Infrastructure change which I've been thinking about for a while:
[sgt/puzzles] / pattern.c
1 /*
2 * pattern.c: the pattern-reconstruction game known as `nonograms'.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13
14 enum {
15 COL_BACKGROUND,
16 COL_EMPTY,
17 COL_FULL,
18 COL_UNKNOWN,
19 COL_GRID,
20 NCOLOURS
21 };
22
23 #define PREFERRED_TILE_SIZE 24
24 #define TILE_SIZE (ds->tilesize)
25 #define BORDER (3 * TILE_SIZE / 4)
26 #define TLBORDER(d) ( (d) / 5 + 2 )
27 #define GUTTER (TILE_SIZE / 2)
28
29 #define FROMCOORD(d, x) \
30 ( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE )
31
32 #define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d)))
33 #define GETTILESIZE(d, w) (w / (2 + TLBORDER(d) + (d)))
34
35 #define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x)))
36
37 struct game_params {
38 int w, h;
39 };
40
41 #define GRID_UNKNOWN 2
42 #define GRID_FULL 1
43 #define GRID_EMPTY 0
44
45 struct game_state {
46 int w, h;
47 unsigned char *grid;
48 int rowsize;
49 int *rowdata, *rowlen;
50 int completed, cheated;
51 };
52
53 #define FLASH_TIME 0.13F
54
55 static game_params *default_params(void)
56 {
57 game_params *ret = snew(game_params);
58
59 ret->w = ret->h = 15;
60
61 return ret;
62 }
63
64 static const struct game_params pattern_presets[] = {
65 {10, 10},
66 {15, 15},
67 {20, 20},
68 #ifndef SLOW_SYSTEM
69 {25, 25},
70 {30, 30},
71 #endif
72 };
73
74 static int game_fetch_preset(int i, char **name, game_params **params)
75 {
76 game_params *ret;
77 char str[80];
78
79 if (i < 0 || i >= lenof(pattern_presets))
80 return FALSE;
81
82 ret = snew(game_params);
83 *ret = pattern_presets[i];
84
85 sprintf(str, "%dx%d", ret->w, ret->h);
86
87 *name = dupstr(str);
88 *params = ret;
89 return TRUE;
90 }
91
92 static void free_params(game_params *params)
93 {
94 sfree(params);
95 }
96
97 static game_params *dup_params(game_params *params)
98 {
99 game_params *ret = snew(game_params);
100 *ret = *params; /* structure copy */
101 return ret;
102 }
103
104 static void decode_params(game_params *ret, char const *string)
105 {
106 char const *p = string;
107
108 ret->w = atoi(p);
109 while (*p && isdigit(*p)) p++;
110 if (*p == 'x') {
111 p++;
112 ret->h = atoi(p);
113 while (*p && isdigit(*p)) p++;
114 } else {
115 ret->h = ret->w;
116 }
117 }
118
119 static char *encode_params(game_params *params, int full)
120 {
121 char ret[400];
122 int len;
123
124 len = sprintf(ret, "%dx%d", params->w, params->h);
125 assert(len < lenof(ret));
126 ret[len] = '\0';
127
128 return dupstr(ret);
129 }
130
131 static config_item *game_configure(game_params *params)
132 {
133 config_item *ret;
134 char buf[80];
135
136 ret = snewn(3, config_item);
137
138 ret[0].name = "Width";
139 ret[0].type = C_STRING;
140 sprintf(buf, "%d", params->w);
141 ret[0].sval = dupstr(buf);
142 ret[0].ival = 0;
143
144 ret[1].name = "Height";
145 ret[1].type = C_STRING;
146 sprintf(buf, "%d", params->h);
147 ret[1].sval = dupstr(buf);
148 ret[1].ival = 0;
149
150 ret[2].name = NULL;
151 ret[2].type = C_END;
152 ret[2].sval = NULL;
153 ret[2].ival = 0;
154
155 return ret;
156 }
157
158 static game_params *custom_params(config_item *cfg)
159 {
160 game_params *ret = snew(game_params);
161
162 ret->w = atoi(cfg[0].sval);
163 ret->h = atoi(cfg[1].sval);
164
165 return ret;
166 }
167
168 static char *validate_params(game_params *params)
169 {
170 if (params->w <= 0 || params->h <= 0)
171 return "Width and height must both be greater than zero";
172 return NULL;
173 }
174
175 /* ----------------------------------------------------------------------
176 * Puzzle generation code.
177 *
178 * For this particular puzzle, it seemed important to me to ensure
179 * a unique solution. I do this the brute-force way, by having a
180 * solver algorithm alongside the generator, and repeatedly
181 * generating a random grid until I find one whose solution is
182 * unique. It turns out that this isn't too onerous on a modern PC
183 * provided you keep grid size below around 30. Any offers of
184 * better algorithms, however, will be very gratefully received.
185 *
186 * Another annoyance of this approach is that it limits the
187 * available puzzles to those solvable by the algorithm I've used.
188 * My algorithm only ever considers a single row or column at any
189 * one time, which means it's incapable of solving the following
190 * difficult example (found by Bella Image around 1995/6, when she
191 * and I were both doing maths degrees):
192 *
193 * 2 1 2 1
194 *
195 * +--+--+--+--+
196 * 1 1 | | | | |
197 * +--+--+--+--+
198 * 2 | | | | |
199 * +--+--+--+--+
200 * 1 | | | | |
201 * +--+--+--+--+
202 * 1 | | | | |
203 * +--+--+--+--+
204 *
205 * Obviously this cannot be solved by a one-row-or-column-at-a-time
206 * algorithm (it would require at least one row or column reading
207 * `2 1', `1 2', `3' or `4' to get started). However, it can be
208 * proved to have a unique solution: if the top left square were
209 * empty, then the only option for the top row would be to fill the
210 * two squares in the 1 columns, which would imply the squares
211 * below those were empty, leaving no place for the 2 in the second
212 * row. Contradiction. Hence the top left square is full, and the
213 * unique solution follows easily from that starting point.
214 *
215 * (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case
216 * it's useful to anyone.)
217 */
218
219 static int float_compare(const void *av, const void *bv)
220 {
221 const float *a = (const float *)av;
222 const float *b = (const float *)bv;
223 if (*a < *b)
224 return -1;
225 else if (*a > *b)
226 return +1;
227 else
228 return 0;
229 }
230
231 static void generate(random_state *rs, int w, int h, unsigned char *retgrid)
232 {
233 float *fgrid;
234 float *fgrid2;
235 int step, i, j;
236 float threshold;
237
238 fgrid = snewn(w*h, float);
239
240 for (i = 0; i < h; i++) {
241 for (j = 0; j < w; j++) {
242 fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F;
243 }
244 }
245
246 /*
247 * The above gives a completely random splattering of black and
248 * white cells. We want to gently bias this in favour of _some_
249 * reasonably thick areas of white and black, while retaining
250 * some randomness and fine detail.
251 *
252 * So we evolve the starting grid using a cellular automaton.
253 * Currently, I'm doing something very simple indeed, which is
254 * to set each square to the average of the surrounding nine
255 * cells (or the average of fewer, if we're on a corner).
256 */
257 for (step = 0; step < 1; step++) {
258 fgrid2 = snewn(w*h, float);
259
260 for (i = 0; i < h; i++) {
261 for (j = 0; j < w; j++) {
262 float sx, xbar;
263 int n, p, q;
264
265 /*
266 * Compute the average of the surrounding cells.
267 */
268 n = 0;
269 sx = 0.F;
270 for (p = -1; p <= +1; p++) {
271 for (q = -1; q <= +1; q++) {
272 if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w)
273 continue;
274 /*
275 * An additional special case not mentioned
276 * above: if a grid dimension is 2xn then
277 * we do not average across that dimension
278 * at all. Otherwise a 2x2 grid would
279 * contain four identical squares.
280 */
281 if ((h==2 && p!=0) || (w==2 && q!=0))
282 continue;
283 n++;
284 sx += fgrid[(i+p)*w+(j+q)];
285 }
286 }
287 xbar = sx / n;
288
289 fgrid2[i*w+j] = xbar;
290 }
291 }
292
293 sfree(fgrid);
294 fgrid = fgrid2;
295 }
296
297 fgrid2 = snewn(w*h, float);
298 memcpy(fgrid2, fgrid, w*h*sizeof(float));
299 qsort(fgrid2, w*h, sizeof(float), float_compare);
300 threshold = fgrid2[w*h/2];
301 sfree(fgrid2);
302
303 for (i = 0; i < h; i++) {
304 for (j = 0; j < w; j++) {
305 retgrid[i*w+j] = (fgrid[i*w+j] >= threshold ? GRID_FULL :
306 GRID_EMPTY);
307 }
308 }
309
310 sfree(fgrid);
311 }
312
313 static int compute_rowdata(int *ret, unsigned char *start, int len, int step)
314 {
315 int i, n;
316
317 n = 0;
318
319 for (i = 0; i < len; i++) {
320 if (start[i*step] == GRID_FULL) {
321 int runlen = 1;
322 while (i+runlen < len && start[(i+runlen)*step] == GRID_FULL)
323 runlen++;
324 ret[n++] = runlen;
325 i += runlen;
326 }
327
328 if (i < len && start[i*step] == GRID_UNKNOWN)
329 return -1;
330 }
331
332 return n;
333 }
334
335 #define UNKNOWN 0
336 #define BLOCK 1
337 #define DOT 2
338 #define STILL_UNKNOWN 3
339
340 static void do_recurse(unsigned char *known, unsigned char *deduced,
341 unsigned char *row, int *data, int len,
342 int freespace, int ndone, int lowest)
343 {
344 int i, j, k;
345
346 if (data[ndone]) {
347 for (i=0; i<=freespace; i++) {
348 j = lowest;
349 for (k=0; k<i; k++) row[j++] = DOT;
350 for (k=0; k<data[ndone]; k++) row[j++] = BLOCK;
351 if (j < len) row[j++] = DOT;
352 do_recurse(known, deduced, row, data, len,
353 freespace-i, ndone+1, j);
354 }
355 } else {
356 for (i=lowest; i<len; i++)
357 row[i] = DOT;
358 for (i=0; i<len; i++)
359 if (known[i] && known[i] != row[i])
360 return;
361 for (i=0; i<len; i++)
362 deduced[i] |= row[i];
363 }
364 }
365
366 static int do_row(unsigned char *known, unsigned char *deduced,
367 unsigned char *row,
368 unsigned char *start, int len, int step, int *data)
369 {
370 int rowlen, i, freespace, done_any;
371
372 freespace = len+1;
373 for (rowlen = 0; data[rowlen]; rowlen++)
374 freespace -= data[rowlen]+1;
375
376 for (i = 0; i < len; i++) {
377 known[i] = start[i*step];
378 deduced[i] = 0;
379 }
380
381 do_recurse(known, deduced, row, data, len, freespace, 0, 0);
382 done_any = FALSE;
383 for (i=0; i<len; i++)
384 if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) {
385 start[i*step] = deduced[i];
386 done_any = TRUE;
387 }
388 return done_any;
389 }
390
391 static unsigned char *generate_soluble(random_state *rs, int w, int h)
392 {
393 int i, j, done_any, ok, ntries, max;
394 unsigned char *grid, *matrix, *workspace;
395 int *rowdata;
396
397 grid = snewn(w*h, unsigned char);
398 matrix = snewn(w*h, unsigned char);
399 max = max(w, h);
400 workspace = snewn(max*3, unsigned char);
401 rowdata = snewn(max+1, int);
402
403 ntries = 0;
404
405 do {
406 ntries++;
407
408 generate(rs, w, h, grid);
409
410 /*
411 * The game is a bit too easy if any row or column is
412 * completely black or completely white. An exception is
413 * made for rows/columns that are under 3 squares,
414 * otherwise nothing will ever be successfully generated.
415 */
416 ok = TRUE;
417 if (w > 2) {
418 for (i = 0; i < h; i++) {
419 int colours = 0;
420 for (j = 0; j < w; j++)
421 colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
422 if (colours != 3)
423 ok = FALSE;
424 }
425 }
426 if (h > 2) {
427 for (j = 0; j < w; j++) {
428 int colours = 0;
429 for (i = 0; i < h; i++)
430 colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
431 if (colours != 3)
432 ok = FALSE;
433 }
434 }
435 if (!ok)
436 continue;
437
438 memset(matrix, 0, w*h);
439
440 do {
441 done_any = 0;
442 for (i=0; i<h; i++) {
443 rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
444 done_any |= do_row(workspace, workspace+max, workspace+2*max,
445 matrix+i*w, w, 1, rowdata);
446 }
447 for (i=0; i<w; i++) {
448 rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
449 done_any |= do_row(workspace, workspace+max, workspace+2*max,
450 matrix+i, h, w, rowdata);
451 }
452 } while (done_any);
453
454 ok = TRUE;
455 for (i=0; i<h; i++) {
456 for (j=0; j<w; j++) {
457 if (matrix[i*w+j] == UNKNOWN)
458 ok = FALSE;
459 }
460 }
461 } while (!ok);
462
463 sfree(matrix);
464 sfree(workspace);
465 sfree(rowdata);
466 return grid;
467 }
468
469 struct game_aux_info {
470 int w, h;
471 unsigned char *grid;
472 };
473
474 static char *new_game_desc(game_params *params, random_state *rs,
475 game_aux_info **aux, int interactive)
476 {
477 unsigned char *grid;
478 int i, j, max, rowlen, *rowdata;
479 char intbuf[80], *desc;
480 int desclen, descpos;
481
482 grid = generate_soluble(rs, params->w, params->h);
483 max = max(params->w, params->h);
484 rowdata = snewn(max, int);
485
486 /*
487 * Save the solved game in an aux_info.
488 */
489 {
490 game_aux_info *ai = snew(game_aux_info);
491
492 ai->w = params->w;
493 ai->h = params->h;
494 ai->grid = grid;
495
496 *aux = ai;
497 }
498
499 /*
500 * Seed is a slash-separated list of row contents; each row
501 * contents section is a dot-separated list of integers. Row
502 * contents are listed in the order (columns left to right,
503 * then rows top to bottom).
504 *
505 * Simplest way to handle memory allocation is to make two
506 * passes, first computing the seed size and then writing it
507 * out.
508 */
509 desclen = 0;
510 for (i = 0; i < params->w + params->h; i++) {
511 if (i < params->w)
512 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
513 else
514 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
515 params->w, 1);
516 if (rowlen > 0) {
517 for (j = 0; j < rowlen; j++) {
518 desclen += 1 + sprintf(intbuf, "%d", rowdata[j]);
519 }
520 } else {
521 desclen++;
522 }
523 }
524 desc = snewn(desclen, char);
525 descpos = 0;
526 for (i = 0; i < params->w + params->h; i++) {
527 if (i < params->w)
528 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
529 else
530 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
531 params->w, 1);
532 if (rowlen > 0) {
533 for (j = 0; j < rowlen; j++) {
534 int len = sprintf(desc+descpos, "%d", rowdata[j]);
535 if (j+1 < rowlen)
536 desc[descpos + len] = '.';
537 else
538 desc[descpos + len] = '/';
539 descpos += len+1;
540 }
541 } else {
542 desc[descpos++] = '/';
543 }
544 }
545 assert(descpos == desclen);
546 assert(desc[desclen-1] == '/');
547 desc[desclen-1] = '\0';
548 sfree(rowdata);
549 return desc;
550 }
551
552 static void game_free_aux_info(game_aux_info *aux)
553 {
554 sfree(aux->grid);
555 sfree(aux);
556 }
557
558 static char *validate_desc(game_params *params, char *desc)
559 {
560 int i, n, rowspace;
561 char *p;
562
563 for (i = 0; i < params->w + params->h; i++) {
564 if (i < params->w)
565 rowspace = params->h + 1;
566 else
567 rowspace = params->w + 1;
568
569 if (*desc && isdigit((unsigned char)*desc)) {
570 do {
571 p = desc;
572 while (desc && isdigit((unsigned char)*desc)) desc++;
573 n = atoi(p);
574 rowspace -= n+1;
575
576 if (rowspace < 0) {
577 if (i < params->w)
578 return "at least one column contains more numbers than will fit";
579 else
580 return "at least one row contains more numbers than will fit";
581 }
582 } while (*desc++ == '.');
583 } else {
584 desc++; /* expect a slash immediately */
585 }
586
587 if (desc[-1] == '/') {
588 if (i+1 == params->w + params->h)
589 return "too many row/column specifications";
590 } else if (desc[-1] == '\0') {
591 if (i+1 < params->w + params->h)
592 return "too few row/column specifications";
593 } else
594 return "unrecognised character in game specification";
595 }
596
597 return NULL;
598 }
599
600 static game_state *new_game(midend_data *me, game_params *params, char *desc)
601 {
602 int i;
603 char *p;
604 game_state *state = snew(game_state);
605
606 state->w = params->w;
607 state->h = params->h;
608
609 state->grid = snewn(state->w * state->h, unsigned char);
610 memset(state->grid, GRID_UNKNOWN, state->w * state->h);
611
612 state->rowsize = max(state->w, state->h);
613 state->rowdata = snewn(state->rowsize * (state->w + state->h), int);
614 state->rowlen = snewn(state->w + state->h, int);
615
616 state->completed = state->cheated = FALSE;
617
618 for (i = 0; i < params->w + params->h; i++) {
619 state->rowlen[i] = 0;
620 if (*desc && isdigit((unsigned char)*desc)) {
621 do {
622 p = desc;
623 while (desc && isdigit((unsigned char)*desc)) desc++;
624 state->rowdata[state->rowsize * i + state->rowlen[i]++] =
625 atoi(p);
626 } while (*desc++ == '.');
627 } else {
628 desc++; /* expect a slash immediately */
629 }
630 }
631
632 return state;
633 }
634
635 static game_state *dup_game(game_state *state)
636 {
637 game_state *ret = snew(game_state);
638
639 ret->w = state->w;
640 ret->h = state->h;
641
642 ret->grid = snewn(ret->w * ret->h, unsigned char);
643 memcpy(ret->grid, state->grid, ret->w * ret->h);
644
645 ret->rowsize = state->rowsize;
646 ret->rowdata = snewn(ret->rowsize * (ret->w + ret->h), int);
647 ret->rowlen = snewn(ret->w + ret->h, int);
648 memcpy(ret->rowdata, state->rowdata,
649 ret->rowsize * (ret->w + ret->h) * sizeof(int));
650 memcpy(ret->rowlen, state->rowlen,
651 (ret->w + ret->h) * sizeof(int));
652
653 ret->completed = state->completed;
654 ret->cheated = state->cheated;
655
656 return ret;
657 }
658
659 static void free_game(game_state *state)
660 {
661 sfree(state->rowdata);
662 sfree(state->rowlen);
663 sfree(state->grid);
664 sfree(state);
665 }
666
667 static game_state *solve_game(game_state *state, game_state *currstate,
668 game_aux_info *ai, char **error)
669 {
670 game_state *ret;
671
672 ret = dup_game(state);
673 ret->completed = ret->cheated = TRUE;
674
675 /*
676 * If we already have the solved state in an aux_info, copy it
677 * out.
678 */
679 if (ai) {
680
681 assert(ret->w == ai->w);
682 assert(ret->h == ai->h);
683 memcpy(ret->grid, ai->grid, ai->w * ai->h);
684
685 } else {
686 int w = state->w, h = state->h, i, j, done_any, max;
687 unsigned char *matrix, *workspace;
688 int *rowdata;
689
690 matrix = snewn(w*h, unsigned char);
691 max = max(w, h);
692 workspace = snewn(max*3, unsigned char);
693 rowdata = snewn(max+1, int);
694
695 memset(matrix, 0, w*h);
696
697 do {
698 done_any = 0;
699 for (i=0; i<h; i++) {
700 memcpy(rowdata, state->rowdata + state->rowsize*(w+i),
701 max*sizeof(int));
702 rowdata[state->rowlen[w+i]] = 0;
703 done_any |= do_row(workspace, workspace+max, workspace+2*max,
704 matrix+i*w, w, 1, rowdata);
705 }
706 for (i=0; i<w; i++) {
707 memcpy(rowdata, state->rowdata + state->rowsize*i, max*sizeof(int));
708 rowdata[state->rowlen[i]] = 0;
709 done_any |= do_row(workspace, workspace+max, workspace+2*max,
710 matrix+i, h, w, rowdata);
711 }
712 } while (done_any);
713
714 for (i = 0; i < h; i++) {
715 for (j = 0; j < w; j++) {
716 int c = (matrix[i*w+j] == BLOCK ? GRID_FULL :
717 matrix[i*w+j] == DOT ? GRID_EMPTY : GRID_UNKNOWN);
718 ret->grid[i*w+j] = c;
719 if (c == GRID_UNKNOWN)
720 ret->completed = FALSE;
721 }
722 }
723
724 if (!ret->completed) {
725 free_game(ret);
726 *error = "Solving algorithm cannot complete this puzzle";
727 return NULL;
728 }
729 }
730
731 return ret;
732 }
733
734 static char *game_text_format(game_state *state)
735 {
736 return NULL;
737 }
738
739 struct game_ui {
740 int dragging;
741 int drag_start_x;
742 int drag_start_y;
743 int drag_end_x;
744 int drag_end_y;
745 int drag, release, state;
746 };
747
748 static game_ui *new_ui(game_state *state)
749 {
750 game_ui *ret;
751
752 ret = snew(game_ui);
753 ret->dragging = FALSE;
754
755 return ret;
756 }
757
758 static void free_ui(game_ui *ui)
759 {
760 sfree(ui);
761 }
762
763 static void game_changed_state(game_ui *ui, game_state *oldstate,
764 game_state *newstate)
765 {
766 }
767
768 struct game_drawstate {
769 int started;
770 int w, h;
771 int tilesize;
772 unsigned char *visible;
773 };
774
775 static game_state *make_move(game_state *from, game_ui *ui, game_drawstate *ds,
776 int x, int y, int button) {
777 game_state *ret;
778
779 button &= ~MOD_MASK;
780
781 x = FROMCOORD(from->w, x);
782 y = FROMCOORD(from->h, y);
783
784 if (x >= 0 && x < from->w && y >= 0 && y < from->h &&
785 (button == LEFT_BUTTON || button == RIGHT_BUTTON ||
786 button == MIDDLE_BUTTON)) {
787
788 ui->dragging = TRUE;
789
790 if (button == LEFT_BUTTON) {
791 ui->drag = LEFT_DRAG;
792 ui->release = LEFT_RELEASE;
793 ui->state = GRID_FULL;
794 } else if (button == RIGHT_BUTTON) {
795 ui->drag = RIGHT_DRAG;
796 ui->release = RIGHT_RELEASE;
797 ui->state = GRID_EMPTY;
798 } else /* if (button == MIDDLE_BUTTON) */ {
799 ui->drag = MIDDLE_DRAG;
800 ui->release = MIDDLE_RELEASE;
801 ui->state = GRID_UNKNOWN;
802 }
803
804 ui->drag_start_x = ui->drag_end_x = x;
805 ui->drag_start_y = ui->drag_end_y = y;
806
807 return from; /* UI activity occurred */
808 }
809
810 if (ui->dragging && button == ui->drag) {
811 /*
812 * There doesn't seem much point in allowing a rectangle
813 * drag; people will generally only want to drag a single
814 * horizontal or vertical line, so we make that easy by
815 * snapping to it.
816 *
817 * Exception: if we're _middle_-button dragging to tag
818 * things as UNKNOWN, we may well want to trash an entire
819 * area and start over!
820 */
821 if (ui->state != GRID_UNKNOWN) {
822 if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y))
823 y = ui->drag_start_y;
824 else
825 x = ui->drag_start_x;
826 }
827
828 if (x < 0) x = 0;
829 if (y < 0) y = 0;
830 if (x >= from->w) x = from->w - 1;
831 if (y >= from->h) y = from->h - 1;
832
833 ui->drag_end_x = x;
834 ui->drag_end_y = y;
835
836 return from; /* UI activity occurred */
837 }
838
839 if (ui->dragging && button == ui->release) {
840 int x1, x2, y1, y2, xx, yy;
841 int move_needed = FALSE;
842
843 x1 = min(ui->drag_start_x, ui->drag_end_x);
844 x2 = max(ui->drag_start_x, ui->drag_end_x);
845 y1 = min(ui->drag_start_y, ui->drag_end_y);
846 y2 = max(ui->drag_start_y, ui->drag_end_y);
847
848 for (yy = y1; yy <= y2; yy++)
849 for (xx = x1; xx <= x2; xx++)
850 if (from->grid[yy * from->w + xx] != ui->state)
851 move_needed = TRUE;
852
853 ui->dragging = FALSE;
854
855 if (move_needed) {
856 ret = dup_game(from);
857 for (yy = y1; yy <= y2; yy++)
858 for (xx = x1; xx <= x2; xx++)
859 ret->grid[yy * ret->w + xx] = ui->state;
860
861 /*
862 * An actual change, so check to see if we've completed
863 * the game.
864 */
865 if (!ret->completed) {
866 int *rowdata = snewn(ret->rowsize, int);
867 int i, len;
868
869 ret->completed = TRUE;
870
871 for (i=0; i<ret->w; i++) {
872 len = compute_rowdata(rowdata,
873 ret->grid+i, ret->h, ret->w);
874 if (len != ret->rowlen[i] ||
875 memcmp(ret->rowdata+i*ret->rowsize, rowdata,
876 len * sizeof(int))) {
877 ret->completed = FALSE;
878 break;
879 }
880 }
881 for (i=0; i<ret->h; i++) {
882 len = compute_rowdata(rowdata,
883 ret->grid+i*ret->w, ret->w, 1);
884 if (len != ret->rowlen[i+ret->w] ||
885 memcmp(ret->rowdata+(i+ret->w)*ret->rowsize, rowdata,
886 len * sizeof(int))) {
887 ret->completed = FALSE;
888 break;
889 }
890 }
891
892 sfree(rowdata);
893 }
894
895 return ret;
896 } else
897 return from; /* UI activity occurred */
898 }
899
900 return NULL;
901 }
902
903 /* ----------------------------------------------------------------------
904 * Drawing routines.
905 */
906
907 static void game_size(game_params *params, game_drawstate *ds,
908 int *x, int *y, int expand)
909 {
910 int ts;
911
912 ts = min(GETTILESIZE(params->w, *x), GETTILESIZE(params->h, *y));
913 if (expand)
914 ds->tilesize = ts;
915 else
916 ds->tilesize = min(ts, PREFERRED_TILE_SIZE);
917
918 *x = SIZE(params->w);
919 *y = SIZE(params->h);
920 }
921
922 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
923 {
924 float *ret = snewn(3 * NCOLOURS, float);
925
926 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
927
928 ret[COL_GRID * 3 + 0] = 0.3F;
929 ret[COL_GRID * 3 + 1] = 0.3F;
930 ret[COL_GRID * 3 + 2] = 0.3F;
931
932 ret[COL_UNKNOWN * 3 + 0] = 0.5F;
933 ret[COL_UNKNOWN * 3 + 1] = 0.5F;
934 ret[COL_UNKNOWN * 3 + 2] = 0.5F;
935
936 ret[COL_FULL * 3 + 0] = 0.0F;
937 ret[COL_FULL * 3 + 1] = 0.0F;
938 ret[COL_FULL * 3 + 2] = 0.0F;
939
940 ret[COL_EMPTY * 3 + 0] = 1.0F;
941 ret[COL_EMPTY * 3 + 1] = 1.0F;
942 ret[COL_EMPTY * 3 + 2] = 1.0F;
943
944 *ncolours = NCOLOURS;
945 return ret;
946 }
947
948 static game_drawstate *game_new_drawstate(game_state *state)
949 {
950 struct game_drawstate *ds = snew(struct game_drawstate);
951
952 ds->started = FALSE;
953 ds->w = state->w;
954 ds->h = state->h;
955 ds->visible = snewn(ds->w * ds->h, unsigned char);
956 ds->tilesize = 0; /* not decided yet */
957 memset(ds->visible, 255, ds->w * ds->h);
958
959 return ds;
960 }
961
962 static void game_free_drawstate(game_drawstate *ds)
963 {
964 sfree(ds->visible);
965 sfree(ds);
966 }
967
968 static void grid_square(frontend *fe, game_drawstate *ds,
969 int y, int x, int state)
970 {
971 int xl, xr, yt, yb;
972
973 draw_rect(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
974 TILE_SIZE, TILE_SIZE, COL_GRID);
975
976 xl = (x % 5 == 0 ? 1 : 0);
977 yt = (y % 5 == 0 ? 1 : 0);
978 xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0);
979 yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0);
980
981 draw_rect(fe, TOCOORD(ds->w, x) + 1 + xl, TOCOORD(ds->h, y) + 1 + yt,
982 TILE_SIZE - xl - xr - 1, TILE_SIZE - yt - yb - 1,
983 (state == GRID_FULL ? COL_FULL :
984 state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN));
985
986 draw_update(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
987 TILE_SIZE, TILE_SIZE);
988 }
989
990 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
991 game_state *state, int dir, game_ui *ui,
992 float animtime, float flashtime)
993 {
994 int i, j;
995 int x1, x2, y1, y2;
996
997 if (!ds->started) {
998 /*
999 * The initial contents of the window are not guaranteed
1000 * and can vary with front ends. To be on the safe side,
1001 * all games should start by drawing a big background-
1002 * colour rectangle covering the whole window.
1003 */
1004 draw_rect(fe, 0, 0, SIZE(ds->w), SIZE(ds->h), COL_BACKGROUND);
1005
1006 /*
1007 * Draw the numbers.
1008 */
1009 for (i = 0; i < ds->w + ds->h; i++) {
1010 int rowlen = state->rowlen[i];
1011 int *rowdata = state->rowdata + state->rowsize * i;
1012 int nfit;
1013
1014 /*
1015 * Normally I space the numbers out by the same
1016 * distance as the tile size. However, if there are
1017 * more numbers than available spaces, I have to squash
1018 * them up a bit.
1019 */
1020 nfit = max(rowlen, TLBORDER(ds->h))-1;
1021 assert(nfit > 0);
1022
1023 for (j = 0; j < rowlen; j++) {
1024 int x, y;
1025 char str[80];
1026
1027 if (i < ds->w) {
1028 x = TOCOORD(ds->w, i);
1029 y = BORDER + TILE_SIZE * (TLBORDER(ds->h)-1);
1030 y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit;
1031 } else {
1032 y = TOCOORD(ds->h, i - ds->w);
1033 x = BORDER + TILE_SIZE * (TLBORDER(ds->w)-1);
1034 x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit;
1035 }
1036
1037 sprintf(str, "%d", rowdata[j]);
1038 draw_text(fe, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE,
1039 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE,
1040 COL_FULL, str); /* FIXME: COL_TEXT */
1041 }
1042 }
1043
1044 /*
1045 * Draw the grid outline.
1046 */
1047 draw_rect(fe, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1,
1048 ds->w * TILE_SIZE + 3, ds->h * TILE_SIZE + 3,
1049 COL_GRID);
1050
1051 ds->started = TRUE;
1052
1053 draw_update(fe, 0, 0, SIZE(ds->w), SIZE(ds->h));
1054 }
1055
1056 if (ui->dragging) {
1057 x1 = min(ui->drag_start_x, ui->drag_end_x);
1058 x2 = max(ui->drag_start_x, ui->drag_end_x);
1059 y1 = min(ui->drag_start_y, ui->drag_end_y);
1060 y2 = max(ui->drag_start_y, ui->drag_end_y);
1061 } else {
1062 x1 = x2 = y1 = y2 = -1; /* placate gcc warnings */
1063 }
1064
1065 /*
1066 * Now draw any grid squares which have changed since last
1067 * redraw.
1068 */
1069 for (i = 0; i < ds->h; i++) {
1070 for (j = 0; j < ds->w; j++) {
1071 int val;
1072
1073 /*
1074 * Work out what state this square should be drawn in,
1075 * taking any current drag operation into account.
1076 */
1077 if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2)
1078 val = ui->state;
1079 else
1080 val = state->grid[i * state->w + j];
1081
1082 /*
1083 * Briefly invert everything twice during a completion
1084 * flash.
1085 */
1086 if (flashtime > 0 &&
1087 (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) &&
1088 val != GRID_UNKNOWN)
1089 val = (GRID_FULL ^ GRID_EMPTY) ^ val;
1090
1091 if (ds->visible[i * ds->w + j] != val) {
1092 grid_square(fe, ds, i, j, val);
1093 ds->visible[i * ds->w + j] = val;
1094 }
1095 }
1096 }
1097 }
1098
1099 static float game_anim_length(game_state *oldstate,
1100 game_state *newstate, int dir, game_ui *ui)
1101 {
1102 return 0.0F;
1103 }
1104
1105 static float game_flash_length(game_state *oldstate,
1106 game_state *newstate, int dir, game_ui *ui)
1107 {
1108 if (!oldstate->completed && newstate->completed &&
1109 !oldstate->cheated && !newstate->cheated)
1110 return FLASH_TIME;
1111 return 0.0F;
1112 }
1113
1114 static int game_wants_statusbar(void)
1115 {
1116 return FALSE;
1117 }
1118
1119 static int game_timing_state(game_state *state)
1120 {
1121 return TRUE;
1122 }
1123
1124 #ifdef COMBINED
1125 #define thegame pattern
1126 #endif
1127
1128 const struct game thegame = {
1129 "Pattern", "games.pattern",
1130 default_params,
1131 game_fetch_preset,
1132 decode_params,
1133 encode_params,
1134 free_params,
1135 dup_params,
1136 TRUE, game_configure, custom_params,
1137 validate_params,
1138 new_game_desc,
1139 game_free_aux_info,
1140 validate_desc,
1141 new_game,
1142 dup_game,
1143 free_game,
1144 TRUE, solve_game,
1145 FALSE, game_text_format,
1146 new_ui,
1147 free_ui,
1148 game_changed_state,
1149 make_move,
1150 game_size,
1151 game_colours,
1152 game_new_drawstate,
1153 game_free_drawstate,
1154 game_redraw,
1155 game_anim_length,
1156 game_flash_length,
1157 game_wants_statusbar,
1158 FALSE, game_timing_state,
1159 0, /* mouse_priorities */
1160 };
1161
1162 #ifdef STANDALONE_SOLVER
1163
1164 /*
1165 * gcc -DSTANDALONE_SOLVER -o patternsolver pattern.c malloc.c
1166 */
1167
1168 #include <stdarg.h>
1169
1170 void frontend_default_colour(frontend *fe, float *output) {}
1171 void draw_text(frontend *fe, int x, int y, int fonttype, int fontsize,
1172 int align, int colour, char *text) {}
1173 void draw_rect(frontend *fe, int x, int y, int w, int h, int colour) {}
1174 void draw_line(frontend *fe, int x1, int y1, int x2, int y2, int colour) {}
1175 void draw_polygon(frontend *fe, int *coords, int npoints,
1176 int fill, int colour) {}
1177 void clip(frontend *fe, int x, int y, int w, int h) {}
1178 void unclip(frontend *fe) {}
1179 void start_draw(frontend *fe) {}
1180 void draw_update(frontend *fe, int x, int y, int w, int h) {}
1181 void end_draw(frontend *fe) {}
1182 unsigned long random_upto(random_state *state, unsigned long limit)
1183 { assert(!"Shouldn't get randomness"); return 0; }
1184
1185 void fatal(char *fmt, ...)
1186 {
1187 va_list ap;
1188
1189 fprintf(stderr, "fatal error: ");
1190
1191 va_start(ap, fmt);
1192 vfprintf(stderr, fmt, ap);
1193 va_end(ap);
1194
1195 fprintf(stderr, "\n");
1196 exit(1);
1197 }
1198
1199 int main(int argc, char **argv)
1200 {
1201 game_params *p;
1202 game_state *s;
1203 int recurse = TRUE;
1204 char *id = NULL, *desc, *err;
1205 int y, x;
1206 int grade = FALSE;
1207
1208 while (--argc > 0) {
1209 char *p = *++argv;
1210 if (*p == '-') {
1211 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0]);
1212 return 1;
1213 } else {
1214 id = p;
1215 }
1216 }
1217
1218 if (!id) {
1219 fprintf(stderr, "usage: %s <game_id>\n", argv[0]);
1220 return 1;
1221 }
1222
1223 desc = strchr(id, ':');
1224 if (!desc) {
1225 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
1226 return 1;
1227 }
1228 *desc++ = '\0';
1229
1230 p = default_params();
1231 decode_params(p, id);
1232 err = validate_desc(p, desc);
1233 if (err) {
1234 fprintf(stderr, "%s: %s\n", argv[0], err);
1235 return 1;
1236 }
1237 s = new_game(NULL, p, desc);
1238
1239 {
1240 int w = p->w, h = p->h, i, j, done_any, max;
1241 unsigned char *matrix, *workspace;
1242 int *rowdata;
1243
1244 matrix = snewn(w*h, unsigned char);
1245 max = max(w, h);
1246 workspace = snewn(max*3, unsigned char);
1247 rowdata = snewn(max+1, int);
1248
1249 memset(matrix, 0, w*h);
1250
1251 do {
1252 done_any = 0;
1253 for (i=0; i<h; i++) {
1254 memcpy(rowdata, s->rowdata + s->rowsize*(w+i),
1255 max*sizeof(int));
1256 rowdata[s->rowlen[w+i]] = 0;
1257 done_any |= do_row(workspace, workspace+max, workspace+2*max,
1258 matrix+i*w, w, 1, rowdata);
1259 }
1260 for (i=0; i<w; i++) {
1261 memcpy(rowdata, s->rowdata + s->rowsize*i, max*sizeof(int));
1262 rowdata[s->rowlen[i]] = 0;
1263 done_any |= do_row(workspace, workspace+max, workspace+2*max,
1264 matrix+i, h, w, rowdata);
1265 }
1266 } while (done_any);
1267
1268 for (i = 0; i < h; i++) {
1269 for (j = 0; j < w; j++) {
1270 int c = (matrix[i*w+j] == UNKNOWN ? '?' :
1271 matrix[i*w+j] == BLOCK ? '#' :
1272 matrix[i*w+j] == DOT ? '.' :
1273 '!');
1274 putchar(c);
1275 }
1276 printf("\n");
1277 }
1278 }
1279
1280 return 0;
1281 }
1282
1283 #endif