Cleanups to Solo:
[sgt/puzzles] / solo.c
1 /*
2 * solo.c: the number-placing puzzle most popularly known as `Sudoku'.
3 *
4 * TODO:
5 *
6 * - reports from users are that `Trivial'-mode puzzles are still
7 * rather hard compared to newspapers' easy ones, so some better
8 * low-end difficulty grading would be nice
9 * + it's possible that really easy puzzles always have
10 * _several_ things you can do, so don't make you hunt too
11 * hard for the one deduction you can currently make
12 * + it's also possible that easy puzzles require fewer
13 * cross-eliminations: perhaps there's a higher incidence of
14 * things you can deduce by looking only at (say) rows,
15 * rather than things you have to check both rows and columns
16 * for
17 * + but really, what I need to do is find some really easy
18 * puzzles and _play_ them, to see what's actually easy about
19 * them
20 * + while I'm revamping this area, filling in the _last_
21 * number in a nearly-full row or column should certainly be
22 * permitted even at the lowest difficulty level.
23 * + also Owen noticed that `Basic' grids requiring numeric
24 * elimination are actually very hard, so I wonder if a
25 * difficulty gradation between that and positional-
26 * elimination-only might be in order
27 * + but it's not good to have _too_ many difficulty levels, or
28 * it'll take too long to randomly generate a given level.
29 *
30 * - it might still be nice to do some prioritisation on the
31 * removal of numbers from the grid
32 * + one possibility is to try to minimise the maximum number
33 * of filled squares in any block, which in particular ought
34 * to enforce never leaving a completely filled block in the
35 * puzzle as presented.
36 *
37 * - alternative interface modes
38 * + sudoku.com's Windows program has a palette of possible
39 * entries; you select a palette entry first and then click
40 * on the square you want it to go in, thus enabling
41 * mouse-only play. Useful for PDAs! I don't think it's
42 * actually incompatible with the current highlight-then-type
43 * approach: you _either_ highlight a palette entry and then
44 * click, _or_ you highlight a square and then type. At most
45 * one thing is ever highlighted at a time, so there's no way
46 * to confuse the two.
47 * + then again, I don't actually like sudoku.com's interface;
48 * it's too much like a paint package whereas I prefer to
49 * think of Solo as a text editor.
50 * + another PDA-friendly possibility is a drag interface:
51 * _drag_ numbers from the palette into the grid squares.
52 * Thought experiments suggest I'd prefer that to the
53 * sudoku.com approach, but I haven't actually tried it.
54 */
55
56 /*
57 * Solo puzzles need to be square overall (since each row and each
58 * column must contain one of every digit), but they need not be
59 * subdivided the same way internally. I am going to adopt a
60 * convention whereby I _always_ refer to `r' as the number of rows
61 * of _big_ divisions, and `c' as the number of columns of _big_
62 * divisions. Thus, a 2c by 3r puzzle looks something like this:
63 *
64 * 4 5 1 | 2 6 3
65 * 6 3 2 | 5 4 1
66 * ------+------ (Of course, you can't subdivide it the other way
67 * 1 4 5 | 6 3 2 or you'll get clashes; observe that the 4 in the
68 * 3 2 6 | 4 1 5 top left would conflict with the 4 in the second
69 * ------+------ box down on the left-hand side.)
70 * 5 1 4 | 3 2 6
71 * 2 6 3 | 1 5 4
72 *
73 * The need for a strong naming convention should now be clear:
74 * each small box is two rows of digits by three columns, while the
75 * overall puzzle has three rows of small boxes by two columns. So
76 * I will (hopefully) consistently use `r' to denote the number of
77 * rows _of small boxes_ (here 3), which is also the number of
78 * columns of digits in each small box; and `c' vice versa (here
79 * 2).
80 *
81 * I'm also going to choose arbitrarily to list c first wherever
82 * possible: the above is a 2x3 puzzle, not a 3x2 one.
83 */
84
85 #include <stdio.h>
86 #include <stdlib.h>
87 #include <string.h>
88 #include <assert.h>
89 #include <ctype.h>
90 #include <math.h>
91
92 #ifdef STANDALONE_SOLVER
93 #include <stdarg.h>
94 int solver_show_working, solver_recurse_depth;
95 #endif
96
97 #include "puzzles.h"
98
99 /*
100 * To save space, I store digits internally as unsigned char. This
101 * imposes a hard limit of 255 on the order of the puzzle. Since
102 * even a 5x5 takes unacceptably long to generate, I don't see this
103 * as a serious limitation unless something _really_ impressive
104 * happens in computing technology; but here's a typedef anyway for
105 * general good practice.
106 */
107 typedef unsigned char digit;
108 #define ORDER_MAX 255
109
110 #define PREFERRED_TILE_SIZE 32
111 #define TILE_SIZE (ds->tilesize)
112 #define BORDER (TILE_SIZE / 2)
113
114 #define FLASH_TIME 0.4F
115
116 enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF2, SYMM_REF2D, SYMM_REF4,
117 SYMM_REF4D, SYMM_REF8 };
118
119 enum { DIFF_BLOCK, DIFF_SIMPLE, DIFF_INTERSECT,
120 DIFF_SET, DIFF_RECURSIVE, DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE };
121
122 enum {
123 COL_BACKGROUND,
124 COL_GRID,
125 COL_CLUE,
126 COL_USER,
127 COL_HIGHLIGHT,
128 COL_ERROR,
129 COL_PENCIL,
130 NCOLOURS
131 };
132
133 struct game_params {
134 int c, r, symm, diff;
135 };
136
137 struct game_state {
138 int c, r;
139 digit *grid;
140 unsigned char *pencil; /* c*r*c*r elements */
141 unsigned char *immutable; /* marks which digits are clues */
142 int completed, cheated;
143 };
144
145 static game_params *default_params(void)
146 {
147 game_params *ret = snew(game_params);
148
149 ret->c = ret->r = 3;
150 ret->symm = SYMM_ROT2; /* a plausible default */
151 ret->diff = DIFF_BLOCK; /* so is this */
152
153 return ret;
154 }
155
156 static void free_params(game_params *params)
157 {
158 sfree(params);
159 }
160
161 static game_params *dup_params(game_params *params)
162 {
163 game_params *ret = snew(game_params);
164 *ret = *params; /* structure copy */
165 return ret;
166 }
167
168 static int game_fetch_preset(int i, char **name, game_params **params)
169 {
170 static struct {
171 char *title;
172 game_params params;
173 } presets[] = {
174 { "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK } },
175 { "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE } },
176 { "3x3 Trivial", { 3, 3, SYMM_ROT2, DIFF_BLOCK } },
177 { "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE } },
178 { "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT } },
179 { "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET } },
180 { "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE } },
181 #ifndef SLOW_SYSTEM
182 { "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE } },
183 { "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE } },
184 #endif
185 };
186
187 if (i < 0 || i >= lenof(presets))
188 return FALSE;
189
190 *name = dupstr(presets[i].title);
191 *params = dup_params(&presets[i].params);
192
193 return TRUE;
194 }
195
196 static void decode_params(game_params *ret, char const *string)
197 {
198 ret->c = ret->r = atoi(string);
199 while (*string && isdigit((unsigned char)*string)) string++;
200 if (*string == 'x') {
201 string++;
202 ret->r = atoi(string);
203 while (*string && isdigit((unsigned char)*string)) string++;
204 }
205 while (*string) {
206 if (*string == 'r' || *string == 'm' || *string == 'a') {
207 int sn, sc, sd;
208 sc = *string++;
209 if (*string == 'd') {
210 sd = TRUE;
211 string++;
212 } else {
213 sd = FALSE;
214 }
215 sn = atoi(string);
216 while (*string && isdigit((unsigned char)*string)) string++;
217 if (sc == 'm' && sn == 8)
218 ret->symm = SYMM_REF8;
219 if (sc == 'm' && sn == 4)
220 ret->symm = sd ? SYMM_REF4D : SYMM_REF4;
221 if (sc == 'm' && sn == 2)
222 ret->symm = sd ? SYMM_REF2D : SYMM_REF2;
223 if (sc == 'r' && sn == 4)
224 ret->symm = SYMM_ROT4;
225 if (sc == 'r' && sn == 2)
226 ret->symm = SYMM_ROT2;
227 if (sc == 'a')
228 ret->symm = SYMM_NONE;
229 } else if (*string == 'd') {
230 string++;
231 if (*string == 't') /* trivial */
232 string++, ret->diff = DIFF_BLOCK;
233 else if (*string == 'b') /* basic */
234 string++, ret->diff = DIFF_SIMPLE;
235 else if (*string == 'i') /* intermediate */
236 string++, ret->diff = DIFF_INTERSECT;
237 else if (*string == 'a') /* advanced */
238 string++, ret->diff = DIFF_SET;
239 else if (*string == 'u') /* unreasonable */
240 string++, ret->diff = DIFF_RECURSIVE;
241 } else
242 string++; /* eat unknown character */
243 }
244 }
245
246 static char *encode_params(game_params *params, int full)
247 {
248 char str[80];
249
250 sprintf(str, "%dx%d", params->c, params->r);
251 if (full) {
252 switch (params->symm) {
253 case SYMM_REF8: strcat(str, "m8"); break;
254 case SYMM_REF4: strcat(str, "m4"); break;
255 case SYMM_REF4D: strcat(str, "md4"); break;
256 case SYMM_REF2: strcat(str, "m2"); break;
257 case SYMM_REF2D: strcat(str, "md2"); break;
258 case SYMM_ROT4: strcat(str, "r4"); break;
259 /* case SYMM_ROT2: strcat(str, "r2"); break; [default] */
260 case SYMM_NONE: strcat(str, "a"); break;
261 }
262 switch (params->diff) {
263 /* case DIFF_BLOCK: strcat(str, "dt"); break; [default] */
264 case DIFF_SIMPLE: strcat(str, "db"); break;
265 case DIFF_INTERSECT: strcat(str, "di"); break;
266 case DIFF_SET: strcat(str, "da"); break;
267 case DIFF_RECURSIVE: strcat(str, "du"); break;
268 }
269 }
270 return dupstr(str);
271 }
272
273 static config_item *game_configure(game_params *params)
274 {
275 config_item *ret;
276 char buf[80];
277
278 ret = snewn(5, config_item);
279
280 ret[0].name = "Columns of sub-blocks";
281 ret[0].type = C_STRING;
282 sprintf(buf, "%d", params->c);
283 ret[0].sval = dupstr(buf);
284 ret[0].ival = 0;
285
286 ret[1].name = "Rows of sub-blocks";
287 ret[1].type = C_STRING;
288 sprintf(buf, "%d", params->r);
289 ret[1].sval = dupstr(buf);
290 ret[1].ival = 0;
291
292 ret[2].name = "Symmetry";
293 ret[2].type = C_CHOICES;
294 ret[2].sval = ":None:2-way rotation:4-way rotation:2-way mirror:"
295 "2-way diagonal mirror:4-way mirror:4-way diagonal mirror:"
296 "8-way mirror";
297 ret[2].ival = params->symm;
298
299 ret[3].name = "Difficulty";
300 ret[3].type = C_CHOICES;
301 ret[3].sval = ":Trivial:Basic:Intermediate:Advanced:Unreasonable";
302 ret[3].ival = params->diff;
303
304 ret[4].name = NULL;
305 ret[4].type = C_END;
306 ret[4].sval = NULL;
307 ret[4].ival = 0;
308
309 return ret;
310 }
311
312 static game_params *custom_params(config_item *cfg)
313 {
314 game_params *ret = snew(game_params);
315
316 ret->c = atoi(cfg[0].sval);
317 ret->r = atoi(cfg[1].sval);
318 ret->symm = cfg[2].ival;
319 ret->diff = cfg[3].ival;
320
321 return ret;
322 }
323
324 static char *validate_params(game_params *params, int full)
325 {
326 if (params->c < 2 || params->r < 2)
327 return "Both dimensions must be at least 2";
328 if (params->c > ORDER_MAX || params->r > ORDER_MAX)
329 return "Dimensions greater than "STR(ORDER_MAX)" are not supported";
330 return NULL;
331 }
332
333 /* ----------------------------------------------------------------------
334 * Solver.
335 *
336 * This solver is used for several purposes:
337 * + to generate filled grids as the basis for new puzzles (by
338 * supplying no clue squares at all)
339 * + to check solubility of a grid as we gradually remove numbers
340 * from it
341 * + to solve an externally generated puzzle when the user selects
342 * `Solve'.
343 *
344 * It supports a variety of specific modes of reasoning. By
345 * enabling or disabling subsets of these modes we can arrange a
346 * range of difficulty levels.
347 */
348
349 /*
350 * Modes of reasoning currently supported:
351 *
352 * - Positional elimination: a number must go in a particular
353 * square because all the other empty squares in a given
354 * row/col/blk are ruled out.
355 *
356 * - Numeric elimination: a square must have a particular number
357 * in because all the other numbers that could go in it are
358 * ruled out.
359 *
360 * - Intersectional analysis: given two domains which overlap
361 * (hence one must be a block, and the other can be a row or
362 * col), if the possible locations for a particular number in
363 * one of the domains can be narrowed down to the overlap, then
364 * that number can be ruled out everywhere but the overlap in
365 * the other domain too.
366 *
367 * - Set elimination: if there is a subset of the empty squares
368 * within a domain such that the union of the possible numbers
369 * in that subset has the same size as the subset itself, then
370 * those numbers can be ruled out everywhere else in the domain.
371 * (For example, if there are five empty squares and the
372 * possible numbers in each are 12, 23, 13, 134 and 1345, then
373 * the first three empty squares form such a subset: the numbers
374 * 1, 2 and 3 _must_ be in those three squares in some
375 * permutation, and hence we can deduce none of them can be in
376 * the fourth or fifth squares.)
377 * + You can also see this the other way round, concentrating
378 * on numbers rather than squares: if there is a subset of
379 * the unplaced numbers within a domain such that the union
380 * of all their possible positions has the same size as the
381 * subset itself, then all other numbers can be ruled out for
382 * those positions. However, it turns out that this is
383 * exactly equivalent to the first formulation at all times:
384 * there is a 1-1 correspondence between suitable subsets of
385 * the unplaced numbers and suitable subsets of the unfilled
386 * places, found by taking the _complement_ of the union of
387 * the numbers' possible positions (or the spaces' possible
388 * contents).
389 *
390 * - Recursion. If all else fails, we pick one of the currently
391 * most constrained empty squares and take a random guess at its
392 * contents, then continue solving on that basis and see if we
393 * get any further.
394 */
395
396 /*
397 * Within this solver, I'm going to transform all y-coordinates by
398 * inverting the significance of the block number and the position
399 * within the block. That is, we will start with the top row of
400 * each block in order, then the second row of each block in order,
401 * etc.
402 *
403 * This transformation has the enormous advantage that it means
404 * every row, column _and_ block is described by an arithmetic
405 * progression of coordinates within the cubic array, so that I can
406 * use the same very simple function to do blockwise, row-wise and
407 * column-wise elimination.
408 */
409 #define YTRANS(y) (((y)%c)*r+(y)/c)
410 #define YUNTRANS(y) (((y)%r)*c+(y)/r)
411
412 struct solver_usage {
413 int c, r, cr;
414 /*
415 * We set up a cubic array, indexed by x, y and digit; each
416 * element of this array is TRUE or FALSE according to whether
417 * or not that digit _could_ in principle go in that position.
418 *
419 * The way to index this array is cube[(x*cr+y)*cr+n-1].
420 * y-coordinates in here are transformed.
421 */
422 unsigned char *cube;
423 /*
424 * This is the grid in which we write down our final
425 * deductions. y-coordinates in here are _not_ transformed.
426 */
427 digit *grid;
428 /*
429 * Now we keep track, at a slightly higher level, of what we
430 * have yet to work out, to prevent doing the same deduction
431 * many times.
432 */
433 /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
434 unsigned char *row;
435 /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
436 unsigned char *col;
437 /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
438 unsigned char *blk;
439 };
440 #define cubepos(x,y,n) (((x)*usage->cr+(y))*usage->cr+(n)-1)
441 #define cube(x,y,n) (usage->cube[cubepos(x,y,n)])
442
443 /*
444 * Function called when we are certain that a particular square has
445 * a particular number in it. The y-coordinate passed in here is
446 * transformed.
447 */
448 static void solver_place(struct solver_usage *usage, int x, int y, int n)
449 {
450 int c = usage->c, r = usage->r, cr = usage->cr;
451 int i, j, bx, by;
452
453 assert(cube(x,y,n));
454
455 /*
456 * Rule out all other numbers in this square.
457 */
458 for (i = 1; i <= cr; i++)
459 if (i != n)
460 cube(x,y,i) = FALSE;
461
462 /*
463 * Rule out this number in all other positions in the row.
464 */
465 for (i = 0; i < cr; i++)
466 if (i != y)
467 cube(x,i,n) = FALSE;
468
469 /*
470 * Rule out this number in all other positions in the column.
471 */
472 for (i = 0; i < cr; i++)
473 if (i != x)
474 cube(i,y,n) = FALSE;
475
476 /*
477 * Rule out this number in all other positions in the block.
478 */
479 bx = (x/r)*r;
480 by = y % r;
481 for (i = 0; i < r; i++)
482 for (j = 0; j < c; j++)
483 if (bx+i != x || by+j*r != y)
484 cube(bx+i,by+j*r,n) = FALSE;
485
486 /*
487 * Enter the number in the result grid.
488 */
489 usage->grid[YUNTRANS(y)*cr+x] = n;
490
491 /*
492 * Cross out this number from the list of numbers left to place
493 * in its row, its column and its block.
494 */
495 usage->row[y*cr+n-1] = usage->col[x*cr+n-1] =
496 usage->blk[((y%r)*c+(x/r))*cr+n-1] = TRUE;
497 }
498
499 static int solver_elim(struct solver_usage *usage, int start, int step
500 #ifdef STANDALONE_SOLVER
501 , char *fmt, ...
502 #endif
503 )
504 {
505 int c = usage->c, r = usage->r, cr = c*r;
506 int fpos, m, i;
507
508 /*
509 * Count the number of set bits within this section of the
510 * cube.
511 */
512 m = 0;
513 fpos = -1;
514 for (i = 0; i < cr; i++)
515 if (usage->cube[start+i*step]) {
516 fpos = start+i*step;
517 m++;
518 }
519
520 if (m == 1) {
521 int x, y, n;
522 assert(fpos >= 0);
523
524 n = 1 + fpos % cr;
525 y = fpos / cr;
526 x = y / cr;
527 y %= cr;
528
529 if (!usage->grid[YUNTRANS(y)*cr+x]) {
530 #ifdef STANDALONE_SOLVER
531 if (solver_show_working) {
532 va_list ap;
533 printf("%*s", solver_recurse_depth*4, "");
534 va_start(ap, fmt);
535 vprintf(fmt, ap);
536 va_end(ap);
537 printf(":\n%*s placing %d at (%d,%d)\n",
538 solver_recurse_depth*4, "", n, 1+x, 1+YUNTRANS(y));
539 }
540 #endif
541 solver_place(usage, x, y, n);
542 return +1;
543 }
544 } else if (m == 0) {
545 #ifdef STANDALONE_SOLVER
546 if (solver_show_working) {
547 va_list ap;
548 printf("%*s", solver_recurse_depth*4, "");
549 va_start(ap, fmt);
550 vprintf(fmt, ap);
551 va_end(ap);
552 printf(":\n%*s no possibilities available\n",
553 solver_recurse_depth*4, "");
554 }
555 #endif
556 return -1;
557 }
558
559 return 0;
560 }
561
562 static int solver_intersect(struct solver_usage *usage,
563 int start1, int step1, int start2, int step2
564 #ifdef STANDALONE_SOLVER
565 , char *fmt, ...
566 #endif
567 )
568 {
569 int c = usage->c, r = usage->r, cr = c*r;
570 int ret, i;
571
572 /*
573 * Loop over the first domain and see if there's any set bit
574 * not also in the second.
575 */
576 for (i = 0; i < cr; i++) {
577 int p = start1+i*step1;
578 if (usage->cube[p] &&
579 !(p >= start2 && p < start2+cr*step2 &&
580 (p - start2) % step2 == 0))
581 return 0; /* there is, so we can't deduce */
582 }
583
584 /*
585 * We have determined that all set bits in the first domain are
586 * within its overlap with the second. So loop over the second
587 * domain and remove all set bits that aren't also in that
588 * overlap; return +1 iff we actually _did_ anything.
589 */
590 ret = 0;
591 for (i = 0; i < cr; i++) {
592 int p = start2+i*step2;
593 if (usage->cube[p] &&
594 !(p >= start1 && p < start1+cr*step1 && (p - start1) % step1 == 0))
595 {
596 #ifdef STANDALONE_SOLVER
597 if (solver_show_working) {
598 int px, py, pn;
599
600 if (!ret) {
601 va_list ap;
602 printf("%*s", solver_recurse_depth*4, "");
603 va_start(ap, fmt);
604 vprintf(fmt, ap);
605 va_end(ap);
606 printf(":\n");
607 }
608
609 pn = 1 + p % cr;
610 py = p / cr;
611 px = py / cr;
612 py %= cr;
613
614 printf("%*s ruling out %d at (%d,%d)\n",
615 solver_recurse_depth*4, "", pn, 1+px, 1+YUNTRANS(py));
616 }
617 #endif
618 ret = +1; /* we did something */
619 usage->cube[p] = 0;
620 }
621 }
622
623 return ret;
624 }
625
626 struct solver_scratch {
627 unsigned char *grid, *rowidx, *colidx, *set;
628 };
629
630 static int solver_set(struct solver_usage *usage,
631 struct solver_scratch *scratch,
632 int start, int step1, int step2
633 #ifdef STANDALONE_SOLVER
634 , char *fmt, ...
635 #endif
636 )
637 {
638 int c = usage->c, r = usage->r, cr = c*r;
639 int i, j, n, count;
640 unsigned char *grid = scratch->grid;
641 unsigned char *rowidx = scratch->rowidx;
642 unsigned char *colidx = scratch->colidx;
643 unsigned char *set = scratch->set;
644
645 /*
646 * We are passed a cr-by-cr matrix of booleans. Our first job
647 * is to winnow it by finding any definite placements - i.e.
648 * any row with a solitary 1 - and discarding that row and the
649 * column containing the 1.
650 */
651 memset(rowidx, TRUE, cr);
652 memset(colidx, TRUE, cr);
653 for (i = 0; i < cr; i++) {
654 int count = 0, first = -1;
655 for (j = 0; j < cr; j++)
656 if (usage->cube[start+i*step1+j*step2])
657 first = j, count++;
658
659 /*
660 * If count == 0, then there's a row with no 1s at all and
661 * the puzzle is internally inconsistent. However, we ought
662 * to have caught this already during the simpler reasoning
663 * methods, so we can safely fail an assertion if we reach
664 * this point here.
665 */
666 assert(count > 0);
667 if (count == 1)
668 rowidx[i] = colidx[first] = FALSE;
669 }
670
671 /*
672 * Convert each of rowidx/colidx from a list of 0s and 1s to a
673 * list of the indices of the 1s.
674 */
675 for (i = j = 0; i < cr; i++)
676 if (rowidx[i])
677 rowidx[j++] = i;
678 n = j;
679 for (i = j = 0; i < cr; i++)
680 if (colidx[i])
681 colidx[j++] = i;
682 assert(n == j);
683
684 /*
685 * And create the smaller matrix.
686 */
687 for (i = 0; i < n; i++)
688 for (j = 0; j < n; j++)
689 grid[i*cr+j] = usage->cube[start+rowidx[i]*step1+colidx[j]*step2];
690
691 /*
692 * Having done that, we now have a matrix in which every row
693 * has at least two 1s in. Now we search to see if we can find
694 * a rectangle of zeroes (in the set-theoretic sense of
695 * `rectangle', i.e. a subset of rows crossed with a subset of
696 * columns) whose width and height add up to n.
697 */
698
699 memset(set, 0, n);
700 count = 0;
701 while (1) {
702 /*
703 * We have a candidate set. If its size is <=1 or >=n-1
704 * then we move on immediately.
705 */
706 if (count > 1 && count < n-1) {
707 /*
708 * The number of rows we need is n-count. See if we can
709 * find that many rows which each have a zero in all
710 * the positions listed in `set'.
711 */
712 int rows = 0;
713 for (i = 0; i < n; i++) {
714 int ok = TRUE;
715 for (j = 0; j < n; j++)
716 if (set[j] && grid[i*cr+j]) {
717 ok = FALSE;
718 break;
719 }
720 if (ok)
721 rows++;
722 }
723
724 /*
725 * We expect never to be able to get _more_ than
726 * n-count suitable rows: this would imply that (for
727 * example) there are four numbers which between them
728 * have at most three possible positions, and hence it
729 * indicates a faulty deduction before this point or
730 * even a bogus clue.
731 */
732 if (rows > n - count) {
733 #ifdef STANDALONE_SOLVER
734 if (solver_show_working) {
735 va_list ap;
736 printf("%*s", solver_recurse_depth*4,
737 "");
738 va_start(ap, fmt);
739 vprintf(fmt, ap);
740 va_end(ap);
741 printf(":\n%*s contradiction reached\n",
742 solver_recurse_depth*4, "");
743 }
744 #endif
745 return -1;
746 }
747
748 if (rows >= n - count) {
749 int progress = FALSE;
750
751 /*
752 * We've got one! Now, for each row which _doesn't_
753 * satisfy the criterion, eliminate all its set
754 * bits in the positions _not_ listed in `set'.
755 * Return +1 (meaning progress has been made) if we
756 * successfully eliminated anything at all.
757 *
758 * This involves referring back through
759 * rowidx/colidx in order to work out which actual
760 * positions in the cube to meddle with.
761 */
762 for (i = 0; i < n; i++) {
763 int ok = TRUE;
764 for (j = 0; j < n; j++)
765 if (set[j] && grid[i*cr+j]) {
766 ok = FALSE;
767 break;
768 }
769 if (!ok) {
770 for (j = 0; j < n; j++)
771 if (!set[j] && grid[i*cr+j]) {
772 int fpos = (start+rowidx[i]*step1+
773 colidx[j]*step2);
774 #ifdef STANDALONE_SOLVER
775 if (solver_show_working) {
776 int px, py, pn;
777
778 if (!progress) {
779 va_list ap;
780 printf("%*s", solver_recurse_depth*4,
781 "");
782 va_start(ap, fmt);
783 vprintf(fmt, ap);
784 va_end(ap);
785 printf(":\n");
786 }
787
788 pn = 1 + fpos % cr;
789 py = fpos / cr;
790 px = py / cr;
791 py %= cr;
792
793 printf("%*s ruling out %d at (%d,%d)\n",
794 solver_recurse_depth*4, "",
795 pn, 1+px, 1+YUNTRANS(py));
796 }
797 #endif
798 progress = TRUE;
799 usage->cube[fpos] = FALSE;
800 }
801 }
802 }
803
804 if (progress) {
805 return +1;
806 }
807 }
808 }
809
810 /*
811 * Binary increment: change the rightmost 0 to a 1, and
812 * change all 1s to the right of it to 0s.
813 */
814 i = n;
815 while (i > 0 && set[i-1])
816 set[--i] = 0, count--;
817 if (i > 0)
818 set[--i] = 1, count++;
819 else
820 break; /* done */
821 }
822
823 return 0;
824 }
825
826 static struct solver_scratch *solver_new_scratch(struct solver_usage *usage)
827 {
828 struct solver_scratch *scratch = snew(struct solver_scratch);
829 int cr = usage->cr;
830 scratch->grid = snewn(cr*cr, unsigned char);
831 scratch->rowidx = snewn(cr, unsigned char);
832 scratch->colidx = snewn(cr, unsigned char);
833 scratch->set = snewn(cr, unsigned char);
834 return scratch;
835 }
836
837 static void solver_free_scratch(struct solver_scratch *scratch)
838 {
839 sfree(scratch->set);
840 sfree(scratch->colidx);
841 sfree(scratch->rowidx);
842 sfree(scratch->grid);
843 sfree(scratch);
844 }
845
846 static int solver(int c, int r, digit *grid, int maxdiff)
847 {
848 struct solver_usage *usage;
849 struct solver_scratch *scratch;
850 int cr = c*r;
851 int x, y, n, ret;
852 int diff = DIFF_BLOCK;
853
854 /*
855 * Set up a usage structure as a clean slate (everything
856 * possible).
857 */
858 usage = snew(struct solver_usage);
859 usage->c = c;
860 usage->r = r;
861 usage->cr = cr;
862 usage->cube = snewn(cr*cr*cr, unsigned char);
863 usage->grid = grid; /* write straight back to the input */
864 memset(usage->cube, TRUE, cr*cr*cr);
865
866 usage->row = snewn(cr * cr, unsigned char);
867 usage->col = snewn(cr * cr, unsigned char);
868 usage->blk = snewn(cr * cr, unsigned char);
869 memset(usage->row, FALSE, cr * cr);
870 memset(usage->col, FALSE, cr * cr);
871 memset(usage->blk, FALSE, cr * cr);
872
873 scratch = solver_new_scratch(usage);
874
875 /*
876 * Place all the clue numbers we are given.
877 */
878 for (x = 0; x < cr; x++)
879 for (y = 0; y < cr; y++)
880 if (grid[y*cr+x])
881 solver_place(usage, x, YTRANS(y), grid[y*cr+x]);
882
883 /*
884 * Now loop over the grid repeatedly trying all permitted modes
885 * of reasoning. The loop terminates if we complete an
886 * iteration without making any progress; we then return
887 * failure or success depending on whether the grid is full or
888 * not.
889 */
890 while (1) {
891 /*
892 * I'd like to write `continue;' inside each of the
893 * following loops, so that the solver returns here after
894 * making some progress. However, I can't specify that I
895 * want to continue an outer loop rather than the innermost
896 * one, so I'm apologetically resorting to a goto.
897 */
898 cont:
899
900 /*
901 * Blockwise positional elimination.
902 */
903 for (x = 0; x < cr; x += r)
904 for (y = 0; y < r; y++)
905 for (n = 1; n <= cr; n++)
906 if (!usage->blk[(y*c+(x/r))*cr+n-1]) {
907 ret = solver_elim(usage, cubepos(x,y,n), r*cr
908 #ifdef STANDALONE_SOLVER
909 , "positional elimination,"
910 " %d in block (%d,%d)", n, 1+x/r, 1+y
911 #endif
912 );
913 if (ret < 0) {
914 diff = DIFF_IMPOSSIBLE;
915 goto got_result;
916 } else if (ret > 0) {
917 diff = max(diff, DIFF_BLOCK);
918 goto cont;
919 }
920 }
921
922 if (maxdiff <= DIFF_BLOCK)
923 break;
924
925 /*
926 * Row-wise positional elimination.
927 */
928 for (y = 0; y < cr; y++)
929 for (n = 1; n <= cr; n++)
930 if (!usage->row[y*cr+n-1]) {
931 ret = solver_elim(usage, cubepos(0,y,n), cr*cr
932 #ifdef STANDALONE_SOLVER
933 , "positional elimination,"
934 " %d in row %d", n, 1+YUNTRANS(y)
935 #endif
936 );
937 if (ret < 0) {
938 diff = DIFF_IMPOSSIBLE;
939 goto got_result;
940 } else if (ret > 0) {
941 diff = max(diff, DIFF_SIMPLE);
942 goto cont;
943 }
944 }
945 /*
946 * Column-wise positional elimination.
947 */
948 for (x = 0; x < cr; x++)
949 for (n = 1; n <= cr; n++)
950 if (!usage->col[x*cr+n-1]) {
951 ret = solver_elim(usage, cubepos(x,0,n), cr
952 #ifdef STANDALONE_SOLVER
953 , "positional elimination,"
954 " %d in column %d", n, 1+x
955 #endif
956 );
957 if (ret < 0) {
958 diff = DIFF_IMPOSSIBLE;
959 goto got_result;
960 } else if (ret > 0) {
961 diff = max(diff, DIFF_SIMPLE);
962 goto cont;
963 }
964 }
965
966 /*
967 * Numeric elimination.
968 */
969 for (x = 0; x < cr; x++)
970 for (y = 0; y < cr; y++)
971 if (!usage->grid[YUNTRANS(y)*cr+x]) {
972 ret = solver_elim(usage, cubepos(x,y,1), 1
973 #ifdef STANDALONE_SOLVER
974 , "numeric elimination at (%d,%d)", 1+x,
975 1+YUNTRANS(y)
976 #endif
977 );
978 if (ret < 0) {
979 diff = DIFF_IMPOSSIBLE;
980 goto got_result;
981 } else if (ret > 0) {
982 diff = max(diff, DIFF_SIMPLE);
983 goto cont;
984 }
985 }
986
987 if (maxdiff <= DIFF_SIMPLE)
988 break;
989
990 /*
991 * Intersectional analysis, rows vs blocks.
992 */
993 for (y = 0; y < cr; y++)
994 for (x = 0; x < cr; x += r)
995 for (n = 1; n <= cr; n++)
996 /*
997 * solver_intersect() never returns -1.
998 */
999 if (!usage->row[y*cr+n-1] &&
1000 !usage->blk[((y%r)*c+(x/r))*cr+n-1] &&
1001 (solver_intersect(usage, cubepos(0,y,n), cr*cr,
1002 cubepos(x,y%r,n), r*cr
1003 #ifdef STANDALONE_SOLVER
1004 , "intersectional analysis,"
1005 " %d in row %d vs block (%d,%d)",
1006 n, 1+YUNTRANS(y), 1+x/r, 1+y%r
1007 #endif
1008 ) ||
1009 solver_intersect(usage, cubepos(x,y%r,n), r*cr,
1010 cubepos(0,y,n), cr*cr
1011 #ifdef STANDALONE_SOLVER
1012 , "intersectional analysis,"
1013 " %d in block (%d,%d) vs row %d",
1014 n, 1+x/r, 1+y%r, 1+YUNTRANS(y)
1015 #endif
1016 ))) {
1017 diff = max(diff, DIFF_INTERSECT);
1018 goto cont;
1019 }
1020
1021 /*
1022 * Intersectional analysis, columns vs blocks.
1023 */
1024 for (x = 0; x < cr; x++)
1025 for (y = 0; y < r; y++)
1026 for (n = 1; n <= cr; n++)
1027 if (!usage->col[x*cr+n-1] &&
1028 !usage->blk[(y*c+(x/r))*cr+n-1] &&
1029 (solver_intersect(usage, cubepos(x,0,n), cr,
1030 cubepos((x/r)*r,y,n), r*cr
1031 #ifdef STANDALONE_SOLVER
1032 , "intersectional analysis,"
1033 " %d in column %d vs block (%d,%d)",
1034 n, 1+x, 1+x/r, 1+y
1035 #endif
1036 ) ||
1037 solver_intersect(usage, cubepos((x/r)*r,y,n), r*cr,
1038 cubepos(x,0,n), cr
1039 #ifdef STANDALONE_SOLVER
1040 , "intersectional analysis,"
1041 " %d in block (%d,%d) vs column %d",
1042 n, 1+x/r, 1+y, 1+x
1043 #endif
1044 ))) {
1045 diff = max(diff, DIFF_INTERSECT);
1046 goto cont;
1047 }
1048
1049 if (maxdiff <= DIFF_INTERSECT)
1050 break;
1051
1052 /*
1053 * Blockwise set elimination.
1054 */
1055 for (x = 0; x < cr; x += r)
1056 for (y = 0; y < r; y++) {
1057 ret = solver_set(usage, scratch, cubepos(x,y,1), r*cr, 1
1058 #ifdef STANDALONE_SOLVER
1059 , "set elimination, block (%d,%d)", 1+x/r, 1+y
1060 #endif
1061 );
1062 if (ret < 0) {
1063 diff = DIFF_IMPOSSIBLE;
1064 goto got_result;
1065 } else if (ret > 0) {
1066 diff = max(diff, DIFF_SET);
1067 goto cont;
1068 }
1069 }
1070
1071 /*
1072 * Row-wise set elimination.
1073 */
1074 for (y = 0; y < cr; y++) {
1075 ret = solver_set(usage, scratch, cubepos(0,y,1), cr*cr, 1
1076 #ifdef STANDALONE_SOLVER
1077 , "set elimination, row %d", 1+YUNTRANS(y)
1078 #endif
1079 );
1080 if (ret < 0) {
1081 diff = DIFF_IMPOSSIBLE;
1082 goto got_result;
1083 } else if (ret > 0) {
1084 diff = max(diff, DIFF_SET);
1085 goto cont;
1086 }
1087 }
1088
1089 /*
1090 * Column-wise set elimination.
1091 */
1092 for (x = 0; x < cr; x++) {
1093 ret = solver_set(usage, scratch, cubepos(x,0,1), cr, 1
1094 #ifdef STANDALONE_SOLVER
1095 , "set elimination, column %d", 1+x
1096 #endif
1097 );
1098 if (ret < 0) {
1099 diff = DIFF_IMPOSSIBLE;
1100 goto got_result;
1101 } else if (ret > 0) {
1102 diff = max(diff, DIFF_SET);
1103 goto cont;
1104 }
1105 }
1106
1107 /*
1108 * If we reach here, we have made no deductions in this
1109 * iteration, so the algorithm terminates.
1110 */
1111 break;
1112 }
1113
1114 /*
1115 * Last chance: if we haven't fully solved the puzzle yet, try
1116 * recursing based on guesses for a particular square. We pick
1117 * one of the most constrained empty squares we can find, which
1118 * has the effect of pruning the search tree as much as
1119 * possible.
1120 */
1121 if (maxdiff >= DIFF_RECURSIVE) {
1122 int best, bestcount;
1123
1124 best = -1;
1125 bestcount = cr+1;
1126
1127 for (y = 0; y < cr; y++)
1128 for (x = 0; x < cr; x++)
1129 if (!grid[y*cr+x]) {
1130 int count;
1131
1132 /*
1133 * An unfilled square. Count the number of
1134 * possible digits in it.
1135 */
1136 count = 0;
1137 for (n = 1; n <= cr; n++)
1138 if (cube(x,YTRANS(y),n))
1139 count++;
1140
1141 /*
1142 * We should have found any impossibilities
1143 * already, so this can safely be an assert.
1144 */
1145 assert(count > 1);
1146
1147 if (count < bestcount) {
1148 bestcount = count;
1149 best = y*cr+x;
1150 }
1151 }
1152
1153 if (best != -1) {
1154 int i, j;
1155 digit *list, *ingrid, *outgrid;
1156
1157 diff = DIFF_IMPOSSIBLE; /* no solution found yet */
1158
1159 /*
1160 * Attempt recursion.
1161 */
1162 y = best / cr;
1163 x = best % cr;
1164
1165 list = snewn(cr, digit);
1166 ingrid = snewn(cr * cr, digit);
1167 outgrid = snewn(cr * cr, digit);
1168 memcpy(ingrid, grid, cr * cr);
1169
1170 /* Make a list of the possible digits. */
1171 for (j = 0, n = 1; n <= cr; n++)
1172 if (cube(x,YTRANS(y),n))
1173 list[j++] = n;
1174
1175 #ifdef STANDALONE_SOLVER
1176 if (solver_show_working) {
1177 char *sep = "";
1178 printf("%*srecursing on (%d,%d) [",
1179 solver_recurse_depth*4, "", x, y);
1180 for (i = 0; i < j; i++) {
1181 printf("%s%d", sep, list[i]);
1182 sep = " or ";
1183 }
1184 printf("]\n");
1185 }
1186 #endif
1187
1188 /*
1189 * And step along the list, recursing back into the
1190 * main solver at every stage.
1191 */
1192 for (i = 0; i < j; i++) {
1193 int ret;
1194
1195 memcpy(outgrid, ingrid, cr * cr);
1196 outgrid[y*cr+x] = list[i];
1197
1198 #ifdef STANDALONE_SOLVER
1199 if (solver_show_working)
1200 printf("%*sguessing %d at (%d,%d)\n",
1201 solver_recurse_depth*4, "", list[i], x, y);
1202 solver_recurse_depth++;
1203 #endif
1204
1205 ret = solver(c, r, outgrid, maxdiff);
1206
1207 #ifdef STANDALONE_SOLVER
1208 solver_recurse_depth--;
1209 if (solver_show_working) {
1210 printf("%*sretracting %d at (%d,%d)\n",
1211 solver_recurse_depth*4, "", list[i], x, y);
1212 }
1213 #endif
1214
1215 /*
1216 * If we have our first solution, copy it into the
1217 * grid we will return.
1218 */
1219 if (diff == DIFF_IMPOSSIBLE && ret != DIFF_IMPOSSIBLE)
1220 memcpy(grid, outgrid, cr*cr);
1221
1222 if (ret == DIFF_AMBIGUOUS)
1223 diff = DIFF_AMBIGUOUS;
1224 else if (ret == DIFF_IMPOSSIBLE)
1225 /* do not change our return value */;
1226 else {
1227 /* the recursion turned up exactly one solution */
1228 if (diff == DIFF_IMPOSSIBLE)
1229 diff = DIFF_RECURSIVE;
1230 else
1231 diff = DIFF_AMBIGUOUS;
1232 }
1233
1234 /*
1235 * As soon as we've found more than one solution,
1236 * give up immediately.
1237 */
1238 if (diff == DIFF_AMBIGUOUS)
1239 break;
1240 }
1241
1242 sfree(outgrid);
1243 sfree(ingrid);
1244 sfree(list);
1245 }
1246
1247 } else {
1248 /*
1249 * We're forbidden to use recursion, so we just see whether
1250 * our grid is fully solved, and return DIFF_IMPOSSIBLE
1251 * otherwise.
1252 */
1253 for (y = 0; y < cr; y++)
1254 for (x = 0; x < cr; x++)
1255 if (!grid[y*cr+x])
1256 diff = DIFF_IMPOSSIBLE;
1257 }
1258
1259 got_result:;
1260
1261 #ifdef STANDALONE_SOLVER
1262 if (solver_show_working)
1263 printf("%*s%s found\n",
1264 solver_recurse_depth*4, "",
1265 diff == DIFF_IMPOSSIBLE ? "no solution" :
1266 diff == DIFF_AMBIGUOUS ? "multiple solutions" :
1267 "one solution");
1268 #endif
1269
1270 sfree(usage->cube);
1271 sfree(usage->row);
1272 sfree(usage->col);
1273 sfree(usage->blk);
1274 sfree(usage);
1275
1276 solver_free_scratch(scratch);
1277
1278 return diff;
1279 }
1280
1281 /* ----------------------------------------------------------------------
1282 * End of solver code.
1283 */
1284
1285 /* ----------------------------------------------------------------------
1286 * Solo filled-grid generator.
1287 *
1288 * This grid generator works by essentially trying to solve a grid
1289 * starting from no clues, and not worrying that there's more than
1290 * one possible solution. Unfortunately, it isn't computationally
1291 * feasible to do this by calling the above solver with an empty
1292 * grid, because that one needs to allocate a lot of scratch space
1293 * at every recursion level. Instead, I have a much simpler
1294 * algorithm which I shamelessly copied from a Python solver
1295 * written by Andrew Wilkinson (which is GPLed, but I've reused
1296 * only ideas and no code). It mostly just does the obvious
1297 * recursive thing: pick an empty square, put one of the possible
1298 * digits in it, recurse until all squares are filled, backtrack
1299 * and change some choices if necessary.
1300 *
1301 * The clever bit is that every time it chooses which square to
1302 * fill in next, it does so by counting the number of _possible_
1303 * numbers that can go in each square, and it prioritises so that
1304 * it picks a square with the _lowest_ number of possibilities. The
1305 * idea is that filling in lots of the obvious bits (particularly
1306 * any squares with only one possibility) will cut down on the list
1307 * of possibilities for other squares and hence reduce the enormous
1308 * search space as much as possible as early as possible.
1309 */
1310
1311 /*
1312 * Internal data structure used in gridgen to keep track of
1313 * progress.
1314 */
1315 struct gridgen_coord { int x, y, r; };
1316 struct gridgen_usage {
1317 int c, r, cr; /* cr == c*r */
1318 /* grid is a copy of the input grid, modified as we go along */
1319 digit *grid;
1320 /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
1321 unsigned char *row;
1322 /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
1323 unsigned char *col;
1324 /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
1325 unsigned char *blk;
1326 /* This lists all the empty spaces remaining in the grid. */
1327 struct gridgen_coord *spaces;
1328 int nspaces;
1329 /* If we need randomisation in the solve, this is our random state. */
1330 random_state *rs;
1331 };
1332
1333 /*
1334 * The real recursive step in the generating function.
1335 */
1336 static int gridgen_real(struct gridgen_usage *usage, digit *grid)
1337 {
1338 int c = usage->c, r = usage->r, cr = usage->cr;
1339 int i, j, n, sx, sy, bestm, bestr, ret;
1340 int *digits;
1341
1342 /*
1343 * Firstly, check for completion! If there are no spaces left
1344 * in the grid, we have a solution.
1345 */
1346 if (usage->nspaces == 0) {
1347 memcpy(grid, usage->grid, cr * cr);
1348 return TRUE;
1349 }
1350
1351 /*
1352 * Otherwise, there must be at least one space. Find the most
1353 * constrained space, using the `r' field as a tie-breaker.
1354 */
1355 bestm = cr+1; /* so that any space will beat it */
1356 bestr = 0;
1357 i = sx = sy = -1;
1358 for (j = 0; j < usage->nspaces; j++) {
1359 int x = usage->spaces[j].x, y = usage->spaces[j].y;
1360 int m;
1361
1362 /*
1363 * Find the number of digits that could go in this space.
1364 */
1365 m = 0;
1366 for (n = 0; n < cr; n++)
1367 if (!usage->row[y*cr+n] && !usage->col[x*cr+n] &&
1368 !usage->blk[((y/c)*c+(x/r))*cr+n])
1369 m++;
1370
1371 if (m < bestm || (m == bestm && usage->spaces[j].r < bestr)) {
1372 bestm = m;
1373 bestr = usage->spaces[j].r;
1374 sx = x;
1375 sy = y;
1376 i = j;
1377 }
1378 }
1379
1380 /*
1381 * Swap that square into the final place in the spaces array,
1382 * so that decrementing nspaces will remove it from the list.
1383 */
1384 if (i != usage->nspaces-1) {
1385 struct gridgen_coord t;
1386 t = usage->spaces[usage->nspaces-1];
1387 usage->spaces[usage->nspaces-1] = usage->spaces[i];
1388 usage->spaces[i] = t;
1389 }
1390
1391 /*
1392 * Now we've decided which square to start our recursion at,
1393 * simply go through all possible values, shuffling them
1394 * randomly first if necessary.
1395 */
1396 digits = snewn(bestm, int);
1397 j = 0;
1398 for (n = 0; n < cr; n++)
1399 if (!usage->row[sy*cr+n] && !usage->col[sx*cr+n] &&
1400 !usage->blk[((sy/c)*c+(sx/r))*cr+n]) {
1401 digits[j++] = n+1;
1402 }
1403
1404 if (usage->rs)
1405 shuffle(digits, j, sizeof(*digits), usage->rs);
1406
1407 /* And finally, go through the digit list and actually recurse. */
1408 ret = FALSE;
1409 for (i = 0; i < j; i++) {
1410 n = digits[i];
1411
1412 /* Update the usage structure to reflect the placing of this digit. */
1413 usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
1414 usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = TRUE;
1415 usage->grid[sy*cr+sx] = n;
1416 usage->nspaces--;
1417
1418 /* Call the solver recursively. Stop when we find a solution. */
1419 if (gridgen_real(usage, grid))
1420 ret = TRUE;
1421
1422 /* Revert the usage structure. */
1423 usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
1424 usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = FALSE;
1425 usage->grid[sy*cr+sx] = 0;
1426 usage->nspaces++;
1427
1428 if (ret)
1429 break;
1430 }
1431
1432 sfree(digits);
1433 return ret;
1434 }
1435
1436 /*
1437 * Entry point to generator. You give it dimensions and a starting
1438 * grid, which is simply an array of cr*cr digits.
1439 */
1440 static void gridgen(int c, int r, digit *grid, random_state *rs)
1441 {
1442 struct gridgen_usage *usage;
1443 int x, y, cr = c*r;
1444
1445 /*
1446 * Clear the grid to start with.
1447 */
1448 memset(grid, 0, cr*cr);
1449
1450 /*
1451 * Create a gridgen_usage structure.
1452 */
1453 usage = snew(struct gridgen_usage);
1454
1455 usage->c = c;
1456 usage->r = r;
1457 usage->cr = cr;
1458
1459 usage->grid = snewn(cr * cr, digit);
1460 memcpy(usage->grid, grid, cr * cr);
1461
1462 usage->row = snewn(cr * cr, unsigned char);
1463 usage->col = snewn(cr * cr, unsigned char);
1464 usage->blk = snewn(cr * cr, unsigned char);
1465 memset(usage->row, FALSE, cr * cr);
1466 memset(usage->col, FALSE, cr * cr);
1467 memset(usage->blk, FALSE, cr * cr);
1468
1469 usage->spaces = snewn(cr * cr, struct gridgen_coord);
1470 usage->nspaces = 0;
1471
1472 usage->rs = rs;
1473
1474 /*
1475 * Initialise the list of grid spaces.
1476 */
1477 for (y = 0; y < cr; y++) {
1478 for (x = 0; x < cr; x++) {
1479 usage->spaces[usage->nspaces].x = x;
1480 usage->spaces[usage->nspaces].y = y;
1481 usage->spaces[usage->nspaces].r = random_bits(rs, 31);
1482 usage->nspaces++;
1483 }
1484 }
1485
1486 /*
1487 * Run the real generator function.
1488 */
1489 gridgen_real(usage, grid);
1490
1491 /*
1492 * Clean up the usage structure now we have our answer.
1493 */
1494 sfree(usage->spaces);
1495 sfree(usage->blk);
1496 sfree(usage->col);
1497 sfree(usage->row);
1498 sfree(usage->grid);
1499 sfree(usage);
1500 }
1501
1502 /* ----------------------------------------------------------------------
1503 * End of grid generator code.
1504 */
1505
1506 /*
1507 * Check whether a grid contains a valid complete puzzle.
1508 */
1509 static int check_valid(int c, int r, digit *grid)
1510 {
1511 int cr = c*r;
1512 unsigned char *used;
1513 int x, y, n;
1514
1515 used = snewn(cr, unsigned char);
1516
1517 /*
1518 * Check that each row contains precisely one of everything.
1519 */
1520 for (y = 0; y < cr; y++) {
1521 memset(used, FALSE, cr);
1522 for (x = 0; x < cr; x++)
1523 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
1524 used[grid[y*cr+x]-1] = TRUE;
1525 for (n = 0; n < cr; n++)
1526 if (!used[n]) {
1527 sfree(used);
1528 return FALSE;
1529 }
1530 }
1531
1532 /*
1533 * Check that each column contains precisely one of everything.
1534 */
1535 for (x = 0; x < cr; x++) {
1536 memset(used, FALSE, cr);
1537 for (y = 0; y < cr; y++)
1538 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
1539 used[grid[y*cr+x]-1] = TRUE;
1540 for (n = 0; n < cr; n++)
1541 if (!used[n]) {
1542 sfree(used);
1543 return FALSE;
1544 }
1545 }
1546
1547 /*
1548 * Check that each block contains precisely one of everything.
1549 */
1550 for (x = 0; x < cr; x += r) {
1551 for (y = 0; y < cr; y += c) {
1552 int xx, yy;
1553 memset(used, FALSE, cr);
1554 for (xx = x; xx < x+r; xx++)
1555 for (yy = 0; yy < y+c; yy++)
1556 if (grid[yy*cr+xx] > 0 && grid[yy*cr+xx] <= cr)
1557 used[grid[yy*cr+xx]-1] = TRUE;
1558 for (n = 0; n < cr; n++)
1559 if (!used[n]) {
1560 sfree(used);
1561 return FALSE;
1562 }
1563 }
1564 }
1565
1566 sfree(used);
1567 return TRUE;
1568 }
1569
1570 static int symmetries(game_params *params, int x, int y, int *output, int s)
1571 {
1572 int c = params->c, r = params->r, cr = c*r;
1573 int i = 0;
1574
1575 #define ADD(x,y) (*output++ = (x), *output++ = (y), i++)
1576
1577 ADD(x, y);
1578
1579 switch (s) {
1580 case SYMM_NONE:
1581 break; /* just x,y is all we need */
1582 case SYMM_ROT2:
1583 ADD(cr - 1 - x, cr - 1 - y);
1584 break;
1585 case SYMM_ROT4:
1586 ADD(cr - 1 - y, x);
1587 ADD(y, cr - 1 - x);
1588 ADD(cr - 1 - x, cr - 1 - y);
1589 break;
1590 case SYMM_REF2:
1591 ADD(cr - 1 - x, y);
1592 break;
1593 case SYMM_REF2D:
1594 ADD(y, x);
1595 break;
1596 case SYMM_REF4:
1597 ADD(cr - 1 - x, y);
1598 ADD(x, cr - 1 - y);
1599 ADD(cr - 1 - x, cr - 1 - y);
1600 break;
1601 case SYMM_REF4D:
1602 ADD(y, x);
1603 ADD(cr - 1 - x, cr - 1 - y);
1604 ADD(cr - 1 - y, cr - 1 - x);
1605 break;
1606 case SYMM_REF8:
1607 ADD(cr - 1 - x, y);
1608 ADD(x, cr - 1 - y);
1609 ADD(cr - 1 - x, cr - 1 - y);
1610 ADD(y, x);
1611 ADD(y, cr - 1 - x);
1612 ADD(cr - 1 - y, x);
1613 ADD(cr - 1 - y, cr - 1 - x);
1614 break;
1615 }
1616
1617 #undef ADD
1618
1619 return i;
1620 }
1621
1622 static char *encode_solve_move(int cr, digit *grid)
1623 {
1624 int i, len;
1625 char *ret, *p, *sep;
1626
1627 /*
1628 * It's surprisingly easy to work out _exactly_ how long this
1629 * string needs to be. To decimal-encode all the numbers from 1
1630 * to n:
1631 *
1632 * - every number has a units digit; total is n.
1633 * - all numbers above 9 have a tens digit; total is max(n-9,0).
1634 * - all numbers above 99 have a hundreds digit; total is max(n-99,0).
1635 * - and so on.
1636 */
1637 len = 0;
1638 for (i = 1; i <= cr; i *= 10)
1639 len += max(cr - i + 1, 0);
1640 len += cr; /* don't forget the commas */
1641 len *= cr; /* there are cr rows of these */
1642
1643 /*
1644 * Now len is one bigger than the total size of the
1645 * comma-separated numbers (because we counted an
1646 * additional leading comma). We need to have a leading S
1647 * and a trailing NUL, so we're off by one in total.
1648 */
1649 len++;
1650
1651 ret = snewn(len, char);
1652 p = ret;
1653 *p++ = 'S';
1654 sep = "";
1655 for (i = 0; i < cr*cr; i++) {
1656 p += sprintf(p, "%s%d", sep, grid[i]);
1657 sep = ",";
1658 }
1659 *p++ = '\0';
1660 assert(p - ret == len);
1661
1662 return ret;
1663 }
1664
1665 static char *new_game_desc(game_params *params, random_state *rs,
1666 char **aux, int interactive)
1667 {
1668 int c = params->c, r = params->r, cr = c*r;
1669 int area = cr*cr;
1670 digit *grid, *grid2;
1671 struct xy { int x, y; } *locs;
1672 int nlocs;
1673 char *desc;
1674 int coords[16], ncoords;
1675 int *symmclasses, nsymmclasses;
1676 int maxdiff, recursing;
1677
1678 /*
1679 * Adjust the maximum difficulty level to be consistent with
1680 * the puzzle size: all 2x2 puzzles appear to be Trivial
1681 * (DIFF_BLOCK) so we cannot hold out for even a Basic
1682 * (DIFF_SIMPLE) one.
1683 */
1684 maxdiff = params->diff;
1685 if (c == 2 && r == 2)
1686 maxdiff = DIFF_BLOCK;
1687
1688 grid = snewn(area, digit);
1689 locs = snewn(area, struct xy);
1690 grid2 = snewn(area, digit);
1691
1692 /*
1693 * Find the set of equivalence classes of squares permitted
1694 * by the selected symmetry. We do this by enumerating all
1695 * the grid squares which have no symmetric companion
1696 * sorting lower than themselves.
1697 */
1698 nsymmclasses = 0;
1699 symmclasses = snewn(cr * cr, int);
1700 {
1701 int x, y;
1702
1703 for (y = 0; y < cr; y++)
1704 for (x = 0; x < cr; x++) {
1705 int i = y*cr+x;
1706 int j;
1707
1708 ncoords = symmetries(params, x, y, coords, params->symm);
1709 for (j = 0; j < ncoords; j++)
1710 if (coords[2*j+1]*cr+coords[2*j] < i)
1711 break;
1712 if (j == ncoords)
1713 symmclasses[nsymmclasses++] = i;
1714 }
1715 }
1716
1717 /*
1718 * Loop until we get a grid of the required difficulty. This is
1719 * nasty, but it seems to be unpleasantly hard to generate
1720 * difficult grids otherwise.
1721 */
1722 do {
1723 /*
1724 * Generate a random solved state.
1725 */
1726 gridgen(c, r, grid, rs);
1727 assert(check_valid(c, r, grid));
1728
1729 /*
1730 * Save the solved grid in aux.
1731 */
1732 {
1733 /*
1734 * We might already have written *aux the last time we
1735 * went round this loop, in which case we should free
1736 * the old aux before overwriting it with the new one.
1737 */
1738 if (*aux) {
1739 sfree(*aux);
1740 }
1741
1742 *aux = encode_solve_move(cr, grid);
1743 }
1744
1745 /*
1746 * Now we have a solved grid, start removing things from it
1747 * while preserving solubility.
1748 */
1749 recursing = FALSE;
1750 while (1) {
1751 int x, y, i, j;
1752
1753 /*
1754 * Iterate over the grid and enumerate all the filled
1755 * squares we could empty.
1756 */
1757 nlocs = 0;
1758
1759 for (i = 0; i < nsymmclasses; i++) {
1760 x = symmclasses[i] % cr;
1761 y = symmclasses[i] / cr;
1762 if (grid[y*cr+x]) {
1763 locs[nlocs].x = x;
1764 locs[nlocs].y = y;
1765 nlocs++;
1766 }
1767 }
1768
1769 /*
1770 * Now shuffle that list.
1771 */
1772 shuffle(locs, nlocs, sizeof(*locs), rs);
1773
1774 /*
1775 * Now loop over the shuffled list and, for each element,
1776 * see whether removing that element (and its reflections)
1777 * from the grid will still leave the grid soluble by
1778 * solver.
1779 */
1780 for (i = 0; i < nlocs; i++) {
1781 int ret;
1782
1783 x = locs[i].x;
1784 y = locs[i].y;
1785
1786 memcpy(grid2, grid, area);
1787 ncoords = symmetries(params, x, y, coords, params->symm);
1788 for (j = 0; j < ncoords; j++)
1789 grid2[coords[2*j+1]*cr+coords[2*j]] = 0;
1790
1791 ret = solver(c, r, grid2, maxdiff);
1792 if (ret != DIFF_IMPOSSIBLE && ret != DIFF_AMBIGUOUS) {
1793 for (j = 0; j < ncoords; j++)
1794 grid[coords[2*j+1]*cr+coords[2*j]] = 0;
1795 break;
1796 }
1797 }
1798
1799 if (i == nlocs) {
1800 /*
1801 * There was nothing we could remove without
1802 * destroying solvability. Give up.
1803 */
1804 break;
1805 }
1806 }
1807
1808 memcpy(grid2, grid, area);
1809 } while (solver(c, r, grid2, maxdiff) < maxdiff);
1810
1811 sfree(grid2);
1812 sfree(locs);
1813
1814 sfree(symmclasses);
1815
1816 /*
1817 * Now we have the grid as it will be presented to the user.
1818 * Encode it in a game desc.
1819 */
1820 {
1821 char *p;
1822 int run, i;
1823
1824 desc = snewn(5 * area, char);
1825 p = desc;
1826 run = 0;
1827 for (i = 0; i <= area; i++) {
1828 int n = (i < area ? grid[i] : -1);
1829
1830 if (!n)
1831 run++;
1832 else {
1833 if (run) {
1834 while (run > 0) {
1835 int c = 'a' - 1 + run;
1836 if (run > 26)
1837 c = 'z';
1838 *p++ = c;
1839 run -= c - ('a' - 1);
1840 }
1841 } else {
1842 /*
1843 * If there's a number in the very top left or
1844 * bottom right, there's no point putting an
1845 * unnecessary _ before or after it.
1846 */
1847 if (p > desc && n > 0)
1848 *p++ = '_';
1849 }
1850 if (n > 0)
1851 p += sprintf(p, "%d", n);
1852 run = 0;
1853 }
1854 }
1855 assert(p - desc < 5 * area);
1856 *p++ = '\0';
1857 desc = sresize(desc, p - desc, char);
1858 }
1859
1860 sfree(grid);
1861
1862 return desc;
1863 }
1864
1865 static char *validate_desc(game_params *params, char *desc)
1866 {
1867 int area = params->r * params->r * params->c * params->c;
1868 int squares = 0;
1869
1870 while (*desc) {
1871 int n = *desc++;
1872 if (n >= 'a' && n <= 'z') {
1873 squares += n - 'a' + 1;
1874 } else if (n == '_') {
1875 /* do nothing */;
1876 } else if (n > '0' && n <= '9') {
1877 squares++;
1878 while (*desc >= '0' && *desc <= '9')
1879 desc++;
1880 } else
1881 return "Invalid character in game description";
1882 }
1883
1884 if (squares < area)
1885 return "Not enough data to fill grid";
1886
1887 if (squares > area)
1888 return "Too much data to fit in grid";
1889
1890 return NULL;
1891 }
1892
1893 static game_state *new_game(midend_data *me, game_params *params, char *desc)
1894 {
1895 game_state *state = snew(game_state);
1896 int c = params->c, r = params->r, cr = c*r, area = cr * cr;
1897 int i;
1898
1899 state->c = params->c;
1900 state->r = params->r;
1901
1902 state->grid = snewn(area, digit);
1903 state->pencil = snewn(area * cr, unsigned char);
1904 memset(state->pencil, 0, area * cr);
1905 state->immutable = snewn(area, unsigned char);
1906 memset(state->immutable, FALSE, area);
1907
1908 state->completed = state->cheated = FALSE;
1909
1910 i = 0;
1911 while (*desc) {
1912 int n = *desc++;
1913 if (n >= 'a' && n <= 'z') {
1914 int run = n - 'a' + 1;
1915 assert(i + run <= area);
1916 while (run-- > 0)
1917 state->grid[i++] = 0;
1918 } else if (n == '_') {
1919 /* do nothing */;
1920 } else if (n > '0' && n <= '9') {
1921 assert(i < area);
1922 state->immutable[i] = TRUE;
1923 state->grid[i++] = atoi(desc-1);
1924 while (*desc >= '0' && *desc <= '9')
1925 desc++;
1926 } else {
1927 assert(!"We can't get here");
1928 }
1929 }
1930 assert(i == area);
1931
1932 return state;
1933 }
1934
1935 static game_state *dup_game(game_state *state)
1936 {
1937 game_state *ret = snew(game_state);
1938 int c = state->c, r = state->r, cr = c*r, area = cr * cr;
1939
1940 ret->c = state->c;
1941 ret->r = state->r;
1942
1943 ret->grid = snewn(area, digit);
1944 memcpy(ret->grid, state->grid, area);
1945
1946 ret->pencil = snewn(area * cr, unsigned char);
1947 memcpy(ret->pencil, state->pencil, area * cr);
1948
1949 ret->immutable = snewn(area, unsigned char);
1950 memcpy(ret->immutable, state->immutable, area);
1951
1952 ret->completed = state->completed;
1953 ret->cheated = state->cheated;
1954
1955 return ret;
1956 }
1957
1958 static void free_game(game_state *state)
1959 {
1960 sfree(state->immutable);
1961 sfree(state->pencil);
1962 sfree(state->grid);
1963 sfree(state);
1964 }
1965
1966 static char *solve_game(game_state *state, game_state *currstate,
1967 char *ai, char **error)
1968 {
1969 int c = state->c, r = state->r, cr = c*r;
1970 char *ret;
1971 digit *grid;
1972 int solve_ret;
1973
1974 /*
1975 * If we already have the solution in ai, save ourselves some
1976 * time.
1977 */
1978 if (ai)
1979 return dupstr(ai);
1980
1981 grid = snewn(cr*cr, digit);
1982 memcpy(grid, state->grid, cr*cr);
1983 solve_ret = solver(c, r, grid, DIFF_RECURSIVE);
1984
1985 *error = NULL;
1986
1987 if (solve_ret == DIFF_IMPOSSIBLE)
1988 *error = "No solution exists for this puzzle";
1989 else if (solve_ret == DIFF_AMBIGUOUS)
1990 *error = "Multiple solutions exist for this puzzle";
1991
1992 if (*error) {
1993 sfree(grid);
1994 return NULL;
1995 }
1996
1997 ret = encode_solve_move(cr, grid);
1998
1999 sfree(grid);
2000
2001 return ret;
2002 }
2003
2004 static char *grid_text_format(int c, int r, digit *grid)
2005 {
2006 int cr = c*r;
2007 int x, y;
2008 int maxlen;
2009 char *ret, *p;
2010
2011 /*
2012 * There are cr lines of digits, plus r-1 lines of block
2013 * separators. Each line contains cr digits, cr-1 separating
2014 * spaces, and c-1 two-character block separators. Thus, the
2015 * total length of a line is 2*cr+2*c-3 (not counting the
2016 * newline), and there are cr+r-1 of them.
2017 */
2018 maxlen = (cr+r-1) * (2*cr+2*c-2);
2019 ret = snewn(maxlen+1, char);
2020 p = ret;
2021
2022 for (y = 0; y < cr; y++) {
2023 for (x = 0; x < cr; x++) {
2024 int ch = grid[y * cr + x];
2025 if (ch == 0)
2026 ch = ' ';
2027 else if (ch <= 9)
2028 ch = '0' + ch;
2029 else
2030 ch = 'a' + ch-10;
2031 *p++ = ch;
2032 if (x+1 < cr) {
2033 *p++ = ' ';
2034 if ((x+1) % r == 0) {
2035 *p++ = '|';
2036 *p++ = ' ';
2037 }
2038 }
2039 }
2040 *p++ = '\n';
2041 if (y+1 < cr && (y+1) % c == 0) {
2042 for (x = 0; x < cr; x++) {
2043 *p++ = '-';
2044 if (x+1 < cr) {
2045 *p++ = '-';
2046 if ((x+1) % r == 0) {
2047 *p++ = '+';
2048 *p++ = '-';
2049 }
2050 }
2051 }
2052 *p++ = '\n';
2053 }
2054 }
2055
2056 assert(p - ret == maxlen);
2057 *p = '\0';
2058 return ret;
2059 }
2060
2061 static char *game_text_format(game_state *state)
2062 {
2063 return grid_text_format(state->c, state->r, state->grid);
2064 }
2065
2066 struct game_ui {
2067 /*
2068 * These are the coordinates of the currently highlighted
2069 * square on the grid, or -1,-1 if there isn't one. When there
2070 * is, pressing a valid number or letter key or Space will
2071 * enter that number or letter in the grid.
2072 */
2073 int hx, hy;
2074 /*
2075 * This indicates whether the current highlight is a
2076 * pencil-mark one or a real one.
2077 */
2078 int hpencil;
2079 };
2080
2081 static game_ui *new_ui(game_state *state)
2082 {
2083 game_ui *ui = snew(game_ui);
2084
2085 ui->hx = ui->hy = -1;
2086 ui->hpencil = 0;
2087
2088 return ui;
2089 }
2090
2091 static void free_ui(game_ui *ui)
2092 {
2093 sfree(ui);
2094 }
2095
2096 static char *encode_ui(game_ui *ui)
2097 {
2098 return NULL;
2099 }
2100
2101 static void decode_ui(game_ui *ui, char *encoding)
2102 {
2103 }
2104
2105 static void game_changed_state(game_ui *ui, game_state *oldstate,
2106 game_state *newstate)
2107 {
2108 int c = newstate->c, r = newstate->r, cr = c*r;
2109 /*
2110 * We prevent pencil-mode highlighting of a filled square. So
2111 * if the user has just filled in a square which we had a
2112 * pencil-mode highlight in (by Undo, or by Redo, or by Solve),
2113 * then we cancel the highlight.
2114 */
2115 if (ui->hx >= 0 && ui->hy >= 0 && ui->hpencil &&
2116 newstate->grid[ui->hy * cr + ui->hx] != 0) {
2117 ui->hx = ui->hy = -1;
2118 }
2119 }
2120
2121 struct game_drawstate {
2122 int started;
2123 int c, r, cr;
2124 int tilesize;
2125 digit *grid;
2126 unsigned char *pencil;
2127 unsigned char *hl;
2128 /* This is scratch space used within a single call to game_redraw. */
2129 int *entered_items;
2130 };
2131
2132 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
2133 int x, int y, int button)
2134 {
2135 int c = state->c, r = state->r, cr = c*r;
2136 int tx, ty;
2137 char buf[80];
2138
2139 button &= ~MOD_MASK;
2140
2141 tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
2142 ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
2143
2144 if (tx >= 0 && tx < cr && ty >= 0 && ty < cr) {
2145 if (button == LEFT_BUTTON) {
2146 if (state->immutable[ty*cr+tx]) {
2147 ui->hx = ui->hy = -1;
2148 } else if (tx == ui->hx && ty == ui->hy && ui->hpencil == 0) {
2149 ui->hx = ui->hy = -1;
2150 } else {
2151 ui->hx = tx;
2152 ui->hy = ty;
2153 ui->hpencil = 0;
2154 }
2155 return ""; /* UI activity occurred */
2156 }
2157 if (button == RIGHT_BUTTON) {
2158 /*
2159 * Pencil-mode highlighting for non filled squares.
2160 */
2161 if (state->grid[ty*cr+tx] == 0) {
2162 if (tx == ui->hx && ty == ui->hy && ui->hpencil) {
2163 ui->hx = ui->hy = -1;
2164 } else {
2165 ui->hpencil = 1;
2166 ui->hx = tx;
2167 ui->hy = ty;
2168 }
2169 } else {
2170 ui->hx = ui->hy = -1;
2171 }
2172 return ""; /* UI activity occurred */
2173 }
2174 }
2175
2176 if (ui->hx != -1 && ui->hy != -1 &&
2177 ((button >= '1' && button <= '9' && button - '0' <= cr) ||
2178 (button >= 'a' && button <= 'z' && button - 'a' + 10 <= cr) ||
2179 (button >= 'A' && button <= 'Z' && button - 'A' + 10 <= cr) ||
2180 button == ' ')) {
2181 int n = button - '0';
2182 if (button >= 'A' && button <= 'Z')
2183 n = button - 'A' + 10;
2184 if (button >= 'a' && button <= 'z')
2185 n = button - 'a' + 10;
2186 if (button == ' ')
2187 n = 0;
2188
2189 /*
2190 * Can't overwrite this square. In principle this shouldn't
2191 * happen anyway because we should never have even been
2192 * able to highlight the square, but it never hurts to be
2193 * careful.
2194 */
2195 if (state->immutable[ui->hy*cr+ui->hx])
2196 return NULL;
2197
2198 /*
2199 * Can't make pencil marks in a filled square. In principle
2200 * this shouldn't happen anyway because we should never
2201 * have even been able to pencil-highlight the square, but
2202 * it never hurts to be careful.
2203 */
2204 if (ui->hpencil && state->grid[ui->hy*cr+ui->hx])
2205 return NULL;
2206
2207 sprintf(buf, "%c%d,%d,%d",
2208 (char)(ui->hpencil && n > 0 ? 'P' : 'R'), ui->hx, ui->hy, n);
2209
2210 ui->hx = ui->hy = -1;
2211
2212 return dupstr(buf);
2213 }
2214
2215 return NULL;
2216 }
2217
2218 static game_state *execute_move(game_state *from, char *move)
2219 {
2220 int c = from->c, r = from->r, cr = c*r;
2221 game_state *ret;
2222 int x, y, n;
2223
2224 if (move[0] == 'S') {
2225 char *p;
2226
2227 ret = dup_game(from);
2228 ret->completed = ret->cheated = TRUE;
2229
2230 p = move+1;
2231 for (n = 0; n < cr*cr; n++) {
2232 ret->grid[n] = atoi(p);
2233
2234 if (!*p || ret->grid[n] < 1 || ret->grid[n] > cr) {
2235 free_game(ret);
2236 return NULL;
2237 }
2238
2239 while (*p && isdigit((unsigned char)*p)) p++;
2240 if (*p == ',') p++;
2241 }
2242
2243 return ret;
2244 } else if ((move[0] == 'P' || move[0] == 'R') &&
2245 sscanf(move+1, "%d,%d,%d", &x, &y, &n) == 3 &&
2246 x >= 0 && x < cr && y >= 0 && y < cr && n >= 0 && n <= cr) {
2247
2248 ret = dup_game(from);
2249 if (move[0] == 'P' && n > 0) {
2250 int index = (y*cr+x) * cr + (n-1);
2251 ret->pencil[index] = !ret->pencil[index];
2252 } else {
2253 ret->grid[y*cr+x] = n;
2254 memset(ret->pencil + (y*cr+x)*cr, 0, cr);
2255
2256 /*
2257 * We've made a real change to the grid. Check to see
2258 * if the game has been completed.
2259 */
2260 if (!ret->completed && check_valid(c, r, ret->grid)) {
2261 ret->completed = TRUE;
2262 }
2263 }
2264 return ret;
2265 } else
2266 return NULL; /* couldn't parse move string */
2267 }
2268
2269 /* ----------------------------------------------------------------------
2270 * Drawing routines.
2271 */
2272
2273 #define SIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
2274 #define GETTILESIZE(cr, w) ( (double)(w-1) / (double)(cr+1) )
2275
2276 static void game_compute_size(game_params *params, int tilesize,
2277 int *x, int *y)
2278 {
2279 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2280 struct { int tilesize; } ads, *ds = &ads;
2281 ads.tilesize = tilesize;
2282
2283 *x = SIZE(params->c * params->r);
2284 *y = SIZE(params->c * params->r);
2285 }
2286
2287 static void game_set_size(game_drawstate *ds, game_params *params,
2288 int tilesize)
2289 {
2290 ds->tilesize = tilesize;
2291 }
2292
2293 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
2294 {
2295 float *ret = snewn(3 * NCOLOURS, float);
2296
2297 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2298
2299 ret[COL_GRID * 3 + 0] = 0.0F;
2300 ret[COL_GRID * 3 + 1] = 0.0F;
2301 ret[COL_GRID * 3 + 2] = 0.0F;
2302
2303 ret[COL_CLUE * 3 + 0] = 0.0F;
2304 ret[COL_CLUE * 3 + 1] = 0.0F;
2305 ret[COL_CLUE * 3 + 2] = 0.0F;
2306
2307 ret[COL_USER * 3 + 0] = 0.0F;
2308 ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
2309 ret[COL_USER * 3 + 2] = 0.0F;
2310
2311 ret[COL_HIGHLIGHT * 3 + 0] = 0.85F * ret[COL_BACKGROUND * 3 + 0];
2312 ret[COL_HIGHLIGHT * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
2313 ret[COL_HIGHLIGHT * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
2314
2315 ret[COL_ERROR * 3 + 0] = 1.0F;
2316 ret[COL_ERROR * 3 + 1] = 0.0F;
2317 ret[COL_ERROR * 3 + 2] = 0.0F;
2318
2319 ret[COL_PENCIL * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2320 ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2321 ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
2322
2323 *ncolours = NCOLOURS;
2324 return ret;
2325 }
2326
2327 static game_drawstate *game_new_drawstate(game_state *state)
2328 {
2329 struct game_drawstate *ds = snew(struct game_drawstate);
2330 int c = state->c, r = state->r, cr = c*r;
2331
2332 ds->started = FALSE;
2333 ds->c = c;
2334 ds->r = r;
2335 ds->cr = cr;
2336 ds->grid = snewn(cr*cr, digit);
2337 memset(ds->grid, 0, cr*cr);
2338 ds->pencil = snewn(cr*cr*cr, digit);
2339 memset(ds->pencil, 0, cr*cr*cr);
2340 ds->hl = snewn(cr*cr, unsigned char);
2341 memset(ds->hl, 0, cr*cr);
2342 ds->entered_items = snewn(cr*cr, int);
2343 ds->tilesize = 0; /* not decided yet */
2344 return ds;
2345 }
2346
2347 static void game_free_drawstate(game_drawstate *ds)
2348 {
2349 sfree(ds->hl);
2350 sfree(ds->pencil);
2351 sfree(ds->grid);
2352 sfree(ds->entered_items);
2353 sfree(ds);
2354 }
2355
2356 static void draw_number(frontend *fe, game_drawstate *ds, game_state *state,
2357 int x, int y, int hl)
2358 {
2359 int c = state->c, r = state->r, cr = c*r;
2360 int tx, ty;
2361 int cx, cy, cw, ch;
2362 char str[2];
2363
2364 if (ds->grid[y*cr+x] == state->grid[y*cr+x] &&
2365 ds->hl[y*cr+x] == hl &&
2366 !memcmp(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr))
2367 return; /* no change required */
2368
2369 tx = BORDER + x * TILE_SIZE + 2;
2370 ty = BORDER + y * TILE_SIZE + 2;
2371
2372 cx = tx;
2373 cy = ty;
2374 cw = TILE_SIZE-3;
2375 ch = TILE_SIZE-3;
2376
2377 if (x % r)
2378 cx--, cw++;
2379 if ((x+1) % r)
2380 cw++;
2381 if (y % c)
2382 cy--, ch++;
2383 if ((y+1) % c)
2384 ch++;
2385
2386 clip(fe, cx, cy, cw, ch);
2387
2388 /* background needs erasing */
2389 draw_rect(fe, cx, cy, cw, ch, (hl & 15) == 1 ? COL_HIGHLIGHT : COL_BACKGROUND);
2390
2391 /* pencil-mode highlight */
2392 if ((hl & 15) == 2) {
2393 int coords[6];
2394 coords[0] = cx;
2395 coords[1] = cy;
2396 coords[2] = cx+cw/2;
2397 coords[3] = cy;
2398 coords[4] = cx;
2399 coords[5] = cy+ch/2;
2400 draw_polygon(fe, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
2401 }
2402
2403 /* new number needs drawing? */
2404 if (state->grid[y*cr+x]) {
2405 str[1] = '\0';
2406 str[0] = state->grid[y*cr+x] + '0';
2407 if (str[0] > '9')
2408 str[0] += 'a' - ('9'+1);
2409 draw_text(fe, tx + TILE_SIZE/2, ty + TILE_SIZE/2,
2410 FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
2411 state->immutable[y*cr+x] ? COL_CLUE : (hl & 16) ? COL_ERROR : COL_USER, str);
2412 } else {
2413 int i, j, npencil;
2414 int pw, ph, pmax, fontsize;
2415
2416 /* count the pencil marks required */
2417 for (i = npencil = 0; i < cr; i++)
2418 if (state->pencil[(y*cr+x)*cr+i])
2419 npencil++;
2420
2421 /*
2422 * It's not sensible to arrange pencil marks in the same
2423 * layout as the squares within a block, because this leads
2424 * to the font being too small. Instead, we arrange pencil
2425 * marks in the nearest thing we can to a square layout,
2426 * and we adjust the square layout depending on the number
2427 * of pencil marks in the square.
2428 */
2429 for (pw = 1; pw * pw < npencil; pw++);
2430 if (pw < 3) pw = 3; /* otherwise it just looks _silly_ */
2431 ph = (npencil + pw - 1) / pw;
2432 if (ph < 2) ph = 2; /* likewise */
2433 pmax = max(pw, ph);
2434 fontsize = TILE_SIZE/(pmax*(11-pmax)/8);
2435
2436 for (i = j = 0; i < cr; i++)
2437 if (state->pencil[(y*cr+x)*cr+i]) {
2438 int dx = j % pw, dy = j / pw;
2439
2440 str[1] = '\0';
2441 str[0] = i + '1';
2442 if (str[0] > '9')
2443 str[0] += 'a' - ('9'+1);
2444 draw_text(fe, tx + (4*dx+3) * TILE_SIZE / (4*pw+2),
2445 ty + (4*dy+3) * TILE_SIZE / (4*ph+2),
2446 FONT_VARIABLE, fontsize,
2447 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
2448 j++;
2449 }
2450 }
2451
2452 unclip(fe);
2453
2454 draw_update(fe, cx, cy, cw, ch);
2455
2456 ds->grid[y*cr+x] = state->grid[y*cr+x];
2457 memcpy(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr);
2458 ds->hl[y*cr+x] = hl;
2459 }
2460
2461 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
2462 game_state *state, int dir, game_ui *ui,
2463 float animtime, float flashtime)
2464 {
2465 int c = state->c, r = state->r, cr = c*r;
2466 int x, y;
2467
2468 if (!ds->started) {
2469 /*
2470 * The initial contents of the window are not guaranteed
2471 * and can vary with front ends. To be on the safe side,
2472 * all games should start by drawing a big
2473 * background-colour rectangle covering the whole window.
2474 */
2475 draw_rect(fe, 0, 0, SIZE(cr), SIZE(cr), COL_BACKGROUND);
2476
2477 /*
2478 * Draw the grid.
2479 */
2480 for (x = 0; x <= cr; x++) {
2481 int thick = (x % r ? 0 : 1);
2482 draw_rect(fe, BORDER + x*TILE_SIZE - thick, BORDER-1,
2483 1+2*thick, cr*TILE_SIZE+3, COL_GRID);
2484 }
2485 for (y = 0; y <= cr; y++) {
2486 int thick = (y % c ? 0 : 1);
2487 draw_rect(fe, BORDER-1, BORDER + y*TILE_SIZE - thick,
2488 cr*TILE_SIZE+3, 1+2*thick, COL_GRID);
2489 }
2490 }
2491
2492 /*
2493 * This array is used to keep track of rows, columns and boxes
2494 * which contain a number more than once.
2495 */
2496 for (x = 0; x < cr * cr; x++)
2497 ds->entered_items[x] = 0;
2498 for (x = 0; x < cr; x++)
2499 for (y = 0; y < cr; y++) {
2500 digit d = state->grid[y*cr+x];
2501 if (d) {
2502 int box = (x/r)+(y/c)*c;
2503 ds->entered_items[x*cr+d-1] |= ((ds->entered_items[x*cr+d-1] & 1) << 1) | 1;
2504 ds->entered_items[y*cr+d-1] |= ((ds->entered_items[y*cr+d-1] & 4) << 1) | 4;
2505 ds->entered_items[box*cr+d-1] |= ((ds->entered_items[box*cr+d-1] & 16) << 1) | 16;
2506 }
2507 }
2508
2509 /*
2510 * Draw any numbers which need redrawing.
2511 */
2512 for (x = 0; x < cr; x++) {
2513 for (y = 0; y < cr; y++) {
2514 int highlight = 0;
2515 digit d = state->grid[y*cr+x];
2516
2517 if (flashtime > 0 &&
2518 (flashtime <= FLASH_TIME/3 ||
2519 flashtime >= FLASH_TIME*2/3))
2520 highlight = 1;
2521
2522 /* Highlight active input areas. */
2523 if (x == ui->hx && y == ui->hy)
2524 highlight = ui->hpencil ? 2 : 1;
2525
2526 /* Mark obvious errors (ie, numbers which occur more than once
2527 * in a single row, column, or box). */
2528 if (d && ((ds->entered_items[x*cr+d-1] & 2) ||
2529 (ds->entered_items[y*cr+d-1] & 8) ||
2530 (ds->entered_items[((x/r)+(y/c)*c)*cr+d-1] & 32)))
2531 highlight |= 16;
2532
2533 draw_number(fe, ds, state, x, y, highlight);
2534 }
2535 }
2536
2537 /*
2538 * Update the _entire_ grid if necessary.
2539 */
2540 if (!ds->started) {
2541 draw_update(fe, 0, 0, SIZE(cr), SIZE(cr));
2542 ds->started = TRUE;
2543 }
2544 }
2545
2546 static float game_anim_length(game_state *oldstate, game_state *newstate,
2547 int dir, game_ui *ui)
2548 {
2549 return 0.0F;
2550 }
2551
2552 static float game_flash_length(game_state *oldstate, game_state *newstate,
2553 int dir, game_ui *ui)
2554 {
2555 if (!oldstate->completed && newstate->completed &&
2556 !oldstate->cheated && !newstate->cheated)
2557 return FLASH_TIME;
2558 return 0.0F;
2559 }
2560
2561 static int game_wants_statusbar(void)
2562 {
2563 return FALSE;
2564 }
2565
2566 static int game_timing_state(game_state *state, game_ui *ui)
2567 {
2568 return TRUE;
2569 }
2570
2571 #ifdef COMBINED
2572 #define thegame solo
2573 #endif
2574
2575 const struct game thegame = {
2576 "Solo", "games.solo",
2577 default_params,
2578 game_fetch_preset,
2579 decode_params,
2580 encode_params,
2581 free_params,
2582 dup_params,
2583 TRUE, game_configure, custom_params,
2584 validate_params,
2585 new_game_desc,
2586 validate_desc,
2587 new_game,
2588 dup_game,
2589 free_game,
2590 TRUE, solve_game,
2591 TRUE, game_text_format,
2592 new_ui,
2593 free_ui,
2594 encode_ui,
2595 decode_ui,
2596 game_changed_state,
2597 interpret_move,
2598 execute_move,
2599 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
2600 game_colours,
2601 game_new_drawstate,
2602 game_free_drawstate,
2603 game_redraw,
2604 game_anim_length,
2605 game_flash_length,
2606 game_wants_statusbar,
2607 FALSE, game_timing_state,
2608 0, /* mouse_priorities */
2609 };
2610
2611 #ifdef STANDALONE_SOLVER
2612
2613 /*
2614 * gcc -DSTANDALONE_SOLVER -o solosolver solo.c malloc.c
2615 */
2616
2617 void frontend_default_colour(frontend *fe, float *output) {}
2618 void draw_text(frontend *fe, int x, int y, int fonttype, int fontsize,
2619 int align, int colour, char *text) {}
2620 void draw_rect(frontend *fe, int x, int y, int w, int h, int colour) {}
2621 void draw_line(frontend *fe, int x1, int y1, int x2, int y2, int colour) {}
2622 void draw_polygon(frontend *fe, int *coords, int npoints,
2623 int fillcolour, int outlinecolour) {}
2624 void clip(frontend *fe, int x, int y, int w, int h) {}
2625 void unclip(frontend *fe) {}
2626 void start_draw(frontend *fe) {}
2627 void draw_update(frontend *fe, int x, int y, int w, int h) {}
2628 void end_draw(frontend *fe) {}
2629 unsigned long random_bits(random_state *state, int bits)
2630 { assert(!"Shouldn't get randomness"); return 0; }
2631 unsigned long random_upto(random_state *state, unsigned long limit)
2632 { assert(!"Shouldn't get randomness"); return 0; }
2633 void shuffle(void *array, int nelts, int eltsize, random_state *rs)
2634 { assert(!"Shouldn't get randomness"); }
2635
2636 void fatal(char *fmt, ...)
2637 {
2638 va_list ap;
2639
2640 fprintf(stderr, "fatal error: ");
2641
2642 va_start(ap, fmt);
2643 vfprintf(stderr, fmt, ap);
2644 va_end(ap);
2645
2646 fprintf(stderr, "\n");
2647 exit(1);
2648 }
2649
2650 int main(int argc, char **argv)
2651 {
2652 game_params *p;
2653 game_state *s;
2654 char *id = NULL, *desc, *err;
2655 int grade = FALSE;
2656 int ret;
2657
2658 while (--argc > 0) {
2659 char *p = *++argv;
2660 if (!strcmp(p, "-v")) {
2661 solver_show_working = TRUE;
2662 } else if (!strcmp(p, "-g")) {
2663 grade = TRUE;
2664 } else if (*p == '-') {
2665 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
2666 return 1;
2667 } else {
2668 id = p;
2669 }
2670 }
2671
2672 if (!id) {
2673 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
2674 return 1;
2675 }
2676
2677 desc = strchr(id, ':');
2678 if (!desc) {
2679 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
2680 return 1;
2681 }
2682 *desc++ = '\0';
2683
2684 p = default_params();
2685 decode_params(p, id);
2686 err = validate_desc(p, desc);
2687 if (err) {
2688 fprintf(stderr, "%s: %s\n", argv[0], err);
2689 return 1;
2690 }
2691 s = new_game(NULL, p, desc);
2692
2693 ret = solver(p->c, p->r, s->grid, DIFF_RECURSIVE);
2694 if (grade) {
2695 printf("Difficulty rating: %s\n",
2696 ret==DIFF_BLOCK ? "Trivial (blockwise positional elimination only)":
2697 ret==DIFF_SIMPLE ? "Basic (row/column/number elimination required)":
2698 ret==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)":
2699 ret==DIFF_SET ? "Advanced (set elimination required)":
2700 ret==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)":
2701 ret==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)":
2702 ret==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)":
2703 "INTERNAL ERROR: unrecognised difficulty code");
2704 } else {
2705 printf("%s\n", grid_text_format(p->c, p->r, s->grid));
2706 }
2707
2708 return 0;
2709 }
2710
2711 #endif