Richard B's utterly evil `netslide': cross between Net and Sixteen.
[sgt/puzzles] / netslide.c
1 /*
2 * netslide.c: cross between Net and Sixteen, courtesy of Richard
3 * Boulton.
4 */
5
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <assert.h>
10 #include <ctype.h>
11 #include <math.h>
12
13 #include "puzzles.h"
14 #include "tree234.h"
15
16 const char *const game_name = "Netslide";
17 const int game_can_configure = TRUE;
18
19 #define PI 3.141592653589793238462643383279502884197169399
20
21 #define MATMUL(xr,yr,m,x,y) do { \
22 float rx, ry, xx = (x), yy = (y), *mat = (m); \
23 rx = mat[0] * xx + mat[2] * yy; \
24 ry = mat[1] * xx + mat[3] * yy; \
25 (xr) = rx; (yr) = ry; \
26 } while (0)
27
28 /* Direction and other bitfields */
29 #define R 0x01
30 #define U 0x02
31 #define L 0x04
32 #define D 0x08
33 #define FLASHING 0x10
34 #define ACTIVE 0x20
35 /* Corner flags go in the barriers array */
36 #define RU 0x10
37 #define UL 0x20
38 #define LD 0x40
39 #define DR 0x80
40
41 /* Get tile at given coordinate */
42 #define T(state, x, y) ( (y) * (state)->width + (x) )
43
44 /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
45 #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
46 #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
47 #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
48 #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
49 ((n)&3) == 1 ? A(x) : \
50 ((n)&3) == 2 ? F(x) : C(x) )
51
52 /* X and Y displacements */
53 #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
54 #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
55
56 /* Bit count */
57 #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
58 (((x) & 0x02) >> 1) + ((x) & 0x01) )
59
60 #define TILE_SIZE 48
61 #define BORDER TILE_SIZE
62 #define TILE_BORDER 1
63 #define WINDOW_OFFSET 0
64
65 #define ANIM_TIME 0.13F
66 #define FLASH_FRAME 0.07F
67
68 enum {
69 COL_BACKGROUND,
70 COL_FLASHING,
71 COL_BORDER,
72 COL_WIRE,
73 COL_ENDPOINT,
74 COL_POWERED,
75 COL_BARRIER,
76 COL_LOWLIGHT,
77 COL_TEXT,
78 NCOLOURS
79 };
80
81 struct game_params {
82 int width;
83 int height;
84 int wrapping;
85 float barrier_probability;
86 };
87
88 struct game_state {
89 int width, height, cx, cy, wrapping, completed;
90 int move_count;
91
92 /* position (row or col number, starting at 0) of last move. */
93 int last_move_row, last_move_col;
94
95 /* direction of last move: +1 or -1 */
96 int last_move_dir;
97
98 unsigned char *tiles;
99 unsigned char *barriers;
100 };
101
102 #define OFFSET(x2,y2,x1,y1,dir,state) \
103 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
104 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
105
106 #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
107 #define tile(state, x, y) index(state, (state)->tiles, x, y)
108 #define barrier(state, x, y) index(state, (state)->barriers, x, y)
109
110 struct xyd {
111 int x, y, direction;
112 };
113
114 static int xyd_cmp(void *av, void *bv) {
115 struct xyd *a = (struct xyd *)av;
116 struct xyd *b = (struct xyd *)bv;
117 if (a->x < b->x)
118 return -1;
119 if (a->x > b->x)
120 return +1;
121 if (a->y < b->y)
122 return -1;
123 if (a->y > b->y)
124 return +1;
125 if (a->direction < b->direction)
126 return -1;
127 if (a->direction > b->direction)
128 return +1;
129 return 0;
130 };
131
132 static struct xyd *new_xyd(int x, int y, int direction)
133 {
134 struct xyd *xyd = snew(struct xyd);
135 xyd->x = x;
136 xyd->y = y;
137 xyd->direction = direction;
138 return xyd;
139 }
140
141 void slide_col(game_state *state, int dir, int col);
142 void slide_row(game_state *state, int dir, int row);
143
144 /* ----------------------------------------------------------------------
145 * Manage game parameters.
146 */
147 game_params *default_params(void)
148 {
149 game_params *ret = snew(game_params);
150
151 ret->width = 3;
152 ret->height = 3;
153 ret->wrapping = FALSE;
154 ret->barrier_probability = 1.0;
155
156 return ret;
157 }
158
159 int game_fetch_preset(int i, char **name, game_params **params)
160 {
161 game_params *ret;
162 char str[80];
163 static const struct { int x, y, wrap, bprob; const char* desc; } values[] = {
164 {3, 3, FALSE, 1.0, " easy"},
165 {3, 3, FALSE, 0.0, " medium"},
166 {3, 3, TRUE, 0.0, " hard"},
167 {4, 4, FALSE, 1.0, " easy"},
168 {4, 4, FALSE, 0.0, " medium"},
169 {4, 4, TRUE, 0.0, " hard"},
170 {5, 5, FALSE, 1.0, " easy"},
171 {5, 5, FALSE, 0.0, " medium"},
172 {5, 5, TRUE, 0.0, " hard"},
173 };
174
175 if (i < 0 || i >= lenof(values))
176 return FALSE;
177
178 ret = snew(game_params);
179 ret->width = values[i].x;
180 ret->height = values[i].y;
181 ret->wrapping = values[i].wrap;
182 ret->barrier_probability = values[i].bprob;
183
184 sprintf(str, "%dx%d%s", ret->width, ret->height,
185 values[i].desc);
186
187 *name = dupstr(str);
188 *params = ret;
189 return TRUE;
190 }
191
192 void free_params(game_params *params)
193 {
194 sfree(params);
195 }
196
197 game_params *dup_params(game_params *params)
198 {
199 game_params *ret = snew(game_params);
200 *ret = *params; /* structure copy */
201 return ret;
202 }
203
204 game_params *decode_params(char const *string)
205 {
206 game_params *ret = default_params();
207 char const *p = string;
208
209 ret->wrapping = FALSE;
210 ret->barrier_probability = 0.0;
211
212 ret->width = atoi(p);
213 while (*p && isdigit(*p)) p++;
214 if (*p == 'x') {
215 p++;
216 ret->height = atoi(p);
217 while (*p && isdigit(*p)) p++;
218 if ( (ret->wrapping = (*p == 'w')) != 0 )
219 p++;
220 if (*p == 'b')
221 ret->barrier_probability = atof(p+1);
222 } else {
223 ret->height = ret->width;
224 }
225
226 return ret;
227 }
228
229 char *encode_params(game_params *params)
230 {
231 char ret[400];
232 int len;
233
234 len = sprintf(ret, "%dx%d", params->width, params->height);
235 if (params->wrapping)
236 ret[len++] = 'w';
237 if (params->barrier_probability)
238 len += sprintf(ret+len, "b%g", params->barrier_probability);
239 assert(len < lenof(ret));
240 ret[len] = '\0';
241
242 return dupstr(ret);
243 }
244
245 config_item *game_configure(game_params *params)
246 {
247 config_item *ret;
248 char buf[80];
249
250 ret = snewn(5, config_item);
251
252 ret[0].name = "Width";
253 ret[0].type = C_STRING;
254 sprintf(buf, "%d", params->width);
255 ret[0].sval = dupstr(buf);
256 ret[0].ival = 0;
257
258 ret[1].name = "Height";
259 ret[1].type = C_STRING;
260 sprintf(buf, "%d", params->height);
261 ret[1].sval = dupstr(buf);
262 ret[1].ival = 0;
263
264 ret[2].name = "Walls wrap around";
265 ret[2].type = C_BOOLEAN;
266 ret[2].sval = NULL;
267 ret[2].ival = params->wrapping;
268
269 ret[3].name = "Barrier probability";
270 ret[3].type = C_STRING;
271 sprintf(buf, "%g", params->barrier_probability);
272 ret[3].sval = dupstr(buf);
273 ret[3].ival = 0;
274
275 ret[4].name = NULL;
276 ret[4].type = C_END;
277 ret[4].sval = NULL;
278 ret[4].ival = 0;
279
280 return ret;
281 }
282
283 game_params *custom_params(config_item *cfg)
284 {
285 game_params *ret = snew(game_params);
286
287 ret->width = atoi(cfg[0].sval);
288 ret->height = atoi(cfg[1].sval);
289 ret->wrapping = cfg[2].ival;
290 ret->barrier_probability = (float)atof(cfg[3].sval);
291
292 return ret;
293 }
294
295 char *validate_params(game_params *params)
296 {
297 if (params->width <= 1 && params->height <= 1)
298 return "Width and height must both be greater than one";
299 if (params->width <= 1)
300 return "Width must be greater than one";
301 if (params->height <= 1)
302 return "Height must be greater than one";
303 if (params->barrier_probability < 0)
304 return "Barrier probability may not be negative";
305 if (params->barrier_probability > 1)
306 return "Barrier probability may not be greater than 1";
307 return NULL;
308 }
309
310 /* ----------------------------------------------------------------------
311 * Randomly select a new game seed.
312 */
313
314 char *new_game_seed(game_params *params, random_state *rs)
315 {
316 /*
317 * The full description of a Net game is far too large to
318 * encode directly in the seed, so by default we'll have to go
319 * for the simple approach of providing a random-number seed.
320 *
321 * (This does not restrict me from _later on_ inventing a seed
322 * string syntax which can never be generated by this code -
323 * for example, strings beginning with a letter - allowing me
324 * to type in a precise game, and have new_game detect it and
325 * understand it and do something completely different.)
326 */
327 char buf[40];
328 sprintf(buf, "%lu", random_bits(rs, 32));
329 return dupstr(buf);
330 }
331
332 char *validate_seed(game_params *params, char *seed)
333 {
334 /*
335 * Since any string at all will suffice to seed the RNG, there
336 * is no validation required.
337 */
338 return NULL;
339 }
340
341 /* ----------------------------------------------------------------------
342 * Construct an initial game state, given a seed and parameters.
343 */
344
345 game_state *new_game(game_params *params, char *seed)
346 {
347 random_state *rs;
348 game_state *state;
349 tree234 *possibilities, *barriers;
350 int w, h, x, y, nbarriers;
351
352 assert(params->width > 0 && params->height > 0);
353 assert(params->width > 1 || params->height > 1);
354
355 /*
356 * Create a blank game state.
357 */
358 state = snew(game_state);
359 w = state->width = params->width;
360 h = state->height = params->height;
361 state->cx = state->width / 2;
362 state->cy = state->height / 2;
363 state->wrapping = params->wrapping;
364 state->completed = 0;
365 state->move_count = 0;
366 state->last_move_row = -1;
367 state->last_move_col = -1;
368 state->last_move_dir = 0;
369 state->tiles = snewn(state->width * state->height, unsigned char);
370 memset(state->tiles, 0, state->width * state->height);
371 state->barriers = snewn(state->width * state->height, unsigned char);
372 memset(state->barriers, 0, state->width * state->height);
373
374 /*
375 * Set up border barriers if this is a non-wrapping game.
376 */
377 if (!state->wrapping) {
378 for (x = 0; x < state->width; x++) {
379 barrier(state, x, 0) |= U;
380 barrier(state, x, state->height-1) |= D;
381 }
382 for (y = 0; y < state->height; y++) {
383 barrier(state, 0, y) |= L;
384 barrier(state, state->width-1, y) |= R;
385 }
386 }
387
388 /*
389 * Seed the internal random number generator.
390 */
391 rs = random_init(seed, strlen(seed));
392
393 /*
394 * Construct the unshuffled grid.
395 *
396 * To do this, we simply start at the centre point, repeatedly
397 * choose a random possibility out of the available ways to
398 * extend a used square into an unused one, and do it. After
399 * extending the third line out of a square, we remove the
400 * fourth from the possibilities list to avoid any full-cross
401 * squares (which would make the game too easy because they
402 * only have one orientation).
403 *
404 * The slightly worrying thing is the avoidance of full-cross
405 * squares. Can this cause our unsophisticated construction
406 * algorithm to paint itself into a corner, by getting into a
407 * situation where there are some unreached squares and the
408 * only way to reach any of them is to extend a T-piece into a
409 * full cross?
410 *
411 * Answer: no it can't, and here's a proof.
412 *
413 * Any contiguous group of such unreachable squares must be
414 * surrounded on _all_ sides by T-pieces pointing away from the
415 * group. (If not, then there is a square which can be extended
416 * into one of the `unreachable' ones, and so it wasn't
417 * unreachable after all.) In particular, this implies that
418 * each contiguous group of unreachable squares must be
419 * rectangular in shape (any deviation from that yields a
420 * non-T-piece next to an `unreachable' square).
421 *
422 * So we have a rectangle of unreachable squares, with T-pieces
423 * forming a solid border around the rectangle. The corners of
424 * that border must be connected (since every tile connects all
425 * the lines arriving in it), and therefore the border must
426 * form a closed loop around the rectangle.
427 *
428 * But this can't have happened in the first place, since we
429 * _know_ we've avoided creating closed loops! Hence, no such
430 * situation can ever arise, and the naive grid construction
431 * algorithm will guaranteeably result in a complete grid
432 * containing no unreached squares, no full crosses _and_ no
433 * closed loops. []
434 */
435 possibilities = newtree234(xyd_cmp);
436
437 if (state->cx+1 < state->width)
438 add234(possibilities, new_xyd(state->cx, state->cy, R));
439 if (state->cy-1 >= 0)
440 add234(possibilities, new_xyd(state->cx, state->cy, U));
441 if (state->cx-1 >= 0)
442 add234(possibilities, new_xyd(state->cx, state->cy, L));
443 if (state->cy+1 < state->height)
444 add234(possibilities, new_xyd(state->cx, state->cy, D));
445
446 while (count234(possibilities) > 0) {
447 int i;
448 struct xyd *xyd;
449 int x1, y1, d1, x2, y2, d2, d;
450
451 /*
452 * Extract a randomly chosen possibility from the list.
453 */
454 i = random_upto(rs, count234(possibilities));
455 xyd = delpos234(possibilities, i);
456 x1 = xyd->x;
457 y1 = xyd->y;
458 d1 = xyd->direction;
459 sfree(xyd);
460
461 OFFSET(x2, y2, x1, y1, d1, state);
462 d2 = F(d1);
463 #ifdef DEBUG
464 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
465 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
466 #endif
467
468 /*
469 * Make the connection. (We should be moving to an as yet
470 * unused tile.)
471 */
472 tile(state, x1, y1) |= d1;
473 assert(tile(state, x2, y2) == 0);
474 tile(state, x2, y2) |= d2;
475
476 /*
477 * If we have created a T-piece, remove its last
478 * possibility.
479 */
480 if (COUNT(tile(state, x1, y1)) == 3) {
481 struct xyd xyd1, *xydp;
482
483 xyd1.x = x1;
484 xyd1.y = y1;
485 xyd1.direction = 0x0F ^ tile(state, x1, y1);
486
487 xydp = find234(possibilities, &xyd1, NULL);
488
489 if (xydp) {
490 #ifdef DEBUG
491 printf("T-piece; removing (%d,%d,%c)\n",
492 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
493 #endif
494 del234(possibilities, xydp);
495 sfree(xydp);
496 }
497 }
498
499 /*
500 * Remove all other possibilities that were pointing at the
501 * tile we've just moved into.
502 */
503 for (d = 1; d < 0x10; d <<= 1) {
504 int x3, y3, d3;
505 struct xyd xyd1, *xydp;
506
507 OFFSET(x3, y3, x2, y2, d, state);
508 d3 = F(d);
509
510 xyd1.x = x3;
511 xyd1.y = y3;
512 xyd1.direction = d3;
513
514 xydp = find234(possibilities, &xyd1, NULL);
515
516 if (xydp) {
517 #ifdef DEBUG
518 printf("Loop avoidance; removing (%d,%d,%c)\n",
519 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
520 #endif
521 del234(possibilities, xydp);
522 sfree(xydp);
523 }
524 }
525
526 /*
527 * Add new possibilities to the list for moving _out_ of
528 * the tile we have just moved into.
529 */
530 for (d = 1; d < 0x10; d <<= 1) {
531 int x3, y3;
532
533 if (d == d2)
534 continue; /* we've got this one already */
535
536 if (!state->wrapping) {
537 if (d == U && y2 == 0)
538 continue;
539 if (d == D && y2 == state->height-1)
540 continue;
541 if (d == L && x2 == 0)
542 continue;
543 if (d == R && x2 == state->width-1)
544 continue;
545 }
546
547 OFFSET(x3, y3, x2, y2, d, state);
548
549 if (tile(state, x3, y3))
550 continue; /* this would create a loop */
551
552 #ifdef DEBUG
553 printf("New frontier; adding (%d,%d,%c)\n",
554 x2, y2, "0RU3L567D9abcdef"[d]);
555 #endif
556 add234(possibilities, new_xyd(x2, y2, d));
557 }
558 }
559 /* Having done that, we should have no possibilities remaining. */
560 assert(count234(possibilities) == 0);
561 freetree234(possibilities);
562
563 /*
564 * Now compute a list of the possible barrier locations.
565 */
566 barriers = newtree234(xyd_cmp);
567 for (y = 0; y < state->height; y++) {
568 for (x = 0; x < state->width; x++) {
569
570 if (!(tile(state, x, y) & R) &&
571 (state->wrapping || x < state->width-1))
572 add234(barriers, new_xyd(x, y, R));
573 if (!(tile(state, x, y) & D) &&
574 (state->wrapping || y < state->height-1))
575 add234(barriers, new_xyd(x, y, D));
576 }
577 }
578
579 /*
580 * Now shuffle the grid.
581 * FIXME - this simply does a set of random moves to shuffle the pieces.
582 * A better way would be to number all the pieces, generate a placement
583 * for all the numbers as for "sixteen", observing parity constraints if
584 * neccessary, and then place the pieces according to their numbering.
585 * BUT - I'm not sure if this will work, since we disallow movement of
586 * the middle row and column.
587 */
588 {
589 int i;
590 int cols = state->width - 1;
591 int rows = state->height - 1;
592 for (i = 0; i < cols * rows * 2; i++) {
593 /* Choose a direction: 0,1,2,3 = up, right, down, left. */
594 int dir = random_upto(rs, 4);
595 if (dir % 2 == 0) {
596 int col = random_upto(rs, cols);
597 if (col >= state->cx) col += 1;
598 slide_col(state, 1 - dir, col);
599 } else {
600 int row = random_upto(rs, rows);
601 if (row >= state->cy) row += 1;
602 slide_row(state, 2 - dir, row);
603 }
604 }
605 }
606
607 /*
608 * And now choose barrier locations. (We carefully do this
609 * _after_ shuffling, so that changing the barrier rate in the
610 * params while keeping the game seed the same will give the
611 * same shuffled grid and _only_ change the barrier locations.
612 * Also the way we choose barrier locations, by repeatedly
613 * choosing one possibility from the list until we have enough,
614 * is designed to ensure that raising the barrier rate while
615 * keeping the seed the same will provide a superset of the
616 * previous barrier set - i.e. if you ask for 10 barriers, and
617 * then decide that's still too hard and ask for 20, you'll get
618 * the original 10 plus 10 more, rather than getting 20 new
619 * ones and the chance of remembering your first 10.)
620 */
621 nbarriers = (int)(params->barrier_probability * count234(barriers));
622 assert(nbarriers >= 0 && nbarriers <= count234(barriers));
623
624 while (nbarriers > 0) {
625 int i;
626 struct xyd *xyd;
627 int x1, y1, d1, x2, y2, d2;
628
629 /*
630 * Extract a randomly chosen barrier from the list.
631 */
632 i = random_upto(rs, count234(barriers));
633 xyd = delpos234(barriers, i);
634
635 assert(xyd != NULL);
636
637 x1 = xyd->x;
638 y1 = xyd->y;
639 d1 = xyd->direction;
640 sfree(xyd);
641
642 OFFSET(x2, y2, x1, y1, d1, state);
643 d2 = F(d1);
644
645 barrier(state, x1, y1) |= d1;
646 barrier(state, x2, y2) |= d2;
647
648 nbarriers--;
649 }
650
651 /*
652 * Clean up the rest of the barrier list.
653 */
654 {
655 struct xyd *xyd;
656
657 while ( (xyd = delpos234(barriers, 0)) != NULL)
658 sfree(xyd);
659
660 freetree234(barriers);
661 }
662
663 /*
664 * Set up the barrier corner flags, for drawing barriers
665 * prettily when they meet.
666 */
667 for (y = 0; y < state->height; y++) {
668 for (x = 0; x < state->width; x++) {
669 int dir;
670
671 for (dir = 1; dir < 0x10; dir <<= 1) {
672 int dir2 = A(dir);
673 int x1, y1, x2, y2, x3, y3;
674 int corner = FALSE;
675
676 if (!(barrier(state, x, y) & dir))
677 continue;
678
679 if (barrier(state, x, y) & dir2)
680 corner = TRUE;
681
682 x1 = x + X(dir), y1 = y + Y(dir);
683 if (x1 >= 0 && x1 < state->width &&
684 y1 >= 0 && y1 < state->height &&
685 (barrier(state, x1, y1) & dir2))
686 corner = TRUE;
687
688 x2 = x + X(dir2), y2 = y + Y(dir2);
689 if (x2 >= 0 && x2 < state->width &&
690 y2 >= 0 && y2 < state->height &&
691 (barrier(state, x2, y2) & dir))
692 corner = TRUE;
693
694 if (corner) {
695 barrier(state, x, y) |= (dir << 4);
696 if (x1 >= 0 && x1 < state->width &&
697 y1 >= 0 && y1 < state->height)
698 barrier(state, x1, y1) |= (A(dir) << 4);
699 if (x2 >= 0 && x2 < state->width &&
700 y2 >= 0 && y2 < state->height)
701 barrier(state, x2, y2) |= (C(dir) << 4);
702 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
703 if (x3 >= 0 && x3 < state->width &&
704 y3 >= 0 && y3 < state->height)
705 barrier(state, x3, y3) |= (F(dir) << 4);
706 }
707 }
708 }
709 }
710
711 random_free(rs);
712
713 return state;
714 }
715
716 game_state *dup_game(game_state *state)
717 {
718 game_state *ret;
719
720 ret = snew(game_state);
721 ret->width = state->width;
722 ret->height = state->height;
723 ret->cx = state->cx;
724 ret->cy = state->cy;
725 ret->wrapping = state->wrapping;
726 ret->completed = state->completed;
727 ret->move_count = state->move_count;
728 ret->last_move_row = state->last_move_row;
729 ret->last_move_col = state->last_move_col;
730 ret->last_move_dir = state->last_move_dir;
731 ret->tiles = snewn(state->width * state->height, unsigned char);
732 memcpy(ret->tiles, state->tiles, state->width * state->height);
733 ret->barriers = snewn(state->width * state->height, unsigned char);
734 memcpy(ret->barriers, state->barriers, state->width * state->height);
735
736 return ret;
737 }
738
739 void free_game(game_state *state)
740 {
741 sfree(state->tiles);
742 sfree(state->barriers);
743 sfree(state);
744 }
745
746 /* ----------------------------------------------------------------------
747 * Utility routine.
748 */
749
750 /*
751 * Compute which squares are reachable from the centre square, as a
752 * quick visual aid to determining how close the game is to
753 * completion. This is also a simple way to tell if the game _is_
754 * completed - just call this function and see whether every square
755 * is marked active.
756 *
757 * squares in the moving_row and moving_col are always inactive - this
758 * is so that "current" doesn't appear to jump across moving lines.
759 */
760 static unsigned char *compute_active(game_state *state,
761 int moving_row, int moving_col)
762 {
763 unsigned char *active;
764 tree234 *todo;
765 struct xyd *xyd;
766
767 active = snewn(state->width * state->height, unsigned char);
768 memset(active, 0, state->width * state->height);
769
770 /*
771 * We only store (x,y) pairs in todo, but it's easier to reuse
772 * xyd_cmp and just store direction 0 every time.
773 */
774 todo = newtree234(xyd_cmp);
775 index(state, active, state->cx, state->cy) = ACTIVE;
776 add234(todo, new_xyd(state->cx, state->cy, 0));
777
778 while ( (xyd = delpos234(todo, 0)) != NULL) {
779 int x1, y1, d1, x2, y2, d2;
780
781 x1 = xyd->x;
782 y1 = xyd->y;
783 sfree(xyd);
784
785 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
786 OFFSET(x2, y2, x1, y1, d1, state);
787 d2 = F(d1);
788
789 /*
790 * If the next tile in this direction is connected to
791 * us, and there isn't a barrier in the way, and it
792 * isn't already marked active, then mark it active and
793 * add it to the to-examine list.
794 */
795 if ((x2 != moving_col && y2 != moving_row) &&
796 (tile(state, x1, y1) & d1) &&
797 (tile(state, x2, y2) & d2) &&
798 !(barrier(state, x1, y1) & d1) &&
799 !index(state, active, x2, y2)) {
800 index(state, active, x2, y2) = ACTIVE;
801 add234(todo, new_xyd(x2, y2, 0));
802 }
803 }
804 }
805 /* Now we expect the todo list to have shrunk to zero size. */
806 assert(count234(todo) == 0);
807 freetree234(todo);
808
809 return active;
810 }
811
812 struct game_ui {
813 int cur_x, cur_y;
814 int cur_visible;
815 };
816
817 game_ui *new_ui(game_state *state)
818 {
819 game_ui *ui = snew(game_ui);
820 ui->cur_x = state->width / 2;
821 ui->cur_y = state->height / 2;
822 ui->cur_visible = FALSE;
823
824 return ui;
825 }
826
827 void free_ui(game_ui *ui)
828 {
829 sfree(ui);
830 }
831
832 /* ----------------------------------------------------------------------
833 * Process a move.
834 */
835
836 void slide_row(game_state *state, int dir, int row)
837 {
838 int x = dir > 0 ? -1 : state->width;
839 int tx = x + dir;
840 int n = state->width - 1;
841 unsigned char endtile = state->tiles[T(state, tx, row)];
842 do {
843 x = tx;
844 tx = (x + dir + state->width) % state->width;
845 state->tiles[T(state, x, row)] = state->tiles[T(state, tx, row)];
846 } while (--n > 0);
847 state->tiles[T(state, tx, row)] = endtile;
848 }
849
850 void slide_col(game_state *state, int dir, int col)
851 {
852 int y = dir > 0 ? -1 : state->height;
853 int ty = y + dir;
854 int n = state->height - 1;
855 unsigned char endtile = state->tiles[T(state, col, ty)];
856 do {
857 y = ty;
858 ty = (y + dir + state->height) % state->height;
859 state->tiles[T(state, col, y)] = state->tiles[T(state, col, ty)];
860 } while (--n > 0);
861 state->tiles[T(state, col, ty)] = endtile;
862 }
863
864 game_state *make_move(game_state *state, game_ui *ui, int x, int y, int button)
865 {
866 int cx, cy;
867 int n, dx, dy;
868 game_state *ret;
869
870 if (button != LEFT_BUTTON && button != RIGHT_BUTTON)
871 return NULL;
872
873 cx = (x - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
874 cy = (y - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
875
876 if (cy >= 0 && cy < state->height && cy != state->cy)
877 {
878 if (cx == -1) dx = +1;
879 else if (cx == state->width) dx = -1;
880 else return NULL;
881 n = state->width;
882 dy = 0;
883 }
884 else if (cx >= 0 && cx < state->width && cx != state->cx)
885 {
886 if (cy == -1) dy = +1;
887 else if (cy == state->height) dy = -1;
888 else return NULL;
889 n = state->height;
890 dx = 0;
891 }
892 else
893 return NULL;
894
895 /* reverse direction if right hand button is pressed */
896 if (button == RIGHT_BUTTON)
897 {
898 dx = -dx;
899 dy = -dy;
900 }
901
902 ret = dup_game(state);
903
904 if (dx == 0) slide_col(ret, dy, cx);
905 else slide_row(ret, dx, cy);
906
907 ret->move_count++;
908 ret->last_move_row = dx ? cy : -1;
909 ret->last_move_col = dx ? -1 : cx;
910 ret->last_move_dir = dx + dy;
911
912 /*
913 * See if the game has been completed.
914 */
915 if (!ret->completed) {
916 unsigned char *active = compute_active(ret, -1, -1);
917 int x1, y1;
918 int complete = TRUE;
919
920 for (x1 = 0; x1 < ret->width; x1++)
921 for (y1 = 0; y1 < ret->height; y1++)
922 if (!index(ret, active, x1, y1)) {
923 complete = FALSE;
924 goto break_label; /* break out of two loops at once */
925 }
926 break_label:
927
928 sfree(active);
929
930 if (complete)
931 ret->completed = ret->move_count;
932 }
933
934 return ret;
935 }
936
937 /* ----------------------------------------------------------------------
938 * Routines for drawing the game position on the screen.
939 */
940
941 struct game_drawstate {
942 int started;
943 int width, height;
944 unsigned char *visible;
945 };
946
947 game_drawstate *game_new_drawstate(game_state *state)
948 {
949 game_drawstate *ds = snew(game_drawstate);
950
951 ds->started = FALSE;
952 ds->width = state->width;
953 ds->height = state->height;
954 ds->visible = snewn(state->width * state->height, unsigned char);
955 memset(ds->visible, 0xFF, state->width * state->height);
956
957 return ds;
958 }
959
960 void game_free_drawstate(game_drawstate *ds)
961 {
962 sfree(ds->visible);
963 sfree(ds);
964 }
965
966 void game_size(game_params *params, int *x, int *y)
967 {
968 *x = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
969 *y = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
970 }
971
972 float *game_colours(frontend *fe, game_state *state, int *ncolours)
973 {
974 float *ret;
975
976 ret = snewn(NCOLOURS * 3, float);
977 *ncolours = NCOLOURS;
978
979 /*
980 * Basic background colour is whatever the front end thinks is
981 * a sensible default.
982 */
983 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
984
985 /*
986 * Wires are black.
987 */
988 ret[COL_WIRE * 3 + 0] = 0.0F;
989 ret[COL_WIRE * 3 + 1] = 0.0F;
990 ret[COL_WIRE * 3 + 2] = 0.0F;
991
992 /*
993 * Powered wires and powered endpoints are cyan.
994 */
995 ret[COL_POWERED * 3 + 0] = 0.0F;
996 ret[COL_POWERED * 3 + 1] = 1.0F;
997 ret[COL_POWERED * 3 + 2] = 1.0F;
998
999 /*
1000 * Barriers are red.
1001 */
1002 ret[COL_BARRIER * 3 + 0] = 1.0F;
1003 ret[COL_BARRIER * 3 + 1] = 0.0F;
1004 ret[COL_BARRIER * 3 + 2] = 0.0F;
1005
1006 /*
1007 * Unpowered endpoints are blue.
1008 */
1009 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
1010 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
1011 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
1012
1013 /*
1014 * Tile borders are a darker grey than the background.
1015 */
1016 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
1017 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
1018 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
1019
1020 /*
1021 * Flashing tiles are a grey in between those two.
1022 */
1023 ret[COL_FLASHING * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
1024 ret[COL_FLASHING * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
1025 ret[COL_FLASHING * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
1026
1027 ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
1028 ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.8F;
1029 ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.8F;
1030 ret[COL_TEXT * 3 + 0] = 0.0;
1031 ret[COL_TEXT * 3 + 1] = 0.0;
1032 ret[COL_TEXT * 3 + 2] = 0.0;
1033
1034 return ret;
1035 }
1036
1037 static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
1038 int colour)
1039 {
1040 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
1041 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
1042 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
1043 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
1044 draw_line(fe, x1, y1, x2, y2, colour);
1045 }
1046
1047 static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
1048 int colour)
1049 {
1050 int mx = (x1 < x2 ? x1 : x2);
1051 int my = (y1 < y2 ? y1 : y2);
1052 int dx = (x2 + x1 - 2*mx + 1);
1053 int dy = (y2 + y1 - 2*my + 1);
1054
1055 draw_rect(fe, mx, my, dx, dy, colour);
1056 }
1057
1058 static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
1059 {
1060 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1061 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1062 int x1, y1, dx, dy, dir2;
1063
1064 dir >>= 4;
1065
1066 dir2 = A(dir);
1067 dx = X(dir) + X(dir2);
1068 dy = Y(dir) + Y(dir2);
1069 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1070 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1071
1072 if (phase == 0) {
1073 draw_rect_coords(fe, bx+x1, by+y1,
1074 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
1075 COL_WIRE);
1076 draw_rect_coords(fe, bx+x1, by+y1,
1077 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
1078 COL_WIRE);
1079 } else {
1080 draw_rect_coords(fe, bx+x1, by+y1,
1081 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
1082 COL_BARRIER);
1083 }
1084 }
1085
1086 static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
1087 {
1088 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1089 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1090 int x1, y1, w, h;
1091
1092 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
1093 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
1094 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1095 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1096
1097 if (phase == 0) {
1098 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
1099 } else {
1100 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
1101 }
1102 }
1103
1104 static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
1105 float xshift, float yshift)
1106 {
1107 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x + (xshift * TILE_SIZE);
1108 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y + (yshift * TILE_SIZE);
1109 float cx, cy, ex, ey;
1110 int dir, col;
1111
1112 /*
1113 * When we draw a single tile, we must draw everything up to
1114 * and including the borders around the tile. This means that
1115 * if the neighbouring tiles have connections to those borders,
1116 * we must draw those connections on the borders themselves.
1117 *
1118 * This would be terribly fiddly if we ever had to draw a tile
1119 * while its neighbour was in mid-rotate, because we'd have to
1120 * arrange to _know_ that the neighbour was being rotated and
1121 * hence had an anomalous effect on the redraw of this tile.
1122 * Fortunately, the drawing algorithm avoids ever calling us in
1123 * this circumstance: we're either drawing lots of straight
1124 * tiles at game start or after a move is complete, or we're
1125 * repeatedly drawing only the rotating tile. So no problem.
1126 */
1127
1128 /*
1129 * So. First blank the tile out completely: draw a big
1130 * rectangle in border colour, and a smaller rectangle in
1131 * background colour to fill it in.
1132 */
1133 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
1134 COL_BORDER);
1135 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
1136 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
1137 tile & FLASHING ? COL_FLASHING : COL_BACKGROUND);
1138
1139 /*
1140 * Draw the wires.
1141 */
1142 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
1143 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
1144 for (dir = 1; dir < 0x10; dir <<= 1) {
1145 if (tile & dir) {
1146 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1147 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1148 draw_thick_line(fe, bx+(int)cx, by+(int)cy,
1149 bx+(int)(cx+ex), by+(int)(cy+ey),
1150 COL_WIRE);
1151 }
1152 }
1153 for (dir = 1; dir < 0x10; dir <<= 1) {
1154 if (tile & dir) {
1155 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1156 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1157 draw_line(fe, bx+(int)cx, by+(int)cy,
1158 bx+(int)(cx+ex), by+(int)(cy+ey), col);
1159 }
1160 }
1161
1162 /*
1163 * Draw the box in the middle. We do this in blue if the tile
1164 * is an unpowered endpoint, in cyan if the tile is a powered
1165 * endpoint, in black if the tile is the centrepiece, and
1166 * otherwise not at all.
1167 */
1168 col = -1;
1169 if (x == state->cx && y == state->cy)
1170 col = COL_WIRE;
1171 else if (COUNT(tile) == 1) {
1172 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
1173 }
1174 if (col >= 0) {
1175 int i, points[8];
1176
1177 points[0] = +1; points[1] = +1;
1178 points[2] = +1; points[3] = -1;
1179 points[4] = -1; points[5] = -1;
1180 points[6] = -1; points[7] = +1;
1181
1182 for (i = 0; i < 8; i += 2) {
1183 ex = (TILE_SIZE * 0.24F) * points[i];
1184 ey = (TILE_SIZE * 0.24F) * points[i+1];
1185 points[i] = bx+(int)(cx+ex);
1186 points[i+1] = by+(int)(cy+ey);
1187 }
1188
1189 draw_polygon(fe, points, 4, TRUE, col);
1190 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
1191 }
1192
1193 /*
1194 * Draw the points on the border if other tiles are connected
1195 * to us.
1196 */
1197 for (dir = 1; dir < 0x10; dir <<= 1) {
1198 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
1199
1200 dx = X(dir);
1201 dy = Y(dir);
1202
1203 ox = x + dx;
1204 oy = y + dy;
1205
1206 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
1207 continue;
1208
1209 if (!(tile(state, ox, oy) & F(dir)))
1210 continue;
1211
1212 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
1213 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
1214 lx = dx * (TILE_BORDER-1);
1215 ly = dy * (TILE_BORDER-1);
1216 vx = (dy ? 1 : 0);
1217 vy = (dx ? 1 : 0);
1218
1219 if (xshift == 0.0 && yshift == 0.0 && (tile & dir)) {
1220 /*
1221 * If we are fully connected to the other tile, we must
1222 * draw right across the tile border. (We can use our
1223 * own ACTIVE state to determine what colour to do this
1224 * in: if we are fully connected to the other tile then
1225 * the two ACTIVE states will be the same.)
1226 */
1227 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
1228 draw_rect_coords(fe, px, py, px+lx, py+ly,
1229 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
1230 } else {
1231 /*
1232 * The other tile extends into our border, but isn't
1233 * actually connected to us. Just draw a single black
1234 * dot.
1235 */
1236 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
1237 }
1238 }
1239
1240 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1241 }
1242
1243 static void draw_tile_barriers(frontend *fe, game_state *state, int x, int y)
1244 {
1245 int phase;
1246 int dir;
1247 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1248 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1249 /*
1250 * Draw barrier corners, and then barriers.
1251 */
1252 for (phase = 0; phase < 2; phase++) {
1253 for (dir = 1; dir < 0x10; dir <<= 1)
1254 if (barrier(state, x, y) & (dir << 4))
1255 draw_barrier_corner(fe, x, y, dir << 4, phase);
1256 for (dir = 1; dir < 0x10; dir <<= 1)
1257 if (barrier(state, x, y) & dir)
1258 draw_barrier(fe, x, y, dir, phase);
1259 }
1260
1261 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1262 }
1263
1264 static void draw_arrow(frontend *fe, int x, int y, int xdx, int xdy)
1265 {
1266 int coords[14];
1267 int ydy = -xdx, ydx = xdy;
1268
1269 x = x * TILE_SIZE + BORDER + WINDOW_OFFSET;
1270 y = y * TILE_SIZE + BORDER + WINDOW_OFFSET;
1271
1272 #define POINT(n, xx, yy) ( \
1273 coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \
1274 coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy)
1275
1276 POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */
1277 POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */
1278 POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */
1279 POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */
1280 POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */
1281 POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */
1282 POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */
1283
1284 draw_polygon(fe, coords, 7, TRUE, COL_LOWLIGHT);
1285 draw_polygon(fe, coords, 7, FALSE, COL_TEXT);
1286 }
1287
1288 void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1289 game_state *state, game_ui *ui, float t, float ft)
1290 {
1291 int x, y, tx, ty, frame;
1292 unsigned char *active;
1293 float xshift = 0.0;
1294 float yshift = 0.0;
1295
1296 /*
1297 * Clear the screen and draw the exterior barrier lines if this
1298 * is our first call.
1299 */
1300 if (!ds->started) {
1301 int phase;
1302
1303 ds->started = TRUE;
1304
1305 draw_rect(fe, 0, 0,
1306 BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1307 BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1308 COL_BACKGROUND);
1309 draw_update(fe, 0, 0,
1310 BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1311 BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1312
1313 for (phase = 0; phase < 2; phase++) {
1314
1315 for (x = 0; x < ds->width; x++) {
1316 if (barrier(state, x, 0) & UL)
1317 draw_barrier_corner(fe, x, -1, LD, phase);
1318 if (barrier(state, x, 0) & RU)
1319 draw_barrier_corner(fe, x, -1, DR, phase);
1320 if (barrier(state, x, 0) & U)
1321 draw_barrier(fe, x, -1, D, phase);
1322 if (barrier(state, x, ds->height-1) & DR)
1323 draw_barrier_corner(fe, x, ds->height, RU, phase);
1324 if (barrier(state, x, ds->height-1) & LD)
1325 draw_barrier_corner(fe, x, ds->height, UL, phase);
1326 if (barrier(state, x, ds->height-1) & D)
1327 draw_barrier(fe, x, ds->height, U, phase);
1328 }
1329
1330 for (y = 0; y < ds->height; y++) {
1331 if (barrier(state, 0, y) & UL)
1332 draw_barrier_corner(fe, -1, y, RU, phase);
1333 if (barrier(state, 0, y) & LD)
1334 draw_barrier_corner(fe, -1, y, DR, phase);
1335 if (barrier(state, 0, y) & L)
1336 draw_barrier(fe, -1, y, R, phase);
1337 if (barrier(state, ds->width-1, y) & RU)
1338 draw_barrier_corner(fe, ds->width, y, UL, phase);
1339 if (barrier(state, ds->width-1, y) & DR)
1340 draw_barrier_corner(fe, ds->width, y, LD, phase);
1341 if (barrier(state, ds->width-1, y) & R)
1342 draw_barrier(fe, ds->width, y, L, phase);
1343 }
1344 }
1345
1346 /*
1347 * Arrows for making moves.
1348 */
1349 for (x = 0; x < ds->width; x++) {
1350 if (x == state->cx) continue;
1351 draw_arrow(fe, x, 0, +1, 0);
1352 draw_arrow(fe, x+1, ds->height, -1, 0);
1353 }
1354 for (y = 0; y < ds->height; y++) {
1355 if (y == state->cy) continue;
1356 draw_arrow(fe, ds->width, y, 0, +1);
1357 draw_arrow(fe, 0, y+1, 0, -1);
1358 }
1359 }
1360
1361 /* Check if this is an undo. If so, we will need to run any animation
1362 * backwards.
1363 */
1364 if (oldstate && oldstate->move_count > state->move_count) {
1365 game_state * tmpstate = state;
1366 state = oldstate;
1367 oldstate = tmpstate;
1368 t = ANIM_TIME - t;
1369 }
1370
1371 tx = ty = -1;
1372 if (oldstate && (t < ANIM_TIME)) {
1373 /*
1374 * We're animating a slide, of row/column number
1375 * state->last_move_pos, in direction
1376 * state->last_move_dir
1377 */
1378 xshift = state->last_move_row == -1 ? 0.0 :
1379 (1 - t / ANIM_TIME) * state->last_move_dir;
1380 yshift = state->last_move_col == -1 ? 0.0 :
1381 (1 - t / ANIM_TIME) * state->last_move_dir;
1382 }
1383
1384 frame = -1;
1385 if (ft > 0) {
1386 /*
1387 * We're animating a completion flash. Find which frame
1388 * we're at.
1389 */
1390 frame = (int)(ft / FLASH_FRAME);
1391 }
1392
1393 /*
1394 * Draw any tile which differs from the way it was last drawn.
1395 */
1396 if (xshift != 0.0 || yshift != 0.0) {
1397 active = compute_active(state,
1398 state->last_move_row, state->last_move_col);
1399 } else {
1400 active = compute_active(state, -1, -1);
1401 }
1402
1403 clip(fe,
1404 BORDER + WINDOW_OFFSET, BORDER + WINDOW_OFFSET,
1405 TILE_SIZE * state->width + TILE_BORDER,
1406 TILE_SIZE * state->height + TILE_BORDER);
1407
1408 for (x = 0; x < ds->width; x++)
1409 for (y = 0; y < ds->height; y++) {
1410 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1411
1412 /*
1413 * In a completion flash, we adjust the FLASHING bit
1414 * depending on our distance from the centre point and
1415 * the frame number.
1416 */
1417 if (frame >= 0) {
1418 int xdist, ydist, dist;
1419 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1420 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1421 dist = (xdist > ydist ? xdist : ydist);
1422
1423 if (frame >= dist && frame < dist+4) {
1424 int flash = (frame - dist) & 1;
1425 flash = flash ? FLASHING : 0;
1426 c = (c &~ FLASHING) | flash;
1427 }
1428 }
1429
1430 if (index(state, ds->visible, x, y) != c ||
1431 index(state, ds->visible, x, y) == 0xFF ||
1432 (x == state->last_move_col || y == state->last_move_row))
1433 {
1434 float xs = (y == state->last_move_row ? xshift : 0.0);
1435 float ys = (x == state->last_move_col ? yshift : 0.0);
1436
1437 draw_tile(fe, state, x, y, c, xs, ys);
1438 if (xs < 0 && x == 0)
1439 draw_tile(fe, state, state->width, y, c, xs, ys);
1440 else if (xs > 0 && x == state->width - 1)
1441 draw_tile(fe, state, -1, y, c, xs, ys);
1442 else if (ys < 0 && y == 0)
1443 draw_tile(fe, state, x, state->height, c, xs, ys);
1444 else if (ys > 0 && y == state->height - 1)
1445 draw_tile(fe, state, x, -1, c, xs, ys);
1446
1447 if (x == state->last_move_col || y == state->last_move_row)
1448 index(state, ds->visible, x, y) = 0xFF;
1449 else
1450 index(state, ds->visible, x, y) = c;
1451 }
1452 }
1453
1454 for (x = 0; x < ds->width; x++)
1455 for (y = 0; y < ds->height; y++)
1456 draw_tile_barriers(fe, state, x, y);
1457
1458 unclip(fe);
1459
1460 /*
1461 * Update the status bar.
1462 */
1463 {
1464 char statusbuf[256];
1465 int i, n, a;
1466
1467 n = state->width * state->height;
1468 for (i = a = 0; i < n; i++)
1469 if (active[i])
1470 a++;
1471
1472 sprintf(statusbuf, "%sMoves: %d Active: %d/%d",
1473 (state->completed ? "COMPLETED! " : ""),
1474 (state->completed ? state->completed : state->move_count),
1475 a, n);
1476
1477 status_bar(fe, statusbuf);
1478 }
1479
1480 sfree(active);
1481 }
1482
1483 float game_anim_length(game_state *oldstate, game_state *newstate)
1484 {
1485 return ANIM_TIME;
1486 }
1487
1488 float game_flash_length(game_state *oldstate, game_state *newstate)
1489 {
1490 /*
1491 * If the game has just been completed, we display a completion
1492 * flash.
1493 */
1494 if (!oldstate->completed && newstate->completed) {
1495 int size;
1496 size = 0;
1497 if (size < newstate->cx+1)
1498 size = newstate->cx+1;
1499 if (size < newstate->cy+1)
1500 size = newstate->cy+1;
1501 if (size < newstate->width - newstate->cx)
1502 size = newstate->width - newstate->cx;
1503 if (size < newstate->height - newstate->cy)
1504 size = newstate->height - newstate->cy;
1505 return FLASH_FRAME * (size+4);
1506 }
1507
1508 return 0.0F;
1509 }
1510
1511 int game_wants_statusbar(void)
1512 {
1513 return TRUE;
1514 }