Oops! A trivial typo in obfuscate_bitmap() made the obfuscation
[sgt/puzzles] / mines.c
1 /*
2 * mines.c: Minesweeper clone with sophisticated grid generation.
3 *
4 * Still TODO:
5 *
6 * - possibly disable undo? Or alternatively mark game states as
7 * `cheated', although that's horrid.
8 * + OK. Rather than _disabling_ undo, we have a hook callable
9 * in the game backend which is called before we do an undo.
10 * That hook can talk to the game_ui and set the cheated flag,
11 * and then make_move can avoid setting the `won' flag after that.
12 *
13 * - question marks (arrgh, preferences?)
14 *
15 * - sensible parameter constraints
16 * + 30x16: 191 mines just about works if rather slowly, 192 is
17 * just about doom (the latter corresponding to a density of
18 * exactly 1 in 2.5)
19 * + 9x9: 45 mines works - over 1 in 2! 50 seems a bit slow.
20 * + it might not be feasible to work out the exact limit
21 */
22
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <assert.h>
27 #include <ctype.h>
28 #include <math.h>
29
30 #include "tree234.h"
31 #include "puzzles.h"
32
33 enum {
34 COL_BACKGROUND, COL_BACKGROUND2,
35 COL_1, COL_2, COL_3, COL_4, COL_5, COL_6, COL_7, COL_8,
36 COL_MINE, COL_BANG, COL_CROSS, COL_FLAG, COL_FLAGBASE, COL_QUERY,
37 COL_HIGHLIGHT, COL_LOWLIGHT,
38 NCOLOURS
39 };
40
41 #define TILE_SIZE 20
42 #define BORDER (TILE_SIZE * 3 / 2)
43 #define HIGHLIGHT_WIDTH 2
44 #define OUTER_HIGHLIGHT_WIDTH 3
45 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
46 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
47
48 #define FLASH_FRAME 0.13F
49
50 struct game_params {
51 int w, h, n;
52 int unique;
53 };
54
55 struct mine_layout {
56 /*
57 * This structure is shared between all the game_states for a
58 * given instance of the puzzle, so we reference-count it.
59 */
60 int refcount;
61 char *mines;
62 /*
63 * If we haven't yet actually generated the mine layout, here's
64 * all the data we will need to do so.
65 */
66 int n, unique;
67 random_state *rs;
68 midend_data *me; /* to give back the new game desc */
69 };
70
71 struct game_state {
72 int w, h, n, dead, won;
73 int used_solve, just_used_solve;
74 struct mine_layout *layout; /* real mine positions */
75 signed char *grid; /* player knowledge */
76 /*
77 * Each item in the `grid' array is one of the following values:
78 *
79 * - 0 to 8 mean the square is open and has a surrounding mine
80 * count.
81 *
82 * - -1 means the square is marked as a mine.
83 *
84 * - -2 means the square is unknown.
85 *
86 * - -3 means the square is marked with a question mark
87 * (FIXME: do we even want to bother with this?).
88 *
89 * - 64 means the square has had a mine revealed when the game
90 * was lost.
91 *
92 * - 65 means the square had a mine revealed and this was the
93 * one the player hits.
94 *
95 * - 66 means the square has a crossed-out mine because the
96 * player had incorrectly marked it.
97 */
98 };
99
100 static game_params *default_params(void)
101 {
102 game_params *ret = snew(game_params);
103
104 ret->w = ret->h = 9;
105 ret->n = 10;
106 ret->unique = TRUE;
107
108 return ret;
109 }
110
111 static int game_fetch_preset(int i, char **name, game_params **params)
112 {
113 game_params *ret;
114 char str[80];
115 static const struct { int w, h, n; } values[] = {
116 {9, 9, 10},
117 {16, 16, 40},
118 {30, 16, 99},
119 };
120
121 if (i < 0 || i >= lenof(values))
122 return FALSE;
123
124 ret = snew(game_params);
125 ret->w = values[i].w;
126 ret->h = values[i].h;
127 ret->n = values[i].n;
128 ret->unique = TRUE;
129
130 sprintf(str, "%dx%d, %d mines", ret->w, ret->h, ret->n);
131
132 *name = dupstr(str);
133 *params = ret;
134 return TRUE;
135 }
136
137 static void free_params(game_params *params)
138 {
139 sfree(params);
140 }
141
142 static game_params *dup_params(game_params *params)
143 {
144 game_params *ret = snew(game_params);
145 *ret = *params; /* structure copy */
146 return ret;
147 }
148
149 static void decode_params(game_params *params, char const *string)
150 {
151 char const *p = string;
152
153 params->w = atoi(p);
154 while (*p && isdigit((unsigned char)*p)) p++;
155 if (*p == 'x') {
156 p++;
157 params->h = atoi(p);
158 while (*p && isdigit((unsigned char)*p)) p++;
159 } else {
160 params->h = params->w;
161 }
162 if (*p == 'n') {
163 p++;
164 params->n = atoi(p);
165 while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
166 } else {
167 params->n = params->w * params->h / 10;
168 }
169
170 while (*p) {
171 if (*p == 'a') {
172 p++;
173 params->unique = FALSE;
174 } else
175 p++; /* skip any other gunk */
176 }
177 }
178
179 static char *encode_params(game_params *params, int full)
180 {
181 char ret[400];
182 int len;
183
184 len = sprintf(ret, "%dx%d", params->w, params->h);
185 /*
186 * Mine count is a generation-time parameter, since it can be
187 * deduced from the mine bitmap!
188 */
189 if (full)
190 len += sprintf(ret+len, "n%d", params->n);
191 if (full && !params->unique)
192 ret[len++] = 'a';
193 assert(len < lenof(ret));
194 ret[len] = '\0';
195
196 return dupstr(ret);
197 }
198
199 static config_item *game_configure(game_params *params)
200 {
201 config_item *ret;
202 char buf[80];
203
204 ret = snewn(5, config_item);
205
206 ret[0].name = "Width";
207 ret[0].type = C_STRING;
208 sprintf(buf, "%d", params->w);
209 ret[0].sval = dupstr(buf);
210 ret[0].ival = 0;
211
212 ret[1].name = "Height";
213 ret[1].type = C_STRING;
214 sprintf(buf, "%d", params->h);
215 ret[1].sval = dupstr(buf);
216 ret[1].ival = 0;
217
218 ret[2].name = "Mines";
219 ret[2].type = C_STRING;
220 sprintf(buf, "%d", params->n);
221 ret[2].sval = dupstr(buf);
222 ret[2].ival = 0;
223
224 ret[3].name = "Ensure solubility";
225 ret[3].type = C_BOOLEAN;
226 ret[3].sval = NULL;
227 ret[3].ival = params->unique;
228
229 ret[4].name = NULL;
230 ret[4].type = C_END;
231 ret[4].sval = NULL;
232 ret[4].ival = 0;
233
234 return ret;
235 }
236
237 static game_params *custom_params(config_item *cfg)
238 {
239 game_params *ret = snew(game_params);
240
241 ret->w = atoi(cfg[0].sval);
242 ret->h = atoi(cfg[1].sval);
243 ret->n = atoi(cfg[2].sval);
244 if (strchr(cfg[2].sval, '%'))
245 ret->n = ret->n * (ret->w * ret->h) / 100;
246 ret->unique = cfg[3].ival;
247
248 return ret;
249 }
250
251 static char *validate_params(game_params *params)
252 {
253 if (params->w <= 0 && params->h <= 0)
254 return "Width and height must both be greater than zero";
255 if (params->w <= 0)
256 return "Width must be greater than zero";
257 if (params->h <= 0)
258 return "Height must be greater than zero";
259 if (params->n > params->w * params->h - 9)
260 return "Too many mines for grid size";
261
262 /*
263 * FIXME: Need more constraints here. Not sure what the
264 * sensible limits for Minesweeper actually are. The limits
265 * probably ought to change, however, depending on uniqueness.
266 */
267
268 return NULL;
269 }
270
271 /* ----------------------------------------------------------------------
272 * Minesweeper solver, used to ensure the generated grids are
273 * solvable without having to take risks.
274 */
275
276 /*
277 * Count the bits in a word. Only needs to cope with 16 bits.
278 */
279 static int bitcount16(int word)
280 {
281 word = ((word & 0xAAAA) >> 1) + (word & 0x5555);
282 word = ((word & 0xCCCC) >> 2) + (word & 0x3333);
283 word = ((word & 0xF0F0) >> 4) + (word & 0x0F0F);
284 word = ((word & 0xFF00) >> 8) + (word & 0x00FF);
285
286 return word;
287 }
288
289 /*
290 * We use a tree234 to store a large number of small localised
291 * sets, each with a mine count. We also keep some of those sets
292 * linked together into a to-do list.
293 */
294 struct set {
295 short x, y, mask, mines;
296 int todo;
297 struct set *prev, *next;
298 };
299
300 static int setcmp(void *av, void *bv)
301 {
302 struct set *a = (struct set *)av;
303 struct set *b = (struct set *)bv;
304
305 if (a->y < b->y)
306 return -1;
307 else if (a->y > b->y)
308 return +1;
309 else if (a->x < b->x)
310 return -1;
311 else if (a->x > b->x)
312 return +1;
313 else if (a->mask < b->mask)
314 return -1;
315 else if (a->mask > b->mask)
316 return +1;
317 else
318 return 0;
319 }
320
321 struct setstore {
322 tree234 *sets;
323 struct set *todo_head, *todo_tail;
324 };
325
326 static struct setstore *ss_new(void)
327 {
328 struct setstore *ss = snew(struct setstore);
329 ss->sets = newtree234(setcmp);
330 ss->todo_head = ss->todo_tail = NULL;
331 return ss;
332 }
333
334 /*
335 * Take two input sets, in the form (x,y,mask). Munge the first by
336 * taking either its intersection with the second or its difference
337 * with the second. Return the new mask part of the first set.
338 */
339 static int setmunge(int x1, int y1, int mask1, int x2, int y2, int mask2,
340 int diff)
341 {
342 /*
343 * Adjust the second set so that it has the same x,y
344 * coordinates as the first.
345 */
346 if (abs(x2-x1) >= 3 || abs(y2-y1) >= 3) {
347 mask2 = 0;
348 } else {
349 while (x2 > x1) {
350 mask2 &= ~(4|32|256);
351 mask2 <<= 1;
352 x2--;
353 }
354 while (x2 < x1) {
355 mask2 &= ~(1|8|64);
356 mask2 >>= 1;
357 x2++;
358 }
359 while (y2 > y1) {
360 mask2 &= ~(64|128|256);
361 mask2 <<= 3;
362 y2--;
363 }
364 while (y2 < y1) {
365 mask2 &= ~(1|2|4);
366 mask2 >>= 3;
367 y2++;
368 }
369 }
370
371 /*
372 * Invert the second set if `diff' is set (we're after A &~ B
373 * rather than A & B).
374 */
375 if (diff)
376 mask2 ^= 511;
377
378 /*
379 * Now all that's left is a logical AND.
380 */
381 return mask1 & mask2;
382 }
383
384 static void ss_add_todo(struct setstore *ss, struct set *s)
385 {
386 if (s->todo)
387 return; /* already on it */
388
389 #ifdef SOLVER_DIAGNOSTICS
390 printf("adding set on todo list: %d,%d %03x %d\n",
391 s->x, s->y, s->mask, s->mines);
392 #endif
393
394 s->prev = ss->todo_tail;
395 if (s->prev)
396 s->prev->next = s;
397 else
398 ss->todo_head = s;
399 ss->todo_tail = s;
400 s->next = NULL;
401 s->todo = TRUE;
402 }
403
404 static void ss_add(struct setstore *ss, int x, int y, int mask, int mines)
405 {
406 struct set *s;
407
408 assert(mask != 0);
409
410 /*
411 * Normalise so that x and y are genuinely the bounding
412 * rectangle.
413 */
414 while (!(mask & (1|8|64)))
415 mask >>= 1, x++;
416 while (!(mask & (1|2|4)))
417 mask >>= 3, y++;
418
419 /*
420 * Create a set structure and add it to the tree.
421 */
422 s = snew(struct set);
423 s->x = x;
424 s->y = y;
425 s->mask = mask;
426 s->mines = mines;
427 s->todo = FALSE;
428 if (add234(ss->sets, s) != s) {
429 /*
430 * This set already existed! Free it and return.
431 */
432 sfree(s);
433 return;
434 }
435
436 /*
437 * We've added a new set to the tree, so put it on the todo
438 * list.
439 */
440 ss_add_todo(ss, s);
441 }
442
443 static void ss_remove(struct setstore *ss, struct set *s)
444 {
445 struct set *next = s->next, *prev = s->prev;
446
447 #ifdef SOLVER_DIAGNOSTICS
448 printf("removing set %d,%d %03x\n", s->x, s->y, s->mask);
449 #endif
450 /*
451 * Remove s from the todo list.
452 */
453 if (prev)
454 prev->next = next;
455 else if (s == ss->todo_head)
456 ss->todo_head = next;
457
458 if (next)
459 next->prev = prev;
460 else if (s == ss->todo_tail)
461 ss->todo_tail = prev;
462
463 s->todo = FALSE;
464
465 /*
466 * Remove s from the tree.
467 */
468 del234(ss->sets, s);
469
470 /*
471 * Destroy the actual set structure.
472 */
473 sfree(s);
474 }
475
476 /*
477 * Return a dynamically allocated list of all the sets which
478 * overlap a provided input set.
479 */
480 static struct set **ss_overlap(struct setstore *ss, int x, int y, int mask)
481 {
482 struct set **ret = NULL;
483 int nret = 0, retsize = 0;
484 int xx, yy;
485
486 for (xx = x-3; xx < x+3; xx++)
487 for (yy = y-3; yy < y+3; yy++) {
488 struct set stmp, *s;
489 int pos;
490
491 /*
492 * Find the first set with these top left coordinates.
493 */
494 stmp.x = xx;
495 stmp.y = yy;
496 stmp.mask = 0;
497
498 if (findrelpos234(ss->sets, &stmp, NULL, REL234_GE, &pos)) {
499 while ((s = index234(ss->sets, pos)) != NULL &&
500 s->x == xx && s->y == yy) {
501 /*
502 * This set potentially overlaps the input one.
503 * Compute the intersection to see if they
504 * really overlap, and add it to the list if
505 * so.
506 */
507 if (setmunge(x, y, mask, s->x, s->y, s->mask, FALSE)) {
508 /*
509 * There's an overlap.
510 */
511 if (nret >= retsize) {
512 retsize = nret + 32;
513 ret = sresize(ret, retsize, struct set *);
514 }
515 ret[nret++] = s;
516 }
517
518 pos++;
519 }
520 }
521 }
522
523 ret = sresize(ret, nret+1, struct set *);
524 ret[nret] = NULL;
525
526 return ret;
527 }
528
529 /*
530 * Get an element from the head of the set todo list.
531 */
532 static struct set *ss_todo(struct setstore *ss)
533 {
534 if (ss->todo_head) {
535 struct set *ret = ss->todo_head;
536 ss->todo_head = ret->next;
537 if (ss->todo_head)
538 ss->todo_head->prev = NULL;
539 else
540 ss->todo_tail = NULL;
541 ret->next = ret->prev = NULL;
542 ret->todo = FALSE;
543 return ret;
544 } else {
545 return NULL;
546 }
547 }
548
549 struct squaretodo {
550 int *next;
551 int head, tail;
552 };
553
554 static void std_add(struct squaretodo *std, int i)
555 {
556 if (std->tail >= 0)
557 std->next[std->tail] = i;
558 else
559 std->head = i;
560 std->tail = i;
561 std->next[i] = -1;
562 }
563
564 static void known_squares(int w, int h, struct squaretodo *std,
565 signed char *grid,
566 int (*open)(void *ctx, int x, int y), void *openctx,
567 int x, int y, int mask, int mine)
568 {
569 int xx, yy, bit;
570
571 bit = 1;
572
573 for (yy = 0; yy < 3; yy++)
574 for (xx = 0; xx < 3; xx++) {
575 if (mask & bit) {
576 int i = (y + yy) * w + (x + xx);
577
578 /*
579 * It's possible that this square is _already_
580 * known, in which case we don't try to add it to
581 * the list twice.
582 */
583 if (grid[i] == -2) {
584
585 if (mine) {
586 grid[i] = -1; /* and don't open it! */
587 } else {
588 grid[i] = open(openctx, x + xx, y + yy);
589 assert(grid[i] != -1); /* *bang* */
590 }
591 std_add(std, i);
592
593 }
594 }
595 bit <<= 1;
596 }
597 }
598
599 /*
600 * This is data returned from the `perturb' function. It details
601 * which squares have become mines and which have become clear. The
602 * solver is (of course) expected to honourably not use that
603 * knowledge directly, but to efficently adjust its internal data
604 * structures and proceed based on only the information it
605 * legitimately has.
606 */
607 struct perturbation {
608 int x, y;
609 int delta; /* +1 == become a mine; -1 == cleared */
610 };
611 struct perturbations {
612 int n;
613 struct perturbation *changes;
614 };
615
616 /*
617 * Main solver entry point. You give it a grid of existing
618 * knowledge (-1 for a square known to be a mine, 0-8 for empty
619 * squares with a given number of neighbours, -2 for completely
620 * unknown), plus a function which you can call to open new squares
621 * once you're confident of them. It fills in as much more of the
622 * grid as it can.
623 *
624 * Return value is:
625 *
626 * - -1 means deduction stalled and nothing could be done
627 * - 0 means deduction succeeded fully
628 * - >0 means deduction succeeded but some number of perturbation
629 * steps were required; the exact return value is the number of
630 * perturb calls.
631 */
632 static int minesolve(int w, int h, int n, signed char *grid,
633 int (*open)(void *ctx, int x, int y),
634 struct perturbations *(*perturb)(void *ctx,
635 signed char *grid,
636 int x, int y, int mask),
637 void *ctx, random_state *rs)
638 {
639 struct setstore *ss = ss_new();
640 struct set **list;
641 struct squaretodo astd, *std = &astd;
642 int x, y, i, j;
643 int nperturbs = 0;
644
645 /*
646 * Set up a linked list of squares with known contents, so that
647 * we can process them one by one.
648 */
649 std->next = snewn(w*h, int);
650 std->head = std->tail = -1;
651
652 /*
653 * Initialise that list with all known squares in the input
654 * grid.
655 */
656 for (y = 0; y < h; y++) {
657 for (x = 0; x < w; x++) {
658 i = y*w+x;
659 if (grid[i] != -2)
660 std_add(std, i);
661 }
662 }
663
664 /*
665 * Main deductive loop.
666 */
667 while (1) {
668 int done_something = FALSE;
669 struct set *s;
670
671 /*
672 * If there are any known squares on the todo list, process
673 * them and construct a set for each.
674 */
675 while (std->head != -1) {
676 i = std->head;
677 #ifdef SOLVER_DIAGNOSTICS
678 printf("known square at %d,%d [%d]\n", i%w, i/w, grid[i]);
679 #endif
680 std->head = std->next[i];
681 if (std->head == -1)
682 std->tail = -1;
683
684 x = i % w;
685 y = i / w;
686
687 if (grid[i] >= 0) {
688 int dx, dy, mines, bit, val;
689 #ifdef SOLVER_DIAGNOSTICS
690 printf("creating set around this square\n");
691 #endif
692 /*
693 * Empty square. Construct the set of non-known squares
694 * around this one, and determine its mine count.
695 */
696 mines = grid[i];
697 bit = 1;
698 val = 0;
699 for (dy = -1; dy <= +1; dy++) {
700 for (dx = -1; dx <= +1; dx++) {
701 #ifdef SOLVER_DIAGNOSTICS
702 printf("grid %d,%d = %d\n", x+dx, y+dy, grid[i+dy*w+dx]);
703 #endif
704 if (x+dx < 0 || x+dx >= w || y+dy < 0 || y+dy >= h)
705 /* ignore this one */;
706 else if (grid[i+dy*w+dx] == -1)
707 mines--;
708 else if (grid[i+dy*w+dx] == -2)
709 val |= bit;
710 bit <<= 1;
711 }
712 }
713 if (val)
714 ss_add(ss, x-1, y-1, val, mines);
715 }
716
717 /*
718 * Now, whether the square is empty or full, we must
719 * find any set which contains it and replace it with
720 * one which does not.
721 */
722 {
723 #ifdef SOLVER_DIAGNOSTICS
724 printf("finding sets containing known square %d,%d\n", x, y);
725 #endif
726 list = ss_overlap(ss, x, y, 1);
727
728 for (j = 0; list[j]; j++) {
729 int newmask, newmines;
730
731 s = list[j];
732
733 /*
734 * Compute the mask for this set minus the
735 * newly known square.
736 */
737 newmask = setmunge(s->x, s->y, s->mask, x, y, 1, TRUE);
738
739 /*
740 * Compute the new mine count.
741 */
742 newmines = s->mines - (grid[i] == -1);
743
744 /*
745 * Insert the new set into the collection,
746 * unless it's been whittled right down to
747 * nothing.
748 */
749 if (newmask)
750 ss_add(ss, s->x, s->y, newmask, newmines);
751
752 /*
753 * Destroy the old one; it is actually obsolete.
754 */
755 ss_remove(ss, s);
756 }
757
758 sfree(list);
759 }
760
761 /*
762 * Marking a fresh square as known certainly counts as
763 * doing something.
764 */
765 done_something = TRUE;
766 }
767
768 /*
769 * Now pick a set off the to-do list and attempt deductions
770 * based on it.
771 */
772 if ((s = ss_todo(ss)) != NULL) {
773
774 #ifdef SOLVER_DIAGNOSTICS
775 printf("set to do: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines);
776 #endif
777 /*
778 * Firstly, see if this set has a mine count of zero or
779 * of its own cardinality.
780 */
781 if (s->mines == 0 || s->mines == bitcount16(s->mask)) {
782 /*
783 * If so, we can immediately mark all the squares
784 * in the set as known.
785 */
786 #ifdef SOLVER_DIAGNOSTICS
787 printf("easy\n");
788 #endif
789 known_squares(w, h, std, grid, open, ctx,
790 s->x, s->y, s->mask, (s->mines != 0));
791
792 /*
793 * Having done that, we need do nothing further
794 * with this set; marking all the squares in it as
795 * known will eventually eliminate it, and will
796 * also permit further deductions about anything
797 * that overlaps it.
798 */
799 continue;
800 }
801
802 /*
803 * Failing that, we now search through all the sets
804 * which overlap this one.
805 */
806 list = ss_overlap(ss, s->x, s->y, s->mask);
807
808 for (j = 0; list[j]; j++) {
809 struct set *s2 = list[j];
810 int swing, s2wing, swc, s2wc;
811
812 /*
813 * Find the non-overlapping parts s2-s and s-s2,
814 * and their cardinalities.
815 *
816 * I'm going to refer to these parts as `wings'
817 * surrounding the central part common to both
818 * sets. The `s wing' is s-s2; the `s2 wing' is
819 * s2-s.
820 */
821 swing = setmunge(s->x, s->y, s->mask, s2->x, s2->y, s2->mask,
822 TRUE);
823 s2wing = setmunge(s2->x, s2->y, s2->mask, s->x, s->y, s->mask,
824 TRUE);
825 swc = bitcount16(swing);
826 s2wc = bitcount16(s2wing);
827
828 /*
829 * If one set has more mines than the other, and
830 * the number of extra mines is equal to the
831 * cardinality of that set's wing, then we can mark
832 * every square in the wing as a known mine, and
833 * every square in the other wing as known clear.
834 */
835 if (swc == s->mines - s2->mines ||
836 s2wc == s2->mines - s->mines) {
837 known_squares(w, h, std, grid, open, ctx,
838 s->x, s->y, swing,
839 (swc == s->mines - s2->mines));
840 known_squares(w, h, std, grid, open, ctx,
841 s2->x, s2->y, s2wing,
842 (s2wc == s2->mines - s->mines));
843 continue;
844 }
845
846 /*
847 * Failing that, see if one set is a subset of the
848 * other. If so, we can divide up the mine count of
849 * the larger set between the smaller set and its
850 * complement, even if neither smaller set ends up
851 * being immediately clearable.
852 */
853 if (swc == 0 && s2wc != 0) {
854 /* s is a subset of s2. */
855 assert(s2->mines > s->mines);
856 ss_add(ss, s2->x, s2->y, s2wing, s2->mines - s->mines);
857 } else if (s2wc == 0 && swc != 0) {
858 /* s2 is a subset of s. */
859 assert(s->mines > s2->mines);
860 ss_add(ss, s->x, s->y, swing, s->mines - s2->mines);
861 }
862 }
863
864 sfree(list);
865
866 /*
867 * In this situation we have definitely done
868 * _something_, even if it's only reducing the size of
869 * our to-do list.
870 */
871 done_something = TRUE;
872 } else if (n >= 0) {
873 /*
874 * We have nothing left on our todo list, which means
875 * all localised deductions have failed. Our next step
876 * is to resort to global deduction based on the total
877 * mine count. This is computationally expensive
878 * compared to any of the above deductions, which is
879 * why we only ever do it when all else fails, so that
880 * hopefully it won't have to happen too often.
881 *
882 * If you pass n<0 into this solver, that informs it
883 * that you do not know the total mine count, so it
884 * won't even attempt these deductions.
885 */
886
887 int minesleft, squaresleft;
888 int nsets, setused[10], cursor;
889
890 /*
891 * Start by scanning the current grid state to work out
892 * how many unknown squares we still have, and how many
893 * mines are to be placed in them.
894 */
895 squaresleft = 0;
896 minesleft = n;
897 for (i = 0; i < w*h; i++) {
898 if (grid[i] == -1)
899 minesleft--;
900 else if (grid[i] == -2)
901 squaresleft++;
902 }
903
904 #ifdef SOLVER_DIAGNOSTICS
905 printf("global deduction time: squaresleft=%d minesleft=%d\n",
906 squaresleft, minesleft);
907 for (y = 0; y < h; y++) {
908 for (x = 0; x < w; x++) {
909 int v = grid[y*w+x];
910 if (v == -1)
911 putchar('*');
912 else if (v == -2)
913 putchar('?');
914 else if (v == 0)
915 putchar('-');
916 else
917 putchar('0' + v);
918 }
919 putchar('\n');
920 }
921 #endif
922
923 /*
924 * If there _are_ no unknown squares, we have actually
925 * finished.
926 */
927 if (squaresleft == 0) {
928 assert(minesleft == 0);
929 break;
930 }
931
932 /*
933 * First really simple case: if there are no more mines
934 * left, or if there are exactly as many mines left as
935 * squares to play them in, then it's all easy.
936 */
937 if (minesleft == 0 || minesleft == squaresleft) {
938 for (i = 0; i < w*h; i++)
939 if (grid[i] == -2)
940 known_squares(w, h, std, grid, open, ctx,
941 i % w, i / w, 1, minesleft != 0);
942 continue; /* now go back to main deductive loop */
943 }
944
945 /*
946 * Failing that, we have to do some _real_ work.
947 * Ideally what we do here is to try every single
948 * combination of the currently available sets, in an
949 * attempt to find a disjoint union (i.e. a set of
950 * squares with a known mine count between them) such
951 * that the remaining unknown squares _not_ contained
952 * in that union either contain no mines or are all
953 * mines.
954 *
955 * Actually enumerating all 2^n possibilities will get
956 * a bit slow for large n, so I artificially cap this
957 * recursion at n=10 to avoid too much pain.
958 */
959 nsets = count234(ss->sets);
960 if (nsets <= lenof(setused)) {
961 /*
962 * Doing this with actual recursive function calls
963 * would get fiddly because a load of local
964 * variables from this function would have to be
965 * passed down through the recursion. So instead
966 * I'm going to use a virtual recursion within this
967 * function. The way this works is:
968 *
969 * - we have an array `setused', such that
970 * setused[n] is 0 or 1 depending on whether set
971 * n is currently in the union we are
972 * considering.
973 *
974 * - we have a value `cursor' which indicates how
975 * much of `setused' we have so far filled in.
976 * It's conceptually the recursion depth.
977 *
978 * We begin by setting `cursor' to zero. Then:
979 *
980 * - if cursor can advance, we advance it by one.
981 * We set the value in `setused' that it went
982 * past to 1 if that set is disjoint from
983 * anything else currently in `setused', or to 0
984 * otherwise.
985 *
986 * - If cursor cannot advance because it has
987 * reached the end of the setused list, then we
988 * have a maximal disjoint union. Check to see
989 * whether its mine count has any useful
990 * properties. If so, mark all the squares not
991 * in the union as known and terminate.
992 *
993 * - If cursor has reached the end of setused and
994 * the algorithm _hasn't_ terminated, back
995 * cursor up to the nearest 1, turn it into a 0
996 * and advance cursor just past it.
997 *
998 * - If we attempt to back up to the nearest 1 and
999 * there isn't one at all, then we have gone
1000 * through all disjoint unions of sets in the
1001 * list and none of them has been helpful, so we
1002 * give up.
1003 */
1004 struct set *sets[lenof(setused)];
1005 for (i = 0; i < nsets; i++)
1006 sets[i] = index234(ss->sets, i);
1007
1008 cursor = 0;
1009 while (1) {
1010
1011 if (cursor < nsets) {
1012 int ok = TRUE;
1013
1014 /* See if any existing set overlaps this one. */
1015 for (i = 0; i < cursor; i++)
1016 if (setused[i] &&
1017 setmunge(sets[cursor]->x,
1018 sets[cursor]->y,
1019 sets[cursor]->mask,
1020 sets[i]->x, sets[i]->y, sets[i]->mask,
1021 FALSE)) {
1022 ok = FALSE;
1023 break;
1024 }
1025
1026 if (ok) {
1027 /*
1028 * We're adding this set to our union,
1029 * so adjust minesleft and squaresleft
1030 * appropriately.
1031 */
1032 minesleft -= sets[cursor]->mines;
1033 squaresleft -= bitcount16(sets[cursor]->mask);
1034 }
1035
1036 setused[cursor++] = ok;
1037 } else {
1038 #ifdef SOLVER_DIAGNOSTICS
1039 printf("trying a set combination with %d %d\n",
1040 squaresleft, minesleft);
1041 #endif /* SOLVER_DIAGNOSTICS */
1042
1043 /*
1044 * We've reached the end. See if we've got
1045 * anything interesting.
1046 */
1047 if (squaresleft > 0 &&
1048 (minesleft == 0 || minesleft == squaresleft)) {
1049 /*
1050 * We have! There is at least one
1051 * square not contained within the set
1052 * union we've just found, and we can
1053 * deduce that either all such squares
1054 * are mines or all are not (depending
1055 * on whether minesleft==0). So now all
1056 * we have to do is actually go through
1057 * the grid, find those squares, and
1058 * mark them.
1059 */
1060 for (i = 0; i < w*h; i++)
1061 if (grid[i] == -2) {
1062 int outside = TRUE;
1063 y = i / w;
1064 x = i % w;
1065 for (j = 0; j < nsets; j++)
1066 if (setused[j] &&
1067 setmunge(sets[j]->x, sets[j]->y,
1068 sets[j]->mask, x, y, 1,
1069 FALSE)) {
1070 outside = FALSE;
1071 break;
1072 }
1073 if (outside)
1074 known_squares(w, h, std, grid,
1075 open, ctx,
1076 x, y, 1, minesleft != 0);
1077 }
1078
1079 done_something = TRUE;
1080 break; /* return to main deductive loop */
1081 }
1082
1083 /*
1084 * If we reach here, then this union hasn't
1085 * done us any good, so move on to the
1086 * next. Backtrack cursor to the nearest 1,
1087 * change it to a 0 and continue.
1088 */
1089 while (cursor-- >= 0 && !setused[cursor]);
1090 if (cursor >= 0) {
1091 assert(setused[cursor]);
1092
1093 /*
1094 * We're removing this set from our
1095 * union, so re-increment minesleft and
1096 * squaresleft.
1097 */
1098 minesleft += sets[cursor]->mines;
1099 squaresleft += bitcount16(sets[cursor]->mask);
1100
1101 setused[cursor++] = 0;
1102 } else {
1103 /*
1104 * We've backtracked all the way to the
1105 * start without finding a single 1,
1106 * which means that our virtual
1107 * recursion is complete and nothing
1108 * helped.
1109 */
1110 break;
1111 }
1112 }
1113
1114 }
1115
1116 }
1117 }
1118
1119 if (done_something)
1120 continue;
1121
1122 #ifdef SOLVER_DIAGNOSTICS
1123 /*
1124 * Dump the current known state of the grid.
1125 */
1126 printf("solver ran out of steam, ret=%d, grid:\n", nperturbs);
1127 for (y = 0; y < h; y++) {
1128 for (x = 0; x < w; x++) {
1129 int v = grid[y*w+x];
1130 if (v == -1)
1131 putchar('*');
1132 else if (v == -2)
1133 putchar('?');
1134 else if (v == 0)
1135 putchar('-');
1136 else
1137 putchar('0' + v);
1138 }
1139 putchar('\n');
1140 }
1141
1142 {
1143 struct set *s;
1144
1145 for (i = 0; (s = index234(ss->sets, i)) != NULL; i++)
1146 printf("remaining set: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines);
1147 }
1148 #endif
1149
1150 /*
1151 * Now we really are at our wits' end as far as solving
1152 * this grid goes. Our only remaining option is to call
1153 * a perturb function and ask it to modify the grid to
1154 * make it easier.
1155 */
1156 if (perturb) {
1157 struct perturbations *ret;
1158 struct set *s;
1159
1160 nperturbs++;
1161
1162 /*
1163 * Choose a set at random from the current selection,
1164 * and ask the perturb function to either fill or empty
1165 * it.
1166 *
1167 * If we have no sets at all, we must give up.
1168 */
1169 if (count234(ss->sets) == 0)
1170 break;
1171 s = index234(ss->sets, random_upto(rs, count234(ss->sets)));
1172 #ifdef SOLVER_DIAGNOSTICS
1173 printf("perturbing on set %d,%d %03x\n", s->x, s->y, s->mask);
1174 #endif
1175 ret = perturb(ctx, grid, s->x, s->y, s->mask);
1176
1177 if (ret) {
1178 assert(ret->n > 0); /* otherwise should have been NULL */
1179
1180 /*
1181 * A number of squares have been fiddled with, and
1182 * the returned structure tells us which. Adjust
1183 * the mine count in any set which overlaps one of
1184 * those squares, and put them back on the to-do
1185 * list.
1186 */
1187 for (i = 0; i < ret->n; i++) {
1188 #ifdef SOLVER_DIAGNOSTICS
1189 printf("perturbation %s mine at %d,%d\n",
1190 ret->changes[i].delta > 0 ? "added" : "removed",
1191 ret->changes[i].x, ret->changes[i].y);
1192 #endif
1193
1194 list = ss_overlap(ss,
1195 ret->changes[i].x, ret->changes[i].y, 1);
1196
1197 for (j = 0; list[j]; j++) {
1198 list[j]->mines += ret->changes[i].delta;
1199 ss_add_todo(ss, list[j]);
1200 }
1201
1202 sfree(list);
1203 }
1204
1205 /*
1206 * Now free the returned data.
1207 */
1208 sfree(ret->changes);
1209 sfree(ret);
1210
1211 #ifdef SOLVER_DIAGNOSTICS
1212 /*
1213 * Dump the current known state of the grid.
1214 */
1215 printf("state after perturbation:\n", nperturbs);
1216 for (y = 0; y < h; y++) {
1217 for (x = 0; x < w; x++) {
1218 int v = grid[y*w+x];
1219 if (v == -1)
1220 putchar('*');
1221 else if (v == -2)
1222 putchar('?');
1223 else if (v == 0)
1224 putchar('-');
1225 else
1226 putchar('0' + v);
1227 }
1228 putchar('\n');
1229 }
1230
1231 {
1232 struct set *s;
1233
1234 for (i = 0; (s = index234(ss->sets, i)) != NULL; i++)
1235 printf("remaining set: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines);
1236 }
1237 #endif
1238
1239 /*
1240 * And now we can go back round the deductive loop.
1241 */
1242 continue;
1243 }
1244 }
1245
1246 /*
1247 * If we get here, even that didn't work (either we didn't
1248 * have a perturb function or it returned failure), so we
1249 * give up entirely.
1250 */
1251 break;
1252 }
1253
1254 /*
1255 * See if we've got any unknown squares left.
1256 */
1257 for (y = 0; y < h; y++)
1258 for (x = 0; x < w; x++)
1259 if (grid[y*w+x] == -2) {
1260 nperturbs = -1; /* failed to complete */
1261 break;
1262 }
1263
1264 /*
1265 * Free the set list and square-todo list.
1266 */
1267 {
1268 struct set *s;
1269 while ((s = delpos234(ss->sets, 0)) != NULL)
1270 sfree(s);
1271 freetree234(ss->sets);
1272 sfree(ss);
1273 sfree(std->next);
1274 }
1275
1276 return nperturbs;
1277 }
1278
1279 /* ----------------------------------------------------------------------
1280 * Grid generator which uses the above solver.
1281 */
1282
1283 struct minectx {
1284 signed char *grid;
1285 int w, h;
1286 int sx, sy;
1287 random_state *rs;
1288 };
1289
1290 static int mineopen(void *vctx, int x, int y)
1291 {
1292 struct minectx *ctx = (struct minectx *)vctx;
1293 int i, j, n;
1294
1295 assert(x >= 0 && x < ctx->w && y >= 0 && y < ctx->h);
1296 if (ctx->grid[y * ctx->w + x])
1297 return -1; /* *bang* */
1298
1299 n = 0;
1300 for (i = -1; i <= +1; i++) {
1301 if (x + i < 0 || x + i >= ctx->w)
1302 continue;
1303 for (j = -1; j <= +1; j++) {
1304 if (y + j < 0 || y + j >= ctx->h)
1305 continue;
1306 if (i == 0 && j == 0)
1307 continue;
1308 if (ctx->grid[(y+j) * ctx->w + (x+i)])
1309 n++;
1310 }
1311 }
1312
1313 return n;
1314 }
1315
1316 /* Structure used internally to mineperturb(). */
1317 struct square {
1318 int x, y, type, random;
1319 };
1320 static int squarecmp(const void *av, const void *bv)
1321 {
1322 const struct square *a = (const struct square *)av;
1323 const struct square *b = (const struct square *)bv;
1324 if (a->type < b->type)
1325 return -1;
1326 else if (a->type > b->type)
1327 return +1;
1328 else if (a->random < b->random)
1329 return -1;
1330 else if (a->random > b->random)
1331 return +1;
1332 else if (a->y < b->y)
1333 return -1;
1334 else if (a->y > b->y)
1335 return +1;
1336 else if (a->x < b->x)
1337 return -1;
1338 else if (a->x > b->x)
1339 return +1;
1340 return 0;
1341 }
1342
1343 static struct perturbations *mineperturb(void *vctx, signed char *grid,
1344 int setx, int sety, int mask)
1345 {
1346 struct minectx *ctx = (struct minectx *)vctx;
1347 struct square *sqlist;
1348 int x, y, dx, dy, i, n, nfull, nempty;
1349 struct square *tofill[9], *toempty[9], **todo;
1350 int ntofill, ntoempty, ntodo, dtodo, dset;
1351 struct perturbations *ret;
1352
1353 /*
1354 * Make a list of all the squares in the grid which we can
1355 * possibly use. This list should be in preference order, which
1356 * means
1357 *
1358 * - first, unknown squares on the boundary of known space
1359 * - next, unknown squares beyond that boundary
1360 * - as a very last resort, known squares, but not within one
1361 * square of the starting position.
1362 *
1363 * Each of these sections needs to be shuffled independently.
1364 * We do this by preparing list of all squares and then sorting
1365 * it with a random secondary key.
1366 */
1367 sqlist = snewn(ctx->w * ctx->h, struct square);
1368 n = 0;
1369 for (y = 0; y < ctx->h; y++)
1370 for (x = 0; x < ctx->w; x++) {
1371 /*
1372 * If this square is too near the starting position,
1373 * don't put it on the list at all.
1374 */
1375 if (abs(y - ctx->sy) <= 1 && abs(x - ctx->sx) <= 1)
1376 continue;
1377
1378 /*
1379 * If this square is in the input set, also don't put
1380 * it on the list!
1381 */
1382 if (x >= setx && x < setx + 3 &&
1383 y >= sety && y < sety + 3 &&
1384 mask & (1 << ((y-sety)*3+(x-setx))))
1385 continue;
1386
1387 sqlist[n].x = x;
1388 sqlist[n].y = y;
1389
1390 if (grid[y*ctx->w+x] != -2) {
1391 sqlist[n].type = 3; /* known square */
1392 } else {
1393 /*
1394 * Unknown square. Examine everything around it and
1395 * see if it borders on any known squares. If it
1396 * does, it's class 1, otherwise it's 2.
1397 */
1398
1399 sqlist[n].type = 2;
1400
1401 for (dy = -1; dy <= +1; dy++)
1402 for (dx = -1; dx <= +1; dx++)
1403 if (x+dx >= 0 && x+dx < ctx->w &&
1404 y+dy >= 0 && y+dy < ctx->h &&
1405 grid[(y+dy)*ctx->w+(x+dx)] != -2) {
1406 sqlist[n].type = 1;
1407 break;
1408 }
1409 }
1410
1411 /*
1412 * Finally, a random number to cause qsort to
1413 * shuffle within each group.
1414 */
1415 sqlist[n].random = random_bits(ctx->rs, 31);
1416
1417 n++;
1418 }
1419
1420 qsort(sqlist, n, sizeof(struct square), squarecmp);
1421
1422 /*
1423 * Now count up the number of full and empty squares in the set
1424 * we've been provided.
1425 */
1426 nfull = nempty = 0;
1427 for (dy = 0; dy < 3; dy++)
1428 for (dx = 0; dx < 3; dx++)
1429 if (mask & (1 << (dy*3+dx))) {
1430 assert(setx+dx <= ctx->w);
1431 assert(sety+dy <= ctx->h);
1432 if (ctx->grid[(sety+dy)*ctx->w+(setx+dx)])
1433 nfull++;
1434 else
1435 nempty++;
1436 }
1437
1438 /*
1439 * Now go through our sorted list until we find either `nfull'
1440 * empty squares, or `nempty' full squares; these will be
1441 * swapped with the appropriate squares in the set to either
1442 * fill or empty the set while keeping the same number of mines
1443 * overall.
1444 */
1445 ntofill = ntoempty = 0;
1446 for (i = 0; i < n; i++) {
1447 struct square *sq = &sqlist[i];
1448 if (ctx->grid[sq->y * ctx->w + sq->x])
1449 toempty[ntoempty++] = sq;
1450 else
1451 tofill[ntofill++] = sq;
1452 if (ntofill == nfull || ntoempty == nempty)
1453 break;
1454 }
1455
1456 /*
1457 * If this didn't work at all, I think we just give up.
1458 */
1459 if (ntofill != nfull && ntoempty != nempty) {
1460 sfree(sqlist);
1461 return NULL;
1462 }
1463
1464 /*
1465 * Now we're pretty much there. We need to either
1466 * (a) put a mine in each of the empty squares in the set, and
1467 * take one out of each square in `toempty'
1468 * (b) take a mine out of each of the full squares in the set,
1469 * and put one in each square in `tofill'
1470 * depending on which one we've found enough squares to do.
1471 *
1472 * So we start by constructing our list of changes to return to
1473 * the solver, so that it can update its data structures
1474 * efficiently rather than having to rescan the whole grid.
1475 */
1476 ret = snew(struct perturbations);
1477 if (ntofill == nfull) {
1478 todo = tofill;
1479 ntodo = ntofill;
1480 dtodo = +1;
1481 dset = -1;
1482 } else {
1483 todo = toempty;
1484 ntodo = ntoempty;
1485 dtodo = -1;
1486 dset = +1;
1487 }
1488 ret->n = 2 * ntodo;
1489 ret->changes = snewn(ret->n, struct perturbation);
1490 for (i = 0; i < ntodo; i++) {
1491 ret->changes[i].x = todo[i]->x;
1492 ret->changes[i].y = todo[i]->y;
1493 ret->changes[i].delta = dtodo;
1494 }
1495 /* now i == ntodo */
1496 for (dy = 0; dy < 3; dy++)
1497 for (dx = 0; dx < 3; dx++)
1498 if (mask & (1 << (dy*3+dx))) {
1499 int currval = (ctx->grid[(sety+dy)*ctx->w+(setx+dx)] ? +1 : -1);
1500 if (dset == -currval) {
1501 ret->changes[i].x = setx + dx;
1502 ret->changes[i].y = sety + dy;
1503 ret->changes[i].delta = dset;
1504 i++;
1505 }
1506 }
1507 assert(i == ret->n);
1508
1509 sfree(sqlist);
1510
1511 /*
1512 * Having set up the precise list of changes we're going to
1513 * make, we now simply make them and return.
1514 */
1515 for (i = 0; i < ret->n; i++) {
1516 int delta;
1517
1518 x = ret->changes[i].x;
1519 y = ret->changes[i].y;
1520 delta = ret->changes[i].delta;
1521
1522 /*
1523 * Check we're not trying to add an existing mine or remove
1524 * an absent one.
1525 */
1526 assert((delta < 0) ^ (ctx->grid[y*ctx->w+x] == 0));
1527
1528 /*
1529 * Actually make the change.
1530 */
1531 ctx->grid[y*ctx->w+x] = (delta > 0);
1532
1533 /*
1534 * Update any numbers already present in the grid.
1535 */
1536 for (dy = -1; dy <= +1; dy++)
1537 for (dx = -1; dx <= +1; dx++)
1538 if (x+dx >= 0 && x+dx < ctx->w &&
1539 y+dy >= 0 && y+dy < ctx->h &&
1540 grid[(y+dy)*ctx->w+(x+dx)] != -2) {
1541 if (dx == 0 && dy == 0) {
1542 /*
1543 * The square itself is marked as known in
1544 * the grid. Mark it as a mine if it's a
1545 * mine, or else work out its number.
1546 */
1547 if (delta > 0) {
1548 grid[y*ctx->w+x] = -1;
1549 } else {
1550 int dx2, dy2, minecount = 0;
1551 for (dy2 = -1; dy2 <= +1; dy2++)
1552 for (dx2 = -1; dx2 <= +1; dx2++)
1553 if (x+dx2 >= 0 && x+dx2 < ctx->w &&
1554 y+dy2 >= 0 && y+dy2 < ctx->h &&
1555 ctx->grid[(y+dy2)*ctx->w+(x+dx2)])
1556 minecount++;
1557 grid[y*ctx->w+x] = minecount;
1558 }
1559 } else {
1560 if (grid[(y+dy)*ctx->w+(x+dx)] >= 0)
1561 grid[(y+dy)*ctx->w+(x+dx)] += delta;
1562 }
1563 }
1564 }
1565
1566 #ifdef GENERATION_DIAGNOSTICS
1567 {
1568 int yy, xx;
1569 printf("grid after perturbing:\n");
1570 for (yy = 0; yy < ctx->h; yy++) {
1571 for (xx = 0; xx < ctx->w; xx++) {
1572 int v = ctx->grid[yy*ctx->w+xx];
1573 if (yy == ctx->sy && xx == ctx->sx) {
1574 assert(!v);
1575 putchar('S');
1576 } else if (v) {
1577 putchar('*');
1578 } else {
1579 putchar('-');
1580 }
1581 }
1582 putchar('\n');
1583 }
1584 printf("\n");
1585 }
1586 #endif
1587
1588 return ret;
1589 }
1590
1591 static char *minegen(int w, int h, int n, int x, int y, int unique,
1592 random_state *rs)
1593 {
1594 char *ret = snewn(w*h, char);
1595 int success;
1596
1597 do {
1598 success = FALSE;
1599
1600 memset(ret, 0, w*h);
1601
1602 /*
1603 * Start by placing n mines, none of which is at x,y or within
1604 * one square of it.
1605 */
1606 {
1607 int *tmp = snewn(w*h, int);
1608 int i, j, k, nn;
1609
1610 /*
1611 * Write down the list of possible mine locations.
1612 */
1613 k = 0;
1614 for (i = 0; i < h; i++)
1615 for (j = 0; j < w; j++)
1616 if (abs(i - y) > 1 || abs(j - x) > 1)
1617 tmp[k++] = i*w+j;
1618
1619 /*
1620 * Now pick n off the list at random.
1621 */
1622 nn = n;
1623 while (nn-- > 0) {
1624 i = random_upto(rs, k);
1625 ret[tmp[i]] = 1;
1626 tmp[i] = tmp[--k];
1627 }
1628
1629 sfree(tmp);
1630 }
1631
1632 #ifdef GENERATION_DIAGNOSTICS
1633 {
1634 int yy, xx;
1635 printf("grid after initial generation:\n");
1636 for (yy = 0; yy < h; yy++) {
1637 for (xx = 0; xx < w; xx++) {
1638 int v = ret[yy*w+xx];
1639 if (yy == y && xx == x) {
1640 assert(!v);
1641 putchar('S');
1642 } else if (v) {
1643 putchar('*');
1644 } else {
1645 putchar('-');
1646 }
1647 }
1648 putchar('\n');
1649 }
1650 printf("\n");
1651 }
1652 #endif
1653
1654 /*
1655 * Now set up a results grid to run the solver in, and a
1656 * context for the solver to open squares. Then run the solver
1657 * repeatedly; if the number of perturb steps ever goes up or
1658 * it ever returns -1, give up completely.
1659 *
1660 * We bypass this bit if we're not after a unique grid.
1661 */
1662 if (unique) {
1663 signed char *solvegrid = snewn(w*h, char);
1664 struct minectx actx, *ctx = &actx;
1665 int solveret, prevret = -2;
1666
1667 ctx->grid = ret;
1668 ctx->w = w;
1669 ctx->h = h;
1670 ctx->sx = x;
1671 ctx->sy = y;
1672 ctx->rs = rs;
1673
1674 while (1) {
1675 memset(solvegrid, -2, w*h);
1676 solvegrid[y*w+x] = mineopen(ctx, x, y);
1677 assert(solvegrid[y*w+x] == 0); /* by deliberate arrangement */
1678
1679 solveret =
1680 minesolve(w, h, n, solvegrid, mineopen, mineperturb, ctx, rs);
1681 if (solveret < 0 || (prevret >= 0 && solveret >= prevret)) {
1682 success = FALSE;
1683 break;
1684 } else if (solveret == 0) {
1685 success = TRUE;
1686 break;
1687 }
1688 }
1689
1690 sfree(solvegrid);
1691 } else {
1692 success = TRUE;
1693 }
1694
1695 } while (!success);
1696
1697 return ret;
1698 }
1699
1700 /*
1701 * The Mines game descriptions contain the location of every mine,
1702 * and can therefore be used to cheat.
1703 *
1704 * It would be pointless to attempt to _prevent_ this form of
1705 * cheating by encrypting the description, since Mines is
1706 * open-source so anyone can find out the encryption key. However,
1707 * I think it is worth doing a bit of gentle obfuscation to prevent
1708 * _accidental_ spoilers: if you happened to note that the game ID
1709 * starts with an F, for example, you might be unable to put the
1710 * knowledge of those mines out of your mind while playing. So,
1711 * just as discussions of film endings are rot13ed to avoid
1712 * spoiling it for people who don't want to be told, we apply a
1713 * keyless, reversible, but visually completely obfuscatory masking
1714 * function to the mine bitmap.
1715 */
1716 static void obfuscate_bitmap(unsigned char *bmp, int bits, int decode)
1717 {
1718 int bytes, firsthalf, secondhalf;
1719 struct step {
1720 unsigned char *seedstart;
1721 int seedlen;
1722 unsigned char *targetstart;
1723 int targetlen;
1724 } steps[2];
1725 int i, j;
1726
1727 /*
1728 * My obfuscation algorithm is similar in concept to the OAEP
1729 * encoding used in some forms of RSA. Here's a specification
1730 * of it:
1731 *
1732 * + We have a `masking function' which constructs a stream of
1733 * pseudorandom bytes from a seed of some number of input
1734 * bytes.
1735 *
1736 * + We pad out our input bit stream to a whole number of
1737 * bytes by adding up to 7 zero bits on the end. (In fact
1738 * the bitmap passed as input to this function will already
1739 * have had this done in practice.)
1740 *
1741 * + We divide the _byte_ stream exactly in half, rounding the
1742 * half-way position _down_. So an 81-bit input string, for
1743 * example, rounds up to 88 bits or 11 bytes, and then
1744 * dividing by two gives 5 bytes in the first half and 6 in
1745 * the second half.
1746 *
1747 * + We generate a mask from the second half of the bytes, and
1748 * XOR it over the first half.
1749 *
1750 * + We generate a mask from the (encoded) first half of the
1751 * bytes, and XOR it over the second half. Any null bits at
1752 * the end which were added as padding are cleared back to
1753 * zero even if this operation would have made them nonzero.
1754 *
1755 * To de-obfuscate, the steps are precisely the same except
1756 * that the final two are reversed.
1757 *
1758 * Finally, our masking function. Given an input seed string of
1759 * bytes, the output mask consists of concatenating the SHA-1
1760 * hashes of the seed string and successive decimal integers,
1761 * starting from 0.
1762 */
1763
1764 bytes = (bits + 7) / 8;
1765 firsthalf = bytes / 2;
1766 secondhalf = bytes - firsthalf;
1767
1768 steps[decode ? 1 : 0].seedstart = bmp + firsthalf;
1769 steps[decode ? 1 : 0].seedlen = secondhalf;
1770 steps[decode ? 1 : 0].targetstart = bmp;
1771 steps[decode ? 1 : 0].targetlen = firsthalf;
1772
1773 steps[decode ? 0 : 1].seedstart = bmp;
1774 steps[decode ? 0 : 1].seedlen = firsthalf;
1775 steps[decode ? 0 : 1].targetstart = bmp + firsthalf;
1776 steps[decode ? 0 : 1].targetlen = secondhalf;
1777
1778 for (i = 0; i < 2; i++) {
1779 SHA_State base, final;
1780 unsigned char digest[20];
1781 char numberbuf[80];
1782 int digestpos = 20, counter = 0;
1783
1784 SHA_Init(&base);
1785 SHA_Bytes(&base, steps[i].seedstart, steps[i].seedlen);
1786
1787 for (j = 0; j < steps[i].targetlen; j++) {
1788 if (digestpos >= 20) {
1789 sprintf(numberbuf, "%d", counter++);
1790 final = base;
1791 SHA_Bytes(&final, numberbuf, strlen(numberbuf));
1792 SHA_Final(&final, digest);
1793 digestpos = 0;
1794 }
1795 steps[i].targetstart[j] ^= digest[digestpos++];
1796 }
1797
1798 /*
1799 * Mask off the pad bits in the final byte after both steps.
1800 */
1801 if (bits % 8)
1802 bmp[bits / 8] &= 0xFF & (0xFF00 >> (bits % 8));
1803 }
1804 }
1805
1806 static char *new_mine_layout(int w, int h, int n, int x, int y, int unique,
1807 random_state *rs, char **game_desc)
1808 {
1809 signed char *grid, *ret, *p;
1810 unsigned char *bmp;
1811 int i, area;
1812
1813 #ifdef TEST_OBFUSCATION
1814 static int tested_obfuscation = FALSE;
1815 if (!tested_obfuscation) {
1816 /*
1817 * A few simple test vectors for the obfuscator.
1818 *
1819 * First test: the 28-bit stream 1234567. This divides up
1820 * into 1234 and 567[0]. The SHA of 56 70 30 (appending
1821 * "0") is 15ce8ab946640340bbb99f3f48fd2c45d1a31d30. Thus,
1822 * we XOR the 16-bit string 15CE into the input 1234 to get
1823 * 07FA. Next, we SHA that with "0": the SHA of 07 FA 30 is
1824 * 3370135c5e3da4fed937adc004a79533962b6391. So we XOR the
1825 * 12-bit string 337 into the input 567 to get 650. Thus
1826 * our output is 07FA650.
1827 */
1828 {
1829 unsigned char bmp1[] = "\x12\x34\x56\x70";
1830 obfuscate_bitmap(bmp1, 28, FALSE);
1831 printf("test 1 encode: %s\n",
1832 memcmp(bmp1, "\x07\xfa\x65\x00", 4) ? "failed" : "passed");
1833 obfuscate_bitmap(bmp1, 28, TRUE);
1834 printf("test 1 decode: %s\n",
1835 memcmp(bmp1, "\x12\x34\x56\x70", 4) ? "failed" : "passed");
1836 }
1837 /*
1838 * Second test: a long string to make sure we switch from
1839 * one SHA to the next correctly. My input string this time
1840 * is simply fifty bytes of zeroes.
1841 */
1842 {
1843 unsigned char bmp2[50];
1844 unsigned char bmp2a[50];
1845 memset(bmp2, 0, 50);
1846 memset(bmp2a, 0, 50);
1847 obfuscate_bitmap(bmp2, 50 * 8, FALSE);
1848 /*
1849 * SHA of twenty-five zero bytes plus "0" is
1850 * b202c07b990c01f6ff2d544707f60e506019b671. SHA of
1851 * twenty-five zero bytes plus "1" is
1852 * fcb1d8b5a2f6b592fe6780b36aa9d65dd7aa6db9. Thus our
1853 * first half becomes
1854 * b202c07b990c01f6ff2d544707f60e506019b671fcb1d8b5a2.
1855 *
1856 * SHA of that lot plus "0" is
1857 * 10b0af913db85d37ca27f52a9f78bba3a80030db. SHA of the
1858 * same string plus "1" is
1859 * 3d01d8df78e76d382b8106f480135a1bc751d725. So the
1860 * second half becomes
1861 * 10b0af913db85d37ca27f52a9f78bba3a80030db3d01d8df78.
1862 */
1863 printf("test 2 encode: %s\n",
1864 memcmp(bmp2, "\xb2\x02\xc0\x7b\x99\x0c\x01\xf6\xff\x2d\x54"
1865 "\x47\x07\xf6\x0e\x50\x60\x19\xb6\x71\xfc\xb1\xd8"
1866 "\xb5\xa2\x10\xb0\xaf\x91\x3d\xb8\x5d\x37\xca\x27"
1867 "\xf5\x2a\x9f\x78\xbb\xa3\xa8\x00\x30\xdb\x3d\x01"
1868 "\xd8\xdf\x78", 50) ? "failed" : "passed");
1869 obfuscate_bitmap(bmp2, 50 * 8, TRUE);
1870 printf("test 2 decode: %s\n",
1871 memcmp(bmp2, bmp2a, 50) ? "failed" : "passed");
1872 }
1873 }
1874 #endif
1875
1876 grid = minegen(w, h, n, x, y, unique, rs);
1877
1878 if (game_desc) {
1879 /*
1880 * Set up the mine bitmap and obfuscate it.
1881 */
1882 area = w * h;
1883 bmp = snewn((area + 7) / 8, unsigned char);
1884 memset(bmp, 0, (area + 7) / 8);
1885 for (i = 0; i < area; i++) {
1886 if (grid[i])
1887 bmp[i / 8] |= 0x80 >> (i % 8);
1888 }
1889 obfuscate_bitmap(bmp, area, FALSE);
1890
1891 /*
1892 * Now encode the resulting bitmap in hex. We can work to
1893 * nibble rather than byte granularity, since the obfuscation
1894 * function guarantees to return a bit string of the same
1895 * length as its input.
1896 */
1897 ret = snewn((area+3)/4 + 100, char);
1898 p = ret + sprintf(ret, "%d,%d,m", x, y); /* 'm' == masked */
1899 for (i = 0; i < (area+3)/4; i++) {
1900 int v = bmp[i/2];
1901 if (i % 2 == 0)
1902 v >>= 4;
1903 *p++ = "0123456789abcdef"[v & 0xF];
1904 }
1905 *p = '\0';
1906
1907 sfree(bmp);
1908
1909 *game_desc = ret;
1910 }
1911
1912 return grid;
1913 }
1914
1915 static char *new_game_desc(game_params *params, random_state *rs,
1916 game_aux_info **aux, int interactive)
1917 {
1918 if (!interactive) {
1919 /*
1920 * For batch-generated grids, pre-open one square.
1921 */
1922 int x = random_upto(rs, params->w);
1923 int y = random_upto(rs, params->h);
1924 signed char *grid;
1925 char *desc;
1926
1927 grid = new_mine_layout(params->w, params->h, params->n,
1928 x, y, params->unique, rs, &desc);
1929 sfree(grid);
1930 return desc;
1931 } else {
1932 char *rsdesc, *desc;
1933
1934 rsdesc = random_state_encode(rs);
1935 desc = snewn(strlen(rsdesc) + 100, char);
1936 sprintf(desc, "r%d,%c,%s", params->n, params->unique ? 'u' : 'a', rsdesc);
1937 sfree(rsdesc);
1938 return desc;
1939 }
1940 }
1941
1942 static void game_free_aux_info(game_aux_info *aux)
1943 {
1944 assert(!"Shouldn't happen");
1945 }
1946
1947 static char *validate_desc(game_params *params, char *desc)
1948 {
1949 int wh = params->w * params->h;
1950 int x, y;
1951
1952 if (*desc == 'r') {
1953 if (!*desc || !isdigit((unsigned char)*desc))
1954 return "No initial mine count in game description";
1955 while (*desc && isdigit((unsigned char)*desc))
1956 desc++; /* skip over mine count */
1957 if (*desc != ',')
1958 return "No ',' after initial x-coordinate in game description";
1959 desc++;
1960 if (*desc != 'u' && *desc != 'a')
1961 return "No uniqueness specifier in game description";
1962 desc++;
1963 if (*desc != ',')
1964 return "No ',' after uniqueness specifier in game description";
1965 /* now ignore the rest */
1966 } else {
1967 if (!*desc || !isdigit((unsigned char)*desc))
1968 return "No initial x-coordinate in game description";
1969 x = atoi(desc);
1970 if (x < 0 || x >= params->w)
1971 return "Initial x-coordinate was out of range";
1972 while (*desc && isdigit((unsigned char)*desc))
1973 desc++; /* skip over x coordinate */
1974 if (*desc != ',')
1975 return "No ',' after initial x-coordinate in game description";
1976 desc++; /* eat comma */
1977 if (!*desc || !isdigit((unsigned char)*desc))
1978 return "No initial y-coordinate in game description";
1979 y = atoi(desc);
1980 if (y < 0 || y >= params->h)
1981 return "Initial y-coordinate was out of range";
1982 while (*desc && isdigit((unsigned char)*desc))
1983 desc++; /* skip over y coordinate */
1984 if (*desc != ',')
1985 return "No ',' after initial y-coordinate in game description";
1986 desc++; /* eat comma */
1987 /* eat `m', meaning `masked', if present */
1988 if (*desc == 'm')
1989 desc++;
1990 /* now just check length of remainder */
1991 if (strlen(desc) != (wh+3)/4)
1992 return "Game description is wrong length";
1993 }
1994
1995 return NULL;
1996 }
1997
1998 static int open_square(game_state *state, int x, int y)
1999 {
2000 int w = state->w, h = state->h;
2001 int xx, yy, nmines, ncovered;
2002
2003 if (!state->layout->mines) {
2004 /*
2005 * We have a preliminary game in which the mine layout
2006 * hasn't been generated yet. Generate it based on the
2007 * initial click location.
2008 */
2009 char *desc;
2010 state->layout->mines = new_mine_layout(w, h, state->layout->n,
2011 x, y, state->layout->unique,
2012 state->layout->rs,
2013 &desc);
2014 midend_supersede_game_desc(state->layout->me, desc);
2015 sfree(desc);
2016 random_free(state->layout->rs);
2017 state->layout->rs = NULL;
2018 }
2019
2020 if (state->layout->mines[y*w+x]) {
2021 /*
2022 * The player has landed on a mine. Bad luck. Expose all
2023 * the mines.
2024 */
2025 state->dead = TRUE;
2026 for (yy = 0; yy < h; yy++)
2027 for (xx = 0; xx < w; xx++) {
2028 if (state->layout->mines[yy*w+xx] &&
2029 (state->grid[yy*w+xx] == -2 ||
2030 state->grid[yy*w+xx] == -3)) {
2031 state->grid[yy*w+xx] = 64;
2032 }
2033 if (!state->layout->mines[yy*w+xx] &&
2034 state->grid[yy*w+xx] == -1) {
2035 state->grid[yy*w+xx] = 66;
2036 }
2037 }
2038 state->grid[y*w+x] = 65;
2039 return -1;
2040 }
2041
2042 /*
2043 * Otherwise, the player has opened a safe square. Mark it to-do.
2044 */
2045 state->grid[y*w+x] = -10; /* `todo' value internal to this func */
2046
2047 /*
2048 * Now go through the grid finding all `todo' values and
2049 * opening them. Every time one of them turns out to have no
2050 * neighbouring mines, we add all its unopened neighbours to
2051 * the list as well.
2052 *
2053 * FIXME: We really ought to be able to do this better than
2054 * using repeated N^2 scans of the grid.
2055 */
2056 while (1) {
2057 int done_something = FALSE;
2058
2059 for (yy = 0; yy < h; yy++)
2060 for (xx = 0; xx < w; xx++)
2061 if (state->grid[yy*w+xx] == -10) {
2062 int dx, dy, v;
2063
2064 assert(!state->layout->mines[yy*w+xx]);
2065
2066 v = 0;
2067
2068 for (dx = -1; dx <= +1; dx++)
2069 for (dy = -1; dy <= +1; dy++)
2070 if (xx+dx >= 0 && xx+dx < state->w &&
2071 yy+dy >= 0 && yy+dy < state->h &&
2072 state->layout->mines[(yy+dy)*w+(xx+dx)])
2073 v++;
2074
2075 state->grid[yy*w+xx] = v;
2076
2077 if (v == 0) {
2078 for (dx = -1; dx <= +1; dx++)
2079 for (dy = -1; dy <= +1; dy++)
2080 if (xx+dx >= 0 && xx+dx < state->w &&
2081 yy+dy >= 0 && yy+dy < state->h &&
2082 state->grid[(yy+dy)*w+(xx+dx)] == -2)
2083 state->grid[(yy+dy)*w+(xx+dx)] = -10;
2084 }
2085
2086 done_something = TRUE;
2087 }
2088
2089 if (!done_something)
2090 break;
2091 }
2092
2093 /*
2094 * Finally, scan the grid and see if exactly as many squares
2095 * are still covered as there are mines. If so, set the `won'
2096 * flag and fill in mine markers on all covered squares.
2097 */
2098 nmines = ncovered = 0;
2099 for (yy = 0; yy < h; yy++)
2100 for (xx = 0; xx < w; xx++) {
2101 if (state->grid[yy*w+xx] < 0)
2102 ncovered++;
2103 if (state->layout->mines[yy*w+xx])
2104 nmines++;
2105 }
2106 assert(ncovered >= nmines);
2107 if (ncovered == nmines) {
2108 for (yy = 0; yy < h; yy++)
2109 for (xx = 0; xx < w; xx++) {
2110 if (state->grid[yy*w+xx] < 0)
2111 state->grid[yy*w+xx] = -1;
2112 }
2113 state->won = TRUE;
2114 }
2115
2116 return 0;
2117 }
2118
2119 static game_state *new_game(midend_data *me, game_params *params, char *desc)
2120 {
2121 game_state *state = snew(game_state);
2122 int i, wh, x, y, ret, masked;
2123 unsigned char *bmp;
2124
2125 state->w = params->w;
2126 state->h = params->h;
2127 state->n = params->n;
2128 state->dead = state->won = FALSE;
2129 state->used_solve = state->just_used_solve = FALSE;
2130
2131 wh = state->w * state->h;
2132
2133 state->layout = snew(struct mine_layout);
2134 state->layout->refcount = 1;
2135
2136 state->grid = snewn(wh, char);
2137 memset(state->grid, -2, wh);
2138
2139 if (*desc == 'r') {
2140 desc++;
2141 state->layout->n = atoi(desc);
2142 while (*desc && isdigit((unsigned char)*desc))
2143 desc++; /* skip over mine count */
2144 if (*desc) desc++; /* eat comma */
2145 if (*desc == 'a')
2146 state->layout->unique = FALSE;
2147 else
2148 state->layout->unique = TRUE;
2149 desc++;
2150 if (*desc) desc++; /* eat comma */
2151
2152 state->layout->mines = NULL;
2153 state->layout->rs = random_state_decode(desc);
2154 state->layout->me = me;
2155
2156 } else {
2157 state->layout->rs = NULL;
2158 state->layout->me = NULL;
2159
2160 state->layout->mines = snewn(wh, char);
2161 x = atoi(desc);
2162 while (*desc && isdigit((unsigned char)*desc))
2163 desc++; /* skip over x coordinate */
2164 if (*desc) desc++; /* eat comma */
2165 y = atoi(desc);
2166 while (*desc && isdigit((unsigned char)*desc))
2167 desc++; /* skip over y coordinate */
2168 if (*desc) desc++; /* eat comma */
2169
2170 if (*desc == 'm') {
2171 masked = TRUE;
2172 desc++;
2173 } else {
2174 /*
2175 * We permit game IDs to be entered by hand without the
2176 * masking transformation.
2177 */
2178 masked = FALSE;
2179 }
2180
2181 bmp = snewn((wh + 7) / 8, unsigned char);
2182 memset(bmp, 0, (wh + 7) / 8);
2183 for (i = 0; i < (wh+3)/4; i++) {
2184 int c = desc[i];
2185 int v;
2186
2187 assert(c != 0); /* validate_desc should have caught */
2188 if (c >= '0' && c <= '9')
2189 v = c - '0';
2190 else if (c >= 'a' && c <= 'f')
2191 v = c - 'a' + 10;
2192 else if (c >= 'A' && c <= 'F')
2193 v = c - 'A' + 10;
2194 else
2195 v = 0;
2196
2197 bmp[i / 2] |= v << (4 * (1 - (i % 2)));
2198 }
2199
2200 if (masked)
2201 obfuscate_bitmap(bmp, wh, TRUE);
2202
2203 memset(state->layout->mines, 0, wh);
2204 for (i = 0; i < wh; i++) {
2205 if (bmp[i / 8] & (0x80 >> (i % 8)))
2206 state->layout->mines[i] = 1;
2207 }
2208
2209 ret = open_square(state, x, y);
2210 }
2211
2212 return state;
2213 }
2214
2215 static game_state *dup_game(game_state *state)
2216 {
2217 game_state *ret = snew(game_state);
2218
2219 ret->w = state->w;
2220 ret->h = state->h;
2221 ret->n = state->n;
2222 ret->dead = state->dead;
2223 ret->won = state->won;
2224 ret->used_solve = state->used_solve;
2225 ret->just_used_solve = state->just_used_solve;
2226 ret->layout = state->layout;
2227 ret->layout->refcount++;
2228 ret->grid = snewn(ret->w * ret->h, char);
2229 memcpy(ret->grid, state->grid, ret->w * ret->h);
2230
2231 return ret;
2232 }
2233
2234 static void free_game(game_state *state)
2235 {
2236 if (--state->layout->refcount <= 0) {
2237 sfree(state->layout->mines);
2238 if (state->layout->rs)
2239 random_free(state->layout->rs);
2240 sfree(state->layout);
2241 }
2242 sfree(state->grid);
2243 sfree(state);
2244 }
2245
2246 static game_state *solve_game(game_state *state, game_aux_info *aux,
2247 char **error)
2248 {
2249 /*
2250 * Simply expose the entire grid as if it were a completed
2251 * solution.
2252 */
2253 game_state *ret;
2254 int yy, xx;
2255
2256 if (!state->layout->mines) {
2257 *error = "Game has not been started yet";
2258 return NULL;
2259 }
2260
2261 ret = dup_game(state);
2262 for (yy = 0; yy < ret->h; yy++)
2263 for (xx = 0; xx < ret->w; xx++) {
2264
2265 if (ret->layout->mines[yy*ret->w+xx]) {
2266 ret->grid[yy*ret->w+xx] = -1;
2267 } else {
2268 int dx, dy, v;
2269
2270 v = 0;
2271
2272 for (dx = -1; dx <= +1; dx++)
2273 for (dy = -1; dy <= +1; dy++)
2274 if (xx+dx >= 0 && xx+dx < ret->w &&
2275 yy+dy >= 0 && yy+dy < ret->h &&
2276 ret->layout->mines[(yy+dy)*ret->w+(xx+dx)])
2277 v++;
2278
2279 ret->grid[yy*ret->w+xx] = v;
2280 }
2281 }
2282 ret->used_solve = ret->just_used_solve = TRUE;
2283 ret->won = TRUE;
2284
2285 return ret;
2286 }
2287
2288 static char *game_text_format(game_state *state)
2289 {
2290 char *ret;
2291 int x, y;
2292
2293 ret = snewn((state->w + 1) * state->h + 1, char);
2294 for (y = 0; y < state->h; y++) {
2295 for (x = 0; x < state->w; x++) {
2296 int v = state->grid[y*state->w+x];
2297 if (v == 0)
2298 v = '-';
2299 else if (v >= 1 && v <= 8)
2300 v = '0' + v;
2301 else if (v == -1)
2302 v = '*';
2303 else if (v == -2 || v == -3)
2304 v = '?';
2305 else if (v >= 64)
2306 v = '!';
2307 ret[y * (state->w+1) + x] = v;
2308 }
2309 ret[y * (state->w+1) + state->w] = '\n';
2310 }
2311 ret[(state->w + 1) * state->h] = '\0';
2312
2313 return ret;
2314 }
2315
2316 struct game_ui {
2317 int hx, hy, hradius; /* for mouse-down highlights */
2318 int flash_is_death;
2319 };
2320
2321 static game_ui *new_ui(game_state *state)
2322 {
2323 game_ui *ui = snew(game_ui);
2324 ui->hx = ui->hy = -1;
2325 ui->hradius = 0;
2326 ui->flash_is_death = FALSE; /* *shrug* */
2327 return ui;
2328 }
2329
2330 static void free_ui(game_ui *ui)
2331 {
2332 sfree(ui);
2333 }
2334
2335 static game_state *make_move(game_state *from, game_ui *ui, game_drawstate *ds,
2336 int x, int y, int button)
2337 {
2338 game_state *ret;
2339 int cx, cy;
2340
2341 if (from->dead || from->won)
2342 return NULL; /* no further moves permitted */
2343
2344 if (!IS_MOUSE_DOWN(button) && !IS_MOUSE_DRAG(button) &&
2345 !IS_MOUSE_RELEASE(button))
2346 return NULL;
2347
2348 cx = FROMCOORD(x);
2349 cy = FROMCOORD(y);
2350 if (cx < 0 || cx >= from->w || cy < 0 || cy > from->h)
2351 return NULL;
2352
2353 if (button == LEFT_BUTTON || button == LEFT_DRAG) {
2354 /*
2355 * Mouse-downs and mouse-drags just cause highlighting
2356 * updates.
2357 */
2358 ui->hx = cx;
2359 ui->hy = cy;
2360 ui->hradius = (from->grid[cy*from->w+cx] >= 0 ? 1 : 0);
2361 return from;
2362 }
2363
2364 if (button == RIGHT_BUTTON) {
2365 /*
2366 * Right-clicking only works on a covered square, and it
2367 * toggles between -1 (marked as mine) and -2 (not marked
2368 * as mine).
2369 *
2370 * FIXME: question marks.
2371 */
2372 if (from->grid[cy * from->w + cx] != -2 &&
2373 from->grid[cy * from->w + cx] != -1)
2374 return NULL;
2375
2376 ret = dup_game(from);
2377 ret->just_used_solve = FALSE;
2378 ret->grid[cy * from->w + cx] ^= (-2 ^ -1);
2379
2380 return ret;
2381 }
2382
2383 if (button == LEFT_RELEASE) {
2384 ui->hx = ui->hy = -1;
2385 ui->hradius = 0;
2386
2387 /*
2388 * At this stage we must never return NULL: we have adjusted
2389 * the ui, so at worst we return `from'.
2390 */
2391
2392 /*
2393 * Left-clicking on a covered square opens a tile. Not
2394 * permitted if the tile is marked as a mine, for safety.
2395 * (Unmark it and _then_ open it.)
2396 */
2397 if (from->grid[cy * from->w + cx] == -2 ||
2398 from->grid[cy * from->w + cx] == -3) {
2399 ret = dup_game(from);
2400 ret->just_used_solve = FALSE;
2401 open_square(ret, cx, cy);
2402 return ret;
2403 }
2404
2405 /*
2406 * Left-clicking on an uncovered tile: first we check to see if
2407 * the number of mine markers surrounding the tile is equal to
2408 * its mine count, and if so then we open all other surrounding
2409 * squares.
2410 */
2411 if (from->grid[cy * from->w + cx] > 0) {
2412 int dy, dx, n;
2413
2414 /* Count mine markers. */
2415 n = 0;
2416 for (dy = -1; dy <= +1; dy++)
2417 for (dx = -1; dx <= +1; dx++)
2418 if (cx+dx >= 0 && cx+dx < from->w &&
2419 cy+dy >= 0 && cy+dy < from->h) {
2420 if (from->grid[(cy+dy)*from->w+(cx+dx)] == -1)
2421 n++;
2422 }
2423
2424 if (n == from->grid[cy * from->w + cx]) {
2425 ret = dup_game(from);
2426 ret->just_used_solve = FALSE;
2427 for (dy = -1; dy <= +1; dy++)
2428 for (dx = -1; dx <= +1; dx++)
2429 if (cx+dx >= 0 && cx+dx < ret->w &&
2430 cy+dy >= 0 && cy+dy < ret->h &&
2431 (ret->grid[(cy+dy)*ret->w+(cx+dx)] == -2 ||
2432 ret->grid[(cy+dy)*ret->w+(cx+dx)] == -3))
2433 open_square(ret, cx+dx, cy+dy);
2434 return ret;
2435 }
2436 }
2437
2438 return from;
2439 }
2440
2441 return NULL;
2442 }
2443
2444 /* ----------------------------------------------------------------------
2445 * Drawing routines.
2446 */
2447
2448 struct game_drawstate {
2449 int w, h, started;
2450 signed char *grid;
2451 /*
2452 * Items in this `grid' array have all the same values as in
2453 * the game_state grid, and in addition:
2454 *
2455 * - -10 means the tile was drawn `specially' as a result of a
2456 * flash, so it will always need redrawing.
2457 *
2458 * - -22 and -23 mean the tile is highlighted for a possible
2459 * click.
2460 */
2461 };
2462
2463 static void game_size(game_params *params, int *x, int *y)
2464 {
2465 *x = BORDER * 2 + TILE_SIZE * params->w;
2466 *y = BORDER * 2 + TILE_SIZE * params->h;
2467 }
2468
2469 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
2470 {
2471 float *ret = snewn(3 * NCOLOURS, float);
2472
2473 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2474
2475 ret[COL_BACKGROUND2 * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 19.0 / 20.0;
2476 ret[COL_BACKGROUND2 * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 19.0 / 20.0;
2477 ret[COL_BACKGROUND2 * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 19.0 / 20.0;
2478
2479 ret[COL_1 * 3 + 0] = 0.0F;
2480 ret[COL_1 * 3 + 1] = 0.0F;
2481 ret[COL_1 * 3 + 2] = 1.0F;
2482
2483 ret[COL_2 * 3 + 0] = 0.0F;
2484 ret[COL_2 * 3 + 1] = 0.5F;
2485 ret[COL_2 * 3 + 2] = 0.0F;
2486
2487 ret[COL_3 * 3 + 0] = 1.0F;
2488 ret[COL_3 * 3 + 1] = 0.0F;
2489 ret[COL_3 * 3 + 2] = 0.0F;
2490
2491 ret[COL_4 * 3 + 0] = 0.0F;
2492 ret[COL_4 * 3 + 1] = 0.0F;
2493 ret[COL_4 * 3 + 2] = 0.5F;
2494
2495 ret[COL_5 * 3 + 0] = 0.5F;
2496 ret[COL_5 * 3 + 1] = 0.0F;
2497 ret[COL_5 * 3 + 2] = 0.0F;
2498
2499 ret[COL_6 * 3 + 0] = 0.0F;
2500 ret[COL_6 * 3 + 1] = 0.5F;
2501 ret[COL_6 * 3 + 2] = 0.5F;
2502
2503 ret[COL_7 * 3 + 0] = 0.0F;
2504 ret[COL_7 * 3 + 1] = 0.0F;
2505 ret[COL_7 * 3 + 2] = 0.0F;
2506
2507 ret[COL_8 * 3 + 0] = 0.5F;
2508 ret[COL_8 * 3 + 1] = 0.5F;
2509 ret[COL_8 * 3 + 2] = 0.5F;
2510
2511 ret[COL_MINE * 3 + 0] = 0.0F;
2512 ret[COL_MINE * 3 + 1] = 0.0F;
2513 ret[COL_MINE * 3 + 2] = 0.0F;
2514
2515 ret[COL_BANG * 3 + 0] = 1.0F;
2516 ret[COL_BANG * 3 + 1] = 0.0F;
2517 ret[COL_BANG * 3 + 2] = 0.0F;
2518
2519 ret[COL_CROSS * 3 + 0] = 1.0F;
2520 ret[COL_CROSS * 3 + 1] = 0.0F;
2521 ret[COL_CROSS * 3 + 2] = 0.0F;
2522
2523 ret[COL_FLAG * 3 + 0] = 1.0F;
2524 ret[COL_FLAG * 3 + 1] = 0.0F;
2525 ret[COL_FLAG * 3 + 2] = 0.0F;
2526
2527 ret[COL_FLAGBASE * 3 + 0] = 0.0F;
2528 ret[COL_FLAGBASE * 3 + 1] = 0.0F;
2529 ret[COL_FLAGBASE * 3 + 2] = 0.0F;
2530
2531 ret[COL_QUERY * 3 + 0] = 0.0F;
2532 ret[COL_QUERY * 3 + 1] = 0.0F;
2533 ret[COL_QUERY * 3 + 2] = 0.0F;
2534
2535 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
2536 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
2537 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
2538
2539 ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2.0 / 3.0;
2540 ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2.0 / 3.0;
2541 ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2.0 / 3.0;
2542
2543 *ncolours = NCOLOURS;
2544 return ret;
2545 }
2546
2547 static game_drawstate *game_new_drawstate(game_state *state)
2548 {
2549 struct game_drawstate *ds = snew(struct game_drawstate);
2550
2551 ds->w = state->w;
2552 ds->h = state->h;
2553 ds->started = FALSE;
2554 ds->grid = snewn(ds->w * ds->h, char);
2555
2556 memset(ds->grid, -99, ds->w * ds->h);
2557
2558 return ds;
2559 }
2560
2561 static void game_free_drawstate(game_drawstate *ds)
2562 {
2563 sfree(ds->grid);
2564 sfree(ds);
2565 }
2566
2567 static void draw_tile(frontend *fe, int x, int y, int v, int bg)
2568 {
2569 if (v < 0) {
2570 int coords[12];
2571 int hl = 0;
2572
2573 if (v == -22 || v == -23) {
2574 v += 20;
2575
2576 /*
2577 * Omit the highlights in this case.
2578 */
2579 draw_rect(fe, x, y, TILE_SIZE, TILE_SIZE,
2580 bg == COL_BACKGROUND ? COL_BACKGROUND2 : bg);
2581 draw_line(fe, x, y, x + TILE_SIZE - 1, y, COL_LOWLIGHT);
2582 draw_line(fe, x, y, x, y + TILE_SIZE - 1, COL_LOWLIGHT);
2583 } else {
2584 /*
2585 * Draw highlights to indicate the square is covered.
2586 */
2587 coords[0] = x + TILE_SIZE - 1;
2588 coords[1] = y + TILE_SIZE - 1;
2589 coords[2] = x + TILE_SIZE - 1;
2590 coords[3] = y;
2591 coords[4] = x;
2592 coords[5] = y + TILE_SIZE - 1;
2593 draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT ^ hl);
2594 draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT ^ hl);
2595
2596 coords[0] = x;
2597 coords[1] = y;
2598 draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT ^ hl);
2599 draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT ^ hl);
2600
2601 draw_rect(fe, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
2602 TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
2603 bg);
2604 }
2605
2606 if (v == -1) {
2607 /*
2608 * Draw a flag.
2609 */
2610 #define SETCOORD(n, dx, dy) do { \
2611 coords[(n)*2+0] = x + TILE_SIZE * (dx); \
2612 coords[(n)*2+1] = y + TILE_SIZE * (dy); \
2613 } while (0)
2614 SETCOORD(0, 0.6, 0.35);
2615 SETCOORD(1, 0.6, 0.7);
2616 SETCOORD(2, 0.8, 0.8);
2617 SETCOORD(3, 0.25, 0.8);
2618 SETCOORD(4, 0.55, 0.7);
2619 SETCOORD(5, 0.55, 0.35);
2620 draw_polygon(fe, coords, 6, TRUE, COL_FLAGBASE);
2621 draw_polygon(fe, coords, 6, FALSE, COL_FLAGBASE);
2622
2623 SETCOORD(0, 0.6, 0.2);
2624 SETCOORD(1, 0.6, 0.5);
2625 SETCOORD(2, 0.2, 0.35);
2626 draw_polygon(fe, coords, 3, TRUE, COL_FLAG);
2627 draw_polygon(fe, coords, 3, FALSE, COL_FLAG);
2628 #undef SETCOORD
2629
2630 } else if (v == -3) {
2631 /*
2632 * Draw a question mark.
2633 */
2634 draw_text(fe, x + TILE_SIZE / 2, y + TILE_SIZE / 2,
2635 FONT_VARIABLE, TILE_SIZE * 6 / 8,
2636 ALIGN_VCENTRE | ALIGN_HCENTRE,
2637 COL_QUERY, "?");
2638 }
2639 } else {
2640 /*
2641 * Clear the square to the background colour, and draw thin
2642 * grid lines along the top and left.
2643 *
2644 * Exception is that for value 65 (mine we've just trodden
2645 * on), we clear the square to COL_BANG.
2646 */
2647 draw_rect(fe, x, y, TILE_SIZE, TILE_SIZE,
2648 (v == 65 ? COL_BANG :
2649 bg == COL_BACKGROUND ? COL_BACKGROUND2 : bg));
2650 draw_line(fe, x, y, x + TILE_SIZE - 1, y, COL_LOWLIGHT);
2651 draw_line(fe, x, y, x, y + TILE_SIZE - 1, COL_LOWLIGHT);
2652
2653 if (v > 0 && v <= 8) {
2654 /*
2655 * Mark a number.
2656 */
2657 char str[2];
2658 str[0] = v + '0';
2659 str[1] = '\0';
2660 draw_text(fe, x + TILE_SIZE / 2, y + TILE_SIZE / 2,
2661 FONT_VARIABLE, TILE_SIZE * 7 / 8,
2662 ALIGN_VCENTRE | ALIGN_HCENTRE,
2663 (COL_1 - 1) + v, str);
2664
2665 } else if (v >= 64) {
2666 /*
2667 * Mark a mine.
2668 *
2669 * FIXME: this could be done better!
2670 */
2671 #if 0
2672 draw_text(fe, x + TILE_SIZE / 2, y + TILE_SIZE / 2,
2673 FONT_VARIABLE, TILE_SIZE * 7 / 8,
2674 ALIGN_VCENTRE | ALIGN_HCENTRE,
2675 COL_MINE, "*");
2676 #else
2677 {
2678 int cx = x + TILE_SIZE / 2;
2679 int cy = y + TILE_SIZE / 2;
2680 int r = TILE_SIZE / 2 - 3;
2681 int coords[4*5*2];
2682 int xdx = 1, xdy = 0, ydx = 0, ydy = 1;
2683 int tdx, tdy, i;
2684
2685 for (i = 0; i < 4*5*2; i += 5*2) {
2686 coords[i+2*0+0] = cx - r/6*xdx + r*4/5*ydx;
2687 coords[i+2*0+1] = cy - r/6*xdy + r*4/5*ydy;
2688 coords[i+2*1+0] = cx - r/6*xdx + r*ydx;
2689 coords[i+2*1+1] = cy - r/6*xdy + r*ydy;
2690 coords[i+2*2+0] = cx + r/6*xdx + r*ydx;
2691 coords[i+2*2+1] = cy + r/6*xdy + r*ydy;
2692 coords[i+2*3+0] = cx + r/6*xdx + r*4/5*ydx;
2693 coords[i+2*3+1] = cy + r/6*xdy + r*4/5*ydy;
2694 coords[i+2*4+0] = cx + r*3/5*xdx + r*3/5*ydx;
2695 coords[i+2*4+1] = cy + r*3/5*xdy + r*3/5*ydy;
2696
2697 tdx = ydx;
2698 tdy = ydy;
2699 ydx = xdx;
2700 ydy = xdy;
2701 xdx = -tdx;
2702 xdy = -tdy;
2703 }
2704
2705 draw_polygon(fe, coords, 5*4, TRUE, COL_MINE);
2706 draw_polygon(fe, coords, 5*4, FALSE, COL_MINE);
2707
2708 draw_rect(fe, cx-r/3, cy-r/3, r/3, r/4, COL_HIGHLIGHT);
2709 }
2710 #endif
2711
2712 if (v == 66) {
2713 /*
2714 * Cross through the mine.
2715 */
2716 int dx;
2717 for (dx = -1; dx <= +1; dx++) {
2718 draw_line(fe, x + 3 + dx, y + 2,
2719 x + TILE_SIZE - 3 + dx,
2720 y + TILE_SIZE - 2, COL_CROSS);
2721 draw_line(fe, x + TILE_SIZE - 3 + dx, y + 2,
2722 x + 3 + dx, y + TILE_SIZE - 2,
2723 COL_CROSS);
2724 }
2725 }
2726 }
2727 }
2728
2729 draw_update(fe, x, y, TILE_SIZE, TILE_SIZE);
2730 }
2731
2732 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
2733 game_state *state, int dir, game_ui *ui,
2734 float animtime, float flashtime)
2735 {
2736 int x, y;
2737 int mines, markers, bg;
2738
2739 if (flashtime) {
2740 int frame = (flashtime / FLASH_FRAME);
2741 if (frame % 2)
2742 bg = (ui->flash_is_death ? COL_BACKGROUND : COL_LOWLIGHT);
2743 else
2744 bg = (ui->flash_is_death ? COL_BANG : COL_HIGHLIGHT);
2745 } else
2746 bg = COL_BACKGROUND;
2747
2748 if (!ds->started) {
2749 int coords[6];
2750
2751 draw_rect(fe, 0, 0,
2752 TILE_SIZE * state->w + 2 * BORDER,
2753 TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
2754 draw_update(fe, 0, 0,
2755 TILE_SIZE * state->w + 2 * BORDER,
2756 TILE_SIZE * state->h + 2 * BORDER);
2757
2758 /*
2759 * Recessed area containing the whole puzzle.
2760 */
2761 coords[0] = COORD(state->w) + OUTER_HIGHLIGHT_WIDTH - 1;
2762 coords[1] = COORD(state->h) + OUTER_HIGHLIGHT_WIDTH - 1;
2763 coords[2] = COORD(state->w) + OUTER_HIGHLIGHT_WIDTH - 1;
2764 coords[3] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2765 coords[4] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2766 coords[5] = COORD(state->h) + OUTER_HIGHLIGHT_WIDTH - 1;
2767 draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT);
2768 draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT);
2769
2770 coords[1] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2771 coords[0] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2772 draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT);
2773 draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT);
2774
2775 ds->started = TRUE;
2776 }
2777
2778 /*
2779 * Now draw the tiles. Also in this loop, count up the number
2780 * of mines and mine markers.
2781 */
2782 mines = markers = 0;
2783 for (y = 0; y < ds->h; y++)
2784 for (x = 0; x < ds->w; x++) {
2785 int v = state->grid[y*ds->w+x];
2786
2787 if (v == -1)
2788 markers++;
2789 if (state->layout->mines && state->layout->mines[y*ds->w+x])
2790 mines++;
2791
2792 if ((v == -2 || v == -3) &&
2793 (abs(x-ui->hx) <= ui->hradius && abs(y-ui->hy) <= ui->hradius))
2794 v -= 20;
2795
2796 if (ds->grid[y*ds->w+x] != v || bg != COL_BACKGROUND) {
2797 draw_tile(fe, COORD(x), COORD(y), v, bg);
2798 ds->grid[y*ds->w+x] = (bg == COL_BACKGROUND ? v : -10);
2799 }
2800 }
2801
2802 if (!state->layout->mines)
2803 mines = state->layout->n;
2804
2805 /*
2806 * Update the status bar.
2807 */
2808 {
2809 char statusbar[512];
2810 if (state->dead) {
2811 sprintf(statusbar, "GAME OVER!");
2812 } else if (state->won) {
2813 if (state->used_solve)
2814 sprintf(statusbar, "Auto-solved.");
2815 else
2816 sprintf(statusbar, "COMPLETED!");
2817 } else {
2818 sprintf(statusbar, "Mines marked: %d / %d", markers, mines);
2819 }
2820 status_bar(fe, statusbar);
2821 }
2822 }
2823
2824 static float game_anim_length(game_state *oldstate, game_state *newstate,
2825 int dir, game_ui *ui)
2826 {
2827 return 0.0F;
2828 }
2829
2830 static float game_flash_length(game_state *oldstate, game_state *newstate,
2831 int dir, game_ui *ui)
2832 {
2833 if (oldstate->used_solve || newstate->used_solve)
2834 return 0.0F;
2835
2836 if (dir > 0 && !oldstate->dead && !oldstate->won) {
2837 if (newstate->dead) {
2838 ui->flash_is_death = TRUE;
2839 return 3 * FLASH_FRAME;
2840 }
2841 if (newstate->won) {
2842 ui->flash_is_death = FALSE;
2843 return 2 * FLASH_FRAME;
2844 }
2845 }
2846 return 0.0F;
2847 }
2848
2849 static int game_wants_statusbar(void)
2850 {
2851 return TRUE;
2852 }
2853
2854 static int game_timing_state(game_state *state)
2855 {
2856 if (state->dead || state->won || !state->layout->mines)
2857 return FALSE;
2858 return TRUE;
2859 }
2860
2861 #ifdef COMBINED
2862 #define thegame mines
2863 #endif
2864
2865 const struct game thegame = {
2866 "Mines", "games.mines",
2867 default_params,
2868 game_fetch_preset,
2869 decode_params,
2870 encode_params,
2871 free_params,
2872 dup_params,
2873 TRUE, game_configure, custom_params,
2874 validate_params,
2875 new_game_desc,
2876 game_free_aux_info,
2877 validate_desc,
2878 new_game,
2879 dup_game,
2880 free_game,
2881 TRUE, solve_game,
2882 TRUE, game_text_format,
2883 new_ui,
2884 free_ui,
2885 make_move,
2886 game_size,
2887 game_colours,
2888 game_new_drawstate,
2889 game_free_drawstate,
2890 game_redraw,
2891 game_anim_length,
2892 game_flash_length,
2893 game_wants_statusbar,
2894 TRUE, game_timing_state,
2895 };