if (!n)
3259 run++;
3260 else {
3261 if (run) {
3262 while (run > 0) {
3263 int c = 'a' - 1 + run;
3264 if (run > 26)
3265 c = 'z';
3266 *p++ = c;
3267 run -= c - ('a' - 1);
3268 }
3269 } else {
3270 /*
3271 * If there's a number in the very top left or
3272 * bottom right, there's no point putting an
3273 * unnecessary _ before or after it.
3274 */
3275 if (p > desc && n > 0)
3276 *p++ = '_';
3277 }
3278 if (n > 0)
3279 p += sprintf(p, "%d", n);
3280 run = 0;
3281 }
3282 }
3283 return p;
3284 }
3285
3286 /*
3287 * Conservatively stimate the number of characters required for
3288 * encoding a grid of a certain area.
3289 */
3290 static int grid_encode_space (int area)
3291 {
3292 int t, count;
3293 for (count = 1, t = area; t > 26; t -= 26)
3294 count++;
3295 return count * area;
3296 }
3297
3298 /*
3299 * Conservatively stimate the number of characters required for
3300 * encoding a given blocks structure.
3301 */
3302 static int blocks_encode_space(struct block_structure *blocks)
3303 {
3304 int cr = blocks->c * blocks->r, area = cr * cr;
3305 return grid_encode_space(area);
3306 }
3307
3308 static char *encode_puzzle_desc(game_params *params, digit *grid,
3309 struct block_structure *blocks,
3310 digit *kgrid,
3311 struct block_structure *kblocks)
3312 {
3313 int c = params->c, r = params->r, cr = c*r;
3314 int area = cr*cr;
3315 char *p, *desc;
3316 int space;
3317
3318 space = grid_encode_space(area) + 1;
3319 if (r == 1)
3320 space += blocks_encode_space(blocks) + 1;
3321 if (params->killer) {
3322 space += blocks_encode_space(kblocks) + 1;
3323 space += grid_encode_space(area) + 1;
3324 }
3325 desc = snewn(space, char);
3326 p = encode_grid(desc, grid, area);
3327
3328 if (r == 1) {
3329 *p++ = ',';
3330 p = encode_block_structure_desc(p, blocks);
3331 }
3332 if (params->killer) {
3333 *p++ = ',';
3334 p = encode_block_structure_desc(p, kblocks);
3335 *p++ = ',';
3336 p = encode_grid(p, kgrid, area);
3337 }
3338 assert(p - desc < space);
3339 *p++ = '\0';
3340 desc = sresize(desc, p - desc, char);
3341
3342 return desc;
3343 }
3344
3345 static void merge_blocks(struct block_structure *b, int n1, int n2)
3346 {
3347 int i;
3348 /* Move data towards the lower block number. */
3349 if (n2 < n1) {
3350 int t = n2;
3351 n2 = n1;
3352 n1 = t;
3353 }
3354
3355 /* Merge n2 into n1, and move the last block into n2's position. */
3356 for (i = 0; i < b->nr_squares[n2]; i++)
3357 b->whichblock[b->blocks[n2][i]] = n1;
3358 memcpy(b->blocks[n1] + b->nr_squares[n1], b->blocks[n2],
3359 b->nr_squares[n2] * sizeof **b->blocks);
3360 b->nr_squares[n1] += b->nr_squares[n2];
3361
3362 n1 = b->nr_blocks - 1;
3363 if (n2 != n1) {
3364 memcpy(b->blocks[n2], b->blocks[n1],
3365 b->nr_squares[n1] * sizeof **b->blocks);
3366 for (i = 0; i < b->nr_squares[n1]; i++)
3367 b->whichblock[b->blocks[n1][i]] = n2;
3368 b->nr_squares[n2] = b->nr_squares[n1];
3369 }
3370 b->nr_blocks = n1;
3371 }
3372
3373 static int merge_some_cages(struct block_structure *b, int cr, int area,
3374 digit *grid, random_state *rs)
3375 {
3376 /*
3377 * Make a list of all the pairs of adjacent blocks.
3378 */
3379 int i, j, k;
3380 struct pair {
3381 int b1, b2;
3382 } *pairs;
3383 int npairs;
3384
3385 pairs = snewn(b->nr_blocks * b->nr_blocks, struct pair);
3386 npairs = 0;
3387
3388 for (i = 0; i < b->nr_blocks; i++) {
3389 for (j = i+1; j < b->nr_blocks; j++) {
3390
3391 /*
3392 * Rule the merger out of consideration if it's
3393 * obviously not viable.
3394 */
3395 if (b->nr_squares[i] + b->nr_squares[j] > b->max_nr_squares)
3396 continue; /* we couldn't merge these anyway */
3397
3398 /*
3399 * See if these two blocks have a pair of squares
3400 * adjacent to each other.
3401 */
3402 for (k = 0; k < b->nr_squares[i]; k++) {
3403 int xy = b->blocks[i][k];
3404 int y = xy / cr, x = xy % cr;
3405 if ((y > 0 && b->whichblock[xy - cr] == j) ||
3406 (y+1 < cr && b->whichblock[xy + cr] == j) ||
3407 (x > 0 && b->whichblock[xy - 1] == j) ||
3408 (x+1 < cr && b->whichblock[xy + 1] == j)) {
3409 /*
3410 * Yes! Add this pair to our list.
3411 */
3412 pairs[npairs].b1 = i;
3413 pairs[npairs].b2 = j;
3414 break;
3415 }
3416 }
3417 }
3418 }
3419
3420 /*
3421 * Now go through that list in random order until we find a pair
3422 * of blocks we can merge.
3423 */
3424 while (npairs > 0) {
3425 int n1, n2;
3426 unsigned int digits_found;
3427
3428 /*
3429 * Pick a random pair, and remove it from the list.
3430 */
3431 i = random_upto(rs, npairs);
3432 n1 = pairs[i].b1;
3433 n2 = pairs[i].b2;
3434 if (i != npairs-1)
3435 pairs[i] = pairs[npairs-1];
3436 npairs--;
3437
3438 /* Guarantee that the merged cage would still be a region. */
3439 digits_found = 0;
3440 for (i = 0; i < b->nr_squares[n1]; i++)
3441 digits_found |= 1 << grid[b->blocks[n1][i]];
3442 for (i = 0; i < b->nr_squares[n2]; i++)
3443 if (digits_found & (1 << grid[b->blocks[n2][i]]))
3444 break;
3445 if (i != b->nr_squares[n2])
3446 continue;
3447
3448 /*
3449 * Got one! Do the merge.
3450 */
3451 merge_blocks(b, n1, n2);
3452 sfree(pairs);
3453 return TRUE;
3454 }
3455
3456 sfree(pairs);
3457 return FALSE;
3458 }
3459
3460 static void compute_kclues(struct block_structure *cages, digit *kclues,
3461 digit *grid, int area)
3462 {
3463 int i;
3464 memset(kclues, 0, area * sizeof *kclues);
3465 for (i = 0; i < cages->nr_blocks; i++) {
3466 int j, sum = 0;
3467 for (j = 0; j < area; j++)
3468 if (cages->whichblock[j] == i)
3469 sum += grid[j];
3470 for (j = 0; j < area; j++)
3471 if (cages->whichblock[j] == i)
3472 break;
3473 assert (j != area);
3474 kclues[j] = sum;
3475 }
3476 }
3477
3478 static struct block_structure *gen_killer_cages(int cr, random_state *rs,
3479 int remove_singletons)
3480 {
3481 int nr;
3482 int x, y, area = cr * cr;
3483 int n_singletons = 0;
3484 struct block_structure *b = alloc_block_structure (1, cr, area, cr, area);
3485
3486 for (x = 0; x < area; x++)
3487 b->whichblock[x] = -1;
3488 nr = 0;
3489 for (y = 0; y < cr; y++)
3490 for (x = 0; x < cr; x++) {
3491 int rnd;
3492 int xy = y*cr+x;
3493 if (b->whichblock[xy] != -1)
3494 continue;
3495 b->whichblock[xy] = nr;
3496
3497 rnd = random_bits(rs, 4);
3498 if (xy + 1 < area && (rnd >= 4 || (!remove_singletons && rnd >= 1))) {
3499 int xy2 = xy + 1;
3500 if (x + 1 == cr || b->whichblock[xy2] != -1 ||
3501 (xy + cr < area && random_bits(rs, 1) == 0))
3502 xy2 = xy + cr;
3503 if (xy2 >= area)
3504 n_singletons++;
3505 else
3506 b->whichblock[xy2] = nr;
3507 } else
3508 n_singletons++;
3509 nr++;
3510 }
3511
3512 b->nr_blocks = nr;
3513 make_blocks_from_whichblock(b);
3514
3515 for (x = y = 0; x < b->nr_blocks; x++)
3516 if (b->nr_squares[x] == 1)
3517 y++;
3518 assert(y == n_singletons);
3519
3520 if (n_singletons > 0 && remove_singletons) {
3521 int n;
3522 for (n = 0; n < b->nr_blocks;) {
3523 int xy, x, y, xy2, other;
3524 if (b->nr_squares[n] > 1) {
3525 n++;
3526 continue;
3527 }
3528 xy = b->blocks[n][0];
3529 x = xy % cr;
3530 y = xy / cr;
3531 if (xy + 1 == area)
3532 xy2 = xy - 1;
3533 else if (x + 1 < cr && (y + 1 == cr || random_bits(rs, 1) == 0))
3534 xy2 = xy + 1;
3535 else
3536 xy2 = xy + cr;
3537 other = b->whichblock[xy2];
3538
3539 if (b->nr_squares[other] == 1)
3540 n_singletons--;
3541 n_singletons--;
3542 merge_blocks(b, n, other);
3543 if (n < other)
3544 n++;
3545 }
3546 assert(n_singletons == 0);
3547 }
3548 return b;
3549 }
3550
3551 static char *new_game_desc(game_params *params, random_state *rs,
3552 char **aux, int interactive)
3553 {
3554 int c = params->c, r = params->r, cr = c*r;
3555 int area = cr*cr;
3556 struct block_structure *blocks, *kblocks;
3557 digit *grid, *grid2, *kgrid;
3558 struct xy { int x, y; } *locs;
3559 int nlocs;
3560 char *desc;
3561 int coords[16], ncoords;
3562 int x, y, i, j;
3563 struct difficulty dlev;
3564
3565 precompute_sum_bits();
3566
3567 /*
3568 * Adjust the maximum difficulty level to be consistent with
3569 * the puzzle size: all 2x2 puzzles appear to be Trivial
3570 * (DIFF_BLOCK) so we cannot hold out for even a Basic
3571 * (DIFF_SIMPLE) one.
3572 */
3573 dlev.maxdiff = params->diff;
3574 dlev.maxkdiff = params->kdiff;
3575 if (c == 2 && r == 2)
3576 dlev.maxdiff = DIFF_BLOCK;
3577
3578 grid = snewn(area, digit);
3579 locs = snewn(area, struct xy);
3580 grid2 = snewn(area, digit);
3581
3582 blocks = alloc_block_structure (c, r, area, cr, cr);
3583
3584 kblocks = NULL;
3585 kgrid = (params->killer) ? snewn(area, digit) : NULL;
3586
3587 #ifdef STANDALONE_SOLVER
3588 assert(!"This should never happen, so we don't need to create blocknames");
3589 #endif
3590
3591 /*
3592 * Loop until we get a grid of the required difficulty. This is
3593 * nasty, but it seems to be unpleasantly hard to generate
3594 * difficult grids otherwise.
3595 */
3596 while (1) {
3597 /*
3598 * Generate a random solved state, starting by
3599 * constructing the block structure.
3600 */
3601 if (r == 1) { /* jigsaw mode */
3602 int *dsf = divvy_rectangle(cr, cr, cr, rs);
3603
3604 dsf_to_blocks (dsf, blocks, cr, cr);
3605
3606 sfree(dsf);
3607 } else { /* basic Sudoku mode */
3608 for (y = 0; y < cr; y++)
3609 for (x = 0; x < cr; x++)
3610 blocks->whichblock[y*cr+x] = (y/c) * c + (x/r);
3611 }
3612 make_blocks_from_whichblock(blocks);
3613
3614 if (params->killer) {
3615 if (kblocks) free_block_structure(kblocks);
3616 kblocks = gen_killer_cages(cr, rs, params->kdiff > DIFF_KSINGLE);
3617 }
3618
3619 if (!gridgen(cr, blocks, kblocks, params->xtype, grid, rs, area*area))
3620 continue;
3621 assert(check_valid(cr, blocks, kblocks, params->xtype, grid));
3622
3623 /*
3624 * Save the solved grid in aux.
3625 */
3626 {
3627 /*
3628 * We might already have written *aux the last time we
3629 * went round this loop, in which case we should free
3630 * the old aux before overwriting it with the new one.
3631 */
3632 if (*aux) {
3633 sfree(*aux);
3634 }
3635
3636 *aux = encode_solve_move(cr, grid);
3637 }
3638
3639 /*
3640 * Now we have a solved grid. For normal puzzles, we start removing
3641 * things from it while preserving solubility. Killer puzzles are
3642 * different: we just pass the empty grid to the solver, and use
3643 * the puzzle if it comes back solved.
3644 */
3645
3646 if (params->killer) {
3647 struct block_structure *good_cages = NULL;
3648 struct block_structure *last_cages = NULL;
3649 int ntries = 0;
3650
3651 memcpy(grid2, grid, area);
3652
3653 for (;;) {
3654 compute_kclues(kblocks, kgrid, grid2, area);
3655
3656 memset(grid, 0, area * sizeof *grid);
3657 solver(cr, blocks, kblocks, params->xtype, grid, kgrid, &dlev);
3658 if (dlev.diff == dlev.maxdiff && dlev.kdiff == dlev.maxkdiff) {
3659 /*
3660 * We have one that matches our difficulty. Store it for
3661 * later, but keep going.
3662 */
3663 if (good_cages)
3664 free_block_structure(good_cages);
3665 ntries = 0;
3666 good_cages = dup_block_structure(kblocks);
3667 if (!merge_some_cages(kblocks, cr, area, grid2, rs))
3668 break;
3669 } else if (dlev.diff > dlev.maxdiff || dlev.kdiff > dlev.maxkdiff) {
3670 /*
3671 * Give up after too many tries and either use the good one we
3672 * found, or generate a new grid.
3673 */
3674 if (++ntries > 50)
3675 break;
3676 /*
3677 * The difficulty level got too high. If we have a good
3678 * one, use it, otherwise go back to the last one that
3679 * was at a lower difficulty and restart the process from
3680 * there.
3681 */
3682 if (good_cages != NULL) {
3683 free_block_structure(kblocks);
3684 kblocks = dup_block_structure(good_cages);
3685 if (!merge_some_cages(kblocks, cr, area, grid2, rs))
3686 break;
3687 } else {
3688 if (last_cages == NULL)
3689 break;
3690 free_block_structure(kblocks);
3691 kblocks = last_cages;
3692 last_cages = NULL;
3693 }
3694 } else {
3695 if (last_cages)
3696 free_block_structure(last_cages);
3697 last_cages = dup_block_structure(kblocks);
3698 if (!merge_some_cages(kblocks, cr, area, grid2, rs))
3699 break;
3700 }
3701 }
3702 if (last_cages)
3703 free_block_structure(last_cages);
3704 if (good_cages != NULL) {
3705 free_block_structure(kblocks);
3706 kblocks = good_cages;
3707 compute_kclues(kblocks, kgrid, grid2, area);
3708 memset(grid, 0, area * sizeof *grid);
3709 break;
3710 }
3711 continue;
3712 }
3713
3714 /*
3715 * Find the set of equivalence classes of squares permitted
3716 * by the selected symmetry. We do this by enumerating all
3717 * the grid squares which have no symmetric companion
3718 * sorting lower than themselves.
3719 */
3720 nlocs = 0;
3721 for (y = 0; y < cr; y++)
3722 for (x = 0; x < cr; x++) {
3723 int i = y*cr+x;
3724 int j;
3725
3726 ncoords = symmetries(params, x, y, coords, params->symm);
3727 for (j = 0; j < ncoords; j++)
3728 if (coords[2*j+1]*cr+coords[2*j] < i)
3729 break;
3730 if (j == ncoords) {
3731 locs[nlocs].x = x;
3732 locs[nlocs].y = y;
3733 nlocs++;
3734 }
3735 }
3736
3737 /*
3738 * Now shuffle that list.
3739 */
3740 shuffle(locs, nlocs, sizeof(*locs), rs);
3741
3742 /*
3743 * Now loop over the shuffled list and, for each element,
3744 * see whether removing that element (and its reflections)
3745 * from the grid will still leave the grid soluble.
3746 */
3747 for (i = 0; i < nlocs; i++) {
3748 x = locs[i].x;
3749 y = locs[i].y;
3750
3751 memcpy(grid2, grid, area);
3752 ncoords = symmetries(params, x, y, coords, params->symm);
3753 for (j = 0; j < ncoords; j++)
3754 grid2[coords[2*j+1]*cr+coords[2*j]] = 0;
3755
3756 solver(cr, blocks, kblocks, params->xtype, grid2, kgrid, &dlev);
3757 if (dlev.diff <= dlev.maxdiff &&
3758 (!params->killer || dlev.kdiff <= dlev.maxkdiff)) {
3759 for (j = 0; j < ncoords; j++)
3760 grid[coords[2*j+1]*cr+coords[2*j]] = 0;
3761 }
3762 }
3763
3764 memcpy(grid2, grid, area);
3765
3766 solver(cr, blocks, kblocks, params->xtype, grid2, kgrid, &dlev);
3767 if (dlev.diff == dlev.maxdiff &&
3768 (!params->killer || dlev.kdiff == dlev.maxkdiff))
3769 break; /* found one! */
3770 }
3771
3772 sfree(grid2);
3773 sfree(locs);
3774
3775 /*
3776 * Now we have the grid as it will be presented to the user.
3777 * Encode it in a game desc.
3778 */
3779 desc = encode_puzzle_desc(params, grid, blocks, kgrid, kblocks);
3780
3781 sfree(grid);
3782 free_block_structure(blocks);
3783 if (params->killer) {
3784 free_block_structure(kblocks);
3785 sfree(kgrid);
3786 }
3787
3788 return desc;
3789 }
3790
3791 static char *spec_to_grid(char *desc, digit *grid, int area)
3792 {
3793 int i = 0;
3794 while (*desc && *desc != ',') {
3795 int n = *desc++;
3796 if (n >= 'a' && n <= 'z') {
3797 int run = n - 'a' + 1;
3798 assert(i + run <= area);
3799 while (run-- > 0)
3800 grid[i++] = 0;
3801 } else if (n == '_') {
3802 /* do nothing */;
3803 } else if (n > '0' && n <= '9') {
3804 assert(i < area);
3805 grid[i++] = atoi(desc-1);
3806 while (*desc >= '0' && *desc <= '9')
3807 desc++;
3808 } else {
3809 assert(!"We can't get here");
3810 }
3811 }
3812 assert(i == area);
3813 return desc;
3814 }
3815
3816 /*
3817 * Create a DSF from a spec found in *pdesc. Update this to point past the
3818 * end of the block spec, and return an error string or NULL if everything
3819 * is OK. The DSF is stored in *PDSF.
3820 */
3821 static char *spec_to_dsf(char **pdesc, int **pdsf, int cr, int area)
3822 {
3823 char *desc = *pdesc;
3824 int pos = 0;
3825 int *dsf;
3826
3827 *pdsf = dsf = snew_dsf(area);
3828
3829 while (*desc && *desc != ',') {
3830 int c, adv;
3831
3832 if (*desc == '_')
3833 c = 0;
3834 else if (*desc >= 'a' && *desc <= 'z')
3835 c = *desc - 'a' + 1;
3836 else {
3837 sfree(dsf);
3838 return "Invalid character in game description";
3839 }
3840 desc++;
3841
3842 adv = (c != 25); /* 'z' is a special case */
3843
3844 while (c-- > 0) {
3845 int p0, p1;
3846
3847 /*
3848 * Non-edge; merge the two dsf classes on either
3849 * side of it.
3850 */
3851 assert(pos < 2*cr*(cr-1));
3852 if (pos < cr*(cr-1)) {
3853 int y = pos/(cr-1);
3854 int x = pos%(cr-1);
3855 p0 = y*cr+x;
3856 p1 = y*cr+x+1;
3857 } else {
3858 int x = pos/(cr-1) - cr;
3859 int y = pos%(cr-1);
3860 p0 = y*cr+x;
3861 p1 = (y+1)*cr+x;
3862 }
3863 dsf_merge(dsf, p0, p1);
3864
3865 pos++;
3866 }
3867 if (adv)
3868 pos++;
3869 }
3870 *pdesc = desc;
3871
3872 /*
3873 * When desc is exhausted, we expect to have gone exactly
3874 * one space _past_ the end of the grid, due to the dummy
3875 * edge at the end.
3876 */
3877 if (pos != 2*cr*(cr-1)+1) {
3878 sfree(dsf);
3879 return "Not enough data in block structure specification";
3880 }
3881
3882 return NULL;
3883 }
3884
3885 static char *validate_grid_desc(char **pdesc, int range, int area)
3886 {
3887 char *desc = *pdesc;
3888 int squares = 0;
3889 while (*desc && *desc != ',') {
3890 int n = *desc++;
3891 if (n >= 'a' && n <= 'z') {
3892 squares += n - 'a' + 1;
3893 } else if (n == '_') {
3894 /* do nothing */;
3895 } else if (n > '0' && n <= '9') {
3896 int val = atoi(desc-1);
3897 if (val < 1 || val > range)
3898 return "Out-of-range number in game description";
3899 squares++;
3900 while (*desc >= '0' && *desc <= '9')
3901 desc++;
3902 } else
3903 return "Invalid character in game description";
3904 }
3905
3906 if (squares < area)
3907 return "Not enough data to fill grid";
3908
3909 if (squares > area)
3910 return "Too much data to fit in grid";
3911 *pdesc = desc;
3912 return NULL;
3913 }
3914
3915 static char *validate_block_desc(char **pdesc, int cr, int area,
3916 int min_nr_blocks, int max_nr_blocks,
3917 int min_nr_squares, int max_nr_squares)
3918 {
3919 char *err;
3920 int *dsf;
3921
3922 err = spec_to_dsf(pdesc, &dsf, cr, area);
3923 if (err) {
3924 return err;
3925 }
3926
3927 if (min_nr_squares == max_nr_squares) {
3928 assert(min_nr_blocks == max_nr_blocks);
3929 assert(min_nr_blocks * min_nr_squares == area);
3930 }
3931 /*
3932 * Now we've got our dsf. Verify that it matches
3933 * expectations.
3934 */
3935 {
3936 int *canons, *counts;
3937 int i, j, c, ncanons = 0;
3938
3939 canons = snewn(max_nr_blocks, int);
3940 counts = snewn(max_nr_blocks, int);
3941
3942 for (i = 0; i < area; i++) {
3943 j = dsf_canonify(dsf, i);
3944
3945 for (c = 0; c < ncanons; c++)
3946 if (canons[c] == j) {
3947 counts[c]++;
3948 if (counts[c] > max_nr_squares) {
3949 sfree(dsf);
3950 sfree(canons);
3951 sfree(counts);
3952 return "A jigsaw block is too big";
3953 }
3954 break;
3955 }
3956
3957 if (c == ncanons) {
3958 if (ncanons >= max_nr_blocks) {
3959 sfree(dsf);
3960 sfree(canons);
3961 sfree(counts);
3962 return "Too many distinct jigsaw blocks";
3963 }
3964 canons[ncanons] = j;
3965 counts[ncanons] = 1;
3966 ncanons++;
3967 }
3968 }
3969
3970 if (ncanons < min_nr_blocks) {
3971 sfree(dsf);
3972 sfree(canons);
3973 sfree(counts);
3974 return "Not enough distinct jigsaw blocks";
3975 }
3976 for (c = 0; c < ncanons; c++) {
3977 if (counts[c] < min_nr_squares) {
3978 sfree(dsf);
3979 sfree(canons);
3980 sfree(counts);
3981 return "A jigsaw block is too small";
3982 }
3983 }
3984 sfree(canons);
3985 sfree(counts);
3986 }
3987
3988 sfree(dsf);
3989 return NULL;
3990 }
3991
3992 static char *validate_desc(game_params *params, char *desc)
3993 {
3994 int cr = params->c * params->r, area = cr*cr;
3995 char *err;
3996
3997 err = validate_grid_desc(&desc, cr, area);
3998 if (err)
3999 return err;
4000
4001 if (params->r == 1) {
4002 /*
4003 * Now we expect a suffix giving the jigsaw block
4004 * structure. Parse it and validate that it divides the
4005 * grid into the right number of regions which are the
4006 * right size.
4007 */
4008 if (*desc != ',')
4009 return "Expected jigsaw block structure in game description";
4010 desc++;
4011 err = validate_block_desc(&desc, cr, area, cr, cr, cr, cr);
4012 if (err)
4013 return err;
4014
4015 }
4016 if (params->killer) {
4017 if (*desc != ',')
4018 return "Expected killer block structure in game description";
4019 desc++;
4020 err = validate_block_desc(&desc, cr, area, cr, area, 2, cr);
4021 if (err)
4022 return err;
4023 if (*desc != ',')
4024 return "Expected killer clue grid in game description";
4025 desc++;
4026 err = validate_grid_desc(&desc, cr * area, area);
4027 if (err)
4028 return err;
4029 }
4030 if (*desc)
4031 return "Unexpected data at end of game description";
4032
4033 return NULL;
4034 }
4035
4036 static game_state *new_game(midend *me, game_params *params, char *desc)
4037 {
4038 game_state *state = snew(game_state);
4039 int c = params->c, r = params->r, cr = c*r, area = cr * cr;
4040 int i;
4041
4042 precompute_sum_bits();
4043
4044 state->cr = cr;
4045 state->xtype = params->xtype;
4046 state->killer = params->killer;
4047
4048 state->grid = snewn(area, digit);
4049 state->pencil = snewn(area * cr, unsigned char);
4050 memset(state->pencil, 0, area * cr);
4051 state->immutable = snewn(area, unsigned char);
4052 memset(state->immutable, FALSE, area);
4053
4054 state->blocks = alloc_block_structure (c, r, area, cr, cr);
4055
4056 if (params->killer) {
4057 state->kblocks = alloc_block_structure (c, r, area, cr, area);
4058 state->kgrid = snewn(area, digit);
4059 } else {
4060 state->kblocks = NULL;
4061 state->kgrid = NULL;
4062 }
4063 state->completed = state->cheated = FALSE;
4064
4065 desc = spec_to_grid(desc, state->grid, area);
4066 for (i = 0; i < area; i++)
4067 if (state->grid[i] != 0)
4068 state->immutable[i] = TRUE;
4069
4070 if (r == 1) {
4071 char *err;
4072 int *dsf;
4073 assert(*desc == ',');
4074 desc++;
4075 err = spec_to_dsf(&desc, &dsf, cr, area);
4076 assert(err == NULL);
4077 dsf_to_blocks(dsf, state->blocks, cr, cr);
4078 sfree(dsf);
4079 } else {
4080 int x, y;
4081
4082 for (y = 0; y < cr; y++)
4083 for (x = 0; x < cr; x++)
4084 state->blocks->whichblock[y*cr+x] = (y/c) * c + (x/r);
4085 }
4086 make_blocks_from_whichblock(state->blocks);
4087
4088 if (params->killer) {
4089 char *err;
4090 int *dsf;
4091 assert(*desc == ',');
4092 desc++;
4093 err = spec_to_dsf(&desc, &dsf, cr, area);
4094 assert(err == NULL);
4095 dsf_to_blocks(dsf, state->kblocks, cr, area);
4096 sfree(dsf);
4097 make_blocks_from_whichblock(state->kblocks);
4098
4099 assert(*desc == ',');
4100 desc++;
4101 desc = spec_to_grid(desc, state->kgrid, area);
4102 }
4103 assert(!*desc);
4104
4105 #ifdef STANDALONE_SOLVER
4106 /*
4107 * Set up the block names for solver diagnostic output.
4108 */
4109 {
4110 char *p = (char *)(state->blocks->blocknames + cr);
4111
4112 if (r == 1) {
4113 for (i = 0; i < area; i++) {
4114 int j = state->blocks->whichblock[i];
4115 if (!state->blocks->blocknames[j]) {
4116 state->blocks->blocknames[j] = p;
4117 p += 1 + sprintf(p, "starting at (%d,%d)",
4118 1 + i%cr, 1 + i/cr);
4119 }
4120 }
4121 } else {
4122 int bx, by;
4123 for (by = 0; by < r; by++)
4124 for (bx = 0; bx < c; bx++) {
4125 state->blocks->blocknames[by*c+bx] = p;
4126 p += 1 + sprintf(p, "(%d,%d)", bx+1, by+1);
4127 }
4128 }
4129 assert(p - (char *)state->blocks->blocknames < (int)(cr*(sizeof(char *)+80)));
4130 for (i = 0; i < cr; i++)
4131 assert(state->blocks->blocknames[i]);
4132 }
4133 #endif
4134
4135 return state;
4136 }
4137
4138 static game_state *dup_game(game_state *state)
4139 {
4140 game_state *ret = snew(game_state);
4141 int cr = state->cr, area = cr * cr;
4142
4143 ret->cr = state->cr;
4144 ret->xtype = state->xtype;
4145 ret->killer = state->killer;
4146
4147 ret->blocks = state->blocks;
4148 ret->blocks->refcount++;
4149
4150 ret->kblocks = state->kblocks;
4151 if (ret->kblocks)
4152 ret->kblocks->refcount++;
4153
4154 ret->grid = snewn(area, digit);
4155 memcpy(ret->grid, state->grid, area);
4156
4157 if (state->killer) {
4158 ret->kgrid = snewn(area, digit);
4159 memcpy(ret->kgrid, state->kgrid, area);
4160 } else
4161 ret->kgrid = NULL;
4162
4163 ret->pencil = snewn(area * cr, unsigned char);
4164 memcpy(ret->pencil, state->pencil, area * cr);
4165
4166 ret->immutable = snewn(area, unsigned char);
4167 memcpy(ret->immutable, state->immutable, area);
4168
4169 ret->completed = state->completed;
4170 ret->cheated = state->cheated;
4171
4172 return ret;
4173 }
4174
4175 static void free_game(game_state *state)
4176 {
4177 free_block_structure(state->blocks);
4178 if (state->kblocks)
4179 free_block_structure(state->kblocks);
4180
4181 sfree(state->immutable);
4182 sfree(state->pencil);
4183 sfree(state->grid);
4184 if (state->kgrid) sfree(state->kgrid);
4185 sfree(state);
4186 }
4187
4188 static char *solve_game(game_state *state, game_state *currstate,
4189 char *ai, char **error)
4190 {
4191 int cr = state->cr;
4192 char *ret;
4193 digit *grid;
4194 struct difficulty dlev;
4195
4196 /*
4197 * If we already have the solution in ai, save ourselves some
4198 * time.
4199 */
4200 if (ai)
4201 return dupstr(ai);
4202
4203 grid = snewn(cr*cr, digit);
4204 memcpy(grid, state->grid, cr*cr);
4205 dlev.maxdiff = DIFF_RECURSIVE;
4206 dlev.maxkdiff = DIFF_KINTERSECT;
4207 solver(cr, state->blocks, state->kblocks, state->xtype, grid,
4208 state->kgrid, &dlev);
4209
4210 *error = NULL;
4211
4212 if (dlev.diff == DIFF_IMPOSSIBLE)
4213 *error = "No solution exists for this puzzle";
4214 else if (dlev.diff == DIFF_AMBIGUOUS)
4215 *error = "Multiple solutions exist for this puzzle";
4216
4217 if (*error) {
4218 sfree(grid);
4219 return NULL;
4220 }
4221
4222 ret = encode_solve_move(cr, grid);
4223
4224 sfree(grid);
4225
4226 return ret;
4227 }
4228
4229 static char *grid_text_format(int cr, struct block_structure *blocks,
4230 int xtype, digit *grid)
4231 {
4232 int vmod, hmod;
4233 int x, y;
4234 int totallen, linelen, nlines;
4235 char *ret, *p, ch;
4236
4237 /*
4238 * For non-jigsaw Sudoku, we format in the way we always have,
4239 * by having the digits unevenly spaced so that the dividing
4240 * lines can fit in:
4241 *
4242 * . . | . .
4243 * . . | . .
4244 * ----+----
4245 * . . | . .
4246 * . . | . .
4247 *
4248 * For jigsaw puzzles, however, we must leave space between
4249 * _all_ pairs of digits for an optional dividing line, so we
4250 * have to move to the rather ugly
4251 *
4252 * . . . .
4253 * ------+------
4254 * . . | . .
4255 * +---+
4256 * . . | . | .
4257 * ------+ |
4258 * . . . | .
4259 *
4260 * We deal with both cases using the same formatting code; we
4261 * simply invent a vmod value such that there's a vertical
4262 * dividing line before column i iff i is divisible by vmod
4263 * (so it's r in the first case and 1 in the second), and hmod
4264 * likewise for horizontal dividing lines.
4265 */
4266
4267 if (blocks->r != 1) {
4268 vmod = blocks->r;
4269 hmod = blocks->c;
4270 } else {
4271 vmod = hmod = 1;
4272 }
4273
4274 /*
4275 * Line length: we have cr digits, each with a space after it,
4276 * and (cr-1)/vmod dividing lines, each with a space after it.
4277 * The final space is replaced by a newline, but that doesn't
4278 * affect the length.
4279 */
4280 linelen = 2*(cr + (cr-1)/vmod);
4281
4282 /*
4283 * Number of lines: we have cr rows of digits, and (cr-1)/hmod
4284 * dividing rows.
4285 */
4286 nlines = cr + (cr-1)/hmod;
4287
4288 /*
4289 * Allocate the space.
4290 */
4291 totallen = linelen * nlines;
4292 ret = snewn(totallen+1, char); /* leave room for terminating NUL */
4293
4294 /*
4295 * Write the text.
4296 */
4297 p = ret;
4298 for (y = 0; y < cr; y++) {
4299 /*
4300 * Row of digits.
4301 */
4302 for (x = 0; x < cr; x++) {
4303 /*
4304 * Digit.
4305 */
4306 digit d = grid[y*cr+x];
4307
4308 if (d == 0) {
4309 /*
4310 * Empty space: we usually write a dot, but we'll
4311 * highlight spaces on the X-diagonals (in X mode)
4312 * by using underscores instead.
4313 */
4314 if (xtype && (ondiag0(y*cr+x) || ondiag1(y*cr+x)))
4315 ch = '_';
4316 else
4317 ch = '.';
4318 } else if (d <= 9) {
4319 ch = '0' + d;
4320 } else {
4321 ch = 'a' + d-10;
4322 }
4323
4324 *p++ = ch;
4325 if (x == cr-1) {
4326 *p++ = '\n';
4327 continue;
4328 }
4329 *p++ = ' ';
4330
4331 if ((x+1) % vmod)
4332 continue;
4333
4334 /*
4335 * Optional dividing line.
4336 */
4337 if (blocks->whichblock[y*cr+x] != blocks->whichblock[y*cr+x+1])
4338 ch = '|';
4339 else
4340 ch = ' ';
4341 *p++ = ch;
4342 *p++ = ' ';
4343 }
4344 if (y == cr-1 || (y+1) % hmod)
4345 continue;
4346
4347 /*
4348 * Dividing row.
4349 */
4350 for (x = 0; x < cr; x++) {
4351 int dwid;
4352 int tl, tr, bl, br;
4353
4354 /*
4355 * Division between two squares. This varies
4356 * complicatedly in length.
4357 */
4358 dwid = 2; /* digit and its following space */
4359 if (x == cr-1)
4360 dwid--; /* no following space at end of line */
4361 if (x > 0 && x % vmod == 0)
4362 dwid++; /* preceding space after a divider */
4363
4364 if (blocks->whichblock[y*cr+x] != blocks->whichblock[(y+1)*cr+x])
4365 ch = '-';
4366 else
4367 ch = ' ';
4368
4369 while (dwid-- > 0)
4370 *p++ = ch;
4371
4372 if (x == cr-1) {
4373 *p++ = '\n';
4374 break;
4375 }
4376
4377 if ((x+1) % vmod)
4378 continue;
4379
4380 /*
4381 * Corner square. This is:
4382 * - a space if all four surrounding squares are in
4383 * the same block
4384 * - a vertical line if the two left ones are in one
4385 * block and the two right in another
4386 * - a horizontal line if the two top ones are in one
4387 * block and the two bottom in another
4388 * - a plus sign in all other cases. (If we had a
4389 * richer character set available we could break
4390 * this case up further by doing fun things with
4391 * line-drawing T-pieces.)
4392 */
4393 tl = blocks->whichblock[y*cr+x];
4394 tr = blocks->whichblock[y*cr+x+1];
4395 bl = blocks->whichblock[(y+1)*cr+x];
4396 br = blocks->whichblock[(y+1)*cr+x+1];
4397
4398 if (tl == tr && tr == bl && bl == br)
4399 ch = ' ';
4400 else if (tl == bl && tr == br)
4401 ch = '|';
4402 else if (tl == tr && bl == br)
4403 ch = '-';
4404 else
4405 ch = '+';
4406
4407 *p++ = ch;
4408 }
4409 }
4410
4411 assert(p - ret == totallen);
4412 *p = '\0';
4413 return ret;
4414 }
4415
4416 static int game_can_format_as_text_now(game_params *params)
4417 {
4418 /*
4419 * Formatting Killer puzzles as text is currently unsupported. I
4420 * can't think of any sensible way of doing it which doesn't
4421 * involve expanding the puzzle to such a large scale as to make
4422 * it unusable.
4423 */
4424 if (params->killer)
4425 return FALSE;
4426 return TRUE;
4427 }
4428
4429 static char *game_text_format(game_state *state)
4430 {
4431 assert(!state->kblocks);
4432 return grid_text_format(state->cr, state->blocks, state->xtype,
4433 state->grid);
4434 }
4435
4436 struct game_ui {
4437 /*
4438 * These are the coordinates of the currently highlighted
4439 * square on the grid, if hshow = 1.
4440 */
4441 int hx, hy;
4442 /*
4443 * This indicates whether the current highlight is a
4444 * pencil-mark one or a real one.
4445 */
4446 int hpencil;
4447 /*
4448 * This indicates whether or not we're showing the highlight
4449 * (used to be hx = hy = -1); important so that when we're
4450 * using the cursor keys it doesn't keep coming back at a
4451 * fixed position. When hshow = 1, pressing a valid number
4452 * or letter key or Space will enter that number or letter in the grid.
4453 */
4454 int hshow;
4455 /*
4456 * This indicates whether we're using the highlight as a cursor;
4457 * it means that it doesn't vanish on a keypress, and that it is
4458 * allowed on immutable squares.
4459 */
4460 int hcursor;
4461 };
4462
4463 static game_ui *new_ui(game_state *state)
4464 {
4465 game_ui *ui = snew(game_ui);
4466
4467 ui->hx = ui->hy = 0;
4468 ui->hpencil = ui->hshow = ui->hcursor = 0;
4469
4470 return ui;
4471 }
4472
4473 static void free_ui(game_ui *ui)
4474 {
4475 sfree(ui);
4476 }
4477
4478 static char *encode_ui(game_ui *ui)
4479 {
4480 return NULL;
4481 }
4482
4483 static void decode_ui(game_ui *ui, char *encoding)
4484 {
4485 }
4486
4487 static void game_changed_state(game_ui *ui, game_state *oldstate,
4488 game_state *newstate)
4489 {
4490 int cr = newstate->cr;
4491 /*
4492 * We prevent pencil-mode highlighting of a filled square, unless
4493 * we're using the cursor keys. So if the user has just filled in
4494 * a square which we had a pencil-mode highlight in (by Undo, or
4495 * by Redo, or by Solve), then we cancel the highlight.
4496 */
4497 if (ui->hshow && ui->hpencil && !ui->hcursor &&
4498 newstate->grid[ui->hy * cr + ui->hx] != 0) {
4499 ui->hshow = 0;
4500 }
4501 }
4502
4503 struct game_drawstate {
4504 int started;
4505 int cr, xtype;
4506 int tilesize;
4507 digit *grid;
4508 unsigned char *pencil;
4509 unsigned char *hl;
4510 /* This is scratch space used within a single call to game_redraw. */
4511 int nregions, *entered_items;
4512 };
4513
4514 static char *interpret_move(game_state *state, game_ui *ui, const game_drawstate *ds,
4515 int x, int y, int button)
4516 {
4517 int cr = state->cr;
4518 int tx, ty;
4519 char buf[80];
4520
4521 button &= ~MOD_MASK;
4522
4523 tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
4524 ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
4525
4526 if (tx >= 0 && tx < cr && ty >= 0 && ty < cr) {
4527 if (button == LEFT_BUTTON) {
4528 if (state->immutable[ty*cr+tx]) {
4529 ui->hshow = 0;
4530 } else if (tx == ui->hx && ty == ui->hy &&
4531 ui->hshow && ui->hpencil == 0) {
4532 ui->hshow = 0;
4533 } else {
4534 ui->hx = tx;
4535 ui->hy = ty;
4536 ui->hshow = 1;
4537 ui->hpencil = 0;
4538 }
4539 ui->hcursor = 0;
4540 return ""; /* UI activity occurred */
4541 }
4542 if (button == RIGHT_BUTTON) {
4543 /*
4544 * Pencil-mode highlighting for non filled squares.
4545 */
4546 if (state->grid[ty*cr+tx] == 0) {
4547 if (tx == ui->hx && ty == ui->hy &&
4548 ui->hshow && ui->hpencil) {
4549 ui->hshow = 0;
4550 } else {
4551 ui->hpencil = 1;
4552 ui->hx = tx;
4553 ui->hy = ty;
4554 ui->hshow = 1;
4555 }
4556 } else {
4557 ui->hshow = 0;
4558 }
4559 ui->hcursor = 0;
4560 return ""; /* UI activity occurred */
4561 }
4562 }
4563 if (IS_CURSOR_MOVE(button)) {
4564 move_cursor(button, &ui->hx, &ui->hy, cr, cr, 0);
4565 ui->hshow = ui->hcursor = 1;
4566 return "";
4567 }
4568 if (ui->hshow &&
4569 (button == CURSOR_SELECT)) {
4570 ui->hpencil = 1 - ui->hpencil;
4571 ui->hcursor = 1;
4572 return "";
4573 }
4574
4575 if (ui->hshow &&
4576 ((button >= '0' && button <= '9' && button - '0' <= cr) ||
4577 (button >= 'a' && button <= 'z' && button - 'a' + 10 <= cr) ||
4578 (button >= 'A' && button <= 'Z' && button - 'A' + 10 <= cr) ||
4579 button == CURSOR_SELECT2 || button == '\b')) {
4580 int n = button - '0';
4581 if (button >= 'A' && button <= 'Z')
4582 n = button - 'A' + 10;
4583 if (button >= 'a' && button <= 'z')
4584 n = button - 'a' + 10;
4585 if (button == CURSOR_SELECT2 || button == '\b')
4586 n = 0;
4587
4588 /*
4589 * Can't overwrite this square. This can only happen here
4590 * if we're using the cursor keys.
4591 */
4592 if (state->immutable[ui->hy*cr+ui->hx])
4593 return NULL;
4594
4595 /*
4596 * Can't make pencil marks in a filled square. Again, this
4597 * can only become highlighted if we're using cursor keys.
4598 */
4599 if (ui->hpencil && state->grid[ui->hy*cr+ui->hx])
4600 return NULL;
4601
4602 sprintf(buf, "%c%d,%d,%d",
4603 (char)(ui->hpencil && n > 0 ? 'P' : 'R'), ui->hx, ui->hy, n);
4604
4605 if (!ui->hcursor) ui->hshow = 0;
4606
4607 return dupstr(buf);
4608 }
4609
4610 return NULL;
4611 }
4612
4613 static game_state *execute_move(game_state *from, char *move)
4614 {
4615 int cr = from->cr;
4616 game_state *ret;
4617 int x, y, n;
4618
4619 if (move[0] == 'S') {
4620 char *p;
4621
4622 ret = dup_game(from);
4623 ret->completed = ret->cheated = TRUE;
4624
4625 p = move+1;
4626 for (n = 0; n < cr*cr; n++) {
4627 ret->grid[n] = atoi(p);
4628
4629 if (!*p || ret->grid[n] < 1 || ret->grid[n] > cr) {
4630 free_game(ret);
4631 return NULL;
4632 }
4633
4634 while (*p && isdigit((unsigned char)*p)) p++;
4635 if (*p == ',') p++;
4636 }
4637
4638 return ret;
4639 } else if ((move[0] == 'P' || move[0] == 'R') &&
4640 sscanf(move+1, "%d,%d,%d", &x, &y, &n) == 3 &&
4641 x >= 0 && x < cr && y >= 0 && y < cr && n >= 0 && n <= cr) {
4642
4643 ret = dup_game(from);
4644 if (move[0] == 'P' && n > 0) {
4645 int index = (y*cr+x) * cr + (n-1);
4646 ret->pencil[index] = !ret->pencil[index];
4647 } else {
4648 ret->grid[y*cr+x] = n;
4649 memset(ret->pencil + (y*cr+x)*cr, 0, cr);
4650
4651 /*
4652 * We've made a real change to the grid. Check to see
4653 * if the game has been completed.
4654 */
4655 if (!ret->completed && check_valid(cr, ret->blocks, ret->kblocks,
4656 ret->xtype, ret->grid)) {
4657 ret->completed = TRUE;
4658 }
4659 }
4660 return ret;
4661 } else
4662 return NULL; /* couldn't parse move string */
4663 }
4664
4665 /* ----------------------------------------------------------------------
4666 * Drawing routines.
4667 */
4668
4669 #define SIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
4670 #define GETTILESIZE(cr, w) ( (double)(w-1) / (double)(cr+1) )
4671
4672 static void game_compute_size(game_params *params, int tilesize,
4673 int *x, int *y)
4674 {
4675 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
4676 struct { int tilesize; } ads, *ds = &ads;
4677 ads.tilesize = tilesize;
4678
4679 *x = SIZE(params->c * params->r);
4680 *y = SIZE(params->c * params->r);
4681 }
4682
4683 static void game_set_size(drawing *dr, game_drawstate *ds,
4684 game_params *params, int tilesize)
4685 {
4686 ds->tilesize = tilesize;
4687 }
4688
4689 static float *game_colours(frontend *fe, int *ncolours)
4690 {
4691 float *ret = snewn(3 * NCOLOURS, float);
4692
4693 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
4694
4695 ret[COL_XDIAGONALS * 3 + 0] = 0.9F * ret[COL_BACKGROUND * 3 + 0];
4696 ret[COL_XDIAGONALS * 3 + 1] = 0.9F * ret[COL_BACKGROUND * 3 + 1];
4697 ret[COL_XDIAGONALS * 3 + 2] = 0.9F * ret[COL_BACKGROUND * 3 + 2];
4698
4699 ret[COL_GRID * 3 + 0] = 0.0F;
4700 ret[COL_GRID * 3 + 1] = 0.0F;
4701 ret[COL_GRID * 3 + 2] = 0.0F;
4702
4703 ret[COL_CLUE * 3 + 0] = 0.0F;
4704 ret[COL_CLUE * 3 + 1] = 0.0F;
4705 ret[COL_CLUE * 3 + 2] = 0.0F;
4706
4707 ret[COL_USER * 3 + 0] = 0.0F;
4708 ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
4709 ret[COL_USER * 3 + 2] = 0.0F;
4710
4711 ret[COL_HIGHLIGHT * 3 + 0] = 0.78F * ret[COL_BACKGROUND * 3 + 0];
4712 ret[COL_HIGHLIGHT * 3 + 1] = 0.78F * ret[COL_BACKGROUND * 3 + 1];
4713 ret[COL_HIGHLIGHT * 3 + 2] = 0.78F * ret[COL_BACKGROUND * 3 + 2];
4714
4715 ret[COL_ERROR * 3 + 0] = 1.0F;
4716 ret[COL_ERROR * 3 + 1] = 0.0F;
4717 ret[COL_ERROR * 3 + 2] = 0.0F;
4718
4719 ret[COL_PENCIL * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
4720 ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
4721 ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
4722
4723 ret[COL_KILLER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
4724 ret[COL_KILLER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
4725 ret[COL_KILLER * 3 + 2] = 0.1F * ret[COL_BACKGROUND * 3 + 2];
4726
4727 *ncolours = NCOLOURS;
4728 return ret;
4729 }
4730
4731 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
4732 {
4733 struct game_drawstate *ds = snew(struct game_drawstate);
4734 int cr = state->cr;
4735
4736 ds->started = FALSE;
4737 ds->cr = cr;
4738 ds->xtype = state->xtype;
4739 ds->grid = snewn(cr*cr, digit);
4740 memset(ds->grid, cr+2, cr*cr);
4741 ds->pencil = snewn(cr*cr*cr, digit);
4742 memset(ds->pencil, 0, cr*cr*cr);
4743 ds->hl = snewn(cr*cr, unsigned char);
4744 memset(ds->hl, 0, cr*cr);
4745 /*
4746 * ds->entered_items needs one row of cr entries per entity in
4747 * which digits may not be duplicated. That's one for each row,
4748 * each column, each block, each diagonal, and each Killer cage.
4749 */
4750 ds->nregions = cr*3 + 2;
4751 if (state->kblocks)
4752 ds->nregions += state->kblocks->nr_blocks;
4753 ds->entered_items = snewn(cr * ds->nregions, int);
4754 ds->tilesize = 0; /* not decided yet */
4755 return ds;
4756 }
4757
4758 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
4759 {
4760 sfree(ds->hl);
4761 sfree(ds->pencil);
4762 sfree(ds->grid);
4763 sfree(ds->entered_items);
4764 sfree(ds);
4765 }
4766
4767 static void draw_number(drawing *dr, game_drawstate *ds, game_state *state,
4768 int x, int y, int hl)
4769 {
4770 int cr = state->cr;
4771 int tx, ty, tw, th;
4772 int cx, cy, cw, ch;
4773 int col_killer = (hl & 32 ? COL_ERROR : COL_KILLER);
4774 char str[20];
4775
4776 if (ds->grid[y*cr+x] == state->grid[y*cr+x] &&
4777 ds->hl[y*cr+x] == hl &&
4778 !memcmp(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr))
4779 return; /* no change required */
4780
4781 tx = BORDER + x * TILE_SIZE + 1 + GRIDEXTRA;
4782 ty = BORDER + y * TILE_SIZE + 1 + GRIDEXTRA;
4783
4784 cx = tx;
4785 cy = ty;
4786 cw = tw = TILE_SIZE-1-2*GRIDEXTRA;
4787 ch = th = TILE_SIZE-1-2*GRIDEXTRA;
4788
4789 if (x > 0 && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[y*cr+x-1])
4790 cx -= GRIDEXTRA, cw += GRIDEXTRA;
4791 if (x+1 < cr && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[y*cr+x+1])
4792 cw += GRIDEXTRA;
4793 if (y > 0 && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[(y-1)*cr+x])
4794 cy -= GRIDEXTRA, ch += GRIDEXTRA;
4795 if (y+1 < cr && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[(y+1)*cr+x])
4796 ch += GRIDEXTRA;
4797
4798 clip(dr, cx, cy, cw, ch);
4799
4800 /* background needs erasing */
4801 draw_rect(dr, cx, cy, cw, ch,
4802 ((hl & 15) == 1 ? COL_HIGHLIGHT :
4803 (ds->xtype && (ondiag0(y*cr+x) || ondiag1(y*cr+x))) ? COL_XDIAGONALS :
4804 COL_BACKGROUND));
4805
4806 /*
4807 * Draw the corners of thick lines in corner-adjacent squares,
4808 * which jut into this square by one pixel.
4809 */
4810 if (x > 0 && y > 0 && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y-1)*cr+x-1])
4811 draw_rect(dr, tx-GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
4812 if (x+1 < cr && y > 0 && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y-1)*cr+x+1])
4813 draw_rect(dr, tx+TILE_SIZE-1-2*GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
4814 if (x > 0 && y+1 < cr && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y+1)*cr+x-1])
4815 draw_rect(dr, tx-GRIDEXTRA, ty+TILE_SIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
4816 if (x+1 < cr && y+1 < cr && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y+1)*cr+x+1])
4817 draw_rect(dr, tx+TILE_SIZE-1-2*GRIDEXTRA, ty+TILE_SIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
4818
4819 /* pencil-mode highlight */
4820 if ((hl & 15) == 2) {
4821 int coords[6];
4822 coords[0] = cx;
4823 coords[1] = cy;
4824 coords[2] = cx+cw/2;
4825 coords[3] = cy;
4826 coords[4] = cx;
4827 coords[5] = cy+ch/2;
4828 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
4829 }
4830
4831 if (state->kblocks) {
4832 int t = GRIDEXTRA * 3;
4833 int kcx, kcy, kcw, kch;
4834 int kl, kt, kr, kb;
4835 int has_left = 0, has_right = 0, has_top = 0, has_bottom = 0;
4836
4837 /*
4838 * In non-jigsaw mode, the Killer cages are placed at a
4839 * fixed offset from the outer edge of the cell dividing
4840 * lines, so that they look right whether those lines are
4841 * thick or thin. In jigsaw mode, however, doing this will
4842 * sometimes cause the cage outlines in adjacent squares to
4843 * fail to match up with each other, so we must offset a
4844 * fixed amount from the _centre_ of the cell dividing
4845 * lines.
4846 */
4847 if (state->blocks->r == 1) {
4848 kcx = tx;
4849 kcy = ty;
4850 kcw = tw;
4851 kch = th;
4852 } else {
4853 kcx = cx;
4854 kcy = cy;
4855 kcw = cw;
4856 kch = ch;
4857 }
4858 kl = kcx - 1;
4859 kt = kcy - 1;
4860 kr = kcx + kcw;
4861 kb = kcy + kch;
4862
4863 /*
4864 * First, draw the lines dividing this area from neighbouring
4865 * different areas.
4866 */
4867 if (x == 0 || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[y*cr+x-1])
4868 has_left = 1, kl += t;
4869 if (x+1 >= cr || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[y*cr+x+1])
4870 has_right = 1, kr -= t;
4871 if (y == 0 || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y-1)*cr+x])
4872 has_top = 1, kt += t;
4873 if (y+1 >= cr || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y+1)*cr+x])
4874 has_bottom = 1, kb -= t;
4875 if (has_top)
4876 draw_line(dr, kl, kt, kr, kt, col_killer);
4877 if (has_bottom)
4878 draw_line(dr, kl, kb, kr, kb, col_killer);
4879 if (has_left)
4880 draw_line(dr, kl, kt, kl, kb, col_killer);
4881 if (has_right)
4882 draw_line(dr, kr, kt, kr, kb, col_killer);
4883 /*
4884 * Now, take care of the corners (just as for the normal borders).
4885 * We only need a corner if there wasn't a full edge.
4886 */
4887 if (x > 0 && y > 0 && !has_left && !has_top
4888 && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y-1)*cr+x-1])
4889 {
4890 draw_line(dr, kl, kt + t, kl + t, kt + t, col_killer);
4891 draw_line(dr, kl + t, kt, kl + t, kt + t, col_killer);
4892 }
4893 if (x+1 < cr && y > 0 && !has_right && !has_top
4894 && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y-1)*cr+x+1])
4895 {
4896 draw_line(dr, kcx + kcw - t, kt + t, kcx + kcw, kt + t, col_killer);
4897 draw_line(dr, kcx + kcw - t, kt, kcx + kcw - t, kt + t, col_killer);
4898 }
4899 if (x > 0 && y+1 < cr && !has_left && !has_bottom
4900 && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y+1)*cr+x-1])
4901 {
4902 draw_line(dr, kl, kcy + kch - t, kl + t, kcy + kch - t, col_killer);
4903 draw_line(dr, kl + t, kcy + kch - t, kl + t, kcy + kch, col_killer);
4904 }
4905 if (x+1 < cr && y+1 < cr && !has_right && !has_bottom
4906 && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y+1)*cr+x+1])
4907 {
4908 draw_line(dr, kcx + kcw - t, kcy + kch - t, kcx + kcw - t, kcy + kch, col_killer);
4909 draw_line(dr, kcx + kcw - t, kcy + kch - t, kcx + kcw, kcy + kch - t, col_killer);
4910 }
4911
4912 }
4913
4914 if (state->killer && state->kgrid[y*cr+x]) {
4915 sprintf (str, "%d", state->kgrid[y*cr+x]);
4916 draw_text(dr, tx + GRIDEXTRA * 4, ty + GRIDEXTRA * 4 + TILE_SIZE/4,
4917 FONT_VARIABLE, TILE_SIZE/4, ALIGN_VNORMAL | ALIGN_HLEFT,
4918 col_killer, str);
4919 }
4920
4921 /* new number needs drawing? */
4922 if (state->grid[y*cr+x]) {
4923 str[1] = '\0';
4924 str[0] = state->grid[y*cr+x] + '0';
4925 if (str[0] > '9')
4926 str[0] += 'a' - ('9'+1);
4927 draw_text(dr, tx + TILE_SIZE/2, ty + TILE_SIZE/2,
4928 FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
4929 state->immutable[y*cr+x] ? COL_CLUE : (hl & 16) ? COL_ERROR : COL_USER, str);
4930 } else {
4931 int i, j, npencil;
4932 int pl, pr, pt, pb;
4933 float bestsize;
4934 int pw, ph, minph, pbest, fontsize;
4935
4936 /* Count the pencil marks required. */
4937 for (i = npencil = 0; i < cr; i++)
4938 if (state->pencil[(y*cr+x)*cr+i])
4939 npencil++;
4940 if (npencil) {
4941
4942 minph = 2;
4943
4944 /*
4945 * Determine the bounding rectangle within which we're going
4946 * to put the pencil marks.
4947 */
4948 /* Start with the whole square */
4949 pl = tx + GRIDEXTRA;
4950 pr = pl + TILE_SIZE - GRIDEXTRA;
4951 pt = ty + GRIDEXTRA;
4952 pb = pt + TILE_SIZE - GRIDEXTRA;
4953 if (state->killer) {
4954 /*
4955 * Make space for the Killer cages. We do this
4956 * unconditionally, for uniformity between squares,
4957 * rather than making it depend on whether a Killer
4958 * cage edge is actually present on any given side.
4959 */
4960 pl += GRIDEXTRA * 3;
4961 pr -= GRIDEXTRA * 3;
4962 pt += GRIDEXTRA * 3;
4963 pb -= GRIDEXTRA * 3;
4964 if (state->kgrid[y*cr+x] != 0) {
4965 /* Make further space for the Killer number. */
4966 pt += TILE_SIZE/4;
4967 /* minph--; */
4968 }
4969 }
4970
4971 /*
4972 * We arrange our pencil marks in a grid layout, with
4973 * the number of rows and columns adjusted to allow the
4974 * maximum font size.
4975 *
4976 * So now we work out what the grid size ought to be.
4977 */
4978 bestsize = 0.0;
4979 pbest = 0;
4980 /* Minimum */
4981 for (pw = 3; pw < max(npencil,4); pw++) {
4982 float fw, fh, fs;
4983
4984 ph = (npencil + pw - 1) / pw;
4985 ph = max(ph, minph);
4986 fw = (pr - pl) / (float)pw;
4987 fh = (pb - pt) / (float)ph;
4988 fs = min(fw, fh);
4989 if (fs > bestsize) {
4990 bestsize = fs;
4991 pbest = pw;
4992 }
4993 }
4994 assert(pbest > 0);
4995 pw = pbest;
4996 ph = (npencil + pw - 1) / pw;
4997 ph = max(ph, minph);
4998
4999 /*
5000 * Now we've got our grid dimensions, work out the pixel
5001 * size of a grid element, and round it to the nearest
5002 * pixel. (We don't want rounding errors to make the
5003 * grid look uneven at low pixel sizes.)
5004 */
5005 fontsize = min((pr - pl) / pw, (pb - pt) / ph);
5006
5007 /*
5008 * Centre the resulting figure in the square.
5009 */
5010 pl = tx + (TILE_SIZE - fontsize * pw) / 2;
5011 pt = ty + (TILE_SIZE - fontsize * ph) / 2;
5012
5013 /*
5014 * And move it down a bit if it's collided with the
5015 * Killer cage number.
5016 */
5017 if (state->killer && state->kgrid[y*cr+x] != 0) {
5018 pt = max(pt, ty + GRIDEXTRA * 3 + TILE_SIZE/4);
5019 }
5020
5021 /*
5022 * Now actually draw the pencil marks.
5023 */
5024 for (i = j = 0; i < cr; i++)
5025 if (state->pencil[(y*cr+x)*cr+i]) {
5026 int dx = j % pw, dy = j / pw;
5027
5028 str[1] = '\0';
5029 str[0] = i + '1';
5030 if (str[0] > '9')
5031 str[0] += 'a' - ('9'+1);
5032 draw_text(dr, pl + fontsize * (2*dx+1) / 2,
5033 pt + fontsize * (2*dy+1) / 2,
5034 FONT_VARIABLE, fontsize,
5035 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
5036 j++;
5037 }
5038 }
5039 }
5040
5041 unclip(dr);
5042
5043 draw_update(dr, cx, cy, cw, ch);
5044
5045 ds->grid[y*cr+x] = state->grid[y*cr+x];
5046 memcpy(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr);
5047 ds->hl[y*cr+x] = hl;
5048 }
5049
5050 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
5051 game_state *state, int dir, game_ui *ui,
5052 float animtime, float flashtime)
5053 {
5054 int cr = state->cr;
5055 int x, y;
5056
5057 if (!ds->started) {
5058 /*
5059 * The initial contents of the window are not guaranteed
5060 * and can vary with front ends. To be on the safe side,
5061 * all games should start by drawing a big
5062 * background-colour rectangle covering the whole window.
5063 */
5064 draw_rect(dr, 0, 0, SIZE(cr), SIZE(cr), COL_BACKGROUND);
5065
5066 /*
5067 * Draw the grid. We draw it as a big thick rectangle of
5068 * COL_GRID initially; individual calls to draw_number()
5069 * will poke the right-shaped holes in it.
5070 */
5071 draw_rect(dr, BORDER-GRIDEXTRA, BORDER-GRIDEXTRA,
5072 cr*TILE_SIZE+1+2*GRIDEXTRA, cr*TILE_SIZE+1+2*GRIDEXTRA,
5073 COL_GRID);
5074 }
5075
5076 /*
5077 * This array is used to keep track of rows, columns and boxes
5078 * which contain a number more than once.
5079 */
5080 for (x = 0; x < cr * ds->nregions; x++)
5081 ds->entered_items[x] = 0;
5082 for (x = 0; x < cr; x++)
5083 for (y = 0; y < cr; y++) {
5084 digit d = state->grid[y*cr+x];
5085 if (d) {
5086 int box, kbox;
5087
5088 /* Rows */
5089 ds->entered_items[x*cr+d-1]++;
5090
5091 /* Columns */
5092 ds->entered_items[(y+cr)*cr+d-1]++;
5093
5094 /* Blocks */
5095 box = state->blocks->whichblock[y*cr+x];
5096 ds->entered_items[(box+2*cr)*cr+d-1]++;
5097
5098 /* Diagonals */
5099 if (ds->xtype) {
5100 if (ondiag0(y*cr+x))
5101 ds->entered_items[(3*cr)*cr+d-1]++;
5102 if (ondiag1(y*cr+x))
5103 ds->entered_items[(3*cr+1)*cr+d-1]++;
5104 }
5105
5106 /* Killer cages */
5107 if (state->kblocks) {
5108 kbox = state->kblocks->whichblock[y*cr+x];
5109 ds->entered_items[(kbox+3*cr+2)*cr+d-1]++;
5110 }
5111 }
5112 }
5113
5114 /*
5115 * Draw any numbers which need redrawing.
5116 */
5117 for (x = 0; x < cr; x++) {
5118 for (y = 0; y < cr; y++) {
5119 int highlight = 0;
5120 digit d = state->grid[y*cr+x];
5121
5122 if (flashtime > 0 &&
5123 (flashtime <= FLASH_TIME/3 ||
5124 flashtime >= FLASH_TIME*2/3))
5125 highlight = 1;
5126
5127 /* Highlight active input areas. */
5128 if (x == ui->hx && y == ui->hy && ui->hshow)
5129 highlight = ui->hpencil ? 2 : 1;
5130
5131 /* Mark obvious errors (ie, numbers which occur more than once
5132 * in a single row, column, or box). */
5133 if (d && (ds->entered_items[x*cr+d-1] > 1 ||
5134 ds->entered_items[(y+cr)*cr+d-1] > 1 ||
5135 ds->entered_items[(state->blocks->whichblock[y*cr+x]
5136 +2*cr)*cr+d-1] > 1 ||
5137 (ds->xtype && ((ondiag0(y*cr+x) &&
5138 ds->entered_items[(3*cr)*cr+d-1] > 1) ||
5139 (ondiag1(y*cr+x) &&
5140 ds->entered_items[(3*cr+1)*cr+d-1]>1)))||
5141 (state->kblocks &&
5142 ds->entered_items[(state->kblocks->whichblock[y*cr+x]
5143 +3*cr+2)*cr+d-1] > 1)))
5144 highlight |= 16;
5145
5146 if (d && state->kblocks) {
5147 int i, b = state->kblocks->whichblock[y*cr+x];
5148 int n_squares = state->kblocks->nr_squares[b];
5149 int sum = 0, clue = 0;
5150 for (i = 0; i < n_squares; i++) {
5151 int xy = state->kblocks->blocks[b][i];
5152 if (state->grid[xy] == 0)
5153 break;
5154
5155 sum += state->grid[xy];
5156 if (state->kgrid[xy]) {
5157 assert(clue == 0);
5158 clue = state->kgrid[xy];
5159 }
5160 }
5161
5162 if (i == n_squares) {
5163 assert(clue != 0);
5164 if (sum != clue)
5165 highlight |= 32;
5166 }
5167 }
5168
5169 draw_number(dr, ds, state, x, y, highlight);
5170 }
5171 }
5172
5173 /*
5174 * Update the _entire_ grid if necessary.
5175 */
5176 if (!ds->started) {
5177 draw_update(dr, 0, 0, SIZE(cr), SIZE(cr));
5178 ds->started = TRUE;
5179 }
5180 }
5181
5182 static float game_anim_length(game_state *oldstate, game_state *newstate,
5183 int dir, game_ui *ui)
5184 {
5185 return 0.0F;
5186 }
5187
5188 static float game_flash_length(game_state *oldstate, game_state *newstate,
5189 int dir, game_ui *ui)
5190 {
5191 if (!oldstate->completed && newstate->completed &&
5192 !oldstate->cheated && !newstate->cheated)
5193 return FLASH_TIME;
5194 return 0.0F;
5195 }
5196
5197 static int game_status(game_state *state)
5198 {
5199 return state->completed ? +1 : 0;
5200 }
5201
5202 static int game_timing_state(game_state *state, game_ui *ui)
5203 {
5204 if (state->completed)
5205 return FALSE;
5206 return TRUE;
5207 }
5208
5209 static void game_print_size(game_params *params, float *x, float *y)
5210 {
5211 int pw, ph;
5212
5213 /*
5214 * I'll use 9mm squares by default. They should be quite big
5215 * for this game, because players will want to jot down no end
5216 * of pencil marks in the squares.
5217 */
5218 game_compute_size(params, 900, &pw, &ph);
5219 *x = pw / 100.0F;
5220 *y = ph / 100.0F;
5221 }
5222
5223 /*
5224 * Subfunction to draw the thick lines between cells. In order to do
5225 * this using the line-drawing rather than rectangle-drawing API (so
5226 * as to get line thicknesses to scale correctly) and yet have
5227 * correctly mitred joins between lines, we must do this by tracing
5228 * the boundary of each sub-block and drawing it in one go as a
5229 * single polygon.
5230 *
5231 * This subfunction is also reused with thinner dotted lines to
5232 * outline the Killer cages, this time offsetting the outline toward
5233 * the interior of the affected squares.
5234 */
5235 static void outline_block_structure(drawing *dr, game_drawstate *ds,
5236 game_state *state,
5237 struct block_structure *blocks,
5238 int ink, int inset)
5239 {
5240 int cr = state->cr;
5241 int *coords;
5242 int bi, i, n;
5243 int x, y, dx, dy, sx, sy, sdx, sdy;
5244
5245 /*
5246 * Maximum perimeter of a k-omino is 2k+2. (Proof: start
5247 * with k unconnected squares, with total perimeter 4k.
5248 * Now repeatedly join two disconnected components
5249 * together into a larger one; every time you do so you
5250 * remove at least two unit edges, and you require k-1 of
5251 * these operations to create a single connected piece, so
5252 * you must have at most 4k-2(k-1) = 2k+2 unit edges left
5253 * afterwards.)
5254 */
5255 coords = snewn(4*cr+4, int); /* 2k+2 points, 2 coords per point */
5256
5257 /*
5258 * Iterate over all the blocks.
5259 */
5260 for (bi = 0; bi < blocks->nr_blocks; bi++) {
5261 if (blocks->nr_squares[bi] == 0)
5262 continue;
5263
5264 /*
5265 * For each block, find a starting square within it
5266 * which has a boundary at the left.
5267 */
5268 for (i = 0; i < cr; i++) {
5269 int j = blocks->blocks[bi][i];
5270 if (j % cr == 0 || blocks->whichblock[j-1] != bi)
5271 break;
5272 }
5273 assert(i < cr); /* every block must have _some_ leftmost square */
5274 x = blocks->blocks[bi][i] % cr;
5275 y = blocks->blocks[bi][i] / cr;
5276 dx = -1;
5277 dy = 0;
5278
5279 /*
5280 * Now begin tracing round the perimeter. At all
5281 * times, (x,y) describes some square within the
5282 * block, and (x+dx,y+dy) is some adjacent square
5283 * outside it; so the edge between those two squares
5284 * is always an edge of the block.
5285 */
5286 sx = x, sy = y, sdx = dx, sdy = dy; /* save starting position */
5287 n = 0;
5288 do {
5289 int cx, cy, tx, ty, nin;
5290
5291 /*
5292 * Advance to the next edge, by looking at the two
5293 * squares beyond it. If they're both outside the block,
5294 * we turn right (by leaving x,y the same and rotating
5295 * dx,dy clockwise); if they're both inside, we turn
5296 * left (by rotating dx,dy anticlockwise and contriving
5297 * to leave x+dx,y+dy unchanged); if one of each, we go
5298 * straight on (and may enforce by assertion that
5299 * they're one of each the _right_ way round).
5300 */
5301 nin = 0;
5302 tx = x - dy + dx;
5303 ty = y + dx + dy;
5304 nin += (tx >= 0 && tx < cr && ty >= 0 && ty < cr &&
5305 blocks->whichblock[ty*cr+tx] == bi);
5306 tx = x - dy;
5307 ty = y + dx;
5308 nin += (tx >= 0 && tx < cr && ty >= 0 && ty < cr &&
5309 blocks->whichblock[ty*cr+tx] == bi);
5310 if (nin == 0) {
5311 /*
5312 * Turn right.
5313 */
5314 int tmp;
5315 tmp = dx;
5316 dx = -dy;
5317 dy = tmp;
5318 } else if (nin == 2) {
5319 /*
5320 * Turn left.
5321 */
5322 int tmp;
5323
5324 x += dx;
5325 y += dy;
5326
5327 tmp = dx;
5328 dx = dy;
5329 dy = -tmp;
5330
5331 x -= dx;
5332 y -= dy;
5333 } else {
5334 /*
5335 * Go straight on.
5336 */
5337 x -= dy;
5338 y += dx;
5339 }
5340
5341 /*
5342 * Now enforce by assertion that we ended up
5343 * somewhere sensible.
5344 */
5345 assert(x >= 0 && x < cr && y >= 0 && y < cr &&
5346 blocks->whichblock[y*cr+x] == bi);
5347 assert(x+dx < 0 || x+dx >= cr || y+dy < 0 || y+dy >= cr ||
5348 blocks->whichblock[(y+dy)*cr+(x+dx)] != bi);
5349
5350 /*
5351 * Record the point we just went past at one end of the
5352 * edge. To do this, we translate (x,y) down and right
5353 * by half a unit (so they're describing a point in the
5354 * _centre_ of the square) and then translate back again
5355 * in a manner rotated by dy and dx.
5356 */
5357 assert(n < 2*cr+2);
5358 cx = ((2*x+1) + dy + dx) / 2;
5359 cy = ((2*y+1) - dx + dy) / 2;
5360 coords[2*n+0] = BORDER + cx * TILE_SIZE;
5361 coords[2*n+1] = BORDER + cy * TILE_SIZE;
5362 coords[2*n+0] -= dx * inset;
5363 coords[2*n+1] -= dy * inset;
5364 if (nin == 0) {
5365 /*
5366 * We turned right, so inset this corner back along
5367 * the edge towards the centre of the square.
5368 */
5369 coords[2*n+0] -= dy * inset;
5370 coords[2*n+1] += dx * inset;
5371 } else if (nin == 2) {
5372 /*
5373 * We turned left, so inset this corner further
5374 * _out_ along the edge into the next square.
5375 */
5376 coords[2*n+0] += dy * inset;
5377 coords[2*n+1] -= dx * inset;
5378 }
5379 n++;
5380
5381 } while (x != sx || y != sy || dx != sdx || dy != sdy);
5382
5383 /*
5384 * That's our polygon; now draw it.
5385 */
5386 draw_polygon(dr, coords, n, -1, ink);
5387 }
5388
5389 sfree(coords);
5390 }
5391
5392 static void game_print(drawing *dr, game_state *state, int tilesize)
5393 {
5394 int cr = state->cr;
5395 int ink = print_mono_colour(dr, 0);
5396 int x, y;
5397
5398 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
5399 game_drawstate ads, *ds = &ads;
5400 game_set_size(dr, ds, NULL, tilesize);
5401
5402 /*
5403 * Border.
5404 */
5405 print_line_width(dr, 3 * TILE_SIZE / 40);
5406 draw_rect_outline(dr, BORDER, BORDER, cr*TILE_SIZE, cr*TILE_SIZE, ink);
5407
5408 /*
5409 * Highlight X-diagonal squares.
5410 */
5411 if (state->xtype) {
5412 int i;
5413 int xhighlight = print_grey_colour(dr, 0.90F);
5414
5415 for (i = 0; i < cr; i++)
5416 draw_rect(dr, BORDER + i*TILE_SIZE, BORDER + i*TILE_SIZE,
5417 TILE_SIZE, TILE_SIZE, xhighlight);
5418 for (i = 0; i < cr; i++)
5419 if (i*2 != cr-1) /* avoid redoing centre square, just for fun */
5420 draw_rect(dr, BORDER + i*TILE_SIZE,
5421 BORDER + (cr-1-i)*TILE_SIZE,
5422 TILE_SIZE, TILE_SIZE, xhighlight);
5423 }
5424
5425 /*
5426 * Main grid.
5427 */
5428 for (x = 1; x < cr; x++) {
5429 print_line_width(dr, TILE_SIZE / 40);
5430 draw_line(dr, BORDER+x*TILE_SIZE, BORDER,
5431 BORDER+x*TILE_SIZE, BORDER+cr*TILE_SIZE, ink);
5432 }
5433 for (y = 1; y < cr; y++) {
5434 print_line_width(dr, TILE_SIZE / 40);
5435 draw_line(dr, BORDER, BORDER+y*TILE_SIZE,
5436 BORDER+cr*TILE_SIZE, BORDER+y*TILE_SIZE, ink);
5437 }
5438
5439 /*
5440 * Thick lines between cells.
5441 */
5442 print_line_width(dr, 3 * TILE_SIZE / 40);
5443 outline_block_structure(dr, ds, state, state->blocks, ink, 0);
5444
5445 /*
5446 * Killer cages and their totals.
5447 */
5448 if (state->kblocks) {
5449 print_line_width(dr, TILE_SIZE / 40);
5450 print_line_dotted(dr, TRUE);
5451 outline_block_structure(dr, ds, state, state->kblocks, ink,
5452 5 * TILE_SIZE / 40);
5453 print_line_dotted(dr, FALSE);
5454 for (y = 0; y < cr; y++)
5455 for (x = 0; x < cr; x++)
5456 if (state->kgrid[y*cr+x]) {
5457 char str[20];
5458 sprintf(str, "%d", state->kgrid[y*cr+x]);
5459 draw_text(dr,
5460 BORDER+x*TILE_SIZE + 7*TILE_SIZE/40,
5461 BORDER+y*TILE_SIZE + 16*TILE_SIZE/40,
5462 FONT_VARIABLE, TILE_SIZE/4,
5463 ALIGN_VNORMAL | ALIGN_HLEFT,
5464 ink, str);
5465 }
5466 }
5467
5468 /*
5469 * Standard (non-Killer) clue numbers.
5470 */
5471 for (y = 0; y < cr; y++)
5472 for (x = 0; x < cr; x++)
5473 if (state->grid[y*cr+x]) {
5474 char str[2];
5475 str[1] = '\0';
5476 str[0] = state->grid[y*cr+x] + '0';
5477 if (str[0] > '9')
5478 str[0] += 'a' - ('9'+1);
5479 draw_text(dr, BORDER + x*TILE_SIZE + TILE_SIZE/2,
5480 BORDER + y*TILE_SIZE + TILE_SIZE/2,
5481 FONT_VARIABLE, TILE_SIZE/2,
5482 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str);
5483 }
5484 }
5485
5486 #ifdef COMBINED
5487 #define thegame solo
5488 #endif
5489
5490 const struct game thegame = {
5491 "Solo", "games.solo", "solo",
5492 default_params,
5493 game_fetch_preset,
5494 decode_params,
5495 encode_params,
5496 free_params,
5497 dup_params,
5498 TRUE, game_configure, custom_params,
5499 validate_params,
5500 new_game_desc,
5501 validate_desc,
5502 new_game,
5503 dup_game,
5504 free_game,
5505 TRUE, solve_game,
5506 TRUE, game_can_format_as_text_now, game_text_format,
5507 new_ui,
5508 free_ui,
5509 encode_ui,
5510 decode_ui,
5511 game_changed_state,
5512 interpret_move,
5513 execute_move,
5514 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
5515 game_colours,
5516 game_new_drawstate,
5517 game_free_drawstate,
5518 game_redraw,
5519 game_anim_length,
5520 game_flash_length,
5521 game_status,
5522 TRUE, FALSE, game_print_size, game_print,
5523 FALSE, /* wants_statusbar */
5524 FALSE, game_timing_state,
5525 REQUIRE_RBUTTON | REQUIRE_NUMPAD, /* flags */
5526 };
5527
5528 #ifdef STANDALONE_SOLVER
5529
5530 int main(int argc, char **argv)
5531 {
5532 game_params *p;
5533 game_state *s;
5534 char *id = NULL, *desc, *err;
5535 int grade = FALSE;
5536 struct difficulty dlev;
5537
5538 while (--argc > 0) {
5539 char *p = *++argv;
5540 if (!strcmp(p, "-v")) {
5541 solver_show_working = TRUE;
5542 } else if (!strcmp(p, "-g")) {
5543 grade = TRUE;
5544 } else if (*p == '-') {
5545 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
5546 return 1;
5547 } else {
5548 id = p;
5549 }
5550 }
5551
5552 if (!id) {
5553 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
5554 return 1;
5555 }
5556
5557 desc = strchr(id, ':');
5558 if (!desc) {
5559 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
5560 return 1;
5561 }
5562 *desc++ = '\0';
5563
5564 p = default_params();
5565 decode_params(p, id);
5566 err = validate_desc(p, desc);
5567 if (err) {
5568 fprintf(stderr, "%s: %s\n", argv[0], err);
5569 return 1;
5570 }
5571 s = new_game(NULL, p, desc);
5572
5573 dlev.maxdiff = DIFF_RECURSIVE;
5574 dlev.maxkdiff = DIFF_KINTERSECT;
5575 solver(s->cr, s->blocks, s->kblocks, s->xtype, s->grid, s->kgrid, &dlev);
5576 if (grade) {
5577 printf("Difficulty rating: %s\n",
5578 dlev.diff==DIFF_BLOCK ? "Trivial (blockwise positional elimination only)":
5579 dlev.diff==DIFF_SIMPLE ? "Basic (row/column/number elimination required)":
5580 dlev.diff==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)":
5581 dlev.diff==DIFF_SET ? "Advanced (set elimination required)":
5582 dlev.diff==DIFF_EXTREME ? "Extreme (complex non-recursive techniques required)":
5583 dlev.diff==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)":
5584 dlev.diff==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)":
5585 dlev.diff==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)":
5586 "INTERNAL ERROR: unrecognised difficulty code");
5587 if (p->killer)
5588 printf("Killer difficulty: %s\n",
5589 dlev.kdiff==DIFF_KSINGLE ? "Trivial (single square cages only)":
5590 dlev.kdiff==DIFF_KMINMAX ? "Simple (maximum sum analysis required)":
5591 dlev.kdiff==DIFF_KSUMS ? "Intermediate (sum possibilities)":
5592 dlev.kdiff==DIFF_KINTERSECT ? "Advanced (sum region intersections)":
5593 "INTERNAL ERROR: unrecognised difficulty code");
5594 } else {
5595 printf("%s\n", grid_text_format(s->cr, s->blocks, s->xtype, s->grid));
5596 }
5597
5598 return 0;
5599 }
5600
5601 #endif
5602
5603 /* vim: set shiftwidth=4 tabstop=8: */