Cosmetic: fix mismatch between game_compute_size() and game_redraw()
[sgt/puzzles] / loopy.c
1 /*
2 * loopy.c:
3 *
4 * An implementation of the Nikoli game 'Loop the loop'.
5 * (c) Mike Pinna, 2005, 2006
6 * Substantially rewritten to allowing for more general types of grid.
7 * (c) Lambros Lambrou 2008
8 *
9 * vim: set shiftwidth=4 :set textwidth=80:
10 */
11
12 /*
13 * Possible future solver enhancements:
14 *
15 * - There's an interesting deductive technique which makes use
16 * of topology rather than just graph theory. Each _face_ in
17 * the grid is either inside or outside the loop; you can tell
18 * that two faces are on the same side of the loop if they're
19 * separated by a LINE_NO (or, more generally, by a path
20 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes),
21 * and on the opposite side of the loop if they're separated by
22 * a LINE_YES (or an odd number of LINE_YESes and no
23 * LINE_UNKNOWNs). Oh, and any face separated from the outside
24 * of the grid by a LINE_YES or a LINE_NO is on the inside or
25 * outside respectively. So if you can track this for all
26 * faces, you figure out the state of the line between a pair
27 * once their relative insideness is known.
28 * + The way I envisage this working is simply to keep an edsf
29 * of all _faces_, which indicates whether they're on
30 * opposite sides of the loop from one another. We also
31 * include a special entry in the edsf for the infinite
32 * exterior "face".
33 * + So, the simple way to do this is to just go through the
34 * edges: every time we see an edge in a state other than
35 * LINE_UNKNOWN which separates two faces that aren't in the
36 * same edsf class, we can rectify that by merging the
37 * classes. Then, conversely, an edge in LINE_UNKNOWN state
38 * which separates two faces that _are_ in the same edsf
39 * class can immediately have its state determined.
40 * + But you can go one better, if you're prepared to loop
41 * over all _pairs_ of edges. Suppose we have edges A and B,
42 * which respectively separate faces A1,A2 and B1,B2.
43 * Suppose that A,B are in the same edge-edsf class and that
44 * A1,B1 (wlog) are in the same face-edsf class; then we can
45 * immediately place A2,B2 into the same face-edsf class (as
46 * each other, not as A1 and A2) one way round or the other.
47 * And conversely again, if A1,B1 are in the same face-edsf
48 * class and so are A2,B2, then we can put A,B into the same
49 * face-edsf class.
50 * * Of course, this deduction requires a quadratic-time
51 * loop over all pairs of edges in the grid, so it should
52 * be reserved until there's nothing easier left to be
53 * done.
54 *
55 * - The generalised grid support has made me (SGT) notice a
56 * possible extension to the loop-avoidance code. When you have
57 * a path of connected edges such that no other edges at all
58 * are incident on any vertex in the middle of the path - or,
59 * alternatively, such that any such edges are already known to
60 * be LINE_NO - then you know those edges are either all
61 * LINE_YES or all LINE_NO. Hence you can mentally merge the
62 * entire path into a single long curly edge for the purposes
63 * of loop avoidance, and look directly at whether or not the
64 * extreme endpoints of the path are connected by some other
65 * route. I find this coming up fairly often when I play on the
66 * octagonal grid setting, so it might be worth implementing in
67 * the solver.
68 *
69 * - (Just a speed optimisation.) Consider some todo list queue where every
70 * time we modify something we mark it for consideration by other bits of
71 * the solver, to save iteration over things that have already been done.
72 */
73
74 #include <stdio.h>
75 #include <stdlib.h>
76 #include <string.h>
77 #include <assert.h>
78 #include <ctype.h>
79 #include <math.h>
80
81 #include "puzzles.h"
82 #include "tree234.h"
83 #include "grid.h"
84
85 /* Debugging options */
86
87 /*
88 #define DEBUG_CACHES
89 #define SHOW_WORKING
90 #define DEBUG_DLINES
91 */
92
93 /* ----------------------------------------------------------------------
94 * Struct, enum and function declarations
95 */
96
97 enum {
98 COL_BACKGROUND,
99 COL_FOREGROUND,
100 COL_LINEUNKNOWN,
101 COL_HIGHLIGHT,
102 COL_MISTAKE,
103 COL_SATISFIED,
104 NCOLOURS
105 };
106
107 struct game_state {
108 grid *game_grid;
109
110 /* Put -1 in a face that doesn't get a clue */
111 signed char *clues;
112
113 /* Array of line states, to store whether each line is
114 * YES, NO or UNKNOWN */
115 char *lines;
116
117 int solved;
118 int cheated;
119
120 /* Used in game_text_format(), so that it knows what type of
121 * grid it's trying to render as ASCII text. */
122 int grid_type;
123 };
124
125 enum solver_status {
126 SOLVER_SOLVED, /* This is the only solution the solver could find */
127 SOLVER_MISTAKE, /* This is definitely not a solution */
128 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
129 SOLVER_INCOMPLETE /* This may be a partial solution */
130 };
131
132 /* ------ Solver state ------ */
133 typedef struct normal {
134 /* For each dline, store a bitmask for whether we know:
135 * (bit 0) at least one is YES
136 * (bit 1) at most one is YES */
137 char *dlines;
138 } normal_mode_state;
139
140 typedef struct hard {
141 int *linedsf;
142 } hard_mode_state;
143
144 typedef struct solver_state {
145 game_state *state;
146 enum solver_status solver_status;
147 /* NB looplen is the number of dots that are joined together at a point, ie a
148 * looplen of 1 means there are no lines to a particular dot */
149 int *looplen;
150
151 /* caches */
152 char *dot_yes_count;
153 char *dot_no_count;
154 char *face_yes_count;
155 char *face_no_count;
156 char *dot_solved, *face_solved;
157 int *dotdsf;
158
159 normal_mode_state *normal;
160 hard_mode_state *hard;
161 } solver_state;
162
163 /*
164 * Difficulty levels. I do some macro ickery here to ensure that my
165 * enum and the various forms of my name list always match up.
166 */
167
168 #define DIFFLIST(A) \
169 A(EASY,Easy,e,easy_mode_deductions) \
170 A(NORMAL,Normal,n,normal_mode_deductions) \
171 A(HARD,Hard,h,hard_mode_deductions)
172 #define ENUM(upper,title,lower,fn) DIFF_ ## upper,
173 #define TITLE(upper,title,lower,fn) #title,
174 #define ENCODE(upper,title,lower,fn) #lower
175 #define CONFIG(upper,title,lower,fn) ":" #title
176 #define SOLVER_FN_DECL(upper,title,lower,fn) static int fn(solver_state *);
177 #define SOLVER_FN(upper,title,lower,fn) &fn,
178 enum { DIFFLIST(ENUM) DIFF_MAX };
179 static char const *const diffnames[] = { DIFFLIST(TITLE) };
180 static char const diffchars[] = DIFFLIST(ENCODE);
181 #define DIFFCONFIG DIFFLIST(CONFIG)
182 DIFFLIST(SOLVER_FN_DECL)
183 static int (*(solver_fns[]))(solver_state *) = { DIFFLIST(SOLVER_FN) };
184
185 struct game_params {
186 int w, h;
187 int diff;
188 int type;
189
190 /* Grid generation is expensive, so keep a (ref-counted) reference to the
191 * grid for these parameters, and only generate when required. */
192 grid *game_grid;
193 };
194
195 enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
196
197 #define OPP(line_state) \
198 (2 - line_state)
199
200
201 struct game_drawstate {
202 int started;
203 int tilesize;
204 int flashing;
205 char *lines;
206 char *clue_error;
207 char *clue_satisfied;
208 };
209
210 static char *validate_desc(game_params *params, char *desc);
211 static int dot_order(const game_state* state, int i, char line_type);
212 static int face_order(const game_state* state, int i, char line_type);
213 static solver_state *solve_game_rec(const solver_state *sstate,
214 int diff);
215
216 #ifdef DEBUG_CACHES
217 static void check_caches(const solver_state* sstate);
218 #else
219 #define check_caches(s)
220 #endif
221
222 /* ------- List of grid generators ------- */
223 #define GRIDLIST(A) \
224 A(Squares,grid_new_square) \
225 A(Triangular,grid_new_triangular) \
226 A(Honeycomb,grid_new_honeycomb) \
227 A(Snub-Square,grid_new_snubsquare) \
228 A(Cairo,grid_new_cairo) \
229 A(Great-Hexagonal,grid_new_greathexagonal) \
230 A(Octagonal,grid_new_octagonal) \
231 A(Kites,grid_new_kites)
232
233 #define GRID_NAME(title,fn) #title,
234 #define GRID_CONFIG(title,fn) ":" #title
235 #define GRID_FN(title,fn) &fn,
236 static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
237 #define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
238 static grid * (*(grid_fns[]))(int w, int h) = { GRIDLIST(GRID_FN) };
239 #define NUM_GRID_TYPES (sizeof(grid_fns) / sizeof(grid_fns[0]))
240
241 /* Generates a (dynamically allocated) new grid, according to the
242 * type and size requested in params. Does nothing if the grid is already
243 * generated. The allocated grid is owned by the params object, and will be
244 * freed in free_params(). */
245 static void params_generate_grid(game_params *params)
246 {
247 if (!params->game_grid) {
248 params->game_grid = grid_fns[params->type](params->w, params->h);
249 }
250 }
251
252 /* ----------------------------------------------------------------------
253 * Preprocessor magic
254 */
255
256 /* General constants */
257 #define PREFERRED_TILE_SIZE 32
258 #define BORDER(tilesize) ((tilesize) / 2)
259 #define FLASH_TIME 0.5F
260
261 #define BIT_SET(field, bit) ((field) & (1<<(bit)))
262
263 #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
264 ((field) |= (1<<(bit)), TRUE))
265
266 #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
267 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
268
269 #define CLUE2CHAR(c) \
270 ((c < 0) ? ' ' : c + '0')
271
272 /* ----------------------------------------------------------------------
273 * General struct manipulation and other straightforward code
274 */
275
276 static game_state *dup_game(game_state *state)
277 {
278 game_state *ret = snew(game_state);
279
280 ret->game_grid = state->game_grid;
281 ret->game_grid->refcount++;
282
283 ret->solved = state->solved;
284 ret->cheated = state->cheated;
285
286 ret->clues = snewn(state->game_grid->num_faces, signed char);
287 memcpy(ret->clues, state->clues, state->game_grid->num_faces);
288
289 ret->lines = snewn(state->game_grid->num_edges, char);
290 memcpy(ret->lines, state->lines, state->game_grid->num_edges);
291
292 ret->grid_type = state->grid_type;
293 return ret;
294 }
295
296 static void free_game(game_state *state)
297 {
298 if (state) {
299 grid_free(state->game_grid);
300 sfree(state->clues);
301 sfree(state->lines);
302 sfree(state);
303 }
304 }
305
306 static solver_state *new_solver_state(game_state *state, int diff) {
307 int i;
308 int num_dots = state->game_grid->num_dots;
309 int num_faces = state->game_grid->num_faces;
310 int num_edges = state->game_grid->num_edges;
311 solver_state *ret = snew(solver_state);
312
313 ret->state = dup_game(state);
314
315 ret->solver_status = SOLVER_INCOMPLETE;
316
317 ret->dotdsf = snew_dsf(num_dots);
318 ret->looplen = snewn(num_dots, int);
319
320 for (i = 0; i < num_dots; i++) {
321 ret->looplen[i] = 1;
322 }
323
324 ret->dot_solved = snewn(num_dots, char);
325 ret->face_solved = snewn(num_faces, char);
326 memset(ret->dot_solved, FALSE, num_dots);
327 memset(ret->face_solved, FALSE, num_faces);
328
329 ret->dot_yes_count = snewn(num_dots, char);
330 memset(ret->dot_yes_count, 0, num_dots);
331 ret->dot_no_count = snewn(num_dots, char);
332 memset(ret->dot_no_count, 0, num_dots);
333 ret->face_yes_count = snewn(num_faces, char);
334 memset(ret->face_yes_count, 0, num_faces);
335 ret->face_no_count = snewn(num_faces, char);
336 memset(ret->face_no_count, 0, num_faces);
337
338 if (diff < DIFF_NORMAL) {
339 ret->normal = NULL;
340 } else {
341 ret->normal = snew(normal_mode_state);
342 ret->normal->dlines = snewn(2*num_edges, char);
343 memset(ret->normal->dlines, 0, 2*num_edges);
344 }
345
346 if (diff < DIFF_HARD) {
347 ret->hard = NULL;
348 } else {
349 ret->hard = snew(hard_mode_state);
350 ret->hard->linedsf = snew_dsf(state->game_grid->num_edges);
351 }
352
353 return ret;
354 }
355
356 static void free_solver_state(solver_state *sstate) {
357 if (sstate) {
358 free_game(sstate->state);
359 sfree(sstate->dotdsf);
360 sfree(sstate->looplen);
361 sfree(sstate->dot_solved);
362 sfree(sstate->face_solved);
363 sfree(sstate->dot_yes_count);
364 sfree(sstate->dot_no_count);
365 sfree(sstate->face_yes_count);
366 sfree(sstate->face_no_count);
367
368 if (sstate->normal) {
369 sfree(sstate->normal->dlines);
370 sfree(sstate->normal);
371 }
372
373 if (sstate->hard) {
374 sfree(sstate->hard->linedsf);
375 sfree(sstate->hard);
376 }
377
378 sfree(sstate);
379 }
380 }
381
382 static solver_state *dup_solver_state(const solver_state *sstate) {
383 game_state *state = sstate->state;
384 int num_dots = state->game_grid->num_dots;
385 int num_faces = state->game_grid->num_faces;
386 int num_edges = state->game_grid->num_edges;
387 solver_state *ret = snew(solver_state);
388
389 ret->state = state = dup_game(sstate->state);
390
391 ret->solver_status = sstate->solver_status;
392
393 ret->dotdsf = snewn(num_dots, int);
394 ret->looplen = snewn(num_dots, int);
395 memcpy(ret->dotdsf, sstate->dotdsf,
396 num_dots * sizeof(int));
397 memcpy(ret->looplen, sstate->looplen,
398 num_dots * sizeof(int));
399
400 ret->dot_solved = snewn(num_dots, char);
401 ret->face_solved = snewn(num_faces, char);
402 memcpy(ret->dot_solved, sstate->dot_solved, num_dots);
403 memcpy(ret->face_solved, sstate->face_solved, num_faces);
404
405 ret->dot_yes_count = snewn(num_dots, char);
406 memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
407 ret->dot_no_count = snewn(num_dots, char);
408 memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
409
410 ret->face_yes_count = snewn(num_faces, char);
411 memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
412 ret->face_no_count = snewn(num_faces, char);
413 memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
414
415 if (sstate->normal) {
416 ret->normal = snew(normal_mode_state);
417 ret->normal->dlines = snewn(2*num_edges, char);
418 memcpy(ret->normal->dlines, sstate->normal->dlines,
419 2*num_edges);
420 } else {
421 ret->normal = NULL;
422 }
423
424 if (sstate->hard) {
425 ret->hard = snew(hard_mode_state);
426 ret->hard->linedsf = snewn(num_edges, int);
427 memcpy(ret->hard->linedsf, sstate->hard->linedsf,
428 num_edges * sizeof(int));
429 } else {
430 ret->hard = NULL;
431 }
432
433 return ret;
434 }
435
436 static game_params *default_params(void)
437 {
438 game_params *ret = snew(game_params);
439
440 #ifdef SLOW_SYSTEM
441 ret->h = 7;
442 ret->w = 7;
443 #else
444 ret->h = 10;
445 ret->w = 10;
446 #endif
447 ret->diff = DIFF_EASY;
448 ret->type = 0;
449
450 ret->game_grid = NULL;
451
452 return ret;
453 }
454
455 static game_params *dup_params(game_params *params)
456 {
457 game_params *ret = snew(game_params);
458
459 *ret = *params; /* structure copy */
460 if (ret->game_grid) {
461 ret->game_grid->refcount++;
462 }
463 return ret;
464 }
465
466 static const game_params presets[] = {
467 #ifdef SMALL_SCREEN
468 { 7, 7, DIFF_EASY, 0, NULL },
469 { 7, 7, DIFF_NORMAL, 0, NULL },
470 { 7, 7, DIFF_HARD, 0, NULL },
471 { 7, 7, DIFF_HARD, 1, NULL },
472 { 7, 7, DIFF_HARD, 2, NULL },
473 { 5, 5, DIFF_HARD, 3, NULL },
474 { 7, 7, DIFF_HARD, 4, NULL },
475 { 5, 4, DIFF_HARD, 5, NULL },
476 { 5, 5, DIFF_HARD, 6, NULL },
477 { 5, 5, DIFF_HARD, 7, NULL },
478 #else
479 { 7, 7, DIFF_EASY, 0, NULL },
480 { 10, 10, DIFF_EASY, 0, NULL },
481 { 7, 7, DIFF_NORMAL, 0, NULL },
482 { 10, 10, DIFF_NORMAL, 0, NULL },
483 { 7, 7, DIFF_HARD, 0, NULL },
484 { 10, 10, DIFF_HARD, 0, NULL },
485 { 10, 10, DIFF_HARD, 1, NULL },
486 { 12, 10, DIFF_HARD, 2, NULL },
487 { 7, 7, DIFF_HARD, 3, NULL },
488 { 9, 9, DIFF_HARD, 4, NULL },
489 { 5, 4, DIFF_HARD, 5, NULL },
490 { 7, 7, DIFF_HARD, 6, NULL },
491 { 5, 5, DIFF_HARD, 7, NULL },
492 #endif
493 };
494
495 static int game_fetch_preset(int i, char **name, game_params **params)
496 {
497 game_params *tmppar;
498 char buf[80];
499
500 if (i < 0 || i >= lenof(presets))
501 return FALSE;
502
503 tmppar = snew(game_params);
504 *tmppar = presets[i];
505 *params = tmppar;
506 sprintf(buf, "%dx%d %s - %s", tmppar->h, tmppar->w,
507 gridnames[tmppar->type], diffnames[tmppar->diff]);
508 *name = dupstr(buf);
509
510 return TRUE;
511 }
512
513 static void free_params(game_params *params)
514 {
515 if (params->game_grid) {
516 grid_free(params->game_grid);
517 }
518 sfree(params);
519 }
520
521 static void decode_params(game_params *params, char const *string)
522 {
523 if (params->game_grid) {
524 grid_free(params->game_grid);
525 params->game_grid = NULL;
526 }
527 params->h = params->w = atoi(string);
528 params->diff = DIFF_EASY;
529 while (*string && isdigit((unsigned char)*string)) string++;
530 if (*string == 'x') {
531 string++;
532 params->h = atoi(string);
533 while (*string && isdigit((unsigned char)*string)) string++;
534 }
535 if (*string == 't') {
536 string++;
537 params->type = atoi(string);
538 while (*string && isdigit((unsigned char)*string)) string++;
539 }
540 if (*string == 'd') {
541 int i;
542 string++;
543 for (i = 0; i < DIFF_MAX; i++)
544 if (*string == diffchars[i])
545 params->diff = i;
546 if (*string) string++;
547 }
548 }
549
550 static char *encode_params(game_params *params, int full)
551 {
552 char str[80];
553 sprintf(str, "%dx%dt%d", params->w, params->h, params->type);
554 if (full)
555 sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
556 return dupstr(str);
557 }
558
559 static config_item *game_configure(game_params *params)
560 {
561 config_item *ret;
562 char buf[80];
563
564 ret = snewn(5, config_item);
565
566 ret[0].name = "Width";
567 ret[0].type = C_STRING;
568 sprintf(buf, "%d", params->w);
569 ret[0].sval = dupstr(buf);
570 ret[0].ival = 0;
571
572 ret[1].name = "Height";
573 ret[1].type = C_STRING;
574 sprintf(buf, "%d", params->h);
575 ret[1].sval = dupstr(buf);
576 ret[1].ival = 0;
577
578 ret[2].name = "Grid type";
579 ret[2].type = C_CHOICES;
580 ret[2].sval = GRID_CONFIGS;
581 ret[2].ival = params->type;
582
583 ret[3].name = "Difficulty";
584 ret[3].type = C_CHOICES;
585 ret[3].sval = DIFFCONFIG;
586 ret[3].ival = params->diff;
587
588 ret[4].name = NULL;
589 ret[4].type = C_END;
590 ret[4].sval = NULL;
591 ret[4].ival = 0;
592
593 return ret;
594 }
595
596 static game_params *custom_params(config_item *cfg)
597 {
598 game_params *ret = snew(game_params);
599
600 ret->w = atoi(cfg[0].sval);
601 ret->h = atoi(cfg[1].sval);
602 ret->type = cfg[2].ival;
603 ret->diff = cfg[3].ival;
604
605 ret->game_grid = NULL;
606 return ret;
607 }
608
609 static char *validate_params(game_params *params, int full)
610 {
611 if (params->w < 3 || params->h < 3)
612 return "Width and height must both be at least 3";
613 if (params->type < 0 || params->type >= NUM_GRID_TYPES)
614 return "Illegal grid type";
615
616 /*
617 * This shouldn't be able to happen at all, since decode_params
618 * and custom_params will never generate anything that isn't
619 * within range.
620 */
621 assert(params->diff < DIFF_MAX);
622
623 return NULL;
624 }
625
626 /* Returns a newly allocated string describing the current puzzle */
627 static char *state_to_text(const game_state *state)
628 {
629 grid *g = state->game_grid;
630 char *retval;
631 int num_faces = g->num_faces;
632 char *description = snewn(num_faces + 1, char);
633 char *dp = description;
634 int empty_count = 0;
635 int i;
636
637 for (i = 0; i < num_faces; i++) {
638 if (state->clues[i] < 0) {
639 if (empty_count > 25) {
640 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
641 empty_count = 0;
642 }
643 empty_count++;
644 } else {
645 if (empty_count) {
646 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
647 empty_count = 0;
648 }
649 dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
650 }
651 }
652
653 if (empty_count)
654 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
655
656 retval = dupstr(description);
657 sfree(description);
658
659 return retval;
660 }
661
662 /* We require that the params pass the test in validate_params and that the
663 * description fills the entire game area */
664 static char *validate_desc(game_params *params, char *desc)
665 {
666 int count = 0;
667 grid *g;
668 params_generate_grid(params);
669 g = params->game_grid;
670
671 for (; *desc; ++desc) {
672 if (*desc >= '0' && *desc <= '9') {
673 count++;
674 continue;
675 }
676 if (*desc >= 'a') {
677 count += *desc - 'a' + 1;
678 continue;
679 }
680 return "Unknown character in description";
681 }
682
683 if (count < g->num_faces)
684 return "Description too short for board size";
685 if (count > g->num_faces)
686 return "Description too long for board size";
687
688 return NULL;
689 }
690
691 /* Sums the lengths of the numbers in range [0,n) */
692 /* See equivalent function in solo.c for justification of this. */
693 static int len_0_to_n(int n)
694 {
695 int len = 1; /* Counting 0 as a bit of a special case */
696 int i;
697
698 for (i = 1; i < n; i *= 10) {
699 len += max(n - i, 0);
700 }
701
702 return len;
703 }
704
705 static char *encode_solve_move(const game_state *state)
706 {
707 int len;
708 char *ret, *p;
709 int i;
710 int num_edges = state->game_grid->num_edges;
711
712 /* This is going to return a string representing the moves needed to set
713 * every line in a grid to be the same as the ones in 'state'. The exact
714 * length of this string is predictable. */
715
716 len = 1; /* Count the 'S' prefix */
717 /* Numbers in all lines */
718 len += len_0_to_n(num_edges);
719 /* For each line we also have a letter */
720 len += num_edges;
721
722 ret = snewn(len + 1, char);
723 p = ret;
724
725 p += sprintf(p, "S");
726
727 for (i = 0; i < num_edges; i++) {
728 switch (state->lines[i]) {
729 case LINE_YES:
730 p += sprintf(p, "%dy", i);
731 break;
732 case LINE_NO:
733 p += sprintf(p, "%dn", i);
734 break;
735 }
736 }
737
738 /* No point in doing sums like that if they're going to be wrong */
739 assert(strlen(ret) <= (size_t)len);
740 return ret;
741 }
742
743 static game_ui *new_ui(game_state *state)
744 {
745 return NULL;
746 }
747
748 static void free_ui(game_ui *ui)
749 {
750 }
751
752 static char *encode_ui(game_ui *ui)
753 {
754 return NULL;
755 }
756
757 static void decode_ui(game_ui *ui, char *encoding)
758 {
759 }
760
761 static void game_changed_state(game_ui *ui, game_state *oldstate,
762 game_state *newstate)
763 {
764 }
765
766 static void game_compute_size(game_params *params, int tilesize,
767 int *x, int *y)
768 {
769 grid *g;
770 int grid_width, grid_height, rendered_width, rendered_height;
771
772 params_generate_grid(params);
773 g = params->game_grid;
774 grid_width = g->highest_x - g->lowest_x;
775 grid_height = g->highest_y - g->lowest_y;
776 /* multiply first to minimise rounding error on integer division */
777 rendered_width = grid_width * tilesize / g->tilesize;
778 rendered_height = grid_height * tilesize / g->tilesize;
779 *x = rendered_width + 2 * BORDER(tilesize) + 1;
780 *y = rendered_height + 2 * BORDER(tilesize) + 1;
781 }
782
783 static void game_set_size(drawing *dr, game_drawstate *ds,
784 game_params *params, int tilesize)
785 {
786 ds->tilesize = tilesize;
787 }
788
789 static float *game_colours(frontend *fe, int *ncolours)
790 {
791 float *ret = snewn(4 * NCOLOURS, float);
792
793 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
794
795 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
796 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
797 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
798
799 ret[COL_LINEUNKNOWN * 3 + 0] = 0.8F;
800 ret[COL_LINEUNKNOWN * 3 + 1] = 0.8F;
801 ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
802
803 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
804 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
805 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
806
807 ret[COL_MISTAKE * 3 + 0] = 1.0F;
808 ret[COL_MISTAKE * 3 + 1] = 0.0F;
809 ret[COL_MISTAKE * 3 + 2] = 0.0F;
810
811 ret[COL_SATISFIED * 3 + 0] = 0.0F;
812 ret[COL_SATISFIED * 3 + 1] = 0.0F;
813 ret[COL_SATISFIED * 3 + 2] = 0.0F;
814
815 *ncolours = NCOLOURS;
816 return ret;
817 }
818
819 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
820 {
821 struct game_drawstate *ds = snew(struct game_drawstate);
822 int num_faces = state->game_grid->num_faces;
823 int num_edges = state->game_grid->num_edges;
824
825 ds->tilesize = 0;
826 ds->started = 0;
827 ds->lines = snewn(num_edges, char);
828 ds->clue_error = snewn(num_faces, char);
829 ds->clue_satisfied = snewn(num_faces, char);
830 ds->flashing = 0;
831
832 memset(ds->lines, LINE_UNKNOWN, num_edges);
833 memset(ds->clue_error, 0, num_faces);
834 memset(ds->clue_satisfied, 0, num_faces);
835
836 return ds;
837 }
838
839 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
840 {
841 sfree(ds->clue_error);
842 sfree(ds->clue_satisfied);
843 sfree(ds->lines);
844 sfree(ds);
845 }
846
847 static int game_timing_state(game_state *state, game_ui *ui)
848 {
849 return TRUE;
850 }
851
852 static float game_anim_length(game_state *oldstate, game_state *newstate,
853 int dir, game_ui *ui)
854 {
855 return 0.0F;
856 }
857
858 static int game_can_format_as_text_now(game_params *params)
859 {
860 if (params->type != 0)
861 return FALSE;
862 return TRUE;
863 }
864
865 static char *game_text_format(game_state *state)
866 {
867 int w, h, W, H;
868 int x, y, i;
869 int cell_size;
870 char *ret;
871 grid *g = state->game_grid;
872 grid_face *f;
873
874 assert(state->grid_type == 0);
875
876 /* Work out the basic size unit */
877 f = g->faces; /* first face */
878 assert(f->order == 4);
879 /* The dots are ordered clockwise, so the two opposite
880 * corners are guaranteed to span the square */
881 cell_size = abs(f->dots[0]->x - f->dots[2]->x);
882
883 w = (g->highest_x - g->lowest_x) / cell_size;
884 h = (g->highest_y - g->lowest_y) / cell_size;
885
886 /* Create a blank "canvas" to "draw" on */
887 W = 2 * w + 2;
888 H = 2 * h + 1;
889 ret = snewn(W * H + 1, char);
890 for (y = 0; y < H; y++) {
891 for (x = 0; x < W-1; x++) {
892 ret[y*W + x] = ' ';
893 }
894 ret[y*W + W-1] = '\n';
895 }
896 ret[H*W] = '\0';
897
898 /* Fill in edge info */
899 for (i = 0; i < g->num_edges; i++) {
900 grid_edge *e = g->edges + i;
901 /* Cell coordinates, from (0,0) to (w-1,h-1) */
902 int x1 = (e->dot1->x - g->lowest_x) / cell_size;
903 int x2 = (e->dot2->x - g->lowest_x) / cell_size;
904 int y1 = (e->dot1->y - g->lowest_y) / cell_size;
905 int y2 = (e->dot2->y - g->lowest_y) / cell_size;
906 /* Midpoint, in canvas coordinates (canvas coordinates are just twice
907 * cell coordinates) */
908 x = x1 + x2;
909 y = y1 + y2;
910 switch (state->lines[i]) {
911 case LINE_YES:
912 ret[y*W + x] = (y1 == y2) ? '-' : '|';
913 break;
914 case LINE_NO:
915 ret[y*W + x] = 'x';
916 break;
917 case LINE_UNKNOWN:
918 break; /* already a space */
919 default:
920 assert(!"Illegal line state");
921 }
922 }
923
924 /* Fill in clues */
925 for (i = 0; i < g->num_faces; i++) {
926 int x1, x2, y1, y2;
927
928 f = g->faces + i;
929 assert(f->order == 4);
930 /* Cell coordinates, from (0,0) to (w-1,h-1) */
931 x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
932 x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
933 y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
934 y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
935 /* Midpoint, in canvas coordinates */
936 x = x1 + x2;
937 y = y1 + y2;
938 ret[y*W + x] = CLUE2CHAR(state->clues[i]);
939 }
940 return ret;
941 }
942
943 /* ----------------------------------------------------------------------
944 * Debug code
945 */
946
947 #ifdef DEBUG_CACHES
948 static void check_caches(const solver_state* sstate)
949 {
950 int i;
951 const game_state *state = sstate->state;
952 const grid *g = state->game_grid;
953
954 for (i = 0; i < g->num_dots; i++) {
955 assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
956 assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
957 }
958
959 for (i = 0; i < g->num_faces; i++) {
960 assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
961 assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
962 }
963 }
964
965 #if 0
966 #define check_caches(s) \
967 do { \
968 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
969 check_caches(s); \
970 } while (0)
971 #endif
972 #endif /* DEBUG_CACHES */
973
974 /* ----------------------------------------------------------------------
975 * Solver utility functions
976 */
977
978 /* Sets the line (with index i) to the new state 'line_new', and updates
979 * the cached counts of any affected faces and dots.
980 * Returns TRUE if this actually changed the line's state. */
981 static int solver_set_line(solver_state *sstate, int i,
982 enum line_state line_new
983 #ifdef SHOW_WORKING
984 , const char *reason
985 #endif
986 )
987 {
988 game_state *state = sstate->state;
989 grid *g;
990 grid_edge *e;
991
992 assert(line_new != LINE_UNKNOWN);
993
994 check_caches(sstate);
995
996 if (state->lines[i] == line_new) {
997 return FALSE; /* nothing changed */
998 }
999 state->lines[i] = line_new;
1000
1001 #ifdef SHOW_WORKING
1002 fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
1003 i, line_new == LINE_YES ? "YES" : "NO",
1004 reason);
1005 #endif
1006
1007 g = state->game_grid;
1008 e = g->edges + i;
1009
1010 /* Update the cache for both dots and both faces affected by this. */
1011 if (line_new == LINE_YES) {
1012 sstate->dot_yes_count[e->dot1 - g->dots]++;
1013 sstate->dot_yes_count[e->dot2 - g->dots]++;
1014 if (e->face1) {
1015 sstate->face_yes_count[e->face1 - g->faces]++;
1016 }
1017 if (e->face2) {
1018 sstate->face_yes_count[e->face2 - g->faces]++;
1019 }
1020 } else {
1021 sstate->dot_no_count[e->dot1 - g->dots]++;
1022 sstate->dot_no_count[e->dot2 - g->dots]++;
1023 if (e->face1) {
1024 sstate->face_no_count[e->face1 - g->faces]++;
1025 }
1026 if (e->face2) {
1027 sstate->face_no_count[e->face2 - g->faces]++;
1028 }
1029 }
1030
1031 check_caches(sstate);
1032 return TRUE;
1033 }
1034
1035 #ifdef SHOW_WORKING
1036 #define solver_set_line(a, b, c) \
1037 solver_set_line(a, b, c, __FUNCTION__)
1038 #endif
1039
1040 /*
1041 * Merge two dots due to the existence of an edge between them.
1042 * Updates the dsf tracking equivalence classes, and keeps track of
1043 * the length of path each dot is currently a part of.
1044 * Returns TRUE if the dots were already linked, ie if they are part of a
1045 * closed loop, and false otherwise.
1046 */
1047 static int merge_dots(solver_state *sstate, int edge_index)
1048 {
1049 int i, j, len;
1050 grid *g = sstate->state->game_grid;
1051 grid_edge *e = g->edges + edge_index;
1052
1053 i = e->dot1 - g->dots;
1054 j = e->dot2 - g->dots;
1055
1056 i = dsf_canonify(sstate->dotdsf, i);
1057 j = dsf_canonify(sstate->dotdsf, j);
1058
1059 if (i == j) {
1060 return TRUE;
1061 } else {
1062 len = sstate->looplen[i] + sstate->looplen[j];
1063 dsf_merge(sstate->dotdsf, i, j);
1064 i = dsf_canonify(sstate->dotdsf, i);
1065 sstate->looplen[i] = len;
1066 return FALSE;
1067 }
1068 }
1069
1070 /* Merge two lines because the solver has deduced that they must be either
1071 * identical or opposite. Returns TRUE if this is new information, otherwise
1072 * FALSE. */
1073 static int merge_lines(solver_state *sstate, int i, int j, int inverse
1074 #ifdef SHOW_WORKING
1075 , const char *reason
1076 #endif
1077 )
1078 {
1079 int inv_tmp;
1080
1081 assert(i < sstate->state->game_grid->num_edges);
1082 assert(j < sstate->state->game_grid->num_edges);
1083
1084 i = edsf_canonify(sstate->hard->linedsf, i, &inv_tmp);
1085 inverse ^= inv_tmp;
1086 j = edsf_canonify(sstate->hard->linedsf, j, &inv_tmp);
1087 inverse ^= inv_tmp;
1088
1089 edsf_merge(sstate->hard->linedsf, i, j, inverse);
1090
1091 #ifdef SHOW_WORKING
1092 if (i != j) {
1093 fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
1094 __FUNCTION__, i, j,
1095 inverse ? "inverse " : "", reason);
1096 }
1097 #endif
1098 return (i != j);
1099 }
1100
1101 #ifdef SHOW_WORKING
1102 #define merge_lines(a, b, c, d) \
1103 merge_lines(a, b, c, d, __FUNCTION__)
1104 #endif
1105
1106 /* Count the number of lines of a particular type currently going into the
1107 * given dot. */
1108 static int dot_order(const game_state* state, int dot, char line_type)
1109 {
1110 int n = 0;
1111 grid *g = state->game_grid;
1112 grid_dot *d = g->dots + dot;
1113 int i;
1114
1115 for (i = 0; i < d->order; i++) {
1116 grid_edge *e = d->edges[i];
1117 if (state->lines[e - g->edges] == line_type)
1118 ++n;
1119 }
1120 return n;
1121 }
1122
1123 /* Count the number of lines of a particular type currently surrounding the
1124 * given face */
1125 static int face_order(const game_state* state, int face, char line_type)
1126 {
1127 int n = 0;
1128 grid *g = state->game_grid;
1129 grid_face *f = g->faces + face;
1130 int i;
1131
1132 for (i = 0; i < f->order; i++) {
1133 grid_edge *e = f->edges[i];
1134 if (state->lines[e - g->edges] == line_type)
1135 ++n;
1136 }
1137 return n;
1138 }
1139
1140 /* Set all lines bordering a dot of type old_type to type new_type
1141 * Return value tells caller whether this function actually did anything */
1142 static int dot_setall(solver_state *sstate, int dot,
1143 char old_type, char new_type)
1144 {
1145 int retval = FALSE, r;
1146 game_state *state = sstate->state;
1147 grid *g;
1148 grid_dot *d;
1149 int i;
1150
1151 if (old_type == new_type)
1152 return FALSE;
1153
1154 g = state->game_grid;
1155 d = g->dots + dot;
1156
1157 for (i = 0; i < d->order; i++) {
1158 int line_index = d->edges[i] - g->edges;
1159 if (state->lines[line_index] == old_type) {
1160 r = solver_set_line(sstate, line_index, new_type);
1161 assert(r == TRUE);
1162 retval = TRUE;
1163 }
1164 }
1165 return retval;
1166 }
1167
1168 /* Set all lines bordering a face of type old_type to type new_type */
1169 static int face_setall(solver_state *sstate, int face,
1170 char old_type, char new_type)
1171 {
1172 int retval = FALSE, r;
1173 game_state *state = sstate->state;
1174 grid *g;
1175 grid_face *f;
1176 int i;
1177
1178 if (old_type == new_type)
1179 return FALSE;
1180
1181 g = state->game_grid;
1182 f = g->faces + face;
1183
1184 for (i = 0; i < f->order; i++) {
1185 int line_index = f->edges[i] - g->edges;
1186 if (state->lines[line_index] == old_type) {
1187 r = solver_set_line(sstate, line_index, new_type);
1188 assert(r == TRUE);
1189 retval = TRUE;
1190 }
1191 }
1192 return retval;
1193 }
1194
1195 /* ----------------------------------------------------------------------
1196 * Loop generation and clue removal
1197 */
1198
1199 /* We're going to store a list of current candidate faces for lighting.
1200 * Each face gets a 'score', which tells us how adding that face right
1201 * now would affect the length of the solution loop. We're trying to
1202 * maximise that quantity so will bias our random selection of faces to
1203 * light towards those with high scores */
1204 struct face {
1205 int score;
1206 unsigned long random;
1207 grid_face *f;
1208 };
1209
1210 static int get_face_cmpfn(void *v1, void *v2)
1211 {
1212 struct face *f1 = v1;
1213 struct face *f2 = v2;
1214 /* These grid_face pointers always point into the same list of
1215 * 'grid_face's, so it's valid to subtract them. */
1216 return f1->f - f2->f;
1217 }
1218
1219 static int face_sort_cmpfn(void *v1, void *v2)
1220 {
1221 struct face *f1 = v1;
1222 struct face *f2 = v2;
1223 int r;
1224
1225 r = f2->score - f1->score;
1226 if (r) {
1227 return r;
1228 }
1229
1230 if (f1->random < f2->random)
1231 return -1;
1232 else if (f1->random > f2->random)
1233 return 1;
1234
1235 /*
1236 * It's _just_ possible that two faces might have been given
1237 * the same random value. In that situation, fall back to
1238 * comparing based on the positions within the grid's face-list.
1239 * This introduces a tiny directional bias, but not a significant one.
1240 */
1241 return get_face_cmpfn(f1, f2);
1242 }
1243
1244 enum { FACE_LIT, FACE_UNLIT };
1245
1246 /* face should be of type grid_face* here. */
1247 #define FACE_LIT_STATE(face) \
1248 ( (face) == NULL ? FACE_UNLIT : \
1249 board[(face) - g->faces] )
1250
1251 /* 'board' is an array of these enums, indicating which faces are
1252 * currently lit. Returns whether it's legal to light up the
1253 * given face. */
1254 static int can_light_face(grid *g, char* board, int face_index)
1255 {
1256 int i, j;
1257 grid_face *test_face = g->faces + face_index;
1258 grid_face *starting_face, *current_face;
1259 int transitions;
1260 int current_state, s;
1261 int found_lit_neighbour = FALSE;
1262 assert(board[face_index] == FACE_UNLIT);
1263
1264 /* Can only consider a face for lighting if it's adjacent to an
1265 * already lit face. */
1266 for (i = 0; i < test_face->order; i++) {
1267 grid_edge *e = test_face->edges[i];
1268 grid_face *f = (e->face1 == test_face) ? e->face2 : e->face1;
1269 if (FACE_LIT_STATE(f) == FACE_LIT) {
1270 found_lit_neighbour = TRUE;
1271 break;
1272 }
1273 }
1274 if (!found_lit_neighbour)
1275 return FALSE;
1276
1277 /* Need to avoid creating a loop of lit faces around some unlit faces.
1278 * Also need to avoid meeting another lit face at a corner, with
1279 * unlit faces in between. Here's a simple test that (I believe) takes
1280 * care of both these conditions:
1281 *
1282 * Take the circular path formed by this face's edges, and inflate it
1283 * slightly outwards. Imagine walking around this path and consider
1284 * the faces that you visit in sequence. This will include all faces
1285 * touching the given face, either along an edge or just at a corner.
1286 * Count the number of LIT/UNLIT transitions you encounter, as you walk
1287 * along the complete loop. This will obviously turn out to be an even
1288 * number.
1289 * If 0, we're either in a completely unlit zone, or this face is a hole
1290 * in a completely lit zone. If the former, we would create a brand new
1291 * island by lighting this face. And the latter ought to be impossible -
1292 * it would mean there's already a lit loop, so something went wrong
1293 * earlier.
1294 * If 4 or greater, there are too many separate lit regions touching this
1295 * face, and lighting it up would create a loop or a corner-violation.
1296 * The only allowed case is when the count is exactly 2. */
1297
1298 /* i points to a dot around the test face.
1299 * j points to a face around the i^th dot.
1300 * The current face will always be:
1301 * test_face->dots[i]->faces[j]
1302 * We assume dots go clockwise around the test face,
1303 * and faces go clockwise around dots. */
1304 i = j = 0;
1305 starting_face = test_face->dots[0]->faces[0];
1306 if (starting_face == test_face) {
1307 j = 1;
1308 starting_face = test_face->dots[0]->faces[1];
1309 }
1310 current_face = starting_face;
1311 transitions = 0;
1312 current_state = FACE_LIT_STATE(current_face);
1313
1314 do {
1315 /* Advance to next face.
1316 * Need to loop here because it might take several goes to
1317 * find it. */
1318 while (TRUE) {
1319 j++;
1320 if (j == test_face->dots[i]->order)
1321 j = 0;
1322
1323 if (test_face->dots[i]->faces[j] == test_face) {
1324 /* Advance to next dot round test_face, then
1325 * find current_face around new dot
1326 * and advance to the next face clockwise */
1327 i++;
1328 if (i == test_face->order)
1329 i = 0;
1330 for (j = 0; j < test_face->dots[i]->order; j++) {
1331 if (test_face->dots[i]->faces[j] == current_face)
1332 break;
1333 }
1334 /* Must actually find current_face around new dot,
1335 * or else something's wrong with the grid. */
1336 assert(j != test_face->dots[i]->order);
1337 /* Found, so advance to next face and try again */
1338 } else {
1339 break;
1340 }
1341 }
1342 /* (i,j) are now advanced to next face */
1343 current_face = test_face->dots[i]->faces[j];
1344 s = FACE_LIT_STATE(current_face);
1345 if (s != current_state) {
1346 ++transitions;
1347 current_state = s;
1348 if (transitions > 2)
1349 return FALSE; /* no point in continuing */
1350 }
1351 } while (current_face != starting_face);
1352
1353 return (transitions == 2) ? TRUE : FALSE;
1354 }
1355
1356 /* The 'score' of a face reflects its current desirability for selection
1357 * as the next face to light. We want to encourage moving into uncharted
1358 * areas so we give scores according to how many of the face's neighbours
1359 * are currently unlit. */
1360 static int face_score(grid *g, char *board, grid_face *face)
1361 {
1362 /* Simple formula: score = neighbours unlit - neighbours lit */
1363 int lit_count = 0, unlit_count = 0;
1364 int i;
1365 grid_face *f;
1366 grid_edge *e;
1367 for (i = 0; i < face->order; i++) {
1368 e = face->edges[i];
1369 f = (e->face1 == face) ? e->face2 : e->face1;
1370 if (FACE_LIT_STATE(f) == FACE_LIT)
1371 ++lit_count;
1372 else
1373 ++unlit_count;
1374 }
1375 return unlit_count - lit_count;
1376 }
1377
1378 /* Generate a new complete set of clues for the given game_state. */
1379 static void add_full_clues(game_state *state, random_state *rs)
1380 {
1381 signed char *clues = state->clues;
1382 char *board;
1383 grid *g = state->game_grid;
1384 int i, j, c;
1385 int num_faces = g->num_faces;
1386 int first_time = TRUE;
1387
1388 struct face *face, *tmpface;
1389 struct face face_pos;
1390
1391 /* These will contain exactly the same information, sorted into different
1392 * orders */
1393 tree234 *lightable_faces_sorted, *lightable_faces_gettable;
1394
1395 #define IS_LIGHTING_CANDIDATE(i) \
1396 (board[i] == FACE_UNLIT && \
1397 can_light_face(g, board, i))
1398
1399 board = snewn(num_faces, char);
1400
1401 /* Make a board */
1402 memset(board, FACE_UNLIT, num_faces);
1403
1404 /* We need a way of favouring faces that will increase our loopiness.
1405 * We do this by maintaining a list of all candidate faces sorted by
1406 * their score and choose randomly from that with appropriate skew.
1407 * In order to avoid consistently biasing towards particular faces, we
1408 * need the sort order _within_ each group of scores to be completely
1409 * random. But it would be abusing the hospitality of the tree234 data
1410 * structure if our comparison function were nondeterministic :-). So with
1411 * each face we associate a random number that does not change during a
1412 * particular run of the generator, and use that as a secondary sort key.
1413 * Yes, this means we will be biased towards particular random faces in
1414 * any one run but that doesn't actually matter. */
1415
1416 lightable_faces_sorted = newtree234(face_sort_cmpfn);
1417 lightable_faces_gettable = newtree234(get_face_cmpfn);
1418 #define ADD_FACE(f) \
1419 do { \
1420 struct face *x = add234(lightable_faces_sorted, f); \
1421 assert(x == f); \
1422 x = add234(lightable_faces_gettable, f); \
1423 assert(x == f); \
1424 } while (0)
1425
1426 #define REMOVE_FACE(f) \
1427 do { \
1428 struct face *x = del234(lightable_faces_sorted, f); \
1429 assert(x); \
1430 x = del234(lightable_faces_gettable, f); \
1431 assert(x); \
1432 } while (0)
1433
1434 /* Light faces one at a time until the board is interesting enough */
1435 while (TRUE)
1436 {
1437 if (first_time) {
1438 first_time = FALSE;
1439 /* lightable_faces_xxx are empty, so start the process by
1440 * lighting up the middle face. These tree234s should
1441 * remain empty, consistent with what would happen if
1442 * first_time were FALSE. */
1443 board[g->middle_face - g->faces] = FACE_LIT;
1444 face = snew(struct face);
1445 face->f = g->middle_face;
1446 /* No need to initialise any more of 'face' here, no other fields
1447 * are used in this case. */
1448 } else {
1449 /* We have count234(lightable_faces_gettable) possibilities, and in
1450 * lightable_faces_sorted they are sorted with the most desirable
1451 * first. */
1452 c = count234(lightable_faces_sorted);
1453 if (c == 0)
1454 break;
1455 assert(c == count234(lightable_faces_gettable));
1456
1457 /* Check that the best face available is any good */
1458 face = (struct face *)index234(lightable_faces_sorted, 0);
1459 assert(face);
1460
1461 /*
1462 * The situation for a general grid is slightly different from
1463 * a square grid. Decreasing the perimeter should be allowed
1464 * sometimes (think about creating a hexagon of lit triangles,
1465 * for example). For if it were _never_ done, then the user would
1466 * be able to illicitly deduce certain things. So we do it
1467 * sometimes but not always.
1468 */
1469 if (face->score <= 0 && random_upto(rs, 2) == 0) {
1470 break;
1471 }
1472
1473 assert(face->f); /* not the infinite face */
1474 assert(FACE_LIT_STATE(face->f) == FACE_UNLIT);
1475
1476 /* Update data structures */
1477 /* Light up the face and remove it from the lists */
1478 board[face->f - g->faces] = FACE_LIT;
1479 REMOVE_FACE(face);
1480 }
1481
1482 /* The face we've just lit up potentially affects the lightability
1483 * of any neighbouring faces (touching at a corner or edge). So the
1484 * search needs to be conducted around all faces touching the one
1485 * we've just lit. Iterate over its corners, then over each corner's
1486 * faces. */
1487 for (i = 0; i < face->f->order; i++) {
1488 grid_dot *d = face->f->dots[i];
1489 for (j = 0; j < d->order; j++) {
1490 grid_face *f2 = d->faces[j];
1491 if (f2 == NULL)
1492 continue;
1493 if (f2 == face->f)
1494 continue;
1495 face_pos.f = f2;
1496 tmpface = find234(lightable_faces_gettable, &face_pos, NULL);
1497 if (tmpface) {
1498 assert(tmpface->f == face_pos.f);
1499 assert(FACE_LIT_STATE(tmpface->f) == FACE_UNLIT);
1500 REMOVE_FACE(tmpface);
1501 } else {
1502 tmpface = snew(struct face);
1503 tmpface->f = face_pos.f;
1504 tmpface->random = random_bits(rs, 31);
1505 }
1506 tmpface->score = face_score(g, board, tmpface->f);
1507
1508 if (IS_LIGHTING_CANDIDATE(tmpface->f - g->faces)) {
1509 ADD_FACE(tmpface);
1510 } else {
1511 sfree(tmpface);
1512 }
1513 }
1514 }
1515 sfree(face);
1516 }
1517
1518 /* Clean up */
1519 while ((face = delpos234(lightable_faces_gettable, 0)) != NULL)
1520 sfree(face);
1521 freetree234(lightable_faces_gettable);
1522 freetree234(lightable_faces_sorted);
1523
1524 /* Fill out all the clues by initialising to 0, then iterating over
1525 * all edges and incrementing each clue as we find edges that border
1526 * between LIT/UNLIT faces */
1527 memset(clues, 0, num_faces);
1528 for (i = 0; i < g->num_edges; i++) {
1529 grid_edge *e = g->edges + i;
1530 grid_face *f1 = e->face1;
1531 grid_face *f2 = e->face2;
1532 if (FACE_LIT_STATE(f1) != FACE_LIT_STATE(f2)) {
1533 if (f1) clues[f1 - g->faces]++;
1534 if (f2) clues[f2 - g->faces]++;
1535 }
1536 }
1537
1538 sfree(board);
1539 }
1540
1541
1542 static int game_has_unique_soln(const game_state *state, int diff)
1543 {
1544 int ret;
1545 solver_state *sstate_new;
1546 solver_state *sstate = new_solver_state((game_state *)state, diff);
1547
1548 sstate_new = solve_game_rec(sstate, diff);
1549
1550 assert(sstate_new->solver_status != SOLVER_MISTAKE);
1551 ret = (sstate_new->solver_status == SOLVER_SOLVED);
1552
1553 free_solver_state(sstate_new);
1554 free_solver_state(sstate);
1555
1556 return ret;
1557 }
1558
1559
1560 /* Remove clues one at a time at random. */
1561 static game_state *remove_clues(game_state *state, random_state *rs,
1562 int diff)
1563 {
1564 int *face_list;
1565 int num_faces = state->game_grid->num_faces;
1566 game_state *ret = dup_game(state), *saved_ret;
1567 int n;
1568
1569 /* We need to remove some clues. We'll do this by forming a list of all
1570 * available clues, shuffling it, then going along one at a
1571 * time clearing each clue in turn for which doing so doesn't render the
1572 * board unsolvable. */
1573 face_list = snewn(num_faces, int);
1574 for (n = 0; n < num_faces; ++n) {
1575 face_list[n] = n;
1576 }
1577
1578 shuffle(face_list, num_faces, sizeof(int), rs);
1579
1580 for (n = 0; n < num_faces; ++n) {
1581 saved_ret = dup_game(ret);
1582 ret->clues[face_list[n]] = -1;
1583
1584 if (game_has_unique_soln(ret, diff)) {
1585 free_game(saved_ret);
1586 } else {
1587 free_game(ret);
1588 ret = saved_ret;
1589 }
1590 }
1591 sfree(face_list);
1592
1593 return ret;
1594 }
1595
1596
1597 static char *new_game_desc(game_params *params, random_state *rs,
1598 char **aux, int interactive)
1599 {
1600 /* solution and description both use run-length encoding in obvious ways */
1601 char *retval;
1602 grid *g;
1603 game_state *state = snew(game_state);
1604 game_state *state_new;
1605 params_generate_grid(params);
1606 state->game_grid = g = params->game_grid;
1607 g->refcount++;
1608 state->clues = snewn(g->num_faces, signed char);
1609 state->lines = snewn(g->num_edges, char);
1610
1611 state->grid_type = params->type;
1612
1613 newboard_please:
1614
1615 memset(state->lines, LINE_UNKNOWN, g->num_edges);
1616
1617 state->solved = state->cheated = FALSE;
1618
1619 /* Get a new random solvable board with all its clues filled in. Yes, this
1620 * can loop for ever if the params are suitably unfavourable, but
1621 * preventing games smaller than 4x4 seems to stop this happening */
1622 do {
1623 add_full_clues(state, rs);
1624 } while (!game_has_unique_soln(state, params->diff));
1625
1626 state_new = remove_clues(state, rs, params->diff);
1627 free_game(state);
1628 state = state_new;
1629
1630
1631 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1632 #ifdef SHOW_WORKING
1633 fprintf(stderr, "Rejecting board, it is too easy\n");
1634 #endif
1635 goto newboard_please;
1636 }
1637
1638 retval = state_to_text(state);
1639
1640 free_game(state);
1641
1642 assert(!validate_desc(params, retval));
1643
1644 return retval;
1645 }
1646
1647 static game_state *new_game(midend *me, game_params *params, char *desc)
1648 {
1649 int i;
1650 game_state *state = snew(game_state);
1651 int empties_to_make = 0;
1652 int n;
1653 const char *dp = desc;
1654 grid *g;
1655 int num_faces, num_edges;
1656
1657 params_generate_grid(params);
1658 state->game_grid = g = params->game_grid;
1659 g->refcount++;
1660 num_faces = g->num_faces;
1661 num_edges = g->num_edges;
1662
1663 state->clues = snewn(num_faces, signed char);
1664 state->lines = snewn(num_edges, char);
1665
1666 state->solved = state->cheated = FALSE;
1667
1668 state->grid_type = params->type;
1669
1670 for (i = 0; i < num_faces; i++) {
1671 if (empties_to_make) {
1672 empties_to_make--;
1673 state->clues[i] = -1;
1674 continue;
1675 }
1676
1677 assert(*dp);
1678 n = *dp - '0';
1679 if (n >= 0 && n < 10) {
1680 state->clues[i] = n;
1681 } else {
1682 n = *dp - 'a' + 1;
1683 assert(n > 0);
1684 state->clues[i] = -1;
1685 empties_to_make = n - 1;
1686 }
1687 ++dp;
1688 }
1689
1690 memset(state->lines, LINE_UNKNOWN, num_edges);
1691
1692 return state;
1693 }
1694
1695 enum { LOOP_NONE=0, LOOP_SOLN, LOOP_NOT_SOLN };
1696
1697 /* ----------------------------------------------------------------------
1698 * Solver logic
1699 *
1700 * Our solver modes operate as follows. Each mode also uses the modes above it.
1701 *
1702 * Easy Mode
1703 * Just implement the rules of the game.
1704 *
1705 * Normal Mode
1706 * For each (adjacent) pair of lines through each dot we store a bit for
1707 * whether at least one of them is on and whether at most one is on. (If we
1708 * know both or neither is on that's already stored more directly.)
1709 *
1710 * Advanced Mode
1711 * Use edsf data structure to make equivalence classes of lines that are
1712 * known identical to or opposite to one another.
1713 */
1714
1715
1716 /* DLines:
1717 * For general grids, we consider "dlines" to be pairs of lines joined
1718 * at a dot. The lines must be adjacent around the dot, so we can think of
1719 * a dline as being a dot+face combination. Or, a dot+edge combination where
1720 * the second edge is taken to be the next clockwise edge from the dot.
1721 * Original loopy code didn't have this extra restriction of the lines being
1722 * adjacent. From my tests with square grids, this extra restriction seems to
1723 * take little, if anything, away from the quality of the puzzles.
1724 * A dline can be uniquely identified by an edge/dot combination, given that
1725 * a dline-pair always goes clockwise around its common dot. The edge/dot
1726 * combination can be represented by an edge/bool combination - if bool is
1727 * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
1728 * exactly twice the number of edges in the grid - although the dlines
1729 * spanning the infinite face are not all that useful to the solver.
1730 * Note that, by convention, a dline goes clockwise around its common dot,
1731 * which means the dline goes anti-clockwise around its common face.
1732 */
1733
1734 /* Helper functions for obtaining an index into an array of dlines, given
1735 * various information. We assume the grid layout conventions about how
1736 * the various lists are interleaved - see grid_make_consistent() for
1737 * details. */
1738
1739 /* i points to the first edge of the dline pair, reading clockwise around
1740 * the dot. */
1741 static int dline_index_from_dot(grid *g, grid_dot *d, int i)
1742 {
1743 grid_edge *e = d->edges[i];
1744 int ret;
1745 #ifdef DEBUG_DLINES
1746 grid_edge *e2;
1747 int i2 = i+1;
1748 if (i2 == d->order) i2 = 0;
1749 e2 = d->edges[i2];
1750 #endif
1751 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
1752 #ifdef DEBUG_DLINES
1753 printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
1754 (int)(d - g->dots), i, (int)(e - g->edges),
1755 (int)(e2 - g->edges), ret);
1756 #endif
1757 return ret;
1758 }
1759 /* i points to the second edge of the dline pair, reading clockwise around
1760 * the face. That is, the edges of the dline, starting at edge{i}, read
1761 * anti-clockwise around the face. By layout conventions, the common dot
1762 * of the dline will be f->dots[i] */
1763 static int dline_index_from_face(grid *g, grid_face *f, int i)
1764 {
1765 grid_edge *e = f->edges[i];
1766 grid_dot *d = f->dots[i];
1767 int ret;
1768 #ifdef DEBUG_DLINES
1769 grid_edge *e2;
1770 int i2 = i - 1;
1771 if (i2 < 0) i2 += f->order;
1772 e2 = f->edges[i2];
1773 #endif
1774 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
1775 #ifdef DEBUG_DLINES
1776 printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
1777 (int)(f - g->faces), i, (int)(e - g->edges),
1778 (int)(e2 - g->edges), ret);
1779 #endif
1780 return ret;
1781 }
1782 static int is_atleastone(const char *dline_array, int index)
1783 {
1784 return BIT_SET(dline_array[index], 0);
1785 }
1786 static int set_atleastone(char *dline_array, int index)
1787 {
1788 return SET_BIT(dline_array[index], 0);
1789 }
1790 static int is_atmostone(const char *dline_array, int index)
1791 {
1792 return BIT_SET(dline_array[index], 1);
1793 }
1794 static int set_atmostone(char *dline_array, int index)
1795 {
1796 return SET_BIT(dline_array[index], 1);
1797 }
1798
1799 static void array_setall(char *array, char from, char to, int len)
1800 {
1801 char *p = array, *p_old = p;
1802 int len_remaining = len;
1803
1804 while ((p = memchr(p, from, len_remaining))) {
1805 *p = to;
1806 len_remaining -= p - p_old;
1807 p_old = p;
1808 }
1809 }
1810
1811 /* Helper, called when doing dline dot deductions, in the case where we
1812 * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
1813 * them (because of dline atmostone/atleastone).
1814 * On entry, edge points to the first of these two UNKNOWNs. This function
1815 * will find the opposite UNKNOWNS (if they are adjacent to one another)
1816 * and set their corresponding dline to atleastone. (Setting atmostone
1817 * already happens in earlier dline deductions) */
1818 static int dline_set_opp_atleastone(solver_state *sstate,
1819 grid_dot *d, int edge)
1820 {
1821 game_state *state = sstate->state;
1822 grid *g = state->game_grid;
1823 int N = d->order;
1824 int opp, opp2;
1825 for (opp = 0; opp < N; opp++) {
1826 int opp_dline_index;
1827 if (opp == edge || opp == edge+1 || opp == edge-1)
1828 continue;
1829 if (opp == 0 && edge == N-1)
1830 continue;
1831 if (opp == N-1 && edge == 0)
1832 continue;
1833 opp2 = opp + 1;
1834 if (opp2 == N) opp2 = 0;
1835 /* Check if opp, opp2 point to LINE_UNKNOWNs */
1836 if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN)
1837 continue;
1838 if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN)
1839 continue;
1840 /* Found opposite UNKNOWNS and they're next to each other */
1841 opp_dline_index = dline_index_from_dot(g, d, opp);
1842 return set_atleastone(sstate->normal->dlines, opp_dline_index);
1843 }
1844 return FALSE;
1845 }
1846
1847
1848 /* Set pairs of lines around this face which are known to be identical, to
1849 * the given line_state */
1850 static int face_setall_identical(solver_state *sstate, int face_index,
1851 enum line_state line_new)
1852 {
1853 /* can[dir] contains the canonical line associated with the line in
1854 * direction dir from the square in question. Similarly inv[dir] is
1855 * whether or not the line in question is inverse to its canonical
1856 * element. */
1857 int retval = FALSE;
1858 game_state *state = sstate->state;
1859 grid *g = state->game_grid;
1860 grid_face *f = g->faces + face_index;
1861 int N = f->order;
1862 int i, j;
1863 int can1, can2, inv1, inv2;
1864
1865 for (i = 0; i < N; i++) {
1866 int line1_index = f->edges[i] - g->edges;
1867 if (state->lines[line1_index] != LINE_UNKNOWN)
1868 continue;
1869 for (j = i + 1; j < N; j++) {
1870 int line2_index = f->edges[j] - g->edges;
1871 if (state->lines[line2_index] != LINE_UNKNOWN)
1872 continue;
1873
1874 /* Found two UNKNOWNS */
1875 can1 = edsf_canonify(sstate->hard->linedsf, line1_index, &inv1);
1876 can2 = edsf_canonify(sstate->hard->linedsf, line2_index, &inv2);
1877 if (can1 == can2 && inv1 == inv2) {
1878 solver_set_line(sstate, line1_index, line_new);
1879 solver_set_line(sstate, line2_index, line_new);
1880 }
1881 }
1882 }
1883 return retval;
1884 }
1885
1886 /* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
1887 * return the edge indices into e. */
1888 static void find_unknowns(game_state *state,
1889 grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
1890 int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
1891 int *e /* Returned edge indices */)
1892 {
1893 int c = 0;
1894 grid *g = state->game_grid;
1895 while (c < expected_count) {
1896 int line_index = *edge_list - g->edges;
1897 if (state->lines[line_index] == LINE_UNKNOWN) {
1898 e[c] = line_index;
1899 c++;
1900 }
1901 ++edge_list;
1902 }
1903 }
1904
1905 /* If we have a list of edges, and we know whether the number of YESs should
1906 * be odd or even, and there are only a few UNKNOWNs, we can do some simple
1907 * linedsf deductions. This can be used for both face and dot deductions.
1908 * Returns the difficulty level of the next solver that should be used,
1909 * or DIFF_MAX if no progress was made. */
1910 static int parity_deductions(solver_state *sstate,
1911 grid_edge **edge_list, /* Edge list (from a face or a dot) */
1912 int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
1913 int unknown_count)
1914 {
1915 game_state *state = sstate->state;
1916 int diff = DIFF_MAX;
1917 int *linedsf = sstate->hard->linedsf;
1918
1919 if (unknown_count == 2) {
1920 /* Lines are known alike/opposite, depending on inv. */
1921 int e[2];
1922 find_unknowns(state, edge_list, 2, e);
1923 if (merge_lines(sstate, e[0], e[1], total_parity))
1924 diff = min(diff, DIFF_HARD);
1925 } else if (unknown_count == 3) {
1926 int e[3];
1927 int can[3]; /* canonical edges */
1928 int inv[3]; /* whether can[x] is inverse to e[x] */
1929 find_unknowns(state, edge_list, 3, e);
1930 can[0] = edsf_canonify(linedsf, e[0], inv);
1931 can[1] = edsf_canonify(linedsf, e[1], inv+1);
1932 can[2] = edsf_canonify(linedsf, e[2], inv+2);
1933 if (can[0] == can[1]) {
1934 if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
1935 LINE_YES : LINE_NO))
1936 diff = min(diff, DIFF_EASY);
1937 }
1938 if (can[0] == can[2]) {
1939 if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
1940 LINE_YES : LINE_NO))
1941 diff = min(diff, DIFF_EASY);
1942 }
1943 if (can[1] == can[2]) {
1944 if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
1945 LINE_YES : LINE_NO))
1946 diff = min(diff, DIFF_EASY);
1947 }
1948 } else if (unknown_count == 4) {
1949 int e[4];
1950 int can[4]; /* canonical edges */
1951 int inv[4]; /* whether can[x] is inverse to e[x] */
1952 find_unknowns(state, edge_list, 4, e);
1953 can[0] = edsf_canonify(linedsf, e[0], inv);
1954 can[1] = edsf_canonify(linedsf, e[1], inv+1);
1955 can[2] = edsf_canonify(linedsf, e[2], inv+2);
1956 can[3] = edsf_canonify(linedsf, e[3], inv+3);
1957 if (can[0] == can[1]) {
1958 if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
1959 diff = min(diff, DIFF_HARD);
1960 } else if (can[0] == can[2]) {
1961 if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
1962 diff = min(diff, DIFF_HARD);
1963 } else if (can[0] == can[3]) {
1964 if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
1965 diff = min(diff, DIFF_HARD);
1966 } else if (can[1] == can[2]) {
1967 if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
1968 diff = min(diff, DIFF_HARD);
1969 } else if (can[1] == can[3]) {
1970 if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
1971 diff = min(diff, DIFF_HARD);
1972 } else if (can[2] == can[3]) {
1973 if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
1974 diff = min(diff, DIFF_HARD);
1975 }
1976 }
1977 return diff;
1978 }
1979
1980
1981 /*
1982 * These are the main solver functions.
1983 *
1984 * Their return values are diff values corresponding to the lowest mode solver
1985 * that would notice the work that they have done. For example if the normal
1986 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
1987 * easy mode solver might be able to make progress using that. It doesn't make
1988 * sense for one of them to return a diff value higher than that of the
1989 * function itself.
1990 *
1991 * Each function returns the lowest value it can, as early as possible, in
1992 * order to try and pass as much work as possible back to the lower level
1993 * solvers which progress more quickly.
1994 */
1995
1996 /* PROPOSED NEW DESIGN:
1997 * We have a work queue consisting of 'events' notifying us that something has
1998 * happened that a particular solver mode might be interested in. For example
1999 * the hard mode solver might do something that helps the normal mode solver at
2000 * dot [x,y] in which case it will enqueue an event recording this fact. Then
2001 * we pull events off the work queue, and hand each in turn to the solver that
2002 * is interested in them. If a solver reports that it failed we pass the same
2003 * event on to progressively more advanced solvers and the loop detector. Once
2004 * we've exhausted an event, or it has helped us progress, we drop it and
2005 * continue to the next one. The events are sorted first in order of solver
2006 * complexity (easy first) then order of insertion (oldest first).
2007 * Once we run out of events we loop over each permitted solver in turn
2008 * (easiest first) until either a deduction is made (and an event therefore
2009 * emerges) or no further deductions can be made (in which case we've failed).
2010 *
2011 * QUESTIONS:
2012 * * How do we 'loop over' a solver when both dots and squares are concerned.
2013 * Answer: first all squares then all dots.
2014 */
2015
2016 static int easy_mode_deductions(solver_state *sstate)
2017 {
2018 int i, current_yes, current_no;
2019 game_state *state = sstate->state;
2020 grid *g = state->game_grid;
2021 int diff = DIFF_MAX;
2022
2023 /* Per-face deductions */
2024 for (i = 0; i < g->num_faces; i++) {
2025 grid_face *f = g->faces + i;
2026
2027 if (sstate->face_solved[i])
2028 continue;
2029
2030 current_yes = sstate->face_yes_count[i];
2031 current_no = sstate->face_no_count[i];
2032
2033 if (current_yes + current_no == f->order) {
2034 sstate->face_solved[i] = TRUE;
2035 continue;
2036 }
2037
2038 if (state->clues[i] < 0)
2039 continue;
2040
2041 if (state->clues[i] < current_yes) {
2042 sstate->solver_status = SOLVER_MISTAKE;
2043 return DIFF_EASY;
2044 }
2045 if (state->clues[i] == current_yes) {
2046 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
2047 diff = min(diff, DIFF_EASY);
2048 sstate->face_solved[i] = TRUE;
2049 continue;
2050 }
2051
2052 if (f->order - state->clues[i] < current_no) {
2053 sstate->solver_status = SOLVER_MISTAKE;
2054 return DIFF_EASY;
2055 }
2056 if (f->order - state->clues[i] == current_no) {
2057 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
2058 diff = min(diff, DIFF_EASY);
2059 sstate->face_solved[i] = TRUE;
2060 continue;
2061 }
2062 }
2063
2064 check_caches(sstate);
2065
2066 /* Per-dot deductions */
2067 for (i = 0; i < g->num_dots; i++) {
2068 grid_dot *d = g->dots + i;
2069 int yes, no, unknown;
2070
2071 if (sstate->dot_solved[i])
2072 continue;
2073
2074 yes = sstate->dot_yes_count[i];
2075 no = sstate->dot_no_count[i];
2076 unknown = d->order - yes - no;
2077
2078 if (yes == 0) {
2079 if (unknown == 0) {
2080 sstate->dot_solved[i] = TRUE;
2081 } else if (unknown == 1) {
2082 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2083 diff = min(diff, DIFF_EASY);
2084 sstate->dot_solved[i] = TRUE;
2085 }
2086 } else if (yes == 1) {
2087 if (unknown == 0) {
2088 sstate->solver_status = SOLVER_MISTAKE;
2089 return DIFF_EASY;
2090 } else if (unknown == 1) {
2091 dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
2092 diff = min(diff, DIFF_EASY);
2093 }
2094 } else if (yes == 2) {
2095 if (unknown > 0) {
2096 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2097 diff = min(diff, DIFF_EASY);
2098 }
2099 sstate->dot_solved[i] = TRUE;
2100 } else {
2101 sstate->solver_status = SOLVER_MISTAKE;
2102 return DIFF_EASY;
2103 }
2104 }
2105
2106 check_caches(sstate);
2107
2108 return diff;
2109 }
2110
2111 static int normal_mode_deductions(solver_state *sstate)
2112 {
2113 game_state *state = sstate->state;
2114 grid *g = state->game_grid;
2115 char *dlines = sstate->normal->dlines;
2116 int i;
2117 int diff = DIFF_MAX;
2118
2119 /* ------ Face deductions ------ */
2120
2121 /* Given a set of dline atmostone/atleastone constraints, need to figure
2122 * out if we can deduce any further info. For more general faces than
2123 * squares, this turns out to be a tricky problem.
2124 * The approach taken here is to define (per face) NxN matrices:
2125 * "maxs" and "mins".
2126 * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
2127 * for the possible number of edges that are YES between positions j and k
2128 * going clockwise around the face. Can think of j and k as marking dots
2129 * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
2130 * edge1 joins dot1 to dot2 etc).
2131 * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
2132 * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
2133 * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
2134 * the dline atmostone/atleastone status for edges j and j+1.
2135 *
2136 * Then we calculate the remaining entries recursively. We definitely
2137 * know that
2138 * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
2139 * This is because any valid placement of YESs between j and k must give
2140 * a valid placement between j and u, and also between u and k.
2141 * I believe it's sufficient to use just the two values of u:
2142 * j+1 and j+2. Seems to work well in practice - the bounds we compute
2143 * are rigorous, even if they might not be best-possible.
2144 *
2145 * Once we have maxs and mins calculated, we can make inferences about
2146 * each dline{j,j+1} by looking at the possible complementary edge-counts
2147 * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
2148 * As well as dlines, we can make similar inferences about single edges.
2149 * For example, consider a pentagon with clue 3, and we know at most one
2150 * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
2151 * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
2152 * that final edge would have to be YES to make the count up to 3.
2153 */
2154
2155 /* Much quicker to allocate arrays on the stack than the heap, so
2156 * define the largest possible face size, and base our array allocations
2157 * on that. We check this with an assertion, in case someone decides to
2158 * make a grid which has larger faces than this. Note, this algorithm
2159 * could get quite expensive if there are many large faces. */
2160 #define MAX_FACE_SIZE 8
2161
2162 for (i = 0; i < g->num_faces; i++) {
2163 int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
2164 int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
2165 grid_face *f = g->faces + i;
2166 int N = f->order;
2167 int j,m;
2168 int clue = state->clues[i];
2169 assert(N <= MAX_FACE_SIZE);
2170 if (sstate->face_solved[i])
2171 continue;
2172 if (clue < 0) continue;
2173
2174 /* Calculate the (j,j+1) entries */
2175 for (j = 0; j < N; j++) {
2176 int edge_index = f->edges[j] - g->edges;
2177 int dline_index;
2178 enum line_state line1 = state->lines[edge_index];
2179 enum line_state line2;
2180 int tmp;
2181 int k = j + 1;
2182 if (k >= N) k = 0;
2183 maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
2184 mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
2185 /* Calculate the (j,j+2) entries */
2186 dline_index = dline_index_from_face(g, f, k);
2187 edge_index = f->edges[k] - g->edges;
2188 line2 = state->lines[edge_index];
2189 k++;
2190 if (k >= N) k = 0;
2191
2192 /* max */
2193 tmp = 2;
2194 if (line1 == LINE_NO) tmp--;
2195 if (line2 == LINE_NO) tmp--;
2196 if (tmp == 2 && is_atmostone(dlines, dline_index))
2197 tmp = 1;
2198 maxs[j][k] = tmp;
2199
2200 /* min */
2201 tmp = 0;
2202 if (line1 == LINE_YES) tmp++;
2203 if (line2 == LINE_YES) tmp++;
2204 if (tmp == 0 && is_atleastone(dlines, dline_index))
2205 tmp = 1;
2206 mins[j][k] = tmp;
2207 }
2208
2209 /* Calculate the (j,j+m) entries for m between 3 and N-1 */
2210 for (m = 3; m < N; m++) {
2211 for (j = 0; j < N; j++) {
2212 int k = j + m;
2213 int u = j + 1;
2214 int v = j + 2;
2215 int tmp;
2216 if (k >= N) k -= N;
2217 if (u >= N) u -= N;
2218 if (v >= N) v -= N;
2219 maxs[j][k] = maxs[j][u] + maxs[u][k];
2220 mins[j][k] = mins[j][u] + mins[u][k];
2221 tmp = maxs[j][v] + maxs[v][k];
2222 maxs[j][k] = min(maxs[j][k], tmp);
2223 tmp = mins[j][v] + mins[v][k];
2224 mins[j][k] = max(mins[j][k], tmp);
2225 }
2226 }
2227
2228 /* See if we can make any deductions */
2229 for (j = 0; j < N; j++) {
2230 int k;
2231 grid_edge *e = f->edges[j];
2232 int line_index = e - g->edges;
2233 int dline_index;
2234
2235 if (state->lines[line_index] != LINE_UNKNOWN)
2236 continue;
2237 k = j + 1;
2238 if (k >= N) k = 0;
2239
2240 /* minimum YESs in the complement of this edge */
2241 if (mins[k][j] > clue) {
2242 sstate->solver_status = SOLVER_MISTAKE;
2243 return DIFF_EASY;
2244 }
2245 if (mins[k][j] == clue) {
2246 /* setting this edge to YES would make at least
2247 * (clue+1) edges - contradiction */
2248 solver_set_line(sstate, line_index, LINE_NO);
2249 diff = min(diff, DIFF_EASY);
2250 }
2251 if (maxs[k][j] < clue - 1) {
2252 sstate->solver_status = SOLVER_MISTAKE;
2253 return DIFF_EASY;
2254 }
2255 if (maxs[k][j] == clue - 1) {
2256 /* Only way to satisfy the clue is to set edge{j} as YES */
2257 solver_set_line(sstate, line_index, LINE_YES);
2258 diff = min(diff, DIFF_EASY);
2259 }
2260
2261 /* Now see if we can make dline deduction for edges{j,j+1} */
2262 e = f->edges[k];
2263 if (state->lines[e - g->edges] != LINE_UNKNOWN)
2264 /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
2265 * Dlines where one of the edges is known, are handled in the
2266 * dot-deductions */
2267 continue;
2268
2269 dline_index = dline_index_from_face(g, f, k);
2270 k++;
2271 if (k >= N) k = 0;
2272
2273 /* minimum YESs in the complement of this dline */
2274 if (mins[k][j] > clue - 2) {
2275 /* Adding 2 YESs would break the clue */
2276 if (set_atmostone(dlines, dline_index))
2277 diff = min(diff, DIFF_NORMAL);
2278 }
2279 /* maximum YESs in the complement of this dline */
2280 if (maxs[k][j] < clue) {
2281 /* Adding 2 NOs would mean not enough YESs */
2282 if (set_atleastone(dlines, dline_index))
2283 diff = min(diff, DIFF_NORMAL);
2284 }
2285 }
2286 }
2287
2288 if (diff < DIFF_NORMAL)
2289 return diff;
2290
2291 /* ------ Dot deductions ------ */
2292
2293 for (i = 0; i < g->num_dots; i++) {
2294 grid_dot *d = g->dots + i;
2295 int N = d->order;
2296 int yes, no, unknown;
2297 int j;
2298 if (sstate->dot_solved[i])
2299 continue;
2300 yes = sstate->dot_yes_count[i];
2301 no = sstate->dot_no_count[i];
2302 unknown = N - yes - no;
2303
2304 for (j = 0; j < N; j++) {
2305 int k;
2306 int dline_index;
2307 int line1_index, line2_index;
2308 enum line_state line1, line2;
2309 k = j + 1;
2310 if (k >= N) k = 0;
2311 dline_index = dline_index_from_dot(g, d, j);
2312 line1_index = d->edges[j] - g->edges;
2313 line2_index = d->edges[k] - g->edges;
2314 line1 = state->lines[line1_index];
2315 line2 = state->lines[line2_index];
2316
2317 /* Infer dline state from line state */
2318 if (line1 == LINE_NO || line2 == LINE_NO) {
2319 if (set_atmostone(dlines, dline_index))
2320 diff = min(diff, DIFF_NORMAL);
2321 }
2322 if (line1 == LINE_YES || line2 == LINE_YES) {
2323 if (set_atleastone(dlines, dline_index))
2324 diff = min(diff, DIFF_NORMAL);
2325 }
2326 /* Infer line state from dline state */
2327 if (is_atmostone(dlines, dline_index)) {
2328 if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
2329 solver_set_line(sstate, line2_index, LINE_NO);
2330 diff = min(diff, DIFF_EASY);
2331 }
2332 if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
2333 solver_set_line(sstate, line1_index, LINE_NO);
2334 diff = min(diff, DIFF_EASY);
2335 }
2336 }
2337 if (is_atleastone(dlines, dline_index)) {
2338 if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
2339 solver_set_line(sstate, line2_index, LINE_YES);
2340 diff = min(diff, DIFF_EASY);
2341 }
2342 if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
2343 solver_set_line(sstate, line1_index, LINE_YES);
2344 diff = min(diff, DIFF_EASY);
2345 }
2346 }
2347 /* Deductions that depend on the numbers of lines.
2348 * Only bother if both lines are UNKNOWN, otherwise the
2349 * easy-mode solver (or deductions above) would have taken
2350 * care of it. */
2351 if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
2352 continue;
2353
2354 if (yes == 0 && unknown == 2) {
2355 /* Both these unknowns must be identical. If we know
2356 * atmostone or atleastone, we can make progress. */
2357 if (is_atmostone(dlines, dline_index)) {
2358 solver_set_line(sstate, line1_index, LINE_NO);
2359 solver_set_line(sstate, line2_index, LINE_NO);
2360 diff = min(diff, DIFF_EASY);
2361 }
2362 if (is_atleastone(dlines, dline_index)) {
2363 solver_set_line(sstate, line1_index, LINE_YES);
2364 solver_set_line(sstate, line2_index, LINE_YES);
2365 diff = min(diff, DIFF_EASY);
2366 }
2367 }
2368 if (yes == 1) {
2369 if (set_atmostone(dlines, dline_index))
2370 diff = min(diff, DIFF_NORMAL);
2371 if (unknown == 2) {
2372 if (set_atleastone(dlines, dline_index))
2373 diff = min(diff, DIFF_NORMAL);
2374 }
2375 }
2376
2377 /* If we have atleastone set for this dline, infer
2378 * atmostone for each "opposite" dline (that is, each
2379 * dline without edges in common with this one).
2380 * Again, this test is only worth doing if both these
2381 * lines are UNKNOWN. For if one of these lines were YES,
2382 * the (yes == 1) test above would kick in instead. */
2383 if (is_atleastone(dlines, dline_index)) {
2384 int opp;
2385 for (opp = 0; opp < N; opp++) {
2386 int opp_dline_index;
2387 if (opp == j || opp == j+1 || opp == j-1)
2388 continue;
2389 if (j == 0 && opp == N-1)
2390 continue;
2391 if (j == N-1 && opp == 0)
2392 continue;
2393 opp_dline_index = dline_index_from_dot(g, d, opp);
2394 if (set_atmostone(dlines, opp_dline_index))
2395 diff = min(diff, DIFF_NORMAL);
2396 }
2397
2398 if (yes == 0 && is_atmostone(dlines, dline_index)) {
2399 /* This dline has *exactly* one YES and there are no
2400 * other YESs. This allows more deductions. */
2401 if (unknown == 3) {
2402 /* Third unknown must be YES */
2403 for (opp = 0; opp < N; opp++) {
2404 int opp_index;
2405 if (opp == j || opp == k)
2406 continue;
2407 opp_index = d->edges[opp] - g->edges;
2408 if (state->lines[opp_index] == LINE_UNKNOWN) {
2409 solver_set_line(sstate, opp_index, LINE_YES);
2410 diff = min(diff, DIFF_EASY);
2411 }
2412 }
2413 } else if (unknown == 4) {
2414 /* Exactly one of opposite UNKNOWNS is YES. We've
2415 * already set atmostone, so set atleastone as well.
2416 */
2417 if (dline_set_opp_atleastone(sstate, d, j))
2418 diff = min(diff, DIFF_NORMAL);
2419 }
2420 }
2421 }
2422 }
2423 }
2424 return diff;
2425 }
2426
2427 static int hard_mode_deductions(solver_state *sstate)
2428 {
2429 game_state *state = sstate->state;
2430 grid *g = state->game_grid;
2431 char *dlines = sstate->normal->dlines;
2432 int i;
2433 int diff = DIFF_MAX;
2434 int diff_tmp;
2435
2436 /* ------ Face deductions ------ */
2437
2438 /* A fully-general linedsf deduction seems overly complicated
2439 * (I suspect the problem is NP-complete, though in practice it might just
2440 * be doable because faces are limited in size).
2441 * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
2442 * known to be identical. If setting them both to YES (or NO) would break
2443 * the clue, set them to NO (or YES). */
2444
2445 for (i = 0; i < g->num_faces; i++) {
2446 int N, yes, no, unknown;
2447 int clue;
2448
2449 if (sstate->face_solved[i])
2450 continue;
2451 clue = state->clues[i];
2452 if (clue < 0)
2453 continue;
2454
2455 N = g->faces[i].order;
2456 yes = sstate->face_yes_count[i];
2457 if (yes + 1 == clue) {
2458 if (face_setall_identical(sstate, i, LINE_NO))
2459 diff = min(diff, DIFF_EASY);
2460 }
2461 no = sstate->face_no_count[i];
2462 if (no + 1 == N - clue) {
2463 if (face_setall_identical(sstate, i, LINE_YES))
2464 diff = min(diff, DIFF_EASY);
2465 }
2466
2467 /* Reload YES count, it might have changed */
2468 yes = sstate->face_yes_count[i];
2469 unknown = N - no - yes;
2470
2471 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2472 * parity of lines. */
2473 diff_tmp = parity_deductions(sstate, g->faces[i].edges,
2474 (clue - yes) % 2, unknown);
2475 diff = min(diff, diff_tmp);
2476 }
2477
2478 /* ------ Dot deductions ------ */
2479 for (i = 0; i < g->num_dots; i++) {
2480 grid_dot *d = g->dots + i;
2481 int N = d->order;
2482 int j;
2483 int yes, no, unknown;
2484 /* Go through dlines, and do any dline<->linedsf deductions wherever
2485 * we find two UNKNOWNS. */
2486 for (j = 0; j < N; j++) {
2487 int dline_index = dline_index_from_dot(g, d, j);
2488 int line1_index;
2489 int line2_index;
2490 int can1, can2, inv1, inv2;
2491 int j2;
2492 line1_index = d->edges[j] - g->edges;
2493 if (state->lines[line1_index] != LINE_UNKNOWN)
2494 continue;
2495 j2 = j + 1;
2496 if (j2 == N) j2 = 0;
2497 line2_index = d->edges[j2] - g->edges;
2498 if (state->lines[line2_index] != LINE_UNKNOWN)
2499 continue;
2500 /* Infer dline flags from linedsf */
2501 can1 = edsf_canonify(sstate->hard->linedsf, line1_index, &inv1);
2502 can2 = edsf_canonify(sstate->hard->linedsf, line2_index, &inv2);
2503 if (can1 == can2 && inv1 != inv2) {
2504 /* These are opposites, so set dline atmostone/atleastone */
2505 if (set_atmostone(dlines, dline_index))
2506 diff = min(diff, DIFF_NORMAL);
2507 if (set_atleastone(dlines, dline_index))
2508 diff = min(diff, DIFF_NORMAL);
2509 continue;
2510 }
2511 /* Infer linedsf from dline flags */
2512 if (is_atmostone(dlines, dline_index)
2513 && is_atleastone(dlines, dline_index)) {
2514 if (merge_lines(sstate, line1_index, line2_index, 1))
2515 diff = min(diff, DIFF_HARD);
2516 }
2517 }
2518
2519 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2520 * parity of lines. */
2521 yes = sstate->dot_yes_count[i];
2522 no = sstate->dot_no_count[i];
2523 unknown = N - yes - no;
2524 diff_tmp = parity_deductions(sstate, d->edges,
2525 yes % 2, unknown);
2526 diff = min(diff, diff_tmp);
2527 }
2528
2529 /* ------ Edge dsf deductions ------ */
2530
2531 /* If the state of a line is known, deduce the state of its canonical line
2532 * too, and vice versa. */
2533 for (i = 0; i < g->num_edges; i++) {
2534 int can, inv;
2535 enum line_state s;
2536 can = edsf_canonify(sstate->hard->linedsf, i, &inv);
2537 if (can == i)
2538 continue;
2539 s = sstate->state->lines[can];
2540 if (s != LINE_UNKNOWN) {
2541 if (solver_set_line(sstate, i, inv ? OPP(s) : s))
2542 diff = min(diff, DIFF_EASY);
2543 } else {
2544 s = sstate->state->lines[i];
2545 if (s != LINE_UNKNOWN) {
2546 if (solver_set_line(sstate, can, inv ? OPP(s) : s))
2547 diff = min(diff, DIFF_EASY);
2548 }
2549 }
2550 }
2551
2552 return diff;
2553 }
2554
2555 static int loop_deductions(solver_state *sstate)
2556 {
2557 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
2558 game_state *state = sstate->state;
2559 grid *g = state->game_grid;
2560 int shortest_chainlen = g->num_dots;
2561 int loop_found = FALSE;
2562 int dots_connected;
2563 int progress = FALSE;
2564 int i;
2565
2566 /*
2567 * Go through the grid and update for all the new edges.
2568 * Since merge_dots() is idempotent, the simplest way to
2569 * do this is just to update for _all_ the edges.
2570 * Also, while we're here, we count the edges.
2571 */
2572 for (i = 0; i < g->num_edges; i++) {
2573 if (state->lines[i] == LINE_YES) {
2574 loop_found |= merge_dots(sstate, i);
2575 edgecount++;
2576 }
2577 }
2578
2579 /*
2580 * Count the clues, count the satisfied clues, and count the
2581 * satisfied-minus-one clues.
2582 */
2583 for (i = 0; i < g->num_faces; i++) {
2584 int c = state->clues[i];
2585 if (c >= 0) {
2586 int o = sstate->face_yes_count[i];
2587 if (o == c)
2588 satclues++;
2589 else if (o == c-1)
2590 sm1clues++;
2591 clues++;
2592 }
2593 }
2594
2595 for (i = 0; i < g->num_dots; ++i) {
2596 dots_connected =
2597 sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
2598 if (dots_connected > 1)
2599 shortest_chainlen = min(shortest_chainlen, dots_connected);
2600 }
2601
2602 assert(sstate->solver_status == SOLVER_INCOMPLETE);
2603
2604 if (satclues == clues && shortest_chainlen == edgecount) {
2605 sstate->solver_status = SOLVER_SOLVED;
2606 /* This discovery clearly counts as progress, even if we haven't
2607 * just added any lines or anything */
2608 progress = TRUE;
2609 goto finished_loop_deductionsing;
2610 }
2611
2612 /*
2613 * Now go through looking for LINE_UNKNOWN edges which
2614 * connect two dots that are already in the same
2615 * equivalence class. If we find one, test to see if the
2616 * loop it would create is a solution.
2617 */
2618 for (i = 0; i < g->num_edges; i++) {
2619 grid_edge *e = g->edges + i;
2620 int d1 = e->dot1 - g->dots;
2621 int d2 = e->dot2 - g->dots;
2622 int eqclass, val;
2623 if (state->lines[i] != LINE_UNKNOWN)
2624 continue;
2625
2626 eqclass = dsf_canonify(sstate->dotdsf, d1);
2627 if (eqclass != dsf_canonify(sstate->dotdsf, d2))
2628 continue;
2629
2630 val = LINE_NO; /* loop is bad until proven otherwise */
2631
2632 /*
2633 * This edge would form a loop. Next
2634 * question: how long would the loop be?
2635 * Would it equal the total number of edges
2636 * (plus the one we'd be adding if we added
2637 * it)?
2638 */
2639 if (sstate->looplen[eqclass] == edgecount + 1) {
2640 int sm1_nearby;
2641
2642 /*
2643 * This edge would form a loop which
2644 * took in all the edges in the entire
2645 * grid. So now we need to work out
2646 * whether it would be a valid solution
2647 * to the puzzle, which means we have to
2648 * check if it satisfies all the clues.
2649 * This means that every clue must be
2650 * either satisfied or satisfied-minus-
2651 * 1, and also that the number of
2652 * satisfied-minus-1 clues must be at
2653 * most two and they must lie on either
2654 * side of this edge.
2655 */
2656 sm1_nearby = 0;
2657 if (e->face1) {
2658 int f = e->face1 - g->faces;
2659 int c = state->clues[f];
2660 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
2661 sm1_nearby++;
2662 }
2663 if (e->face2) {
2664 int f = e->face2 - g->faces;
2665 int c = state->clues[f];
2666 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
2667 sm1_nearby++;
2668 }
2669 if (sm1clues == sm1_nearby &&
2670 sm1clues + satclues == clues) {
2671 val = LINE_YES; /* loop is good! */
2672 }
2673 }
2674
2675 /*
2676 * Right. Now we know that adding this edge
2677 * would form a loop, and we know whether
2678 * that loop would be a viable solution or
2679 * not.
2680 *
2681 * If adding this edge produces a solution,
2682 * then we know we've found _a_ solution but
2683 * we don't know that it's _the_ solution -
2684 * if it were provably the solution then
2685 * we'd have deduced this edge some time ago
2686 * without the need to do loop detection. So
2687 * in this state we return SOLVER_AMBIGUOUS,
2688 * which has the effect that hitting Solve
2689 * on a user-provided puzzle will fill in a
2690 * solution but using the solver to
2691 * construct new puzzles won't consider this
2692 * a reasonable deduction for the user to
2693 * make.
2694 */
2695 progress = solver_set_line(sstate, i, val);
2696 assert(progress == TRUE);
2697 if (val == LINE_YES) {
2698 sstate->solver_status = SOLVER_AMBIGUOUS;
2699 goto finished_loop_deductionsing;
2700 }
2701 }
2702
2703 finished_loop_deductionsing:
2704 return progress ? DIFF_EASY : DIFF_MAX;
2705 }
2706
2707 /* This will return a dynamically allocated solver_state containing the (more)
2708 * solved grid */
2709 static solver_state *solve_game_rec(const solver_state *sstate_start,
2710 int diff)
2711 {
2712 solver_state *sstate, *sstate_saved;
2713 int solver_progress;
2714 game_state *state;
2715
2716 /* Indicates which solver we should call next. This is a sensible starting
2717 * point */
2718 int current_solver = DIFF_EASY, next_solver;
2719 sstate = dup_solver_state(sstate_start);
2720
2721 /* Cache the values of some variables for readability */
2722 state = sstate->state;
2723
2724 sstate_saved = NULL;
2725
2726 solver_progress = FALSE;
2727
2728 check_caches(sstate);
2729
2730 do {
2731 if (sstate->solver_status == SOLVER_MISTAKE)
2732 return sstate;
2733
2734 next_solver = solver_fns[current_solver](sstate);
2735
2736 if (next_solver == DIFF_MAX) {
2737 if (current_solver < diff && current_solver + 1 < DIFF_MAX) {
2738 /* Try next beefier solver */
2739 next_solver = current_solver + 1;
2740 } else {
2741 next_solver = loop_deductions(sstate);
2742 }
2743 }
2744
2745 if (sstate->solver_status == SOLVER_SOLVED ||
2746 sstate->solver_status == SOLVER_AMBIGUOUS) {
2747 /* fprintf(stderr, "Solver completed\n"); */
2748 break;
2749 }
2750
2751 /* Once we've looped over all permitted solvers then the loop
2752 * deductions without making any progress, we'll exit this while loop */
2753 current_solver = next_solver;
2754 } while (current_solver < DIFF_MAX);
2755
2756 if (sstate->solver_status == SOLVER_SOLVED ||
2757 sstate->solver_status == SOLVER_AMBIGUOUS) {
2758 /* s/LINE_UNKNOWN/LINE_NO/g */
2759 array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
2760 sstate->state->game_grid->num_edges);
2761 return sstate;
2762 }
2763
2764 return sstate;
2765 }
2766
2767 static char *solve_game(game_state *state, game_state *currstate,
2768 char *aux, char **error)
2769 {
2770 char *soln = NULL;
2771 solver_state *sstate, *new_sstate;
2772
2773 sstate = new_solver_state(state, DIFF_MAX);
2774 new_sstate = solve_game_rec(sstate, DIFF_MAX);
2775
2776 if (new_sstate->solver_status == SOLVER_SOLVED) {
2777 soln = encode_solve_move(new_sstate->state);
2778 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
2779 soln = encode_solve_move(new_sstate->state);
2780 /**error = "Solver found ambiguous solutions"; */
2781 } else {
2782 soln = encode_solve_move(new_sstate->state);
2783 /**error = "Solver failed"; */
2784 }
2785
2786 free_solver_state(new_sstate);
2787 free_solver_state(sstate);
2788
2789 return soln;
2790 }
2791
2792 /* ----------------------------------------------------------------------
2793 * Drawing and mouse-handling
2794 */
2795
2796 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
2797 int x, int y, int button)
2798 {
2799 grid *g = state->game_grid;
2800 grid_edge *e;
2801 int i;
2802 char *ret, buf[80];
2803 char button_char = ' ';
2804 enum line_state old_state;
2805
2806 button &= ~MOD_MASK;
2807
2808 /* Convert mouse-click (x,y) to grid coordinates */
2809 x -= BORDER(ds->tilesize);
2810 y -= BORDER(ds->tilesize);
2811 x = x * g->tilesize / ds->tilesize;
2812 y = y * g->tilesize / ds->tilesize;
2813 x += g->lowest_x;
2814 y += g->lowest_y;
2815
2816 e = grid_nearest_edge(g, x, y);
2817 if (e == NULL)
2818 return NULL;
2819
2820 i = e - g->edges;
2821
2822 /* I think it's only possible to play this game with mouse clicks, sorry */
2823 /* Maybe will add mouse drag support some time */
2824 old_state = state->lines[i];
2825
2826 switch (button) {
2827 case LEFT_BUTTON:
2828 switch (old_state) {
2829 case LINE_UNKNOWN:
2830 button_char = 'y';
2831 break;
2832 case LINE_YES:
2833 case LINE_NO:
2834 button_char = 'u';
2835 break;
2836 }
2837 break;
2838 case MIDDLE_BUTTON:
2839 button_char = 'u';
2840 break;
2841 case RIGHT_BUTTON:
2842 switch (old_state) {
2843 case LINE_UNKNOWN:
2844 button_char = 'n';
2845 break;
2846 case LINE_NO:
2847 case LINE_YES:
2848 button_char = 'u';
2849 break;
2850 }
2851 break;
2852 default:
2853 return NULL;
2854 }
2855
2856
2857 sprintf(buf, "%d%c", i, (int)button_char);
2858 ret = dupstr(buf);
2859
2860 return ret;
2861 }
2862
2863 static game_state *execute_move(game_state *state, char *move)
2864 {
2865 int i;
2866 game_state *newstate = dup_game(state);
2867 grid *g = state->game_grid;
2868
2869 if (move[0] == 'S') {
2870 move++;
2871 newstate->cheated = TRUE;
2872 }
2873
2874 while (*move) {
2875 i = atoi(move);
2876 move += strspn(move, "1234567890");
2877 switch (*(move++)) {
2878 case 'y':
2879 newstate->lines[i] = LINE_YES;
2880 break;
2881 case 'n':
2882 newstate->lines[i] = LINE_NO;
2883 break;
2884 case 'u':
2885 newstate->lines[i] = LINE_UNKNOWN;
2886 break;
2887 default:
2888 goto fail;
2889 }
2890 }
2891
2892 /*
2893 * Check for completion.
2894 */
2895 for (i = 0; i < g->num_edges; i++) {
2896 if (newstate->lines[i] == LINE_YES)
2897 break;
2898 }
2899 if (i < g->num_edges) {
2900 int looplen, count;
2901 grid_edge *start_edge = g->edges + i;
2902 grid_edge *e = start_edge;
2903 grid_dot *d = e->dot1;
2904 /*
2905 * We've found an edge i. Follow it round
2906 * to see if it's part of a loop.
2907 */
2908 looplen = 0;
2909 while (1) {
2910 int j;
2911 int order = dot_order(newstate, d - g->dots, LINE_YES);
2912 if (order != 2)
2913 goto completion_check_done;
2914
2915 /* Find other edge around this dot */
2916 for (j = 0; j < d->order; j++) {
2917 grid_edge *e2 = d->edges[j];
2918 if (e2 != e && newstate->lines[e2 - g->edges] == LINE_YES)
2919 break;
2920 }
2921 assert(j != d->order); /* dot_order guarantees success */
2922
2923 e = d->edges[j];
2924 d = (e->dot1 == d) ? e->dot2 : e->dot1;
2925 looplen++;
2926
2927 if (e == start_edge)
2928 break;
2929 }
2930
2931 /*
2932 * We've traced our way round a loop, and we know how many
2933 * line segments were involved. Count _all_ the line
2934 * segments in the grid, to see if the loop includes them
2935 * all.
2936 */
2937 count = 0;
2938 for (i = 0; i < g->num_edges; i++) {
2939 if (newstate->lines[i] == LINE_YES)
2940 count++;
2941 }
2942 assert(count >= looplen);
2943 if (count != looplen)
2944 goto completion_check_done;
2945
2946 /*
2947 * The grid contains one closed loop and nothing else.
2948 * Check that all the clues are satisfied.
2949 */
2950 for (i = 0; i < g->num_faces; i++) {
2951 int c = newstate->clues[i];
2952 if (c >= 0) {
2953 if (face_order(newstate, i, LINE_YES) != c) {
2954 goto completion_check_done;
2955 }
2956 }
2957 }
2958
2959 /*
2960 * Completed!
2961 */
2962 newstate->solved = TRUE;
2963 }
2964
2965 completion_check_done:
2966 return newstate;
2967
2968 fail:
2969 free_game(newstate);
2970 return NULL;
2971 }
2972
2973 /* ----------------------------------------------------------------------
2974 * Drawing routines.
2975 */
2976
2977 /* Convert from grid coordinates to screen coordinates */
2978 static void grid_to_screen(const game_drawstate *ds, const grid *g,
2979 int grid_x, int grid_y, int *x, int *y)
2980 {
2981 *x = grid_x - g->lowest_x;
2982 *y = grid_y - g->lowest_y;
2983 *x = *x * ds->tilesize / g->tilesize;
2984 *y = *y * ds->tilesize / g->tilesize;
2985 *x += BORDER(ds->tilesize);
2986 *y += BORDER(ds->tilesize);
2987 }
2988
2989 /* Returns (into x,y) position of centre of face for rendering the text clue.
2990 */
2991 static void face_text_pos(const game_drawstate *ds, const grid *g,
2992 const grid_face *f, int *x, int *y)
2993 {
2994 int i;
2995
2996 /* Simplest solution is the centroid. Might not work in some cases. */
2997
2998 /* Another algorithm to look into:
2999 * Find the midpoints of the sides, find the bounding-box,
3000 * then take the centre of that. */
3001
3002 /* Best solution probably involves incentres (inscribed circles) */
3003
3004 int sx = 0, sy = 0; /* sums */
3005 for (i = 0; i < f->order; i++) {
3006 grid_dot *d = f->dots[i];
3007 sx += d->x;
3008 sy += d->y;
3009 }
3010 sx /= f->order;
3011 sy /= f->order;
3012
3013 /* convert to screen coordinates */
3014 grid_to_screen(ds, g, sx, sy, x, y);
3015 }
3016
3017 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
3018 game_state *state, int dir, game_ui *ui,
3019 float animtime, float flashtime)
3020 {
3021 grid *g = state->game_grid;
3022 int border = BORDER(ds->tilesize);
3023 int i, n;
3024 char c[2];
3025 int line_colour, flash_changed;
3026 int clue_mistake;
3027 int clue_satisfied;
3028
3029 if (!ds->started) {
3030 /*
3031 * The initial contents of the window are not guaranteed and
3032 * can vary with front ends. To be on the safe side, all games
3033 * should start by drawing a big background-colour rectangle
3034 * covering the whole window.
3035 */
3036 int grid_width = g->highest_x - g->lowest_x;
3037 int grid_height = g->highest_y - g->lowest_y;
3038 int w = grid_width * ds->tilesize / g->tilesize;
3039 int h = grid_height * ds->tilesize / g->tilesize;
3040 draw_rect(dr, 0, 0, w + 2 * border + 1, h + 2 * border + 1,
3041 COL_BACKGROUND);
3042
3043 /* Draw clues */
3044 for (i = 0; i < g->num_faces; i++) {
3045 grid_face *f;
3046 int x, y;
3047
3048 c[0] = CLUE2CHAR(state->clues[i]);
3049 c[1] = '\0';
3050 f = g->faces + i;
3051 face_text_pos(ds, g, f, &x, &y);
3052 draw_text(dr, x, y, FONT_VARIABLE, ds->tilesize/2,
3053 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c);
3054 }
3055 draw_update(dr, 0, 0, w + 2 * border, h + 2 * border);
3056 }
3057
3058 if (flashtime > 0 &&
3059 (flashtime <= FLASH_TIME/3 ||
3060 flashtime >= FLASH_TIME*2/3)) {
3061 flash_changed = !ds->flashing;
3062 ds->flashing = TRUE;
3063 } else {
3064 flash_changed = ds->flashing;
3065 ds->flashing = FALSE;
3066 }
3067
3068 /* Some platforms may perform anti-aliasing, which may prevent clean
3069 * repainting of lines when the colour is changed.
3070 * If a line needs to be over-drawn in a different colour, erase a
3071 * bounding-box around the line, then flag all nearby objects for redraw.
3072 */
3073 if (ds->started) {
3074 const char redraw_flag = (char)(1<<7);
3075 for (i = 0; i < g->num_edges; i++) {
3076 /* If we're changing state, AND
3077 * the previous state was a coloured line */
3078 if ((state->lines[i] != (ds->lines[i] & ~redraw_flag)) &&
3079 ((ds->lines[i] & ~redraw_flag) != LINE_NO)) {
3080 grid_edge *e = g->edges + i;
3081 int x1 = e->dot1->x;
3082 int y1 = e->dot1->y;
3083 int x2 = e->dot2->x;
3084 int y2 = e->dot2->y;
3085 int xmin, xmax, ymin, ymax;
3086 int j;
3087 grid_to_screen(ds, g, x1, y1, &x1, &y1);
3088 grid_to_screen(ds, g, x2, y2, &x2, &y2);
3089 /* Allow extra margin for dots, and thickness of lines */
3090 xmin = min(x1, x2) - 2;
3091 xmax = max(x1, x2) + 2;
3092 ymin = min(y1, y2) - 2;
3093 ymax = max(y1, y2) + 2;
3094 /* For testing, I find it helpful to change COL_BACKGROUND
3095 * to COL_SATISFIED here. */
3096 draw_rect(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1,
3097 COL_BACKGROUND);
3098 draw_update(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
3099
3100 /* Mark nearby lines for redraw */
3101 for (j = 0; j < e->dot1->order; j++)
3102 ds->lines[e->dot1->edges[j] - g->edges] |= redraw_flag;
3103 for (j = 0; j < e->dot2->order; j++)
3104 ds->lines[e->dot2->edges[j] - g->edges] |= redraw_flag;
3105 /* Mark nearby clues for redraw. Use a value that is
3106 * neither TRUE nor FALSE for this. */
3107 if (e->face1)
3108 ds->clue_error[e->face1 - g->faces] = 2;
3109 if (e->face2)
3110 ds->clue_error[e->face2 - g->faces] = 2;
3111 }
3112 }
3113 }
3114
3115 /* Redraw clue colours if necessary */
3116 for (i = 0; i < g->num_faces; i++) {
3117 grid_face *f = g->faces + i;
3118 int sides = f->order;
3119 int j;
3120 n = state->clues[i];
3121 if (n < 0)
3122 continue;
3123
3124 c[0] = CLUE2CHAR(n);
3125 c[1] = '\0';
3126
3127 clue_mistake = (face_order(state, i, LINE_YES) > n ||
3128 face_order(state, i, LINE_NO ) > (sides-n));
3129
3130 clue_satisfied = (face_order(state, i, LINE_YES) == n &&
3131 face_order(state, i, LINE_NO ) == (sides-n));
3132
3133 if (clue_mistake != ds->clue_error[i]
3134 || clue_satisfied != ds->clue_satisfied[i]) {
3135 int x, y;
3136 face_text_pos(ds, g, f, &x, &y);
3137 /* There seems to be a certain amount of trial-and-error
3138 * involved in working out the correct bounding-box for
3139 * the text. */
3140 draw_rect(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3,
3141 ds->tilesize/2 + 2, ds->tilesize/2 + 5,
3142 COL_BACKGROUND);
3143 draw_text(dr, x, y,
3144 FONT_VARIABLE, ds->tilesize/2,
3145 ALIGN_VCENTRE | ALIGN_HCENTRE,
3146 clue_mistake ? COL_MISTAKE :
3147 clue_satisfied ? COL_SATISFIED : COL_FOREGROUND, c);
3148 draw_update(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3,
3149 ds->tilesize/2 + 2, ds->tilesize/2 + 5);
3150
3151 ds->clue_error[i] = clue_mistake;
3152 ds->clue_satisfied[i] = clue_satisfied;
3153
3154 /* Sometimes, the bounding-box encroaches into the surrounding
3155 * lines (particularly if the window is resized fairly small).
3156 * So redraw them. */
3157 for (j = 0; j < f->order; j++)
3158 ds->lines[f->edges[j] - g->edges] = -1;
3159 }
3160 }
3161
3162 /* I've also had a request to colour lines red if they make a non-solution
3163 * loop, or if more than two lines go into any point. I think that would
3164 * be good some time. */
3165
3166 /* Lines */
3167 for (i = 0; i < g->num_edges; i++) {
3168 grid_edge *e = g->edges + i;
3169 int x1, x2, y1, y2;
3170 int xmin, ymin, xmax, ymax;
3171 int need_draw = (state->lines[i] != ds->lines[i]) ? TRUE : FALSE;
3172 if (flash_changed && (state->lines[i] == LINE_YES))
3173 need_draw = TRUE;
3174 if (!ds->started)
3175 need_draw = TRUE; /* draw everything at the start */
3176 ds->lines[i] = state->lines[i];
3177 if (!need_draw)
3178 continue;
3179 if (state->lines[i] == LINE_UNKNOWN)
3180 line_colour = COL_LINEUNKNOWN;
3181 else if (state->lines[i] == LINE_NO)
3182 line_colour = COL_BACKGROUND;
3183 else if (ds->flashing)
3184 line_colour = COL_HIGHLIGHT;
3185 else
3186 line_colour = COL_FOREGROUND;
3187
3188 /* Convert from grid to screen coordinates */
3189 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3190 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3191
3192 xmin = min(x1, x2);
3193 xmax = max(x1, x2);
3194 ymin = min(y1, y2);
3195 ymax = max(y1, y2);
3196
3197 if (line_colour != COL_BACKGROUND) {
3198 /* (dx, dy) points roughly from (x1, y1) to (x2, y2).
3199 * The line is then "fattened" in a (roughly) perpendicular
3200 * direction to create a thin rectangle. */
3201 int dx = (x1 > x2) ? -1 : ((x1 < x2) ? 1 : 0);
3202 int dy = (y1 > y2) ? -1 : ((y1 < y2) ? 1 : 0);
3203 int points[8];
3204 points[0] = x1 + dy;
3205 points[1] = y1 - dx;
3206 points[2] = x1 - dy;
3207 points[3] = y1 + dx;
3208 points[4] = x2 - dy;
3209 points[5] = y2 + dx;
3210 points[6] = x2 + dy;
3211 points[7] = y2 - dx;
3212 draw_polygon(dr, points, 4, line_colour, line_colour);
3213 }
3214 if (ds->started) {
3215 /* Draw dots at ends of the line */
3216 draw_circle(dr, x1, y1, 2, COL_FOREGROUND, COL_FOREGROUND);
3217 draw_circle(dr, x2, y2, 2, COL_FOREGROUND, COL_FOREGROUND);
3218 }
3219 draw_update(dr, xmin-2, ymin-2, xmax - xmin + 4, ymax - ymin + 4);
3220 }
3221
3222 /* Draw dots */
3223 if (!ds->started) {
3224 for (i = 0; i < g->num_dots; i++) {
3225 grid_dot *d = g->dots + i;
3226 int x, y;
3227 grid_to_screen(ds, g, d->x, d->y, &x, &y);
3228 draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND);
3229 }
3230 }
3231 ds->started = TRUE;
3232 }
3233
3234 static float game_flash_length(game_state *oldstate, game_state *newstate,
3235 int dir, game_ui *ui)
3236 {
3237 if (!oldstate->solved && newstate->solved &&
3238 !oldstate->cheated && !newstate->cheated) {
3239 return FLASH_TIME;
3240 }
3241
3242 return 0.0F;
3243 }
3244
3245 static void game_print_size(game_params *params, float *x, float *y)
3246 {
3247 int pw, ph;
3248
3249 /*
3250 * I'll use 7mm "squares" by default.
3251 */
3252 game_compute_size(params, 700, &pw, &ph);
3253 *x = pw / 100.0F;
3254 *y = ph / 100.0F;
3255 }
3256
3257 static void game_print(drawing *dr, game_state *state, int tilesize)
3258 {
3259 int ink = print_mono_colour(dr, 0);
3260 int i;
3261 game_drawstate ads, *ds = &ads;
3262 grid *g = state->game_grid;
3263
3264 game_set_size(dr, ds, NULL, tilesize);
3265
3266 for (i = 0; i < g->num_dots; i++) {
3267 int x, y;
3268 grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y);
3269 draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
3270 }
3271
3272 /*
3273 * Clues.
3274 */
3275 for (i = 0; i < g->num_faces; i++) {
3276 grid_face *f = g->faces + i;
3277 int clue = state->clues[i];
3278 if (clue >= 0) {
3279 char c[2];
3280 int x, y;
3281 c[0] = CLUE2CHAR(clue);
3282 c[1] = '\0';
3283 face_text_pos(ds, g, f, &x, &y);
3284 draw_text(dr, x, y,
3285 FONT_VARIABLE, ds->tilesize / 2,
3286 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
3287 }
3288 }
3289
3290 /*
3291 * Lines.
3292 */
3293 for (i = 0; i < g->num_edges; i++) {
3294 int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
3295 grid_edge *e = g->edges + i;
3296 int x1, y1, x2, y2;
3297 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3298 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3299 if (state->lines[i] == LINE_YES)
3300 {
3301 /* (dx, dy) points from (x1, y1) to (x2, y2).
3302 * The line is then "fattened" in a perpendicular
3303 * direction to create a thin rectangle. */
3304 double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
3305 double dx = (x2 - x1) / d;
3306 double dy = (y2 - y1) / d;
3307 int points[8];
3308
3309 dx = (dx * ds->tilesize) / thickness;
3310 dy = (dy * ds->tilesize) / thickness;
3311 points[0] = x1 + (int)dy;
3312 points[1] = y1 - (int)dx;
3313 points[2] = x1 - (int)dy;
3314 points[3] = y1 + (int)dx;
3315 points[4] = x2 - (int)dy;
3316 points[5] = y2 + (int)dx;
3317 points[6] = x2 + (int)dy;
3318 points[7] = y2 - (int)dx;
3319 draw_polygon(dr, points, 4, ink, ink);
3320 }
3321 else
3322 {
3323 /* Draw a dotted line */
3324 int divisions = 6;
3325 int j;
3326 for (j = 1; j < divisions; j++) {
3327 /* Weighted average */
3328 int x = (x1 * (divisions -j) + x2 * j) / divisions;
3329 int y = (y1 * (divisions -j) + y2 * j) / divisions;
3330 draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
3331 }
3332 }
3333 }
3334 }
3335
3336 #ifdef COMBINED
3337 #define thegame loopy
3338 #endif
3339
3340 const struct game thegame = {
3341 "Loopy", "games.loopy", "loopy",
3342 default_params,
3343 game_fetch_preset,
3344 decode_params,
3345 encode_params,
3346 free_params,
3347 dup_params,
3348 TRUE, game_configure, custom_params,
3349 validate_params,
3350 new_game_desc,
3351 validate_desc,
3352 new_game,
3353 dup_game,
3354 free_game,
3355 1, solve_game,
3356 TRUE, game_can_format_as_text_now, game_text_format,
3357 new_ui,
3358 free_ui,
3359 encode_ui,
3360 decode_ui,
3361 game_changed_state,
3362 interpret_move,
3363 execute_move,
3364 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3365 game_colours,
3366 game_new_drawstate,
3367 game_free_drawstate,
3368 game_redraw,
3369 game_anim_length,
3370 game_flash_length,
3371 TRUE, FALSE, game_print_size, game_print,
3372 FALSE /* wants_statusbar */,
3373 FALSE, game_timing_state,
3374 0, /* mouse_priorities */
3375 };