Introduce the concept of a `game_aux_info' structure. This is
[sgt/puzzles] / netslide.c
1 /*
2 * netslide.c: cross between Net and Sixteen, courtesy of Richard
3 * Boulton.
4 */
5
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <assert.h>
10 #include <ctype.h>
11 #include <math.h>
12
13 #include "puzzles.h"
14 #include "tree234.h"
15
16 #define PI 3.141592653589793238462643383279502884197169399
17
18 #define MATMUL(xr,yr,m,x,y) do { \
19 float rx, ry, xx = (x), yy = (y), *mat = (m); \
20 rx = mat[0] * xx + mat[2] * yy; \
21 ry = mat[1] * xx + mat[3] * yy; \
22 (xr) = rx; (yr) = ry; \
23 } while (0)
24
25 /* Direction and other bitfields */
26 #define R 0x01
27 #define U 0x02
28 #define L 0x04
29 #define D 0x08
30 #define FLASHING 0x10
31 #define ACTIVE 0x20
32 /* Corner flags go in the barriers array */
33 #define RU 0x10
34 #define UL 0x20
35 #define LD 0x40
36 #define DR 0x80
37
38 /* Get tile at given coordinate */
39 #define T(state, x, y) ( (y) * (state)->width + (x) )
40
41 /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
42 #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
43 #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
44 #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
45 #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
46 ((n)&3) == 1 ? A(x) : \
47 ((n)&3) == 2 ? F(x) : C(x) )
48
49 /* X and Y displacements */
50 #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
51 #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
52
53 /* Bit count */
54 #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
55 (((x) & 0x02) >> 1) + ((x) & 0x01) )
56
57 #define TILE_SIZE 48
58 #define BORDER TILE_SIZE
59 #define TILE_BORDER 1
60 #define WINDOW_OFFSET 0
61
62 #define ANIM_TIME 0.13F
63 #define FLASH_FRAME 0.07F
64
65 enum {
66 COL_BACKGROUND,
67 COL_FLASHING,
68 COL_BORDER,
69 COL_WIRE,
70 COL_ENDPOINT,
71 COL_POWERED,
72 COL_BARRIER,
73 COL_LOWLIGHT,
74 COL_TEXT,
75 NCOLOURS
76 };
77
78 struct game_params {
79 int width;
80 int height;
81 int wrapping;
82 float barrier_probability;
83 };
84
85 struct game_state {
86 int width, height, cx, cy, wrapping, completed;
87 int move_count;
88
89 /* position (row or col number, starting at 0) of last move. */
90 int last_move_row, last_move_col;
91
92 /* direction of last move: +1 or -1 */
93 int last_move_dir;
94
95 unsigned char *tiles;
96 unsigned char *barriers;
97 };
98
99 #define OFFSET(x2,y2,x1,y1,dir,state) \
100 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
101 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
102
103 #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
104 #define tile(state, x, y) index(state, (state)->tiles, x, y)
105 #define barrier(state, x, y) index(state, (state)->barriers, x, y)
106
107 struct xyd {
108 int x, y, direction;
109 };
110
111 static int xyd_cmp(void *av, void *bv) {
112 struct xyd *a = (struct xyd *)av;
113 struct xyd *b = (struct xyd *)bv;
114 if (a->x < b->x)
115 return -1;
116 if (a->x > b->x)
117 return +1;
118 if (a->y < b->y)
119 return -1;
120 if (a->y > b->y)
121 return +1;
122 if (a->direction < b->direction)
123 return -1;
124 if (a->direction > b->direction)
125 return +1;
126 return 0;
127 };
128
129 static struct xyd *new_xyd(int x, int y, int direction)
130 {
131 struct xyd *xyd = snew(struct xyd);
132 xyd->x = x;
133 xyd->y = y;
134 xyd->direction = direction;
135 return xyd;
136 }
137
138 static void slide_col(game_state *state, int dir, int col);
139 static void slide_row(game_state *state, int dir, int row);
140
141 /* ----------------------------------------------------------------------
142 * Manage game parameters.
143 */
144 static game_params *default_params(void)
145 {
146 game_params *ret = snew(game_params);
147
148 ret->width = 3;
149 ret->height = 3;
150 ret->wrapping = FALSE;
151 ret->barrier_probability = 1.0;
152
153 return ret;
154 }
155
156 static int game_fetch_preset(int i, char **name, game_params **params)
157 {
158 game_params *ret;
159 char str[80];
160 static const struct { int x, y, wrap, bprob; const char* desc; } values[] = {
161 {3, 3, FALSE, 1.0, " easy"},
162 {3, 3, FALSE, 0.0, " medium"},
163 {3, 3, TRUE, 0.0, " hard"},
164 {4, 4, FALSE, 1.0, " easy"},
165 {4, 4, FALSE, 0.0, " medium"},
166 {4, 4, TRUE, 0.0, " hard"},
167 {5, 5, FALSE, 1.0, " easy"},
168 {5, 5, FALSE, 0.0, " medium"},
169 {5, 5, TRUE, 0.0, " hard"},
170 };
171
172 if (i < 0 || i >= lenof(values))
173 return FALSE;
174
175 ret = snew(game_params);
176 ret->width = values[i].x;
177 ret->height = values[i].y;
178 ret->wrapping = values[i].wrap;
179 ret->barrier_probability = values[i].bprob;
180
181 sprintf(str, "%dx%d%s", ret->width, ret->height,
182 values[i].desc);
183
184 *name = dupstr(str);
185 *params = ret;
186 return TRUE;
187 }
188
189 static void free_params(game_params *params)
190 {
191 sfree(params);
192 }
193
194 static game_params *dup_params(game_params *params)
195 {
196 game_params *ret = snew(game_params);
197 *ret = *params; /* structure copy */
198 return ret;
199 }
200
201 static game_params *decode_params(char const *string)
202 {
203 game_params *ret = default_params();
204 char const *p = string;
205
206 ret->wrapping = FALSE;
207 ret->barrier_probability = 0.0;
208
209 ret->width = atoi(p);
210 while (*p && isdigit(*p)) p++;
211 if (*p == 'x') {
212 p++;
213 ret->height = atoi(p);
214 while (*p && isdigit(*p)) p++;
215 if ( (ret->wrapping = (*p == 'w')) != 0 )
216 p++;
217 if (*p == 'b')
218 ret->barrier_probability = atof(p+1);
219 } else {
220 ret->height = ret->width;
221 }
222
223 return ret;
224 }
225
226 static char *encode_params(game_params *params)
227 {
228 char ret[400];
229 int len;
230
231 len = sprintf(ret, "%dx%d", params->width, params->height);
232 if (params->wrapping)
233 ret[len++] = 'w';
234 if (params->barrier_probability)
235 len += sprintf(ret+len, "b%g", params->barrier_probability);
236 assert(len < lenof(ret));
237 ret[len] = '\0';
238
239 return dupstr(ret);
240 }
241
242 static config_item *game_configure(game_params *params)
243 {
244 config_item *ret;
245 char buf[80];
246
247 ret = snewn(5, config_item);
248
249 ret[0].name = "Width";
250 ret[0].type = C_STRING;
251 sprintf(buf, "%d", params->width);
252 ret[0].sval = dupstr(buf);
253 ret[0].ival = 0;
254
255 ret[1].name = "Height";
256 ret[1].type = C_STRING;
257 sprintf(buf, "%d", params->height);
258 ret[1].sval = dupstr(buf);
259 ret[1].ival = 0;
260
261 ret[2].name = "Walls wrap around";
262 ret[2].type = C_BOOLEAN;
263 ret[2].sval = NULL;
264 ret[2].ival = params->wrapping;
265
266 ret[3].name = "Barrier probability";
267 ret[3].type = C_STRING;
268 sprintf(buf, "%g", params->barrier_probability);
269 ret[3].sval = dupstr(buf);
270 ret[3].ival = 0;
271
272 ret[4].name = NULL;
273 ret[4].type = C_END;
274 ret[4].sval = NULL;
275 ret[4].ival = 0;
276
277 return ret;
278 }
279
280 static game_params *custom_params(config_item *cfg)
281 {
282 game_params *ret = snew(game_params);
283
284 ret->width = atoi(cfg[0].sval);
285 ret->height = atoi(cfg[1].sval);
286 ret->wrapping = cfg[2].ival;
287 ret->barrier_probability = (float)atof(cfg[3].sval);
288
289 return ret;
290 }
291
292 static char *validate_params(game_params *params)
293 {
294 if (params->width <= 1 && params->height <= 1)
295 return "Width and height must both be greater than one";
296 if (params->width <= 1)
297 return "Width must be greater than one";
298 if (params->height <= 1)
299 return "Height must be greater than one";
300 if (params->barrier_probability < 0)
301 return "Barrier probability may not be negative";
302 if (params->barrier_probability > 1)
303 return "Barrier probability may not be greater than 1";
304 return NULL;
305 }
306
307 /* ----------------------------------------------------------------------
308 * Randomly select a new game seed.
309 */
310
311 static char *new_game_seed(game_params *params, random_state *rs,
312 game_aux_info **aux)
313 {
314 /*
315 * The full description of a Net game is far too large to
316 * encode directly in the seed, so by default we'll have to go
317 * for the simple approach of providing a random-number seed.
318 *
319 * (This does not restrict me from _later on_ inventing a seed
320 * string syntax which can never be generated by this code -
321 * for example, strings beginning with a letter - allowing me
322 * to type in a precise game, and have new_game detect it and
323 * understand it and do something completely different.)
324 */
325 char buf[40];
326 sprintf(buf, "%lu", random_bits(rs, 32));
327 return dupstr(buf);
328 }
329
330 void game_free_aux_info(game_aux_info *aux)
331 {
332 assert(!"Shouldn't happen");
333 }
334
335 static char *validate_seed(game_params *params, char *seed)
336 {
337 /*
338 * Since any string at all will suffice to seed the RNG, there
339 * is no validation required.
340 */
341 return NULL;
342 }
343
344 /* ----------------------------------------------------------------------
345 * Construct an initial game state, given a seed and parameters.
346 */
347
348 static game_state *new_game(game_params *params, char *seed)
349 {
350 random_state *rs;
351 game_state *state;
352 tree234 *possibilities, *barriers;
353 int w, h, x, y, nbarriers;
354
355 assert(params->width > 0 && params->height > 0);
356 assert(params->width > 1 || params->height > 1);
357
358 /*
359 * Create a blank game state.
360 */
361 state = snew(game_state);
362 w = state->width = params->width;
363 h = state->height = params->height;
364 state->cx = state->width / 2;
365 state->cy = state->height / 2;
366 state->wrapping = params->wrapping;
367 state->completed = 0;
368 state->move_count = 0;
369 state->last_move_row = -1;
370 state->last_move_col = -1;
371 state->last_move_dir = 0;
372 state->tiles = snewn(state->width * state->height, unsigned char);
373 memset(state->tiles, 0, state->width * state->height);
374 state->barriers = snewn(state->width * state->height, unsigned char);
375 memset(state->barriers, 0, state->width * state->height);
376
377 /*
378 * Set up border barriers if this is a non-wrapping game.
379 */
380 if (!state->wrapping) {
381 for (x = 0; x < state->width; x++) {
382 barrier(state, x, 0) |= U;
383 barrier(state, x, state->height-1) |= D;
384 }
385 for (y = 0; y < state->height; y++) {
386 barrier(state, 0, y) |= L;
387 barrier(state, state->width-1, y) |= R;
388 }
389 }
390
391 /*
392 * Seed the internal random number generator.
393 */
394 rs = random_init(seed, strlen(seed));
395
396 /*
397 * Construct the unshuffled grid.
398 *
399 * To do this, we simply start at the centre point, repeatedly
400 * choose a random possibility out of the available ways to
401 * extend a used square into an unused one, and do it. After
402 * extending the third line out of a square, we remove the
403 * fourth from the possibilities list to avoid any full-cross
404 * squares (which would make the game too easy because they
405 * only have one orientation).
406 *
407 * The slightly worrying thing is the avoidance of full-cross
408 * squares. Can this cause our unsophisticated construction
409 * algorithm to paint itself into a corner, by getting into a
410 * situation where there are some unreached squares and the
411 * only way to reach any of them is to extend a T-piece into a
412 * full cross?
413 *
414 * Answer: no it can't, and here's a proof.
415 *
416 * Any contiguous group of such unreachable squares must be
417 * surrounded on _all_ sides by T-pieces pointing away from the
418 * group. (If not, then there is a square which can be extended
419 * into one of the `unreachable' ones, and so it wasn't
420 * unreachable after all.) In particular, this implies that
421 * each contiguous group of unreachable squares must be
422 * rectangular in shape (any deviation from that yields a
423 * non-T-piece next to an `unreachable' square).
424 *
425 * So we have a rectangle of unreachable squares, with T-pieces
426 * forming a solid border around the rectangle. The corners of
427 * that border must be connected (since every tile connects all
428 * the lines arriving in it), and therefore the border must
429 * form a closed loop around the rectangle.
430 *
431 * But this can't have happened in the first place, since we
432 * _know_ we've avoided creating closed loops! Hence, no such
433 * situation can ever arise, and the naive grid construction
434 * algorithm will guaranteeably result in a complete grid
435 * containing no unreached squares, no full crosses _and_ no
436 * closed loops. []
437 */
438 possibilities = newtree234(xyd_cmp);
439
440 if (state->cx+1 < state->width)
441 add234(possibilities, new_xyd(state->cx, state->cy, R));
442 if (state->cy-1 >= 0)
443 add234(possibilities, new_xyd(state->cx, state->cy, U));
444 if (state->cx-1 >= 0)
445 add234(possibilities, new_xyd(state->cx, state->cy, L));
446 if (state->cy+1 < state->height)
447 add234(possibilities, new_xyd(state->cx, state->cy, D));
448
449 while (count234(possibilities) > 0) {
450 int i;
451 struct xyd *xyd;
452 int x1, y1, d1, x2, y2, d2, d;
453
454 /*
455 * Extract a randomly chosen possibility from the list.
456 */
457 i = random_upto(rs, count234(possibilities));
458 xyd = delpos234(possibilities, i);
459 x1 = xyd->x;
460 y1 = xyd->y;
461 d1 = xyd->direction;
462 sfree(xyd);
463
464 OFFSET(x2, y2, x1, y1, d1, state);
465 d2 = F(d1);
466 #ifdef DEBUG
467 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
468 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
469 #endif
470
471 /*
472 * Make the connection. (We should be moving to an as yet
473 * unused tile.)
474 */
475 tile(state, x1, y1) |= d1;
476 assert(tile(state, x2, y2) == 0);
477 tile(state, x2, y2) |= d2;
478
479 /*
480 * If we have created a T-piece, remove its last
481 * possibility.
482 */
483 if (COUNT(tile(state, x1, y1)) == 3) {
484 struct xyd xyd1, *xydp;
485
486 xyd1.x = x1;
487 xyd1.y = y1;
488 xyd1.direction = 0x0F ^ tile(state, x1, y1);
489
490 xydp = find234(possibilities, &xyd1, NULL);
491
492 if (xydp) {
493 #ifdef DEBUG
494 printf("T-piece; removing (%d,%d,%c)\n",
495 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
496 #endif
497 del234(possibilities, xydp);
498 sfree(xydp);
499 }
500 }
501
502 /*
503 * Remove all other possibilities that were pointing at the
504 * tile we've just moved into.
505 */
506 for (d = 1; d < 0x10; d <<= 1) {
507 int x3, y3, d3;
508 struct xyd xyd1, *xydp;
509
510 OFFSET(x3, y3, x2, y2, d, state);
511 d3 = F(d);
512
513 xyd1.x = x3;
514 xyd1.y = y3;
515 xyd1.direction = d3;
516
517 xydp = find234(possibilities, &xyd1, NULL);
518
519 if (xydp) {
520 #ifdef DEBUG
521 printf("Loop avoidance; removing (%d,%d,%c)\n",
522 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
523 #endif
524 del234(possibilities, xydp);
525 sfree(xydp);
526 }
527 }
528
529 /*
530 * Add new possibilities to the list for moving _out_ of
531 * the tile we have just moved into.
532 */
533 for (d = 1; d < 0x10; d <<= 1) {
534 int x3, y3;
535
536 if (d == d2)
537 continue; /* we've got this one already */
538
539 if (!state->wrapping) {
540 if (d == U && y2 == 0)
541 continue;
542 if (d == D && y2 == state->height-1)
543 continue;
544 if (d == L && x2 == 0)
545 continue;
546 if (d == R && x2 == state->width-1)
547 continue;
548 }
549
550 OFFSET(x3, y3, x2, y2, d, state);
551
552 if (tile(state, x3, y3))
553 continue; /* this would create a loop */
554
555 #ifdef DEBUG
556 printf("New frontier; adding (%d,%d,%c)\n",
557 x2, y2, "0RU3L567D9abcdef"[d]);
558 #endif
559 add234(possibilities, new_xyd(x2, y2, d));
560 }
561 }
562 /* Having done that, we should have no possibilities remaining. */
563 assert(count234(possibilities) == 0);
564 freetree234(possibilities);
565
566 /*
567 * Now compute a list of the possible barrier locations.
568 */
569 barriers = newtree234(xyd_cmp);
570 for (y = 0; y < state->height; y++) {
571 for (x = 0; x < state->width; x++) {
572
573 if (!(tile(state, x, y) & R) &&
574 (state->wrapping || x < state->width-1))
575 add234(barriers, new_xyd(x, y, R));
576 if (!(tile(state, x, y) & D) &&
577 (state->wrapping || y < state->height-1))
578 add234(barriers, new_xyd(x, y, D));
579 }
580 }
581
582 /*
583 * Now shuffle the grid.
584 * FIXME - this simply does a set of random moves to shuffle the pieces.
585 * A better way would be to number all the pieces, generate a placement
586 * for all the numbers as for "sixteen", observing parity constraints if
587 * neccessary, and then place the pieces according to their numbering.
588 * BUT - I'm not sure if this will work, since we disallow movement of
589 * the middle row and column.
590 */
591 {
592 int i;
593 int cols = state->width - 1;
594 int rows = state->height - 1;
595 for (i = 0; i < cols * rows * 2; i++) {
596 /* Choose a direction: 0,1,2,3 = up, right, down, left. */
597 int dir = random_upto(rs, 4);
598 if (dir % 2 == 0) {
599 int col = random_upto(rs, cols);
600 if (col >= state->cx) col += 1;
601 slide_col(state, 1 - dir, col);
602 } else {
603 int row = random_upto(rs, rows);
604 if (row >= state->cy) row += 1;
605 slide_row(state, 2 - dir, row);
606 }
607 }
608 }
609
610 /*
611 * And now choose barrier locations. (We carefully do this
612 * _after_ shuffling, so that changing the barrier rate in the
613 * params while keeping the game seed the same will give the
614 * same shuffled grid and _only_ change the barrier locations.
615 * Also the way we choose barrier locations, by repeatedly
616 * choosing one possibility from the list until we have enough,
617 * is designed to ensure that raising the barrier rate while
618 * keeping the seed the same will provide a superset of the
619 * previous barrier set - i.e. if you ask for 10 barriers, and
620 * then decide that's still too hard and ask for 20, you'll get
621 * the original 10 plus 10 more, rather than getting 20 new
622 * ones and the chance of remembering your first 10.)
623 */
624 nbarriers = (int)(params->barrier_probability * count234(barriers));
625 assert(nbarriers >= 0 && nbarriers <= count234(barriers));
626
627 while (nbarriers > 0) {
628 int i;
629 struct xyd *xyd;
630 int x1, y1, d1, x2, y2, d2;
631
632 /*
633 * Extract a randomly chosen barrier from the list.
634 */
635 i = random_upto(rs, count234(barriers));
636 xyd = delpos234(barriers, i);
637
638 assert(xyd != NULL);
639
640 x1 = xyd->x;
641 y1 = xyd->y;
642 d1 = xyd->direction;
643 sfree(xyd);
644
645 OFFSET(x2, y2, x1, y1, d1, state);
646 d2 = F(d1);
647
648 barrier(state, x1, y1) |= d1;
649 barrier(state, x2, y2) |= d2;
650
651 nbarriers--;
652 }
653
654 /*
655 * Clean up the rest of the barrier list.
656 */
657 {
658 struct xyd *xyd;
659
660 while ( (xyd = delpos234(barriers, 0)) != NULL)
661 sfree(xyd);
662
663 freetree234(barriers);
664 }
665
666 /*
667 * Set up the barrier corner flags, for drawing barriers
668 * prettily when they meet.
669 */
670 for (y = 0; y < state->height; y++) {
671 for (x = 0; x < state->width; x++) {
672 int dir;
673
674 for (dir = 1; dir < 0x10; dir <<= 1) {
675 int dir2 = A(dir);
676 int x1, y1, x2, y2, x3, y3;
677 int corner = FALSE;
678
679 if (!(barrier(state, x, y) & dir))
680 continue;
681
682 if (barrier(state, x, y) & dir2)
683 corner = TRUE;
684
685 x1 = x + X(dir), y1 = y + Y(dir);
686 if (x1 >= 0 && x1 < state->width &&
687 y1 >= 0 && y1 < state->height &&
688 (barrier(state, x1, y1) & dir2))
689 corner = TRUE;
690
691 x2 = x + X(dir2), y2 = y + Y(dir2);
692 if (x2 >= 0 && x2 < state->width &&
693 y2 >= 0 && y2 < state->height &&
694 (barrier(state, x2, y2) & dir))
695 corner = TRUE;
696
697 if (corner) {
698 barrier(state, x, y) |= (dir << 4);
699 if (x1 >= 0 && x1 < state->width &&
700 y1 >= 0 && y1 < state->height)
701 barrier(state, x1, y1) |= (A(dir) << 4);
702 if (x2 >= 0 && x2 < state->width &&
703 y2 >= 0 && y2 < state->height)
704 barrier(state, x2, y2) |= (C(dir) << 4);
705 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
706 if (x3 >= 0 && x3 < state->width &&
707 y3 >= 0 && y3 < state->height)
708 barrier(state, x3, y3) |= (F(dir) << 4);
709 }
710 }
711 }
712 }
713
714 random_free(rs);
715
716 return state;
717 }
718
719 static game_state *dup_game(game_state *state)
720 {
721 game_state *ret;
722
723 ret = snew(game_state);
724 ret->width = state->width;
725 ret->height = state->height;
726 ret->cx = state->cx;
727 ret->cy = state->cy;
728 ret->wrapping = state->wrapping;
729 ret->completed = state->completed;
730 ret->move_count = state->move_count;
731 ret->last_move_row = state->last_move_row;
732 ret->last_move_col = state->last_move_col;
733 ret->last_move_dir = state->last_move_dir;
734 ret->tiles = snewn(state->width * state->height, unsigned char);
735 memcpy(ret->tiles, state->tiles, state->width * state->height);
736 ret->barriers = snewn(state->width * state->height, unsigned char);
737 memcpy(ret->barriers, state->barriers, state->width * state->height);
738
739 return ret;
740 }
741
742 static void free_game(game_state *state)
743 {
744 sfree(state->tiles);
745 sfree(state->barriers);
746 sfree(state);
747 }
748
749 static char *game_text_format(game_state *state)
750 {
751 return NULL;
752 }
753
754 /* ----------------------------------------------------------------------
755 * Utility routine.
756 */
757
758 /*
759 * Compute which squares are reachable from the centre square, as a
760 * quick visual aid to determining how close the game is to
761 * completion. This is also a simple way to tell if the game _is_
762 * completed - just call this function and see whether every square
763 * is marked active.
764 *
765 * squares in the moving_row and moving_col are always inactive - this
766 * is so that "current" doesn't appear to jump across moving lines.
767 */
768 static unsigned char *compute_active(game_state *state,
769 int moving_row, int moving_col)
770 {
771 unsigned char *active;
772 tree234 *todo;
773 struct xyd *xyd;
774
775 active = snewn(state->width * state->height, unsigned char);
776 memset(active, 0, state->width * state->height);
777
778 /*
779 * We only store (x,y) pairs in todo, but it's easier to reuse
780 * xyd_cmp and just store direction 0 every time.
781 */
782 todo = newtree234(xyd_cmp);
783 index(state, active, state->cx, state->cy) = ACTIVE;
784 add234(todo, new_xyd(state->cx, state->cy, 0));
785
786 while ( (xyd = delpos234(todo, 0)) != NULL) {
787 int x1, y1, d1, x2, y2, d2;
788
789 x1 = xyd->x;
790 y1 = xyd->y;
791 sfree(xyd);
792
793 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
794 OFFSET(x2, y2, x1, y1, d1, state);
795 d2 = F(d1);
796
797 /*
798 * If the next tile in this direction is connected to
799 * us, and there isn't a barrier in the way, and it
800 * isn't already marked active, then mark it active and
801 * add it to the to-examine list.
802 */
803 if ((x2 != moving_col && y2 != moving_row) &&
804 (tile(state, x1, y1) & d1) &&
805 (tile(state, x2, y2) & d2) &&
806 !(barrier(state, x1, y1) & d1) &&
807 !index(state, active, x2, y2)) {
808 index(state, active, x2, y2) = ACTIVE;
809 add234(todo, new_xyd(x2, y2, 0));
810 }
811 }
812 }
813 /* Now we expect the todo list to have shrunk to zero size. */
814 assert(count234(todo) == 0);
815 freetree234(todo);
816
817 return active;
818 }
819
820 struct game_ui {
821 int cur_x, cur_y;
822 int cur_visible;
823 };
824
825 static game_ui *new_ui(game_state *state)
826 {
827 game_ui *ui = snew(game_ui);
828 ui->cur_x = state->width / 2;
829 ui->cur_y = state->height / 2;
830 ui->cur_visible = FALSE;
831
832 return ui;
833 }
834
835 static void free_ui(game_ui *ui)
836 {
837 sfree(ui);
838 }
839
840 /* ----------------------------------------------------------------------
841 * Process a move.
842 */
843
844 static void slide_row(game_state *state, int dir, int row)
845 {
846 int x = dir > 0 ? -1 : state->width;
847 int tx = x + dir;
848 int n = state->width - 1;
849 unsigned char endtile = state->tiles[T(state, tx, row)];
850 do {
851 x = tx;
852 tx = (x + dir + state->width) % state->width;
853 state->tiles[T(state, x, row)] = state->tiles[T(state, tx, row)];
854 } while (--n > 0);
855 state->tiles[T(state, tx, row)] = endtile;
856 }
857
858 static void slide_col(game_state *state, int dir, int col)
859 {
860 int y = dir > 0 ? -1 : state->height;
861 int ty = y + dir;
862 int n = state->height - 1;
863 unsigned char endtile = state->tiles[T(state, col, ty)];
864 do {
865 y = ty;
866 ty = (y + dir + state->height) % state->height;
867 state->tiles[T(state, col, y)] = state->tiles[T(state, col, ty)];
868 } while (--n > 0);
869 state->tiles[T(state, col, ty)] = endtile;
870 }
871
872 static game_state *make_move(game_state *state, game_ui *ui,
873 int x, int y, int button)
874 {
875 int cx, cy;
876 int n, dx, dy;
877 game_state *ret;
878
879 if (button != LEFT_BUTTON && button != RIGHT_BUTTON)
880 return NULL;
881
882 cx = (x - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
883 cy = (y - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
884
885 if (cy >= 0 && cy < state->height && cy != state->cy)
886 {
887 if (cx == -1) dx = +1;
888 else if (cx == state->width) dx = -1;
889 else return NULL;
890 n = state->width;
891 dy = 0;
892 }
893 else if (cx >= 0 && cx < state->width && cx != state->cx)
894 {
895 if (cy == -1) dy = +1;
896 else if (cy == state->height) dy = -1;
897 else return NULL;
898 n = state->height;
899 dx = 0;
900 }
901 else
902 return NULL;
903
904 /* reverse direction if right hand button is pressed */
905 if (button == RIGHT_BUTTON)
906 {
907 dx = -dx;
908 dy = -dy;
909 }
910
911 ret = dup_game(state);
912
913 if (dx == 0) slide_col(ret, dy, cx);
914 else slide_row(ret, dx, cy);
915
916 ret->move_count++;
917 ret->last_move_row = dx ? cy : -1;
918 ret->last_move_col = dx ? -1 : cx;
919 ret->last_move_dir = dx + dy;
920
921 /*
922 * See if the game has been completed.
923 */
924 if (!ret->completed) {
925 unsigned char *active = compute_active(ret, -1, -1);
926 int x1, y1;
927 int complete = TRUE;
928
929 for (x1 = 0; x1 < ret->width; x1++)
930 for (y1 = 0; y1 < ret->height; y1++)
931 if (!index(ret, active, x1, y1)) {
932 complete = FALSE;
933 goto break_label; /* break out of two loops at once */
934 }
935 break_label:
936
937 sfree(active);
938
939 if (complete)
940 ret->completed = ret->move_count;
941 }
942
943 return ret;
944 }
945
946 /* ----------------------------------------------------------------------
947 * Routines for drawing the game position on the screen.
948 */
949
950 struct game_drawstate {
951 int started;
952 int width, height;
953 unsigned char *visible;
954 };
955
956 static game_drawstate *game_new_drawstate(game_state *state)
957 {
958 game_drawstate *ds = snew(game_drawstate);
959
960 ds->started = FALSE;
961 ds->width = state->width;
962 ds->height = state->height;
963 ds->visible = snewn(state->width * state->height, unsigned char);
964 memset(ds->visible, 0xFF, state->width * state->height);
965
966 return ds;
967 }
968
969 static void game_free_drawstate(game_drawstate *ds)
970 {
971 sfree(ds->visible);
972 sfree(ds);
973 }
974
975 static void game_size(game_params *params, int *x, int *y)
976 {
977 *x = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
978 *y = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
979 }
980
981 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
982 {
983 float *ret;
984
985 ret = snewn(NCOLOURS * 3, float);
986 *ncolours = NCOLOURS;
987
988 /*
989 * Basic background colour is whatever the front end thinks is
990 * a sensible default.
991 */
992 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
993
994 /*
995 * Wires are black.
996 */
997 ret[COL_WIRE * 3 + 0] = 0.0F;
998 ret[COL_WIRE * 3 + 1] = 0.0F;
999 ret[COL_WIRE * 3 + 2] = 0.0F;
1000
1001 /*
1002 * Powered wires and powered endpoints are cyan.
1003 */
1004 ret[COL_POWERED * 3 + 0] = 0.0F;
1005 ret[COL_POWERED * 3 + 1] = 1.0F;
1006 ret[COL_POWERED * 3 + 2] = 1.0F;
1007
1008 /*
1009 * Barriers are red.
1010 */
1011 ret[COL_BARRIER * 3 + 0] = 1.0F;
1012 ret[COL_BARRIER * 3 + 1] = 0.0F;
1013 ret[COL_BARRIER * 3 + 2] = 0.0F;
1014
1015 /*
1016 * Unpowered endpoints are blue.
1017 */
1018 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
1019 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
1020 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
1021
1022 /*
1023 * Tile borders are a darker grey than the background.
1024 */
1025 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
1026 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
1027 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
1028
1029 /*
1030 * Flashing tiles are a grey in between those two.
1031 */
1032 ret[COL_FLASHING * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
1033 ret[COL_FLASHING * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
1034 ret[COL_FLASHING * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
1035
1036 ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
1037 ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.8F;
1038 ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.8F;
1039 ret[COL_TEXT * 3 + 0] = 0.0;
1040 ret[COL_TEXT * 3 + 1] = 0.0;
1041 ret[COL_TEXT * 3 + 2] = 0.0;
1042
1043 return ret;
1044 }
1045
1046 static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
1047 int colour)
1048 {
1049 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
1050 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
1051 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
1052 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
1053 draw_line(fe, x1, y1, x2, y2, colour);
1054 }
1055
1056 static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
1057 int colour)
1058 {
1059 int mx = (x1 < x2 ? x1 : x2);
1060 int my = (y1 < y2 ? y1 : y2);
1061 int dx = (x2 + x1 - 2*mx + 1);
1062 int dy = (y2 + y1 - 2*my + 1);
1063
1064 draw_rect(fe, mx, my, dx, dy, colour);
1065 }
1066
1067 static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
1068 {
1069 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1070 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1071 int x1, y1, dx, dy, dir2;
1072
1073 dir >>= 4;
1074
1075 dir2 = A(dir);
1076 dx = X(dir) + X(dir2);
1077 dy = Y(dir) + Y(dir2);
1078 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1079 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1080
1081 if (phase == 0) {
1082 draw_rect_coords(fe, bx+x1, by+y1,
1083 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
1084 COL_WIRE);
1085 draw_rect_coords(fe, bx+x1, by+y1,
1086 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
1087 COL_WIRE);
1088 } else {
1089 draw_rect_coords(fe, bx+x1, by+y1,
1090 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
1091 COL_BARRIER);
1092 }
1093 }
1094
1095 static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
1096 {
1097 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1098 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1099 int x1, y1, w, h;
1100
1101 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
1102 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
1103 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1104 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1105
1106 if (phase == 0) {
1107 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
1108 } else {
1109 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
1110 }
1111 }
1112
1113 static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
1114 float xshift, float yshift)
1115 {
1116 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x + (xshift * TILE_SIZE);
1117 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y + (yshift * TILE_SIZE);
1118 float cx, cy, ex, ey;
1119 int dir, col;
1120
1121 /*
1122 * When we draw a single tile, we must draw everything up to
1123 * and including the borders around the tile. This means that
1124 * if the neighbouring tiles have connections to those borders,
1125 * we must draw those connections on the borders themselves.
1126 *
1127 * This would be terribly fiddly if we ever had to draw a tile
1128 * while its neighbour was in mid-rotate, because we'd have to
1129 * arrange to _know_ that the neighbour was being rotated and
1130 * hence had an anomalous effect on the redraw of this tile.
1131 * Fortunately, the drawing algorithm avoids ever calling us in
1132 * this circumstance: we're either drawing lots of straight
1133 * tiles at game start or after a move is complete, or we're
1134 * repeatedly drawing only the rotating tile. So no problem.
1135 */
1136
1137 /*
1138 * So. First blank the tile out completely: draw a big
1139 * rectangle in border colour, and a smaller rectangle in
1140 * background colour to fill it in.
1141 */
1142 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
1143 COL_BORDER);
1144 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
1145 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
1146 tile & FLASHING ? COL_FLASHING : COL_BACKGROUND);
1147
1148 /*
1149 * Draw the wires.
1150 */
1151 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
1152 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
1153 for (dir = 1; dir < 0x10; dir <<= 1) {
1154 if (tile & dir) {
1155 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1156 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1157 draw_thick_line(fe, bx+(int)cx, by+(int)cy,
1158 bx+(int)(cx+ex), by+(int)(cy+ey),
1159 COL_WIRE);
1160 }
1161 }
1162 for (dir = 1; dir < 0x10; dir <<= 1) {
1163 if (tile & dir) {
1164 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1165 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1166 draw_line(fe, bx+(int)cx, by+(int)cy,
1167 bx+(int)(cx+ex), by+(int)(cy+ey), col);
1168 }
1169 }
1170
1171 /*
1172 * Draw the box in the middle. We do this in blue if the tile
1173 * is an unpowered endpoint, in cyan if the tile is a powered
1174 * endpoint, in black if the tile is the centrepiece, and
1175 * otherwise not at all.
1176 */
1177 col = -1;
1178 if (x == state->cx && y == state->cy)
1179 col = COL_WIRE;
1180 else if (COUNT(tile) == 1) {
1181 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
1182 }
1183 if (col >= 0) {
1184 int i, points[8];
1185
1186 points[0] = +1; points[1] = +1;
1187 points[2] = +1; points[3] = -1;
1188 points[4] = -1; points[5] = -1;
1189 points[6] = -1; points[7] = +1;
1190
1191 for (i = 0; i < 8; i += 2) {
1192 ex = (TILE_SIZE * 0.24F) * points[i];
1193 ey = (TILE_SIZE * 0.24F) * points[i+1];
1194 points[i] = bx+(int)(cx+ex);
1195 points[i+1] = by+(int)(cy+ey);
1196 }
1197
1198 draw_polygon(fe, points, 4, TRUE, col);
1199 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
1200 }
1201
1202 /*
1203 * Draw the points on the border if other tiles are connected
1204 * to us.
1205 */
1206 for (dir = 1; dir < 0x10; dir <<= 1) {
1207 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
1208
1209 dx = X(dir);
1210 dy = Y(dir);
1211
1212 ox = x + dx;
1213 oy = y + dy;
1214
1215 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
1216 continue;
1217
1218 if (!(tile(state, ox, oy) & F(dir)))
1219 continue;
1220
1221 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
1222 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
1223 lx = dx * (TILE_BORDER-1);
1224 ly = dy * (TILE_BORDER-1);
1225 vx = (dy ? 1 : 0);
1226 vy = (dx ? 1 : 0);
1227
1228 if (xshift == 0.0 && yshift == 0.0 && (tile & dir)) {
1229 /*
1230 * If we are fully connected to the other tile, we must
1231 * draw right across the tile border. (We can use our
1232 * own ACTIVE state to determine what colour to do this
1233 * in: if we are fully connected to the other tile then
1234 * the two ACTIVE states will be the same.)
1235 */
1236 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
1237 draw_rect_coords(fe, px, py, px+lx, py+ly,
1238 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
1239 } else {
1240 /*
1241 * The other tile extends into our border, but isn't
1242 * actually connected to us. Just draw a single black
1243 * dot.
1244 */
1245 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
1246 }
1247 }
1248
1249 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1250 }
1251
1252 static void draw_tile_barriers(frontend *fe, game_state *state, int x, int y)
1253 {
1254 int phase;
1255 int dir;
1256 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1257 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1258 /*
1259 * Draw barrier corners, and then barriers.
1260 */
1261 for (phase = 0; phase < 2; phase++) {
1262 for (dir = 1; dir < 0x10; dir <<= 1)
1263 if (barrier(state, x, y) & (dir << 4))
1264 draw_barrier_corner(fe, x, y, dir << 4, phase);
1265 for (dir = 1; dir < 0x10; dir <<= 1)
1266 if (barrier(state, x, y) & dir)
1267 draw_barrier(fe, x, y, dir, phase);
1268 }
1269
1270 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1271 }
1272
1273 static void draw_arrow(frontend *fe, int x, int y, int xdx, int xdy)
1274 {
1275 int coords[14];
1276 int ydy = -xdx, ydx = xdy;
1277
1278 x = x * TILE_SIZE + BORDER + WINDOW_OFFSET;
1279 y = y * TILE_SIZE + BORDER + WINDOW_OFFSET;
1280
1281 #define POINT(n, xx, yy) ( \
1282 coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \
1283 coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy)
1284
1285 POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */
1286 POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */
1287 POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */
1288 POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */
1289 POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */
1290 POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */
1291 POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */
1292
1293 draw_polygon(fe, coords, 7, TRUE, COL_LOWLIGHT);
1294 draw_polygon(fe, coords, 7, FALSE, COL_TEXT);
1295 }
1296
1297 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1298 game_state *state, int dir, game_ui *ui, float t, float ft)
1299 {
1300 int x, y, tx, ty, frame;
1301 unsigned char *active;
1302 float xshift = 0.0;
1303 float yshift = 0.0;
1304
1305 /*
1306 * Clear the screen and draw the exterior barrier lines if this
1307 * is our first call.
1308 */
1309 if (!ds->started) {
1310 int phase;
1311
1312 ds->started = TRUE;
1313
1314 draw_rect(fe, 0, 0,
1315 BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1316 BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1317 COL_BACKGROUND);
1318 draw_update(fe, 0, 0,
1319 BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1320 BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1321
1322 for (phase = 0; phase < 2; phase++) {
1323
1324 for (x = 0; x < ds->width; x++) {
1325 if (barrier(state, x, 0) & UL)
1326 draw_barrier_corner(fe, x, -1, LD, phase);
1327 if (barrier(state, x, 0) & RU)
1328 draw_barrier_corner(fe, x, -1, DR, phase);
1329 if (barrier(state, x, 0) & U)
1330 draw_barrier(fe, x, -1, D, phase);
1331 if (barrier(state, x, ds->height-1) & DR)
1332 draw_barrier_corner(fe, x, ds->height, RU, phase);
1333 if (barrier(state, x, ds->height-1) & LD)
1334 draw_barrier_corner(fe, x, ds->height, UL, phase);
1335 if (barrier(state, x, ds->height-1) & D)
1336 draw_barrier(fe, x, ds->height, U, phase);
1337 }
1338
1339 for (y = 0; y < ds->height; y++) {
1340 if (barrier(state, 0, y) & UL)
1341 draw_barrier_corner(fe, -1, y, RU, phase);
1342 if (barrier(state, 0, y) & LD)
1343 draw_barrier_corner(fe, -1, y, DR, phase);
1344 if (barrier(state, 0, y) & L)
1345 draw_barrier(fe, -1, y, R, phase);
1346 if (barrier(state, ds->width-1, y) & RU)
1347 draw_barrier_corner(fe, ds->width, y, UL, phase);
1348 if (barrier(state, ds->width-1, y) & DR)
1349 draw_barrier_corner(fe, ds->width, y, LD, phase);
1350 if (barrier(state, ds->width-1, y) & R)
1351 draw_barrier(fe, ds->width, y, L, phase);
1352 }
1353 }
1354
1355 /*
1356 * Arrows for making moves.
1357 */
1358 for (x = 0; x < ds->width; x++) {
1359 if (x == state->cx) continue;
1360 draw_arrow(fe, x, 0, +1, 0);
1361 draw_arrow(fe, x+1, ds->height, -1, 0);
1362 }
1363 for (y = 0; y < ds->height; y++) {
1364 if (y == state->cy) continue;
1365 draw_arrow(fe, ds->width, y, 0, +1);
1366 draw_arrow(fe, 0, y+1, 0, -1);
1367 }
1368 }
1369
1370 /* Check if this is an undo. If so, we will need to run any animation
1371 * backwards.
1372 */
1373 if (oldstate && oldstate->move_count > state->move_count) {
1374 game_state * tmpstate = state;
1375 state = oldstate;
1376 oldstate = tmpstate;
1377 t = ANIM_TIME - t;
1378 }
1379
1380 tx = ty = -1;
1381 if (oldstate && (t < ANIM_TIME)) {
1382 /*
1383 * We're animating a slide, of row/column number
1384 * state->last_move_pos, in direction
1385 * state->last_move_dir
1386 */
1387 xshift = state->last_move_row == -1 ? 0.0 :
1388 (1 - t / ANIM_TIME) * state->last_move_dir;
1389 yshift = state->last_move_col == -1 ? 0.0 :
1390 (1 - t / ANIM_TIME) * state->last_move_dir;
1391 }
1392
1393 frame = -1;
1394 if (ft > 0) {
1395 /*
1396 * We're animating a completion flash. Find which frame
1397 * we're at.
1398 */
1399 frame = (int)(ft / FLASH_FRAME);
1400 }
1401
1402 /*
1403 * Draw any tile which differs from the way it was last drawn.
1404 */
1405 if (xshift != 0.0 || yshift != 0.0) {
1406 active = compute_active(state,
1407 state->last_move_row, state->last_move_col);
1408 } else {
1409 active = compute_active(state, -1, -1);
1410 }
1411
1412 clip(fe,
1413 BORDER + WINDOW_OFFSET, BORDER + WINDOW_OFFSET,
1414 TILE_SIZE * state->width + TILE_BORDER,
1415 TILE_SIZE * state->height + TILE_BORDER);
1416
1417 for (x = 0; x < ds->width; x++)
1418 for (y = 0; y < ds->height; y++) {
1419 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1420
1421 /*
1422 * In a completion flash, we adjust the FLASHING bit
1423 * depending on our distance from the centre point and
1424 * the frame number.
1425 */
1426 if (frame >= 0) {
1427 int xdist, ydist, dist;
1428 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1429 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1430 dist = (xdist > ydist ? xdist : ydist);
1431
1432 if (frame >= dist && frame < dist+4) {
1433 int flash = (frame - dist) & 1;
1434 flash = flash ? FLASHING : 0;
1435 c = (c &~ FLASHING) | flash;
1436 }
1437 }
1438
1439 if (index(state, ds->visible, x, y) != c ||
1440 index(state, ds->visible, x, y) == 0xFF ||
1441 (x == state->last_move_col || y == state->last_move_row))
1442 {
1443 float xs = (y == state->last_move_row ? xshift : 0.0);
1444 float ys = (x == state->last_move_col ? yshift : 0.0);
1445
1446 draw_tile(fe, state, x, y, c, xs, ys);
1447 if (xs < 0 && x == 0)
1448 draw_tile(fe, state, state->width, y, c, xs, ys);
1449 else if (xs > 0 && x == state->width - 1)
1450 draw_tile(fe, state, -1, y, c, xs, ys);
1451 else if (ys < 0 && y == 0)
1452 draw_tile(fe, state, x, state->height, c, xs, ys);
1453 else if (ys > 0 && y == state->height - 1)
1454 draw_tile(fe, state, x, -1, c, xs, ys);
1455
1456 if (x == state->last_move_col || y == state->last_move_row)
1457 index(state, ds->visible, x, y) = 0xFF;
1458 else
1459 index(state, ds->visible, x, y) = c;
1460 }
1461 }
1462
1463 for (x = 0; x < ds->width; x++)
1464 for (y = 0; y < ds->height; y++)
1465 draw_tile_barriers(fe, state, x, y);
1466
1467 unclip(fe);
1468
1469 /*
1470 * Update the status bar.
1471 */
1472 {
1473 char statusbuf[256];
1474 int i, n, a;
1475
1476 n = state->width * state->height;
1477 for (i = a = 0; i < n; i++)
1478 if (active[i])
1479 a++;
1480
1481 sprintf(statusbuf, "%sMoves: %d Active: %d/%d",
1482 (state->completed ? "COMPLETED! " : ""),
1483 (state->completed ? state->completed : state->move_count),
1484 a, n);
1485
1486 status_bar(fe, statusbuf);
1487 }
1488
1489 sfree(active);
1490 }
1491
1492 static float game_anim_length(game_state *oldstate,
1493 game_state *newstate, int dir)
1494 {
1495 return ANIM_TIME;
1496 }
1497
1498 static float game_flash_length(game_state *oldstate,
1499 game_state *newstate, int dir)
1500 {
1501 /*
1502 * If the game has just been completed, we display a completion
1503 * flash.
1504 */
1505 if (!oldstate->completed && newstate->completed) {
1506 int size;
1507 size = 0;
1508 if (size < newstate->cx+1)
1509 size = newstate->cx+1;
1510 if (size < newstate->cy+1)
1511 size = newstate->cy+1;
1512 if (size < newstate->width - newstate->cx)
1513 size = newstate->width - newstate->cx;
1514 if (size < newstate->height - newstate->cy)
1515 size = newstate->height - newstate->cy;
1516 return FLASH_FRAME * (size+4);
1517 }
1518
1519 return 0.0F;
1520 }
1521
1522 static int game_wants_statusbar(void)
1523 {
1524 return TRUE;
1525 }
1526
1527 #ifdef COMBINED
1528 #define thegame netslide
1529 #endif
1530
1531 const struct game thegame = {
1532 "Netslide", "games.netslide",
1533 default_params,
1534 game_fetch_preset,
1535 decode_params,
1536 encode_params,
1537 free_params,
1538 dup_params,
1539 TRUE, game_configure, custom_params,
1540 validate_params,
1541 new_game_seed,
1542 game_free_aux_info,
1543 validate_seed,
1544 new_game,
1545 dup_game,
1546 free_game,
1547 FALSE, game_text_format,
1548 new_ui,
1549 free_ui,
1550 make_move,
1551 game_size,
1552 game_colours,
1553 game_new_drawstate,
1554 game_free_drawstate,
1555 game_redraw,
1556 game_anim_length,
1557 game_flash_length,
1558 game_wants_statusbar,
1559 };