New puzzle: `Inertia', originally written for Windows by Ben
[sgt/puzzles] / inertia.c
1 /*
2 * inertia.c: Game involving navigating round a grid picking up
3 * gems.
4 *
5 * Game rules and basic generator design by Ben Olmstead.
6 * This re-implementation was written by Simon Tatham.
7 */
8
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 #include <assert.h>
13 #include <ctype.h>
14 #include <math.h>
15
16 #include "puzzles.h"
17
18 /* Used in the game_state */
19 #define BLANK 'b'
20 #define GEM 'g'
21 #define MINE 'm'
22 #define STOP 's'
23 #define WALL 'w'
24
25 /* Used in the game IDs */
26 #define START 'S'
27
28 /* Used in the game generation */
29 #define POSSGEM 'G'
30
31 /* Used only in the game_drawstate*/
32 #define UNDRAWN '?'
33
34 #define DIRECTIONS 8
35 #define DX(dir) ( (dir) & 3 ? (((dir) & 7) > 4 ? -1 : +1) : 0 )
36 #define DY(dir) ( DX((dir)+6) )
37
38 /*
39 * Lvalue macro which expects x and y to be in range.
40 */
41 #define LV_AT(w, h, grid, x, y) ( (grid)[(y)*(w)+(x)] )
42
43 /*
44 * Rvalue macro which can cope with x and y being out of range.
45 */
46 #define AT(w, h, grid, x, y) ( (x)<0 || (x)>=(w) || (y)<0 || (y)>=(h) ? \
47 WALL : LV_AT(w, h, grid, x, y) )
48
49 enum {
50 COL_BACKGROUND,
51 COL_OUTLINE,
52 COL_HIGHLIGHT,
53 COL_LOWLIGHT,
54 COL_PLAYER,
55 COL_DEAD_PLAYER,
56 COL_MINE,
57 COL_GEM,
58 COL_WALL,
59 NCOLOURS
60 };
61
62 struct game_params {
63 int w, h;
64 };
65
66 struct game_state {
67 game_params p;
68 int px, py;
69 int gems;
70 char *grid;
71 int distance_moved;
72 int dead;
73 };
74
75 static game_params *default_params(void)
76 {
77 game_params *ret = snew(game_params);
78
79 ret->w = 10;
80 ret->h = 8;
81
82 return ret;
83 }
84
85 static void free_params(game_params *params)
86 {
87 sfree(params);
88 }
89
90 static game_params *dup_params(game_params *params)
91 {
92 game_params *ret = snew(game_params);
93 *ret = *params; /* structure copy */
94 return ret;
95 }
96
97 static const struct game_params inertia_presets[] = {
98 { 10, 8 },
99 { 15, 12 },
100 { 20, 16 },
101 };
102
103 static int game_fetch_preset(int i, char **name, game_params **params)
104 {
105 game_params p, *ret;
106 char *retname;
107 char namebuf[80];
108
109 if (i < 0 || i >= lenof(inertia_presets))
110 return FALSE;
111
112 p = inertia_presets[i];
113 ret = dup_params(&p);
114 sprintf(namebuf, "%dx%d", ret->w, ret->h);
115 retname = dupstr(namebuf);
116
117 *params = ret;
118 *name = retname;
119 return TRUE;
120 }
121
122 static void decode_params(game_params *params, char const *string)
123 {
124 params->w = params->h = atoi(string);
125 while (*string && isdigit((unsigned char)*string)) string++;
126 if (*string == 'x') {
127 string++;
128 params->h = atoi(string);
129 }
130 }
131
132 static char *encode_params(game_params *params, int full)
133 {
134 char data[256];
135
136 sprintf(data, "%dx%d", params->w, params->h);
137
138 return dupstr(data);
139 }
140
141 static config_item *game_configure(game_params *params)
142 {
143 config_item *ret;
144 char buf[80];
145
146 ret = snewn(3, config_item);
147
148 ret[0].name = "Width";
149 ret[0].type = C_STRING;
150 sprintf(buf, "%d", params->w);
151 ret[0].sval = dupstr(buf);
152 ret[0].ival = 0;
153
154 ret[1].name = "Height";
155 ret[1].type = C_STRING;
156 sprintf(buf, "%d", params->h);
157 ret[1].sval = dupstr(buf);
158 ret[1].ival = 0;
159
160 ret[2].name = NULL;
161 ret[2].type = C_END;
162 ret[2].sval = NULL;
163 ret[2].ival = 0;
164
165 return ret;
166 }
167
168 static game_params *custom_params(config_item *cfg)
169 {
170 game_params *ret = snew(game_params);
171
172 ret->w = atoi(cfg[0].sval);
173 ret->h = atoi(cfg[1].sval);
174
175 return ret;
176 }
177
178 static char *validate_params(game_params *params, int full)
179 {
180 /*
181 * Avoid completely degenerate cases which only have one
182 * row/column. We probably could generate completable puzzles
183 * of that shape, but they'd be forced to be extremely boring
184 * and at large sizes would take a while to happen upon at
185 * random as well.
186 */
187 if (params->w < 2 || params->h < 2)
188 return "Width and height must both be at least two";
189
190 /*
191 * The grid construction algorithm creates 1/5 as many gems as
192 * grid squares, and must create at least one gem to have an
193 * actual puzzle. However, an area-five grid is ruled out by
194 * the above constraint, so the practical minimum is six.
195 */
196 if (params->w * params->h < 6)
197 return "Grid area must be at least six squares";
198
199 return NULL;
200 }
201
202 /* ----------------------------------------------------------------------
203 * Solver used by grid generator.
204 */
205
206 struct solver_scratch {
207 unsigned char *reachable_from, *reachable_to;
208 int *positions;
209 };
210
211 static struct solver_scratch *new_scratch(int w, int h)
212 {
213 struct solver_scratch *sc = snew(struct solver_scratch);
214
215 sc->reachable_from = snewn(w * h * DIRECTIONS, unsigned char);
216 sc->reachable_to = snewn(w * h * DIRECTIONS, unsigned char);
217 sc->positions = snewn(w * h * DIRECTIONS, int);
218
219 return sc;
220 }
221
222 static void free_scratch(struct solver_scratch *sc)
223 {
224 sfree(sc);
225 }
226
227 static int can_go(int w, int h, char *grid,
228 int x1, int y1, int dir1, int x2, int y2, int dir2)
229 {
230 /*
231 * Returns TRUE if we can transition directly from (x1,y1)
232 * going in direction dir1, to (x2,y2) going in direction dir2.
233 */
234
235 /*
236 * If we're actually in the middle of an unoccupyable square,
237 * we cannot make any move.
238 */
239 if (AT(w, h, grid, x1, y1) == WALL ||
240 AT(w, h, grid, x1, y1) == MINE)
241 return FALSE;
242
243 /*
244 * If a move is capable of stopping at x1,y1,dir1, and x2,y2 is
245 * the same coordinate as x1,y1, then we can make the
246 * transition (by stopping and changing direction).
247 *
248 * For this to be the case, we have to either have a wall
249 * beyond x1,y1,dir1, or have a stop on x1,y1.
250 */
251 if (x2 == x1 && y2 == y1 &&
252 (AT(w, h, grid, x1, y1) == STOP ||
253 AT(w, h, grid, x1, y1) == START ||
254 AT(w, h, grid, x1+DX(dir1), y1+DY(dir1)) == WALL))
255 return TRUE;
256
257 /*
258 * If a move is capable of continuing here, then x1,y1,dir1 can
259 * move one space further on.
260 */
261 if (x2 == x1+DX(dir1) && y2 == y1+DY(dir1) && dir1 == dir2 &&
262 (AT(w, h, grid, x2, y2) == BLANK ||
263 AT(w, h, grid, x2, y2) == GEM ||
264 AT(w, h, grid, x2, y2) == STOP ||
265 AT(w, h, grid, x2, y2) == START))
266 return TRUE;
267
268 /*
269 * That's it.
270 */
271 return FALSE;
272 }
273
274 static int find_gem_candidates(int w, int h, char *grid,
275 struct solver_scratch *sc)
276 {
277 int wh = w*h;
278 int head, tail;
279 int sx, sy, gx, gy, gd, pass, possgems;
280
281 /*
282 * This function finds all the candidate gem squares, which are
283 * precisely those squares which can be picked up on a loop
284 * from the starting point back to the starting point. Doing
285 * this may involve passing through such a square in the middle
286 * of a move; so simple breadth-first search over the _squares_
287 * of the grid isn't quite adequate, because it might be that
288 * we can only reach a gem from the start by moving over it in
289 * one direction, but can only return to the start if we were
290 * moving over it in another direction.
291 *
292 * Instead, we BFS over a space which mentions each grid square
293 * eight times - once for each direction. We also BFS twice:
294 * once to find out what square+direction pairs we can reach
295 * _from_ the start point, and once to find out what pairs we
296 * can reach the start point from. Then a square is reachable
297 * if any of the eight directions for that square has both
298 * flags set.
299 */
300
301 memset(sc->reachable_from, 0, wh * DIRECTIONS);
302 memset(sc->reachable_to, 0, wh * DIRECTIONS);
303
304 /*
305 * Find the starting square.
306 */
307 for (sy = 0; sy < h; sy++) {
308 for (sx = 0; sx < w; sx++)
309 if (AT(w, h, grid, sx, sy) == START)
310 break;
311 if (sx < w)
312 break;
313 }
314 assert(sy < h);
315
316 for (pass = 0; pass < 2; pass++) {
317 unsigned char *reachable = (pass == 0 ? sc->reachable_from :
318 sc->reachable_to);
319 int sign = (pass == 0 ? +1 : -1);
320 int dir;
321
322 #ifdef SOLVER_DIAGNOSTICS
323 printf("starting pass %d\n", pass);
324 #endif
325
326 /*
327 * `head' and `tail' are indices within sc->positions which
328 * track the list of board positions left to process.
329 */
330 head = tail = 0;
331 for (dir = 0; dir < DIRECTIONS; dir++) {
332 int index = (sy*w+sx)*DIRECTIONS+dir;
333 sc->positions[tail++] = index;
334 reachable[index] = TRUE;
335 #ifdef SOLVER_DIAGNOSTICS
336 printf("starting point %d,%d,%d\n", sx, sy, dir);
337 #endif
338 }
339
340 /*
341 * Now repeatedly pick an element off the list and process
342 * it.
343 */
344 while (head < tail) {
345 int index = sc->positions[head++];
346 int dir = index % DIRECTIONS;
347 int x = (index / DIRECTIONS) % w;
348 int y = index / (w * DIRECTIONS);
349 int n, x2, y2, d2, i2;
350
351 #ifdef SOLVER_DIAGNOSTICS
352 printf("processing point %d,%d,%d\n", x, y, dir);
353 #endif
354 /*
355 * The places we attempt to switch to here are:
356 * - each possible direction change (all the other
357 * directions in this square)
358 * - one step further in the direction we're going (or
359 * one step back, if we're in the reachable_to pass).
360 */
361 for (n = -1; n < DIRECTIONS; n++) {
362 if (n < 0) {
363 x2 = x + sign * DX(dir);
364 y2 = y + sign * DY(dir);
365 d2 = dir;
366 } else {
367 x2 = x;
368 y2 = y;
369 d2 = n;
370 }
371 i2 = (y2*w+x2)*DIRECTIONS+d2;
372 if (!reachable[i2]) {
373 int ok;
374 #ifdef SOLVER_DIAGNOSTICS
375 printf(" trying point %d,%d,%d", x2, y2, d2);
376 #endif
377 if (pass == 0)
378 ok = can_go(w, h, grid, x, y, dir, x2, y2, d2);
379 else
380 ok = can_go(w, h, grid, x2, y2, d2, x, y, dir);
381 #ifdef SOLVER_DIAGNOSTICS
382 printf(" - %sok\n", ok ? "" : "not ");
383 #endif
384 if (ok) {
385 sc->positions[tail++] = i2;
386 reachable[i2] = TRUE;
387 }
388 }
389 }
390 }
391 }
392
393 /*
394 * And that should be it. Now all we have to do is find the
395 * squares for which there exists _some_ direction such that
396 * the square plus that direction form a tuple which is both
397 * reachable from the start and reachable to the start.
398 */
399 possgems = 0;
400 for (gy = 0; gy < h; gy++)
401 for (gx = 0; gx < w; gx++)
402 if (AT(w, h, grid, gx, gy) == BLANK) {
403 for (gd = 0; gd < DIRECTIONS; gd++) {
404 int index = (gy*w+gx)*DIRECTIONS+gd;
405 if (sc->reachable_from[index] && sc->reachable_to[index]) {
406 #ifdef SOLVER_DIAGNOSTICS
407 printf("space at %d,%d is reachable via"
408 " direction %d\n", gx, gy, gd);
409 #endif
410 LV_AT(w, h, grid, gx, gy) = POSSGEM;
411 possgems++;
412 break;
413 }
414 }
415 }
416
417 return possgems;
418 }
419
420 /* ----------------------------------------------------------------------
421 * Grid generation code.
422 */
423
424 static char *gengrid(int w, int h, random_state *rs)
425 {
426 int wh = w*h;
427 char *grid = snewn(wh+1, char);
428 struct solver_scratch *sc = new_scratch(w, h);
429 int maxdist_threshold, tries;
430
431 maxdist_threshold = 2;
432 tries = 0;
433
434 while (1) {
435 int i, j;
436 int possgems;
437 int *dist, *list, head, tail, maxdist;
438
439 /*
440 * We're going to fill the grid with the five basic piece
441 * types in about 1/5 proportion. For the moment, though,
442 * we leave out the gems, because we'll put those in
443 * _after_ we run the solver to tell us where the viable
444 * locations are.
445 */
446 i = 0;
447 for (j = 0; j < wh/5; j++)
448 grid[i++] = WALL;
449 for (j = 0; j < wh/5; j++)
450 grid[i++] = STOP;
451 for (j = 0; j < wh/5; j++)
452 grid[i++] = MINE;
453 assert(i < wh);
454 grid[i++] = START;
455 while (i < wh)
456 grid[i++] = BLANK;
457 shuffle(grid, wh, sizeof(*grid), rs);
458
459 /*
460 * Find the viable gem locations, and immediately give up
461 * and try again if there aren't enough of them.
462 */
463 possgems = find_gem_candidates(w, h, grid, sc);
464 if (possgems < wh/5)
465 continue;
466
467 /*
468 * We _could_ now select wh/5 of the POSSGEMs and set them
469 * to GEM, and have a viable level. However, there's a
470 * chance that a large chunk of the level will turn out to
471 * be unreachable, so first we test for that.
472 *
473 * We do this by finding the largest distance from any
474 * square to the nearest POSSGEM, by breadth-first search.
475 * If this is above a critical threshold, we abort and try
476 * again.
477 *
478 * (This search is purely geometric, without regard to
479 * walls and long ways round.)
480 */
481 dist = sc->positions;
482 list = sc->positions + wh;
483 for (i = 0; i < wh; i++)
484 dist[i] = -1;
485 head = tail = 0;
486 for (i = 0; i < wh; i++)
487 if (grid[i] == POSSGEM) {
488 dist[i] = 0;
489 list[tail++] = i;
490 }
491 maxdist = 0;
492 while (head < tail) {
493 int pos, x, y, d;
494
495 pos = list[head++];
496 if (maxdist < dist[pos])
497 maxdist = dist[pos];
498
499 x = pos % w;
500 y = pos / w;
501
502 for (d = 0; d < DIRECTIONS; d++) {
503 int x2, y2, p2;
504
505 x2 = x + DX(d);
506 y2 = y + DY(d);
507
508 if (x2 >= 0 && x2 < w && y2 >= 0 && y2 < h) {
509 p2 = y2*w+x2;
510 if (dist[p2] < 0) {
511 dist[p2] = dist[pos] + 1;
512 list[tail++] = p2;
513 }
514 }
515 }
516 }
517 assert(head == wh && tail == wh);
518
519 /*
520 * Now abandon this grid and go round again if maxdist is
521 * above the required threshold.
522 *
523 * We can safely start the threshold as low as 2. As we
524 * accumulate failed generation attempts, we gradually
525 * raise it as we get more desperate.
526 */
527 if (maxdist > maxdist_threshold) {
528 tries++;
529 if (tries == 50) {
530 maxdist_threshold++;
531 tries = 0;
532 }
533 continue;
534 }
535
536 /*
537 * Now our reachable squares are plausibly evenly
538 * distributed over the grid. I'm not actually going to
539 * _enforce_ that I place the gems in such a way as not to
540 * increase that maxdist value; I'm now just going to trust
541 * to the RNG to pick a sensible subset of the POSSGEMs.
542 */
543 j = 0;
544 for (i = 0; i < wh; i++)
545 if (grid[i] == POSSGEM)
546 list[j++] = i;
547 shuffle(list, j, sizeof(*list), rs);
548 for (i = 0; i < j; i++)
549 grid[list[i]] = (i < wh/5 ? GEM : BLANK);
550 break;
551 }
552
553 free_scratch(sc);
554
555 grid[wh] = '\0';
556
557 return grid;
558 }
559
560 static char *new_game_desc(game_params *params, random_state *rs,
561 char **aux, int interactive)
562 {
563 return gengrid(params->w, params->h, rs);
564 }
565
566 static char *validate_desc(game_params *params, char *desc)
567 {
568 int w = params->w, h = params->h, wh = w*h;
569 int starts = 0, gems = 0, i;
570
571 for (i = 0; i < wh; i++) {
572 if (!desc[i])
573 return "Not enough data to fill grid";
574 if (desc[i] != WALL && desc[i] != START && desc[i] != STOP &&
575 desc[i] != GEM && desc[i] != MINE && desc[i] != BLANK)
576 return "Unrecognised character in game description";
577 if (desc[i] == START)
578 starts++;
579 if (desc[i] == GEM)
580 gems++;
581 }
582 if (desc[i])
583 return "Too much data to fill grid";
584 if (starts < 1)
585 return "No starting square specified";
586 if (starts > 1)
587 return "More than one starting square specified";
588 if (gems < 1)
589 return "No gems specified";
590
591 return NULL;
592 }
593
594 static game_state *new_game(midend *me, game_params *params, char *desc)
595 {
596 int w = params->w, h = params->h, wh = w*h;
597 int i;
598 game_state *state = snew(game_state);
599
600 state->p = *params; /* structure copy */
601
602 state->grid = snewn(wh, char);
603 assert(strlen(desc) == wh);
604 memcpy(state->grid, desc, wh);
605
606 state->px = state->py = -1;
607 state->gems = 0;
608 for (i = 0; i < wh; i++) {
609 if (state->grid[i] == START) {
610 state->grid[i] = STOP;
611 state->px = i % w;
612 state->py = i / w;
613 } else if (state->grid[i] == GEM) {
614 state->gems++;
615 }
616 }
617
618 assert(state->gems > 0);
619 assert(state->px >= 0 && state->py >= 0);
620
621 state->distance_moved = 0;
622 state->dead = FALSE;
623
624 return state;
625 }
626
627 static game_state *dup_game(game_state *state)
628 {
629 int w = state->p.w, h = state->p.h, wh = w*h;
630 game_state *ret = snew(game_state);
631
632 ret->p = state->p;
633 ret->px = state->px;
634 ret->py = state->py;
635 ret->gems = state->gems;
636 ret->grid = snewn(wh, char);
637 ret->distance_moved = state->distance_moved;
638 ret->dead = FALSE;
639 memcpy(ret->grid, state->grid, wh);
640
641 return ret;
642 }
643
644 static void free_game(game_state *state)
645 {
646 sfree(state->grid);
647 sfree(state);
648 }
649
650 static char *solve_game(game_state *state, game_state *currstate,
651 char *aux, char **error)
652 {
653 return NULL;
654 }
655
656 static char *game_text_format(game_state *state)
657 {
658 return NULL;
659 }
660
661 struct game_ui {
662 float anim_length;
663 int flashtype;
664 int deaths;
665 int just_made_move;
666 int just_died;
667 };
668
669 static game_ui *new_ui(game_state *state)
670 {
671 game_ui *ui = snew(game_ui);
672 ui->anim_length = 0.0F;
673 ui->flashtype = 0;
674 ui->deaths = 0;
675 ui->just_made_move = FALSE;
676 ui->just_died = FALSE;
677 return ui;
678 }
679
680 static void free_ui(game_ui *ui)
681 {
682 sfree(ui);
683 }
684
685 static char *encode_ui(game_ui *ui)
686 {
687 char buf[80];
688 /*
689 * The deaths counter needs preserving across a serialisation.
690 */
691 sprintf(buf, "D%d", ui->deaths);
692 return dupstr(buf);
693 }
694
695 static void decode_ui(game_ui *ui, char *encoding)
696 {
697 int p = 0;
698 sscanf(encoding, "D%d%n", &ui->deaths, &p);
699 }
700
701 static void game_changed_state(game_ui *ui, game_state *oldstate,
702 game_state *newstate)
703 {
704 /*
705 * Increment the deaths counter. We only do this if
706 * ui->just_made_move is set (redoing a suicide move doesn't
707 * kill you _again_), and also we only do it if the game isn't
708 * completed (once you're finished, you can play).
709 */
710 if (!oldstate->dead && newstate->dead && ui->just_made_move &&
711 newstate->gems) {
712 ui->deaths++;
713 ui->just_died = TRUE;
714 } else {
715 ui->just_died = FALSE;
716 }
717 ui->just_made_move = FALSE;
718 }
719
720 struct game_drawstate {
721 game_params p;
722 int tilesize;
723 int started;
724 unsigned short *grid;
725 blitter *player_background;
726 int player_bg_saved, pbgx, pbgy;
727 };
728
729 #define PREFERRED_TILESIZE 32
730 #define TILESIZE (ds->tilesize)
731 #define BORDER (TILESIZE)
732 #define HIGHLIGHT_WIDTH (TILESIZE / 10)
733 #define COORD(x) ( (x) * TILESIZE + BORDER )
734 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
735
736 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
737 int x, int y, int button)
738 {
739 int w = state->p.w, h = state->p.h /*, wh = w*h */;
740 int dir;
741 char buf[80];
742
743 dir = -1;
744
745 if (button == LEFT_BUTTON) {
746 /*
747 * Mouse-clicking near the target point (or, more
748 * accurately, in the appropriate octant) is an alternative
749 * way to input moves.
750 */
751
752 if (FROMCOORD(x) != state->px || FROMCOORD(y) != state->py) {
753 int dx, dy;
754 float angle;
755
756 dx = FROMCOORD(x) - state->px;
757 dy = FROMCOORD(y) - state->py;
758 /* I pass dx,dy rather than dy,dx so that the octants
759 * end up the right way round. */
760 angle = atan2(dx, -dy);
761
762 angle = (angle + (PI/8)) / (PI/4);
763 assert(angle > -16.0F);
764 dir = (int)(angle + 16.0F) & 7;
765 }
766 } else if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
767 dir = 0;
768 else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
769 dir = 4;
770 else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
771 dir = 6;
772 else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
773 dir = 2;
774 else if (button == (MOD_NUM_KEYPAD | '7'))
775 dir = 7;
776 else if (button == (MOD_NUM_KEYPAD | '1'))
777 dir = 5;
778 else if (button == (MOD_NUM_KEYPAD | '9'))
779 dir = 1;
780 else if (button == (MOD_NUM_KEYPAD | '3'))
781 dir = 3;
782
783 if (dir < 0)
784 return NULL;
785
786 /*
787 * Reject the move if we can't make it at all due to a wall
788 * being in the way.
789 */
790 if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
791 return NULL;
792
793 /*
794 * Reject the move if we're dead!
795 */
796 if (state->dead)
797 return NULL;
798
799 /*
800 * Otherwise, we can make the move. All we need to specify is
801 * the direction.
802 */
803 ui->just_made_move = TRUE;
804 sprintf(buf, "%d", dir);
805 return dupstr(buf);
806 }
807
808 static game_state *execute_move(game_state *state, char *move)
809 {
810 int w = state->p.w, h = state->p.h /*, wh = w*h */;
811 int dir = atoi(move);
812 game_state *ret;
813
814 if (dir < 0 || dir >= DIRECTIONS)
815 return NULL; /* huh? */
816
817 if (state->dead)
818 return NULL;
819
820 if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
821 return NULL; /* wall in the way! */
822
823 /*
824 * Now make the move.
825 */
826 ret = dup_game(state);
827 ret->distance_moved = 0;
828 while (1) {
829 ret->px += DX(dir);
830 ret->py += DY(dir);
831 ret->distance_moved++;
832
833 if (AT(w, h, ret->grid, ret->px, ret->py) == GEM) {
834 LV_AT(w, h, ret->grid, ret->px, ret->py) = BLANK;
835 ret->gems--;
836 }
837
838 if (AT(w, h, ret->grid, ret->px, ret->py) == MINE) {
839 ret->dead = TRUE;
840 break;
841 }
842
843 if (AT(w, h, ret->grid, ret->px, ret->py) == STOP ||
844 AT(w, h, ret->grid, ret->px+DX(dir),
845 ret->py+DY(dir)) == WALL)
846 break;
847 }
848
849 return ret;
850 }
851
852 /* ----------------------------------------------------------------------
853 * Drawing routines.
854 */
855
856 static void game_compute_size(game_params *params, int tilesize,
857 int *x, int *y)
858 {
859 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
860 struct { int tilesize; } ads, *ds = &ads;
861 ads.tilesize = tilesize;
862
863 *x = 2 * BORDER + 1 + params->w * TILESIZE;
864 *y = 2 * BORDER + 1 + params->h * TILESIZE;
865 }
866
867 static void game_set_size(drawing *dr, game_drawstate *ds,
868 game_params *params, int tilesize)
869 {
870 ds->tilesize = tilesize;
871
872 assert(!ds->player_bg_saved);
873
874 if (ds->player_background)
875 blitter_free(dr, ds->player_background);
876 ds->player_background = blitter_new(dr, TILESIZE, TILESIZE);
877 }
878
879 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
880 {
881 float *ret = snewn(3 * NCOLOURS, float);
882 int i;
883
884 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
885
886 ret[COL_OUTLINE * 3 + 0] = 0.0F;
887 ret[COL_OUTLINE * 3 + 1] = 0.0F;
888 ret[COL_OUTLINE * 3 + 2] = 0.0F;
889
890 ret[COL_PLAYER * 3 + 0] = 0.0F;
891 ret[COL_PLAYER * 3 + 1] = 1.0F;
892 ret[COL_PLAYER * 3 + 2] = 0.0F;
893
894 ret[COL_DEAD_PLAYER * 3 + 0] = 1.0F;
895 ret[COL_DEAD_PLAYER * 3 + 1] = 0.0F;
896 ret[COL_DEAD_PLAYER * 3 + 2] = 0.0F;
897
898 ret[COL_MINE * 3 + 0] = 0.0F;
899 ret[COL_MINE * 3 + 1] = 0.0F;
900 ret[COL_MINE * 3 + 2] = 0.0F;
901
902 ret[COL_GEM * 3 + 0] = 0.6F;
903 ret[COL_GEM * 3 + 1] = 1.0F;
904 ret[COL_GEM * 3 + 2] = 1.0F;
905
906 for (i = 0; i < 3; i++) {
907 ret[COL_WALL * 3 + i] = (3 * ret[COL_BACKGROUND * 3 + i] +
908 1 * ret[COL_HIGHLIGHT * 3 + i]) / 4;
909 }
910
911 *ncolours = NCOLOURS;
912 return ret;
913 }
914
915 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
916 {
917 int w = state->p.w, h = state->p.h, wh = w*h;
918 struct game_drawstate *ds = snew(struct game_drawstate);
919 int i;
920
921 ds->tilesize = 0;
922
923 /* We can't allocate the blitter rectangle for the player background
924 * until we know what size to make it. */
925 ds->player_background = NULL;
926 ds->player_bg_saved = FALSE;
927 ds->pbgx = ds->pbgy = -1;
928
929 ds->p = state->p; /* structure copy */
930 ds->started = FALSE;
931 ds->grid = snewn(wh, unsigned short);
932 for (i = 0; i < wh; i++)
933 ds->grid[i] = UNDRAWN;
934
935 return ds;
936 }
937
938 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
939 {
940 sfree(ds->grid);
941 sfree(ds);
942 }
943
944 static void draw_player(drawing *dr, game_drawstate *ds, int x, int y,
945 int dead)
946 {
947 if (dead) {
948 int coords[DIRECTIONS*4];
949 int d;
950
951 for (d = 0; d < DIRECTIONS; d++) {
952 float x1, y1, x2, y2, x3, y3, len;
953
954 x1 = DX(d);
955 y1 = DY(d);
956 len = sqrt(x1*x1+y1*y1); x1 /= len; y1 /= len;
957
958 x3 = DX(d+1);
959 y3 = DY(d+1);
960 len = sqrt(x3*x3+y3*y3); x3 /= len; y3 /= len;
961
962 x2 = (x1+x3) / 4;
963 y2 = (y1+y3) / 4;
964
965 coords[d*4+0] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x1);
966 coords[d*4+1] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y1);
967 coords[d*4+2] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x2);
968 coords[d*4+3] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y2);
969 }
970 draw_polygon(dr, coords, DIRECTIONS*2, COL_DEAD_PLAYER, COL_OUTLINE);
971 } else {
972 draw_circle(dr, x + TILESIZE/2, y + TILESIZE/2,
973 TILESIZE/3, COL_PLAYER, COL_OUTLINE);
974 }
975 draw_update(dr, x, y, TILESIZE, TILESIZE);
976 }
977
978 #define FLASH_DEAD 0x100
979 #define FLASH_WIN 0x200
980 #define FLASH_MASK 0x300
981
982 static void draw_tile(drawing *dr, game_drawstate *ds, int x, int y, int v)
983 {
984 int tx = COORD(x), ty = COORD(y);
985 int bg = (v & FLASH_DEAD ? COL_DEAD_PLAYER :
986 v & FLASH_WIN ? COL_HIGHLIGHT : COL_BACKGROUND);
987
988 v &= ~FLASH_MASK;
989
990 clip(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1);
991 draw_rect(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1, bg);
992
993 if (v == WALL) {
994 int coords[6];
995
996 coords[0] = tx + TILESIZE;
997 coords[1] = ty + TILESIZE;
998 coords[2] = tx + TILESIZE;
999 coords[3] = ty + 1;
1000 coords[4] = tx + 1;
1001 coords[5] = ty + TILESIZE;
1002 draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
1003
1004 coords[0] = tx + 1;
1005 coords[1] = ty + 1;
1006 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
1007
1008 draw_rect(dr, tx + 1 + HIGHLIGHT_WIDTH, ty + 1 + HIGHLIGHT_WIDTH,
1009 TILESIZE - 2*HIGHLIGHT_WIDTH,
1010 TILESIZE - 2*HIGHLIGHT_WIDTH, COL_WALL);
1011 } else if (v == MINE) {
1012 int cx = tx + TILESIZE / 2;
1013 int cy = ty + TILESIZE / 2;
1014 int r = TILESIZE / 2 - 3;
1015 int coords[4*5*2];
1016 int xdx = 1, xdy = 0, ydx = 0, ydy = 1;
1017 int tdx, tdy, i;
1018
1019 for (i = 0; i < 4*5*2; i += 5*2) {
1020 coords[i+2*0+0] = cx - r/6*xdx + r*4/5*ydx;
1021 coords[i+2*0+1] = cy - r/6*xdy + r*4/5*ydy;
1022 coords[i+2*1+0] = cx - r/6*xdx + r*ydx;
1023 coords[i+2*1+1] = cy - r/6*xdy + r*ydy;
1024 coords[i+2*2+0] = cx + r/6*xdx + r*ydx;
1025 coords[i+2*2+1] = cy + r/6*xdy + r*ydy;
1026 coords[i+2*3+0] = cx + r/6*xdx + r*4/5*ydx;
1027 coords[i+2*3+1] = cy + r/6*xdy + r*4/5*ydy;
1028 coords[i+2*4+0] = cx + r*3/5*xdx + r*3/5*ydx;
1029 coords[i+2*4+1] = cy + r*3/5*xdy + r*3/5*ydy;
1030
1031 tdx = ydx;
1032 tdy = ydy;
1033 ydx = xdx;
1034 ydy = xdy;
1035 xdx = -tdx;
1036 xdy = -tdy;
1037 }
1038
1039 draw_polygon(dr, coords, 5*4, COL_MINE, COL_MINE);
1040
1041 draw_rect(dr, cx-r/3, cy-r/3, r/3, r/4, COL_HIGHLIGHT);
1042 } else if (v == STOP) {
1043 draw_circle(dr, tx + TILESIZE/2, ty + TILESIZE/2,
1044 TILESIZE*3/7, -1, COL_OUTLINE);
1045 draw_rect(dr, tx + TILESIZE*3/7, ty+1,
1046 TILESIZE - 2*(TILESIZE*3/7) + 1, TILESIZE-1, bg);
1047 draw_rect(dr, tx+1, ty + TILESIZE*3/7,
1048 TILESIZE-1, TILESIZE - 2*(TILESIZE*3/7) + 1, bg);
1049 } else if (v == GEM) {
1050 int coords[8];
1051
1052 coords[0] = tx+TILESIZE/2;
1053 coords[1] = ty+TILESIZE*1/7;
1054 coords[2] = tx+TILESIZE*1/7;
1055 coords[3] = ty+TILESIZE/2;
1056 coords[4] = tx+TILESIZE/2;
1057 coords[5] = ty+TILESIZE-TILESIZE*1/7;
1058 coords[6] = tx+TILESIZE-TILESIZE*1/7;
1059 coords[7] = ty+TILESIZE/2;
1060
1061 draw_polygon(dr, coords, 4, COL_GEM, COL_OUTLINE);
1062 }
1063
1064 unclip(dr);
1065 draw_update(dr, tx, ty, TILESIZE, TILESIZE);
1066 }
1067
1068 #define BASE_ANIM_LENGTH 0.1F
1069 #define FLASH_LENGTH 0.3F
1070
1071 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1072 game_state *state, int dir, game_ui *ui,
1073 float animtime, float flashtime)
1074 {
1075 int w = state->p.w, h = state->p.h /*, wh = w*h */;
1076 int x, y;
1077 float ap;
1078 int player_dist;
1079 int flashtype;
1080 int gems, deaths;
1081 char status[256];
1082
1083 if (flashtime &&
1084 !((int)(flashtime * 3 / FLASH_LENGTH) % 2))
1085 flashtype = ui->flashtype;
1086 else
1087 flashtype = 0;
1088
1089 /*
1090 * Erase the player sprite.
1091 */
1092 if (ds->player_bg_saved) {
1093 assert(ds->player_background);
1094 blitter_load(dr, ds->player_background, ds->pbgx, ds->pbgy);
1095 draw_update(dr, ds->pbgx, ds->pbgy, TILESIZE, TILESIZE);
1096 ds->player_bg_saved = FALSE;
1097 }
1098
1099 /*
1100 * Initialise a fresh drawstate.
1101 */
1102 if (!ds->started) {
1103 int wid, ht;
1104
1105 /*
1106 * Blank out the window initially.
1107 */
1108 game_compute_size(&ds->p, TILESIZE, &wid, &ht);
1109 draw_rect(dr, 0, 0, wid, ht, COL_BACKGROUND);
1110 draw_update(dr, 0, 0, wid, ht);
1111
1112 /*
1113 * Draw the grid lines.
1114 */
1115 for (y = 0; y <= h; y++)
1116 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y),
1117 COL_LOWLIGHT);
1118 for (x = 0; x <= w; x++)
1119 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h),
1120 COL_LOWLIGHT);
1121
1122 ds->started = TRUE;
1123 }
1124
1125 /*
1126 * If we're in the process of animating a move, let's start by
1127 * working out how far the player has moved from their _older_
1128 * state.
1129 */
1130 if (oldstate) {
1131 ap = animtime / ui->anim_length;
1132 player_dist = ap * (dir > 0 ? state : oldstate)->distance_moved;
1133 } else {
1134 player_dist = 0;
1135 ap = 0.0F;
1136 }
1137
1138 /*
1139 * Draw the grid contents.
1140 *
1141 * We count the gems as we go round this loop, for the purposes
1142 * of the status bar. Of course we have a gems counter in the
1143 * game_state already, but if we do the counting in this loop
1144 * then it tracks gems being picked up in a sliding move, and
1145 * updates one by one.
1146 */
1147 gems = 0;
1148 for (y = 0; y < h; y++)
1149 for (x = 0; x < w; x++) {
1150 unsigned short v = (unsigned char)state->grid[y*w+x];
1151
1152 /*
1153 * Special case: if the player is in the process of
1154 * moving over a gem, we draw the gem iff they haven't
1155 * gone past it yet.
1156 */
1157 if (oldstate && oldstate->grid[y*w+x] != state->grid[y*w+x]) {
1158 /*
1159 * Compute the distance from this square to the
1160 * original player position.
1161 */
1162 int dist = max(abs(x - oldstate->px), abs(y - oldstate->py));
1163
1164 /*
1165 * If the player has reached here, use the new grid
1166 * element. Otherwise use the old one.
1167 */
1168 if (player_dist < dist)
1169 v = oldstate->grid[y*w+x];
1170 else
1171 v = state->grid[y*w+x];
1172 }
1173
1174 /*
1175 * Special case: erase the mine the dead player is
1176 * sitting on. Only at the end of the move.
1177 */
1178 if (v == MINE && !oldstate && state->dead &&
1179 x == state->px && y == state->py)
1180 v = BLANK;
1181
1182 if (v == GEM)
1183 gems++;
1184
1185 v |= flashtype;
1186
1187 if (ds->grid[y*w+x] != v) {
1188 draw_tile(dr, ds, x, y, v);
1189 ds->grid[y*w+x] = v;
1190 }
1191 }
1192
1193 /*
1194 * Gem counter in the status bar. We replace it with
1195 * `COMPLETED!' when it reaches zero ... or rather, when the
1196 * _current state_'s gem counter is zero. (Thus, `Gems: 0' is
1197 * shown between the collection of the last gem and the
1198 * completion of the move animation that did it.)
1199 */
1200 if (state->dead && (!oldstate || oldstate->dead))
1201 sprintf(status, "DEAD!");
1202 else if (state->gems || (oldstate && oldstate->gems))
1203 sprintf(status, "Gems: %d", gems);
1204 else
1205 sprintf(status, "COMPLETED!");
1206 /* We subtract one from the visible death counter if we're still
1207 * animating the move at the end of which the death took place. */
1208 deaths = ui->deaths;
1209 if (oldstate && ui->just_died) {
1210 assert(deaths > 0);
1211 deaths--;
1212 }
1213 if (deaths)
1214 sprintf(status + strlen(status), " Deaths: %d", deaths);
1215 status_bar(dr, status);
1216
1217 /*
1218 * Draw the player sprite.
1219 */
1220 assert(!ds->player_bg_saved);
1221 assert(ds->player_background);
1222 {
1223 int ox, oy, nx, ny;
1224 nx = COORD(state->px);
1225 ny = COORD(state->py);
1226 if (oldstate) {
1227 ox = COORD(oldstate->px);
1228 oy = COORD(oldstate->py);
1229 } else {
1230 ox = nx;
1231 oy = ny;
1232 }
1233 ds->pbgx = ox + ap * (nx - ox);
1234 ds->pbgy = oy + ap * (ny - oy);
1235 }
1236 blitter_save(dr, ds->player_background, ds->pbgx, ds->pbgy);
1237 draw_player(dr, ds, ds->pbgx, ds->pbgy, (state->dead && !oldstate));
1238 ds->player_bg_saved = TRUE;
1239 }
1240
1241 static float game_anim_length(game_state *oldstate, game_state *newstate,
1242 int dir, game_ui *ui)
1243 {
1244 int dist;
1245 if (dir > 0)
1246 dist = newstate->distance_moved;
1247 else
1248 dist = oldstate->distance_moved;
1249 ui->anim_length = sqrt(dist) * BASE_ANIM_LENGTH;
1250 return ui->anim_length;
1251 }
1252
1253 static float game_flash_length(game_state *oldstate, game_state *newstate,
1254 int dir, game_ui *ui)
1255 {
1256 if (!oldstate->dead && newstate->dead) {
1257 ui->flashtype = FLASH_DEAD;
1258 return FLASH_LENGTH;
1259 } else if (oldstate->gems && !newstate->gems) {
1260 ui->flashtype = FLASH_WIN;
1261 return FLASH_LENGTH;
1262 }
1263 return 0.0F;
1264 }
1265
1266 static int game_wants_statusbar(void)
1267 {
1268 return TRUE;
1269 }
1270
1271 static int game_timing_state(game_state *state, game_ui *ui)
1272 {
1273 return TRUE;
1274 }
1275
1276 static void game_print_size(game_params *params, float *x, float *y)
1277 {
1278 }
1279
1280 static void game_print(drawing *dr, game_state *state, int tilesize)
1281 {
1282 }
1283
1284 #ifdef COMBINED
1285 #define thegame inertia
1286 #endif
1287
1288 const struct game thegame = {
1289 "Inertia", "games.inertia",
1290 default_params,
1291 game_fetch_preset,
1292 decode_params,
1293 encode_params,
1294 free_params,
1295 dup_params,
1296 TRUE, game_configure, custom_params,
1297 validate_params,
1298 new_game_desc,
1299 validate_desc,
1300 new_game,
1301 dup_game,
1302 free_game,
1303 FALSE, solve_game,
1304 FALSE, game_text_format,
1305 new_ui,
1306 free_ui,
1307 encode_ui,
1308 decode_ui,
1309 game_changed_state,
1310 interpret_move,
1311 execute_move,
1312 PREFERRED_TILESIZE, game_compute_size, game_set_size,
1313 game_colours,
1314 game_new_drawstate,
1315 game_free_drawstate,
1316 game_redraw,
1317 game_anim_length,
1318 game_flash_length,
1319 FALSE, FALSE, game_print_size, game_print,
1320 game_wants_statusbar,
1321 FALSE, game_timing_state,
1322 0, /* mouse_priorities */
1323 };