Overzealous last-move tracking during shuffle was causing lockups on
[sgt/puzzles] / netslide.c
1 /*
2 * netslide.c: cross between Net and Sixteen, courtesy of Richard
3 * Boulton.
4 */
5
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <assert.h>
10 #include <ctype.h>
11 #include <math.h>
12
13 #include "puzzles.h"
14 #include "tree234.h"
15
16 #define MATMUL(xr,yr,m,x,y) do { \
17 float rx, ry, xx = (x), yy = (y), *mat = (m); \
18 rx = mat[0] * xx + mat[2] * yy; \
19 ry = mat[1] * xx + mat[3] * yy; \
20 (xr) = rx; (yr) = ry; \
21 } while (0)
22
23 /* Direction and other bitfields */
24 #define R 0x01
25 #define U 0x02
26 #define L 0x04
27 #define D 0x08
28 #define FLASHING 0x10
29 #define ACTIVE 0x20
30 /* Corner flags go in the barriers array */
31 #define RU 0x10
32 #define UL 0x20
33 #define LD 0x40
34 #define DR 0x80
35
36 /* Get tile at given coordinate */
37 #define T(state, x, y) ( (y) * (state)->width + (x) )
38
39 /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
40 #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
41 #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
42 #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
43 #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
44 ((n)&3) == 1 ? A(x) : \
45 ((n)&3) == 2 ? F(x) : C(x) )
46
47 /* X and Y displacements */
48 #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
49 #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
50
51 /* Bit count */
52 #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
53 (((x) & 0x02) >> 1) + ((x) & 0x01) )
54
55 #define PREFERRED_TILE_SIZE 48
56 #define TILE_SIZE (ds->tilesize)
57 #define BORDER TILE_SIZE
58 #define TILE_BORDER 1
59 #define WINDOW_OFFSET 0
60
61 #define ANIM_TIME 0.13F
62 #define FLASH_FRAME 0.07F
63
64 enum {
65 COL_BACKGROUND,
66 COL_FLASHING,
67 COL_BORDER,
68 COL_WIRE,
69 COL_ENDPOINT,
70 COL_POWERED,
71 COL_BARRIER,
72 COL_LOWLIGHT,
73 COL_TEXT,
74 NCOLOURS
75 };
76
77 struct game_params {
78 int width;
79 int height;
80 int wrapping;
81 float barrier_probability;
82 int movetarget;
83 };
84
85 struct game_aux_info {
86 int width, height;
87 unsigned char *tiles;
88 };
89
90 struct game_state {
91 int width, height, cx, cy, wrapping, completed;
92 int used_solve, just_used_solve;
93 int move_count, movetarget;
94
95 /* position (row or col number, starting at 0) of last move. */
96 int last_move_row, last_move_col;
97
98 /* direction of last move: +1 or -1 */
99 int last_move_dir;
100
101 unsigned char *tiles;
102 unsigned char *barriers;
103 };
104
105 #define OFFSET(x2,y2,x1,y1,dir,state) \
106 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
107 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
108
109 #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
110 #define tile(state, x, y) index(state, (state)->tiles, x, y)
111 #define barrier(state, x, y) index(state, (state)->barriers, x, y)
112
113 struct xyd {
114 int x, y, direction;
115 };
116
117 static int xyd_cmp(void *av, void *bv) {
118 struct xyd *a = (struct xyd *)av;
119 struct xyd *b = (struct xyd *)bv;
120 if (a->x < b->x)
121 return -1;
122 if (a->x > b->x)
123 return +1;
124 if (a->y < b->y)
125 return -1;
126 if (a->y > b->y)
127 return +1;
128 if (a->direction < b->direction)
129 return -1;
130 if (a->direction > b->direction)
131 return +1;
132 return 0;
133 }
134
135 static struct xyd *new_xyd(int x, int y, int direction)
136 {
137 struct xyd *xyd = snew(struct xyd);
138 xyd->x = x;
139 xyd->y = y;
140 xyd->direction = direction;
141 return xyd;
142 }
143
144 static void slide_col(game_state *state, int dir, int col);
145 static void slide_col_int(int w, int h, unsigned char *tiles, int dir, int col);
146 static void slide_row(game_state *state, int dir, int row);
147 static void slide_row_int(int w, int h, unsigned char *tiles, int dir, int row);
148
149 /* ----------------------------------------------------------------------
150 * Manage game parameters.
151 */
152 static game_params *default_params(void)
153 {
154 game_params *ret = snew(game_params);
155
156 ret->width = 3;
157 ret->height = 3;
158 ret->wrapping = FALSE;
159 ret->barrier_probability = 1.0;
160 ret->movetarget = 0;
161
162 return ret;
163 }
164
165 static const struct { int x, y, wrap, bprob; const char* desc; }
166 netslide_presets[] = {
167 {3, 3, FALSE, 1.0, " easy"},
168 {3, 3, FALSE, 0.0, " medium"},
169 {3, 3, TRUE, 0.0, " hard"},
170 {4, 4, FALSE, 1.0, " easy"},
171 {4, 4, FALSE, 0.0, " medium"},
172 {4, 4, TRUE, 0.0, " hard"},
173 {5, 5, FALSE, 1.0, " easy"},
174 {5, 5, FALSE, 0.0, " medium"},
175 {5, 5, TRUE, 0.0, " hard"},
176 };
177
178 static int game_fetch_preset(int i, char **name, game_params **params)
179 {
180 game_params *ret;
181 char str[80];
182
183 if (i < 0 || i >= lenof(netslide_presets))
184 return FALSE;
185
186 ret = snew(game_params);
187 ret->width = netslide_presets[i].x;
188 ret->height = netslide_presets[i].y;
189 ret->wrapping = netslide_presets[i].wrap;
190 ret->barrier_probability = netslide_presets[i].bprob;
191 ret->movetarget = 0;
192
193 sprintf(str, "%dx%d%s", ret->width, ret->height, netslide_presets[i].desc);
194
195 *name = dupstr(str);
196 *params = ret;
197 return TRUE;
198 }
199
200 static void free_params(game_params *params)
201 {
202 sfree(params);
203 }
204
205 static game_params *dup_params(game_params *params)
206 {
207 game_params *ret = snew(game_params);
208 *ret = *params; /* structure copy */
209 return ret;
210 }
211
212 static void decode_params(game_params *ret, char const *string)
213 {
214 char const *p = string;
215
216 ret->wrapping = FALSE;
217 ret->barrier_probability = 0.0;
218 ret->movetarget = 0;
219
220 ret->width = atoi(p);
221 while (*p && isdigit(*p)) p++;
222 if (*p == 'x') {
223 p++;
224 ret->height = atoi(p);
225 while (*p && isdigit(*p)) p++;
226 if ( (ret->wrapping = (*p == 'w')) != 0 )
227 p++;
228 if (*p == 'b') {
229 ret->barrier_probability = atof(++p);
230 while (*p && (isdigit(*p) || *p == '.')) p++;
231 }
232 if (*p == 'm') {
233 ret->movetarget = atoi(++p);
234 }
235 } else {
236 ret->height = ret->width;
237 }
238 }
239
240 static char *encode_params(game_params *params, int full)
241 {
242 char ret[400];
243 int len;
244
245 len = sprintf(ret, "%dx%d", params->width, params->height);
246 if (params->wrapping)
247 ret[len++] = 'w';
248 if (full && params->barrier_probability)
249 len += sprintf(ret+len, "b%g", params->barrier_probability);
250 /* Shuffle limit is part of the limited parameters, because we have to
251 * provide the target move count. */
252 if (params->movetarget)
253 len += sprintf(ret+len, "m%d", params->movetarget);
254 assert(len < lenof(ret));
255 ret[len] = '\0';
256
257 return dupstr(ret);
258 }
259
260 static config_item *game_configure(game_params *params)
261 {
262 config_item *ret;
263 char buf[80];
264
265 ret = snewn(6, config_item);
266
267 ret[0].name = "Width";
268 ret[0].type = C_STRING;
269 sprintf(buf, "%d", params->width);
270 ret[0].sval = dupstr(buf);
271 ret[0].ival = 0;
272
273 ret[1].name = "Height";
274 ret[1].type = C_STRING;
275 sprintf(buf, "%d", params->height);
276 ret[1].sval = dupstr(buf);
277 ret[1].ival = 0;
278
279 ret[2].name = "Walls wrap around";
280 ret[2].type = C_BOOLEAN;
281 ret[2].sval = NULL;
282 ret[2].ival = params->wrapping;
283
284 ret[3].name = "Barrier probability";
285 ret[3].type = C_STRING;
286 sprintf(buf, "%g", params->barrier_probability);
287 ret[3].sval = dupstr(buf);
288 ret[3].ival = 0;
289
290 ret[4].name = "Number of shuffling moves";
291 ret[4].type = C_STRING;
292 sprintf(buf, "%d", params->movetarget);
293 ret[4].sval = dupstr(buf);
294 ret[4].ival = 0;
295
296 ret[5].name = NULL;
297 ret[5].type = C_END;
298 ret[5].sval = NULL;
299 ret[5].ival = 0;
300
301 return ret;
302 }
303
304 static game_params *custom_params(config_item *cfg)
305 {
306 game_params *ret = snew(game_params);
307
308 ret->width = atoi(cfg[0].sval);
309 ret->height = atoi(cfg[1].sval);
310 ret->wrapping = cfg[2].ival;
311 ret->barrier_probability = (float)atof(cfg[3].sval);
312 ret->movetarget = atoi(cfg[4].sval);
313
314 return ret;
315 }
316
317 static char *validate_params(game_params *params)
318 {
319 if (params->width <= 1 || params->height <= 1)
320 return "Width and height must both be greater than one";
321 if (params->barrier_probability < 0)
322 return "Barrier probability may not be negative";
323 if (params->barrier_probability > 1)
324 return "Barrier probability may not be greater than 1";
325 return NULL;
326 }
327
328 /* ----------------------------------------------------------------------
329 * Randomly select a new game description.
330 */
331
332 static char *new_game_desc(game_params *params, random_state *rs,
333 game_aux_info **aux, int interactive)
334 {
335 tree234 *possibilities, *barriertree;
336 int w, h, x, y, cx, cy, nbarriers;
337 unsigned char *tiles, *barriers;
338 char *desc, *p;
339
340 w = params->width;
341 h = params->height;
342
343 tiles = snewn(w * h, unsigned char);
344 memset(tiles, 0, w * h);
345 barriers = snewn(w * h, unsigned char);
346 memset(barriers, 0, w * h);
347
348 cx = w / 2;
349 cy = h / 2;
350
351 /*
352 * Construct the unshuffled grid.
353 *
354 * To do this, we simply start at the centre point, repeatedly
355 * choose a random possibility out of the available ways to
356 * extend a used square into an unused one, and do it. After
357 * extending the third line out of a square, we remove the
358 * fourth from the possibilities list to avoid any full-cross
359 * squares (which would make the game too easy because they
360 * only have one orientation).
361 *
362 * The slightly worrying thing is the avoidance of full-cross
363 * squares. Can this cause our unsophisticated construction
364 * algorithm to paint itself into a corner, by getting into a
365 * situation where there are some unreached squares and the
366 * only way to reach any of them is to extend a T-piece into a
367 * full cross?
368 *
369 * Answer: no it can't, and here's a proof.
370 *
371 * Any contiguous group of such unreachable squares must be
372 * surrounded on _all_ sides by T-pieces pointing away from the
373 * group. (If not, then there is a square which can be extended
374 * into one of the `unreachable' ones, and so it wasn't
375 * unreachable after all.) In particular, this implies that
376 * each contiguous group of unreachable squares must be
377 * rectangular in shape (any deviation from that yields a
378 * non-T-piece next to an `unreachable' square).
379 *
380 * So we have a rectangle of unreachable squares, with T-pieces
381 * forming a solid border around the rectangle. The corners of
382 * that border must be connected (since every tile connects all
383 * the lines arriving in it), and therefore the border must
384 * form a closed loop around the rectangle.
385 *
386 * But this can't have happened in the first place, since we
387 * _know_ we've avoided creating closed loops! Hence, no such
388 * situation can ever arise, and the naive grid construction
389 * algorithm will guaranteeably result in a complete grid
390 * containing no unreached squares, no full crosses _and_ no
391 * closed loops. []
392 */
393 possibilities = newtree234(xyd_cmp);
394
395 if (cx+1 < w)
396 add234(possibilities, new_xyd(cx, cy, R));
397 if (cy-1 >= 0)
398 add234(possibilities, new_xyd(cx, cy, U));
399 if (cx-1 >= 0)
400 add234(possibilities, new_xyd(cx, cy, L));
401 if (cy+1 < h)
402 add234(possibilities, new_xyd(cx, cy, D));
403
404 while (count234(possibilities) > 0) {
405 int i;
406 struct xyd *xyd;
407 int x1, y1, d1, x2, y2, d2, d;
408
409 /*
410 * Extract a randomly chosen possibility from the list.
411 */
412 i = random_upto(rs, count234(possibilities));
413 xyd = delpos234(possibilities, i);
414 x1 = xyd->x;
415 y1 = xyd->y;
416 d1 = xyd->direction;
417 sfree(xyd);
418
419 OFFSET(x2, y2, x1, y1, d1, params);
420 d2 = F(d1);
421 #ifdef GENERATION_DIAGNOSTICS
422 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
423 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
424 #endif
425
426 /*
427 * Make the connection. (We should be moving to an as yet
428 * unused tile.)
429 */
430 index(params, tiles, x1, y1) |= d1;
431 assert(index(params, tiles, x2, y2) == 0);
432 index(params, tiles, x2, y2) |= d2;
433
434 /*
435 * If we have created a T-piece, remove its last
436 * possibility.
437 */
438 if (COUNT(index(params, tiles, x1, y1)) == 3) {
439 struct xyd xyd1, *xydp;
440
441 xyd1.x = x1;
442 xyd1.y = y1;
443 xyd1.direction = 0x0F ^ index(params, tiles, x1, y1);
444
445 xydp = find234(possibilities, &xyd1, NULL);
446
447 if (xydp) {
448 #ifdef GENERATION_DIAGNOSTICS
449 printf("T-piece; removing (%d,%d,%c)\n",
450 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
451 #endif
452 del234(possibilities, xydp);
453 sfree(xydp);
454 }
455 }
456
457 /*
458 * Remove all other possibilities that were pointing at the
459 * tile we've just moved into.
460 */
461 for (d = 1; d < 0x10; d <<= 1) {
462 int x3, y3, d3;
463 struct xyd xyd1, *xydp;
464
465 OFFSET(x3, y3, x2, y2, d, params);
466 d3 = F(d);
467
468 xyd1.x = x3;
469 xyd1.y = y3;
470 xyd1.direction = d3;
471
472 xydp = find234(possibilities, &xyd1, NULL);
473
474 if (xydp) {
475 #ifdef GENERATION_DIAGNOSTICS
476 printf("Loop avoidance; removing (%d,%d,%c)\n",
477 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
478 #endif
479 del234(possibilities, xydp);
480 sfree(xydp);
481 }
482 }
483
484 /*
485 * Add new possibilities to the list for moving _out_ of
486 * the tile we have just moved into.
487 */
488 for (d = 1; d < 0x10; d <<= 1) {
489 int x3, y3;
490
491 if (d == d2)
492 continue; /* we've got this one already */
493
494 if (!params->wrapping) {
495 if (d == U && y2 == 0)
496 continue;
497 if (d == D && y2 == h-1)
498 continue;
499 if (d == L && x2 == 0)
500 continue;
501 if (d == R && x2 == w-1)
502 continue;
503 }
504
505 OFFSET(x3, y3, x2, y2, d, params);
506
507 if (index(params, tiles, x3, y3))
508 continue; /* this would create a loop */
509
510 #ifdef GENERATION_DIAGNOSTICS
511 printf("New frontier; adding (%d,%d,%c)\n",
512 x2, y2, "0RU3L567D9abcdef"[d]);
513 #endif
514 add234(possibilities, new_xyd(x2, y2, d));
515 }
516 }
517 /* Having done that, we should have no possibilities remaining. */
518 assert(count234(possibilities) == 0);
519 freetree234(possibilities);
520
521 /*
522 * Now compute a list of the possible barrier locations.
523 */
524 barriertree = newtree234(xyd_cmp);
525 for (y = 0; y < h; y++) {
526 for (x = 0; x < w; x++) {
527
528 if (!(index(params, tiles, x, y) & R) &&
529 (params->wrapping || x < w-1))
530 add234(barriertree, new_xyd(x, y, R));
531 if (!(index(params, tiles, x, y) & D) &&
532 (params->wrapping || y < h-1))
533 add234(barriertree, new_xyd(x, y, D));
534 }
535 }
536
537 /*
538 * Save the unshuffled grid. We do this using a separate
539 * reference-counted structure since it's a large chunk of
540 * memory which we don't want to have to replicate in every
541 * game state while playing.
542 */
543 {
544 game_aux_info *solution;
545
546 solution = snew(game_aux_info);
547 solution->width = w;
548 solution->height = h;
549 solution->tiles = snewn(w * h, unsigned char);
550 memcpy(solution->tiles, tiles, w * h);
551
552 *aux = solution;
553 }
554
555 /*
556 * Now shuffle the grid.
557 * FIXME - this simply does a set of random moves to shuffle the pieces,
558 * although we make a token effort to avoid boring cases by avoiding moves
559 * that directly undo the previous one, or that repeat so often as to
560 * turn into fewer moves.
561 *
562 * A better way would be to number all the pieces, generate a placement
563 * for all the numbers as for "sixteen", observing parity constraints if
564 * neccessary, and then place the pieces according to their numbering.
565 * BUT - I'm not sure if this will work, since we disallow movement of
566 * the middle row and column.
567 */
568 {
569 int i;
570 int cols = w - 1;
571 int rows = h - 1;
572 int moves = params->movetarget;
573 int prevdir = -1, prevrowcol = -1, nrepeats = 0;
574 if (!moves) moves = cols * rows * 2;
575 for (i = 0; i < moves; /* incremented conditionally */) {
576 /* Choose a direction: 0,1,2,3 = up, right, down, left. */
577 int dir = random_upto(rs, 4);
578 int rowcol;
579 if (dir % 2 == 0) {
580 int col = random_upto(rs, cols);
581 if (col >= cx) col += 1; /* avoid centre */
582 if (col == prevrowcol) {
583 if (dir == 2-prevdir)
584 continue; /* undoes last move */
585 else if (dir == prevdir && (nrepeats+1)*2 > h)
586 continue; /* makes fewer moves */
587 }
588 slide_col_int(w, h, tiles, 1 - dir, col);
589 rowcol = col;
590 } else {
591 int row = random_upto(rs, rows);
592 if (row >= cy) row += 1; /* avoid centre */
593 if (row == prevrowcol) {
594 if (dir == 4-prevdir)
595 continue; /* undoes last move */
596 else if (dir == prevdir && (nrepeats+1)*2 > w)
597 continue; /* makes fewer moves */
598 }
599 slide_row_int(w, h, tiles, 2 - dir, row);
600 rowcol = row;
601 }
602 if (dir == prevdir && rowcol == prevrowcol)
603 nrepeats++;
604 else
605 nrepeats = 1;
606 prevdir = dir;
607 prevrowcol = rowcol;
608 i++; /* if we got here, the move was accepted */
609 }
610 }
611
612 /*
613 * And now choose barrier locations. (We carefully do this
614 * _after_ shuffling, so that changing the barrier rate in the
615 * params while keeping the random seed the same will give the
616 * same shuffled grid and _only_ change the barrier locations.
617 * Also the way we choose barrier locations, by repeatedly
618 * choosing one possibility from the list until we have enough,
619 * is designed to ensure that raising the barrier rate while
620 * keeping the seed the same will provide a superset of the
621 * previous barrier set - i.e. if you ask for 10 barriers, and
622 * then decide that's still too hard and ask for 20, you'll get
623 * the original 10 plus 10 more, rather than getting 20 new
624 * ones and the chance of remembering your first 10.)
625 */
626 nbarriers = (int)(params->barrier_probability * count234(barriertree));
627 assert(nbarriers >= 0 && nbarriers <= count234(barriertree));
628
629 while (nbarriers > 0) {
630 int i;
631 struct xyd *xyd;
632 int x1, y1, d1, x2, y2, d2;
633
634 /*
635 * Extract a randomly chosen barrier from the list.
636 */
637 i = random_upto(rs, count234(barriertree));
638 xyd = delpos234(barriertree, i);
639
640 assert(xyd != NULL);
641
642 x1 = xyd->x;
643 y1 = xyd->y;
644 d1 = xyd->direction;
645 sfree(xyd);
646
647 OFFSET(x2, y2, x1, y1, d1, params);
648 d2 = F(d1);
649
650 index(params, barriers, x1, y1) |= d1;
651 index(params, barriers, x2, y2) |= d2;
652
653 nbarriers--;
654 }
655
656 /*
657 * Clean up the rest of the barrier list.
658 */
659 {
660 struct xyd *xyd;
661
662 while ( (xyd = delpos234(barriertree, 0)) != NULL)
663 sfree(xyd);
664
665 freetree234(barriertree);
666 }
667
668 /*
669 * Finally, encode the grid into a string game description.
670 *
671 * My syntax is extremely simple: each square is encoded as a
672 * hex digit in which bit 0 means a connection on the right,
673 * bit 1 means up, bit 2 left and bit 3 down. (i.e. the same
674 * encoding as used internally). Each digit is followed by
675 * optional barrier indicators: `v' means a vertical barrier to
676 * the right of it, and `h' means a horizontal barrier below
677 * it.
678 */
679 desc = snewn(w * h * 3 + 1, char);
680 p = desc;
681 for (y = 0; y < h; y++) {
682 for (x = 0; x < w; x++) {
683 *p++ = "0123456789abcdef"[index(params, tiles, x, y)];
684 if ((params->wrapping || x < w-1) &&
685 (index(params, barriers, x, y) & R))
686 *p++ = 'v';
687 if ((params->wrapping || y < h-1) &&
688 (index(params, barriers, x, y) & D))
689 *p++ = 'h';
690 }
691 }
692 assert(p - desc <= w*h*3);
693 *p = '\0';
694
695 sfree(tiles);
696 sfree(barriers);
697
698 return desc;
699 }
700
701 static void game_free_aux_info(game_aux_info *aux)
702 {
703 sfree(aux->tiles);
704 sfree(aux);
705 }
706
707 static char *validate_desc(game_params *params, char *desc)
708 {
709 int w = params->width, h = params->height;
710 int i;
711
712 for (i = 0; i < w*h; i++) {
713 if (*desc >= '0' && *desc <= '9')
714 /* OK */;
715 else if (*desc >= 'a' && *desc <= 'f')
716 /* OK */;
717 else if (*desc >= 'A' && *desc <= 'F')
718 /* OK */;
719 else if (!*desc)
720 return "Game description shorter than expected";
721 else
722 return "Game description contained unexpected character";
723 desc++;
724 while (*desc == 'h' || *desc == 'v')
725 desc++;
726 }
727 if (*desc)
728 return "Game description longer than expected";
729
730 return NULL;
731 }
732
733 /* ----------------------------------------------------------------------
734 * Construct an initial game state, given a description and parameters.
735 */
736
737 static game_state *new_game(midend_data *me, game_params *params, char *desc)
738 {
739 game_state *state;
740 int w, h, x, y;
741
742 assert(params->width > 0 && params->height > 0);
743 assert(params->width > 1 || params->height > 1);
744
745 /*
746 * Create a blank game state.
747 */
748 state = snew(game_state);
749 w = state->width = params->width;
750 h = state->height = params->height;
751 state->cx = state->width / 2;
752 state->cy = state->height / 2;
753 state->wrapping = params->wrapping;
754 state->movetarget = params->movetarget;
755 state->completed = 0;
756 state->used_solve = state->just_used_solve = FALSE;
757 state->move_count = 0;
758 state->last_move_row = -1;
759 state->last_move_col = -1;
760 state->last_move_dir = 0;
761 state->tiles = snewn(state->width * state->height, unsigned char);
762 memset(state->tiles, 0, state->width * state->height);
763 state->barriers = snewn(state->width * state->height, unsigned char);
764 memset(state->barriers, 0, state->width * state->height);
765
766
767 /*
768 * Parse the game description into the grid.
769 */
770 for (y = 0; y < h; y++) {
771 for (x = 0; x < w; x++) {
772 if (*desc >= '0' && *desc <= '9')
773 tile(state, x, y) = *desc - '0';
774 else if (*desc >= 'a' && *desc <= 'f')
775 tile(state, x, y) = *desc - 'a' + 10;
776 else if (*desc >= 'A' && *desc <= 'F')
777 tile(state, x, y) = *desc - 'A' + 10;
778 if (*desc)
779 desc++;
780 while (*desc == 'h' || *desc == 'v') {
781 int x2, y2, d1, d2;
782 if (*desc == 'v')
783 d1 = R;
784 else
785 d1 = D;
786
787 OFFSET(x2, y2, x, y, d1, state);
788 d2 = F(d1);
789
790 barrier(state, x, y) |= d1;
791 barrier(state, x2, y2) |= d2;
792
793 desc++;
794 }
795 }
796 }
797
798 /*
799 * Set up border barriers if this is a non-wrapping game.
800 */
801 if (!state->wrapping) {
802 for (x = 0; x < state->width; x++) {
803 barrier(state, x, 0) |= U;
804 barrier(state, x, state->height-1) |= D;
805 }
806 for (y = 0; y < state->height; y++) {
807 barrier(state, 0, y) |= L;
808 barrier(state, state->width-1, y) |= R;
809 }
810 }
811
812 /*
813 * Set up the barrier corner flags, for drawing barriers
814 * prettily when they meet.
815 */
816 for (y = 0; y < state->height; y++) {
817 for (x = 0; x < state->width; x++) {
818 int dir;
819
820 for (dir = 1; dir < 0x10; dir <<= 1) {
821 int dir2 = A(dir);
822 int x1, y1, x2, y2, x3, y3;
823 int corner = FALSE;
824
825 if (!(barrier(state, x, y) & dir))
826 continue;
827
828 if (barrier(state, x, y) & dir2)
829 corner = TRUE;
830
831 x1 = x + X(dir), y1 = y + Y(dir);
832 if (x1 >= 0 && x1 < state->width &&
833 y1 >= 0 && y1 < state->height &&
834 (barrier(state, x1, y1) & dir2))
835 corner = TRUE;
836
837 x2 = x + X(dir2), y2 = y + Y(dir2);
838 if (x2 >= 0 && x2 < state->width &&
839 y2 >= 0 && y2 < state->height &&
840 (barrier(state, x2, y2) & dir))
841 corner = TRUE;
842
843 if (corner) {
844 barrier(state, x, y) |= (dir << 4);
845 if (x1 >= 0 && x1 < state->width &&
846 y1 >= 0 && y1 < state->height)
847 barrier(state, x1, y1) |= (A(dir) << 4);
848 if (x2 >= 0 && x2 < state->width &&
849 y2 >= 0 && y2 < state->height)
850 barrier(state, x2, y2) |= (C(dir) << 4);
851 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
852 if (x3 >= 0 && x3 < state->width &&
853 y3 >= 0 && y3 < state->height)
854 barrier(state, x3, y3) |= (F(dir) << 4);
855 }
856 }
857 }
858 }
859
860 return state;
861 }
862
863 static game_state *dup_game(game_state *state)
864 {
865 game_state *ret;
866
867 ret = snew(game_state);
868 ret->width = state->width;
869 ret->height = state->height;
870 ret->cx = state->cx;
871 ret->cy = state->cy;
872 ret->wrapping = state->wrapping;
873 ret->movetarget = state->movetarget;
874 ret->completed = state->completed;
875 ret->used_solve = state->used_solve;
876 ret->just_used_solve = state->just_used_solve;
877 ret->move_count = state->move_count;
878 ret->last_move_row = state->last_move_row;
879 ret->last_move_col = state->last_move_col;
880 ret->last_move_dir = state->last_move_dir;
881 ret->tiles = snewn(state->width * state->height, unsigned char);
882 memcpy(ret->tiles, state->tiles, state->width * state->height);
883 ret->barriers = snewn(state->width * state->height, unsigned char);
884 memcpy(ret->barriers, state->barriers, state->width * state->height);
885
886 return ret;
887 }
888
889 static void free_game(game_state *state)
890 {
891 sfree(state->tiles);
892 sfree(state->barriers);
893 sfree(state);
894 }
895
896 static game_state *solve_game(game_state *state, game_aux_info *aux,
897 char **error)
898 {
899 game_state *ret;
900
901 if (!aux) {
902 *error = "Solution not known for this puzzle";
903 return NULL;
904 }
905
906 assert(aux->width == state->width);
907 assert(aux->height == state->height);
908 ret = dup_game(state);
909 memcpy(ret->tiles, aux->tiles, ret->width * ret->height);
910 ret->used_solve = ret->just_used_solve = TRUE;
911 ret->completed = ret->move_count = 1;
912
913 return ret;
914 }
915
916 static char *game_text_format(game_state *state)
917 {
918 return NULL;
919 }
920
921 /* ----------------------------------------------------------------------
922 * Utility routine.
923 */
924
925 /*
926 * Compute which squares are reachable from the centre square, as a
927 * quick visual aid to determining how close the game is to
928 * completion. This is also a simple way to tell if the game _is_
929 * completed - just call this function and see whether every square
930 * is marked active.
931 *
932 * squares in the moving_row and moving_col are always inactive - this
933 * is so that "current" doesn't appear to jump across moving lines.
934 */
935 static unsigned char *compute_active(game_state *state,
936 int moving_row, int moving_col)
937 {
938 unsigned char *active;
939 tree234 *todo;
940 struct xyd *xyd;
941
942 active = snewn(state->width * state->height, unsigned char);
943 memset(active, 0, state->width * state->height);
944
945 /*
946 * We only store (x,y) pairs in todo, but it's easier to reuse
947 * xyd_cmp and just store direction 0 every time.
948 */
949 todo = newtree234(xyd_cmp);
950 index(state, active, state->cx, state->cy) = ACTIVE;
951 add234(todo, new_xyd(state->cx, state->cy, 0));
952
953 while ( (xyd = delpos234(todo, 0)) != NULL) {
954 int x1, y1, d1, x2, y2, d2;
955
956 x1 = xyd->x;
957 y1 = xyd->y;
958 sfree(xyd);
959
960 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
961 OFFSET(x2, y2, x1, y1, d1, state);
962 d2 = F(d1);
963
964 /*
965 * If the next tile in this direction is connected to
966 * us, and there isn't a barrier in the way, and it
967 * isn't already marked active, then mark it active and
968 * add it to the to-examine list.
969 */
970 if ((x2 != moving_col && y2 != moving_row) &&
971 (tile(state, x1, y1) & d1) &&
972 (tile(state, x2, y2) & d2) &&
973 !(barrier(state, x1, y1) & d1) &&
974 !index(state, active, x2, y2)) {
975 index(state, active, x2, y2) = ACTIVE;
976 add234(todo, new_xyd(x2, y2, 0));
977 }
978 }
979 }
980 /* Now we expect the todo list to have shrunk to zero size. */
981 assert(count234(todo) == 0);
982 freetree234(todo);
983
984 return active;
985 }
986
987 struct game_ui {
988 int cur_x, cur_y;
989 int cur_visible;
990 };
991
992 static game_ui *new_ui(game_state *state)
993 {
994 game_ui *ui = snew(game_ui);
995 ui->cur_x = state->width / 2;
996 ui->cur_y = state->height / 2;
997 ui->cur_visible = FALSE;
998
999 return ui;
1000 }
1001
1002 static void free_ui(game_ui *ui)
1003 {
1004 sfree(ui);
1005 }
1006
1007 /* ----------------------------------------------------------------------
1008 * Process a move.
1009 */
1010
1011 static void slide_row_int(int w, int h, unsigned char *tiles, int dir, int row)
1012 {
1013 int x = dir > 0 ? -1 : w;
1014 int tx = x + dir;
1015 int n = w - 1;
1016 unsigned char endtile = tiles[row * w + tx];
1017 do {
1018 x = tx;
1019 tx = (x + dir + w) % w;
1020 tiles[row * w + x] = tiles[row * w + tx];
1021 } while (--n > 0);
1022 tiles[row * w + tx] = endtile;
1023 }
1024
1025 static void slide_col_int(int w, int h, unsigned char *tiles, int dir, int col)
1026 {
1027 int y = dir > 0 ? -1 : h;
1028 int ty = y + dir;
1029 int n = h - 1;
1030 unsigned char endtile = tiles[ty * w + col];
1031 do {
1032 y = ty;
1033 ty = (y + dir + h) % h;
1034 tiles[y * w + col] = tiles[ty * w + col];
1035 } while (--n > 0);
1036 tiles[ty * w + col] = endtile;
1037 }
1038
1039 static void slide_row(game_state *state, int dir, int row)
1040 {
1041 slide_row_int(state->width, state->height, state->tiles, dir, row);
1042 }
1043
1044 static void slide_col(game_state *state, int dir, int col)
1045 {
1046 slide_col_int(state->width, state->height, state->tiles, dir, col);
1047 }
1048
1049 static void game_changed_state(game_ui *ui, game_state *oldstate,
1050 game_state *newstate)
1051 {
1052 }
1053
1054 struct game_drawstate {
1055 int started;
1056 int width, height;
1057 int tilesize;
1058 unsigned char *visible;
1059 };
1060
1061 static game_state *make_move(game_state *state, game_ui *ui,
1062 game_drawstate *ds, int x, int y, int button)
1063 {
1064 int cx, cy;
1065 int n, dx, dy;
1066 game_state *ret;
1067
1068 button &= ~MOD_MASK;
1069
1070 if (button != LEFT_BUTTON && button != RIGHT_BUTTON)
1071 return NULL;
1072
1073 cx = (x - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
1074 cy = (y - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
1075
1076 if (cy >= 0 && cy < state->height && cy != state->cy)
1077 {
1078 if (cx == -1) dx = +1;
1079 else if (cx == state->width) dx = -1;
1080 else return NULL;
1081 n = state->width;
1082 dy = 0;
1083 }
1084 else if (cx >= 0 && cx < state->width && cx != state->cx)
1085 {
1086 if (cy == -1) dy = +1;
1087 else if (cy == state->height) dy = -1;
1088 else return NULL;
1089 n = state->height;
1090 dx = 0;
1091 }
1092 else
1093 return NULL;
1094
1095 /* reverse direction if right hand button is pressed */
1096 if (button == RIGHT_BUTTON)
1097 {
1098 dx = -dx;
1099 dy = -dy;
1100 }
1101
1102 ret = dup_game(state);
1103 ret->just_used_solve = FALSE;
1104
1105 if (dx == 0) slide_col(ret, dy, cx);
1106 else slide_row(ret, dx, cy);
1107
1108 ret->move_count++;
1109 ret->last_move_row = dx ? cy : -1;
1110 ret->last_move_col = dx ? -1 : cx;
1111 ret->last_move_dir = dx + dy;
1112
1113 /*
1114 * See if the game has been completed.
1115 */
1116 if (!ret->completed) {
1117 unsigned char *active = compute_active(ret, -1, -1);
1118 int x1, y1;
1119 int complete = TRUE;
1120
1121 for (x1 = 0; x1 < ret->width; x1++)
1122 for (y1 = 0; y1 < ret->height; y1++)
1123 if (!index(ret, active, x1, y1)) {
1124 complete = FALSE;
1125 goto break_label; /* break out of two loops at once */
1126 }
1127 break_label:
1128
1129 sfree(active);
1130
1131 if (complete)
1132 ret->completed = ret->move_count;
1133 }
1134
1135 return ret;
1136 }
1137
1138 /* ----------------------------------------------------------------------
1139 * Routines for drawing the game position on the screen.
1140 */
1141
1142 static game_drawstate *game_new_drawstate(game_state *state)
1143 {
1144 game_drawstate *ds = snew(game_drawstate);
1145
1146 ds->started = FALSE;
1147 ds->width = state->width;
1148 ds->height = state->height;
1149 ds->visible = snewn(state->width * state->height, unsigned char);
1150 ds->tilesize = 0; /* not decided yet */
1151 memset(ds->visible, 0xFF, state->width * state->height);
1152
1153 return ds;
1154 }
1155
1156 static void game_free_drawstate(game_drawstate *ds)
1157 {
1158 sfree(ds->visible);
1159 sfree(ds);
1160 }
1161
1162 static void game_size(game_params *params, game_drawstate *ds, int *x, int *y,
1163 int expand)
1164 {
1165 int tsx, tsy, ts;
1166 /*
1167 * Each window dimension equals the tile size times two more
1168 * than the grid dimension (the border containing the arrows is
1169 * the same width as the tiles), plus TILE_BORDER, plus twice
1170 * WINDOW_OFFSET.
1171 */
1172 tsx = (*x - 2*WINDOW_OFFSET - TILE_BORDER) / (params->width + 2);
1173 tsy = (*y - 2*WINDOW_OFFSET - TILE_BORDER) / (params->height + 2);
1174 ts = min(tsx, tsy);
1175
1176 if (expand)
1177 ds->tilesize = ts;
1178 else
1179 ds->tilesize = min(ts, PREFERRED_TILE_SIZE);
1180
1181 *x = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
1182 *y = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
1183 }
1184
1185 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
1186 {
1187 float *ret;
1188
1189 ret = snewn(NCOLOURS * 3, float);
1190 *ncolours = NCOLOURS;
1191
1192 /*
1193 * Basic background colour is whatever the front end thinks is
1194 * a sensible default.
1195 */
1196 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1197
1198 /*
1199 * Wires are black.
1200 */
1201 ret[COL_WIRE * 3 + 0] = 0.0F;
1202 ret[COL_WIRE * 3 + 1] = 0.0F;
1203 ret[COL_WIRE * 3 + 2] = 0.0F;
1204
1205 /*
1206 * Powered wires and powered endpoints are cyan.
1207 */
1208 ret[COL_POWERED * 3 + 0] = 0.0F;
1209 ret[COL_POWERED * 3 + 1] = 1.0F;
1210 ret[COL_POWERED * 3 + 2] = 1.0F;
1211
1212 /*
1213 * Barriers are red.
1214 */
1215 ret[COL_BARRIER * 3 + 0] = 1.0F;
1216 ret[COL_BARRIER * 3 + 1] = 0.0F;
1217 ret[COL_BARRIER * 3 + 2] = 0.0F;
1218
1219 /*
1220 * Unpowered endpoints are blue.
1221 */
1222 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
1223 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
1224 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
1225
1226 /*
1227 * Tile borders are a darker grey than the background.
1228 */
1229 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
1230 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
1231 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
1232
1233 /*
1234 * Flashing tiles are a grey in between those two.
1235 */
1236 ret[COL_FLASHING * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
1237 ret[COL_FLASHING * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
1238 ret[COL_FLASHING * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
1239
1240 ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
1241 ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.8F;
1242 ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.8F;
1243 ret[COL_TEXT * 3 + 0] = 0.0;
1244 ret[COL_TEXT * 3 + 1] = 0.0;
1245 ret[COL_TEXT * 3 + 2] = 0.0;
1246
1247 return ret;
1248 }
1249
1250 static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
1251 int colour)
1252 {
1253 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
1254 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
1255 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
1256 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
1257 draw_line(fe, x1, y1, x2, y2, colour);
1258 }
1259
1260 static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
1261 int colour)
1262 {
1263 int mx = (x1 < x2 ? x1 : x2);
1264 int my = (y1 < y2 ? y1 : y2);
1265 int dx = (x2 + x1 - 2*mx + 1);
1266 int dy = (y2 + y1 - 2*my + 1);
1267
1268 draw_rect(fe, mx, my, dx, dy, colour);
1269 }
1270
1271 static void draw_barrier_corner(frontend *fe, game_drawstate *ds,
1272 int x, int y, int dir, int phase)
1273 {
1274 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1275 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1276 int x1, y1, dx, dy, dir2;
1277
1278 dir >>= 4;
1279
1280 dir2 = A(dir);
1281 dx = X(dir) + X(dir2);
1282 dy = Y(dir) + Y(dir2);
1283 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1284 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1285
1286 if (phase == 0) {
1287 draw_rect_coords(fe, bx+x1, by+y1,
1288 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
1289 COL_WIRE);
1290 draw_rect_coords(fe, bx+x1, by+y1,
1291 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
1292 COL_WIRE);
1293 } else {
1294 draw_rect_coords(fe, bx+x1, by+y1,
1295 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
1296 COL_BARRIER);
1297 }
1298 }
1299
1300 static void draw_barrier(frontend *fe, game_drawstate *ds,
1301 int x, int y, int dir, int phase)
1302 {
1303 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1304 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1305 int x1, y1, w, h;
1306
1307 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
1308 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
1309 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1310 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1311
1312 if (phase == 0) {
1313 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
1314 } else {
1315 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
1316 }
1317 }
1318
1319 static void draw_tile(frontend *fe, game_drawstate *ds, game_state *state,
1320 int x, int y, int tile, float xshift, float yshift)
1321 {
1322 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x + (xshift * TILE_SIZE);
1323 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y + (yshift * TILE_SIZE);
1324 float cx, cy, ex, ey;
1325 int dir, col;
1326
1327 /*
1328 * When we draw a single tile, we must draw everything up to
1329 * and including the borders around the tile. This means that
1330 * if the neighbouring tiles have connections to those borders,
1331 * we must draw those connections on the borders themselves.
1332 *
1333 * This would be terribly fiddly if we ever had to draw a tile
1334 * while its neighbour was in mid-rotate, because we'd have to
1335 * arrange to _know_ that the neighbour was being rotated and
1336 * hence had an anomalous effect on the redraw of this tile.
1337 * Fortunately, the drawing algorithm avoids ever calling us in
1338 * this circumstance: we're either drawing lots of straight
1339 * tiles at game start or after a move is complete, or we're
1340 * repeatedly drawing only the rotating tile. So no problem.
1341 */
1342
1343 /*
1344 * So. First blank the tile out completely: draw a big
1345 * rectangle in border colour, and a smaller rectangle in
1346 * background colour to fill it in.
1347 */
1348 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
1349 COL_BORDER);
1350 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
1351 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
1352 tile & FLASHING ? COL_FLASHING : COL_BACKGROUND);
1353
1354 /*
1355 * Draw the wires.
1356 */
1357 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
1358 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
1359 for (dir = 1; dir < 0x10; dir <<= 1) {
1360 if (tile & dir) {
1361 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1362 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1363 draw_thick_line(fe, bx+(int)cx, by+(int)cy,
1364 bx+(int)(cx+ex), by+(int)(cy+ey),
1365 COL_WIRE);
1366 }
1367 }
1368 for (dir = 1; dir < 0x10; dir <<= 1) {
1369 if (tile & dir) {
1370 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1371 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1372 draw_line(fe, bx+(int)cx, by+(int)cy,
1373 bx+(int)(cx+ex), by+(int)(cy+ey), col);
1374 }
1375 }
1376
1377 /*
1378 * Draw the box in the middle. We do this in blue if the tile
1379 * is an unpowered endpoint, in cyan if the tile is a powered
1380 * endpoint, in black if the tile is the centrepiece, and
1381 * otherwise not at all.
1382 */
1383 col = -1;
1384 if (x == state->cx && y == state->cy)
1385 col = COL_WIRE;
1386 else if (COUNT(tile) == 1) {
1387 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
1388 }
1389 if (col >= 0) {
1390 int i, points[8];
1391
1392 points[0] = +1; points[1] = +1;
1393 points[2] = +1; points[3] = -1;
1394 points[4] = -1; points[5] = -1;
1395 points[6] = -1; points[7] = +1;
1396
1397 for (i = 0; i < 8; i += 2) {
1398 ex = (TILE_SIZE * 0.24F) * points[i];
1399 ey = (TILE_SIZE * 0.24F) * points[i+1];
1400 points[i] = bx+(int)(cx+ex);
1401 points[i+1] = by+(int)(cy+ey);
1402 }
1403
1404 draw_polygon(fe, points, 4, TRUE, col);
1405 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
1406 }
1407
1408 /*
1409 * Draw the points on the border if other tiles are connected
1410 * to us.
1411 */
1412 for (dir = 1; dir < 0x10; dir <<= 1) {
1413 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
1414
1415 dx = X(dir);
1416 dy = Y(dir);
1417
1418 ox = x + dx;
1419 oy = y + dy;
1420
1421 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
1422 continue;
1423
1424 if (!(tile(state, ox, oy) & F(dir)))
1425 continue;
1426
1427 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
1428 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
1429 lx = dx * (TILE_BORDER-1);
1430 ly = dy * (TILE_BORDER-1);
1431 vx = (dy ? 1 : 0);
1432 vy = (dx ? 1 : 0);
1433
1434 if (xshift == 0.0 && yshift == 0.0 && (tile & dir)) {
1435 /*
1436 * If we are fully connected to the other tile, we must
1437 * draw right across the tile border. (We can use our
1438 * own ACTIVE state to determine what colour to do this
1439 * in: if we are fully connected to the other tile then
1440 * the two ACTIVE states will be the same.)
1441 */
1442 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
1443 draw_rect_coords(fe, px, py, px+lx, py+ly,
1444 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
1445 } else {
1446 /*
1447 * The other tile extends into our border, but isn't
1448 * actually connected to us. Just draw a single black
1449 * dot.
1450 */
1451 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
1452 }
1453 }
1454
1455 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1456 }
1457
1458 static void draw_tile_barriers(frontend *fe, game_drawstate *ds,
1459 game_state *state, int x, int y)
1460 {
1461 int phase;
1462 int dir;
1463 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1464 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1465 /*
1466 * Draw barrier corners, and then barriers.
1467 */
1468 for (phase = 0; phase < 2; phase++) {
1469 for (dir = 1; dir < 0x10; dir <<= 1)
1470 if (barrier(state, x, y) & (dir << 4))
1471 draw_barrier_corner(fe, ds, x, y, dir << 4, phase);
1472 for (dir = 1; dir < 0x10; dir <<= 1)
1473 if (barrier(state, x, y) & dir)
1474 draw_barrier(fe, ds, x, y, dir, phase);
1475 }
1476
1477 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1478 }
1479
1480 static void draw_arrow(frontend *fe, game_drawstate *ds,
1481 int x, int y, int xdx, int xdy)
1482 {
1483 int coords[14];
1484 int ydy = -xdx, ydx = xdy;
1485
1486 x = x * TILE_SIZE + BORDER + WINDOW_OFFSET;
1487 y = y * TILE_SIZE + BORDER + WINDOW_OFFSET;
1488
1489 #define POINT(n, xx, yy) ( \
1490 coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \
1491 coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy)
1492
1493 POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */
1494 POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */
1495 POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */
1496 POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */
1497 POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */
1498 POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */
1499 POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */
1500
1501 draw_polygon(fe, coords, 7, TRUE, COL_LOWLIGHT);
1502 draw_polygon(fe, coords, 7, FALSE, COL_TEXT);
1503 }
1504
1505 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1506 game_state *state, int dir, game_ui *ui, float t, float ft)
1507 {
1508 int x, y, tx, ty, frame;
1509 unsigned char *active;
1510 float xshift = 0.0;
1511 float yshift = 0.0;
1512
1513 /*
1514 * Clear the screen and draw the exterior barrier lines if this
1515 * is our first call.
1516 */
1517 if (!ds->started) {
1518 int phase;
1519
1520 ds->started = TRUE;
1521
1522 draw_rect(fe, 0, 0,
1523 BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1524 BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1525 COL_BACKGROUND);
1526 draw_update(fe, 0, 0,
1527 BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1528 BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1529
1530 for (phase = 0; phase < 2; phase++) {
1531
1532 for (x = 0; x < ds->width; x++) {
1533 if (barrier(state, x, 0) & UL)
1534 draw_barrier_corner(fe, ds, x, -1, LD, phase);
1535 if (barrier(state, x, 0) & RU)
1536 draw_barrier_corner(fe, ds, x, -1, DR, phase);
1537 if (barrier(state, x, 0) & U)
1538 draw_barrier(fe, ds, x, -1, D, phase);
1539 if (barrier(state, x, ds->height-1) & DR)
1540 draw_barrier_corner(fe, ds, x, ds->height, RU, phase);
1541 if (barrier(state, x, ds->height-1) & LD)
1542 draw_barrier_corner(fe, ds, x, ds->height, UL, phase);
1543 if (barrier(state, x, ds->height-1) & D)
1544 draw_barrier(fe, ds, x, ds->height, U, phase);
1545 }
1546
1547 for (y = 0; y < ds->height; y++) {
1548 if (barrier(state, 0, y) & UL)
1549 draw_barrier_corner(fe, ds, -1, y, RU, phase);
1550 if (barrier(state, 0, y) & LD)
1551 draw_barrier_corner(fe, ds, -1, y, DR, phase);
1552 if (barrier(state, 0, y) & L)
1553 draw_barrier(fe, ds, -1, y, R, phase);
1554 if (barrier(state, ds->width-1, y) & RU)
1555 draw_barrier_corner(fe, ds, ds->width, y, UL, phase);
1556 if (barrier(state, ds->width-1, y) & DR)
1557 draw_barrier_corner(fe, ds, ds->width, y, LD, phase);
1558 if (barrier(state, ds->width-1, y) & R)
1559 draw_barrier(fe, ds, ds->width, y, L, phase);
1560 }
1561 }
1562
1563 /*
1564 * Arrows for making moves.
1565 */
1566 for (x = 0; x < ds->width; x++) {
1567 if (x == state->cx) continue;
1568 draw_arrow(fe, ds, x, 0, +1, 0);
1569 draw_arrow(fe, ds, x+1, ds->height, -1, 0);
1570 }
1571 for (y = 0; y < ds->height; y++) {
1572 if (y == state->cy) continue;
1573 draw_arrow(fe, ds, ds->width, y, 0, +1);
1574 draw_arrow(fe, ds, 0, y+1, 0, -1);
1575 }
1576 }
1577
1578 /* Check if this is an undo. If so, we will need to run any animation
1579 * backwards.
1580 */
1581 if (oldstate && oldstate->move_count > state->move_count) {
1582 game_state * tmpstate = state;
1583 state = oldstate;
1584 oldstate = tmpstate;
1585 t = ANIM_TIME - t;
1586 }
1587
1588 tx = ty = -1;
1589 if (oldstate && (t < ANIM_TIME)) {
1590 /*
1591 * We're animating a slide, of row/column number
1592 * state->last_move_pos, in direction
1593 * state->last_move_dir
1594 */
1595 xshift = state->last_move_row == -1 ? 0.0 :
1596 (1 - t / ANIM_TIME) * state->last_move_dir;
1597 yshift = state->last_move_col == -1 ? 0.0 :
1598 (1 - t / ANIM_TIME) * state->last_move_dir;
1599 }
1600
1601 frame = -1;
1602 if (ft > 0) {
1603 /*
1604 * We're animating a completion flash. Find which frame
1605 * we're at.
1606 */
1607 frame = (int)(ft / FLASH_FRAME);
1608 }
1609
1610 /*
1611 * Draw any tile which differs from the way it was last drawn.
1612 */
1613 if (xshift != 0.0 || yshift != 0.0) {
1614 active = compute_active(state,
1615 state->last_move_row, state->last_move_col);
1616 } else {
1617 active = compute_active(state, -1, -1);
1618 }
1619
1620 clip(fe,
1621 BORDER + WINDOW_OFFSET, BORDER + WINDOW_OFFSET,
1622 TILE_SIZE * state->width + TILE_BORDER,
1623 TILE_SIZE * state->height + TILE_BORDER);
1624
1625 for (x = 0; x < ds->width; x++)
1626 for (y = 0; y < ds->height; y++) {
1627 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1628
1629 /*
1630 * In a completion flash, we adjust the FLASHING bit
1631 * depending on our distance from the centre point and
1632 * the frame number.
1633 */
1634 if (frame >= 0) {
1635 int xdist, ydist, dist;
1636 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1637 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1638 dist = (xdist > ydist ? xdist : ydist);
1639
1640 if (frame >= dist && frame < dist+4) {
1641 int flash = (frame - dist) & 1;
1642 flash = flash ? FLASHING : 0;
1643 c = (c &~ FLASHING) | flash;
1644 }
1645 }
1646
1647 if (index(state, ds->visible, x, y) != c ||
1648 index(state, ds->visible, x, y) == 0xFF ||
1649 (x == state->last_move_col || y == state->last_move_row))
1650 {
1651 float xs = (y == state->last_move_row ? xshift : 0.0);
1652 float ys = (x == state->last_move_col ? yshift : 0.0);
1653
1654 draw_tile(fe, ds, state, x, y, c, xs, ys);
1655 if (xs < 0 && x == 0)
1656 draw_tile(fe, ds, state, state->width, y, c, xs, ys);
1657 else if (xs > 0 && x == state->width - 1)
1658 draw_tile(fe, ds, state, -1, y, c, xs, ys);
1659 else if (ys < 0 && y == 0)
1660 draw_tile(fe, ds, state, x, state->height, c, xs, ys);
1661 else if (ys > 0 && y == state->height - 1)
1662 draw_tile(fe, ds, state, x, -1, c, xs, ys);
1663
1664 if (x == state->last_move_col || y == state->last_move_row)
1665 index(state, ds->visible, x, y) = 0xFF;
1666 else
1667 index(state, ds->visible, x, y) = c;
1668 }
1669 }
1670
1671 for (x = 0; x < ds->width; x++)
1672 for (y = 0; y < ds->height; y++)
1673 draw_tile_barriers(fe, ds, state, x, y);
1674
1675 unclip(fe);
1676
1677 /*
1678 * Update the status bar.
1679 */
1680 {
1681 char statusbuf[256];
1682 int i, n, a;
1683
1684 n = state->width * state->height;
1685 for (i = a = 0; i < n; i++)
1686 if (active[i])
1687 a++;
1688
1689 if (state->used_solve)
1690 sprintf(statusbuf, "Moves since auto-solve: %d",
1691 state->move_count - state->completed);
1692 else
1693 sprintf(statusbuf, "%sMoves: %d",
1694 (state->completed ? "COMPLETED! " : ""),
1695 (state->completed ? state->completed : state->move_count));
1696
1697 if (state->movetarget)
1698 sprintf(statusbuf + strlen(statusbuf), " (target %d)",
1699 state->movetarget);
1700
1701 sprintf(statusbuf + strlen(statusbuf), " Active: %d/%d", a, n);
1702
1703 status_bar(fe, statusbuf);
1704 }
1705
1706 sfree(active);
1707 }
1708
1709 static float game_anim_length(game_state *oldstate,
1710 game_state *newstate, int dir, game_ui *ui)
1711 {
1712 /*
1713 * Don't animate an auto-solve move.
1714 */
1715 if ((dir > 0 && newstate->just_used_solve) ||
1716 (dir < 0 && oldstate->just_used_solve))
1717 return 0.0F;
1718
1719 return ANIM_TIME;
1720 }
1721
1722 static float game_flash_length(game_state *oldstate,
1723 game_state *newstate, int dir, game_ui *ui)
1724 {
1725 /*
1726 * If the game has just been completed, we display a completion
1727 * flash.
1728 */
1729 if (!oldstate->completed && newstate->completed &&
1730 !oldstate->used_solve && !newstate->used_solve) {
1731 int size;
1732 size = 0;
1733 if (size < newstate->cx+1)
1734 size = newstate->cx+1;
1735 if (size < newstate->cy+1)
1736 size = newstate->cy+1;
1737 if (size < newstate->width - newstate->cx)
1738 size = newstate->width - newstate->cx;
1739 if (size < newstate->height - newstate->cy)
1740 size = newstate->height - newstate->cy;
1741 return FLASH_FRAME * (size+4);
1742 }
1743
1744 return 0.0F;
1745 }
1746
1747 static int game_wants_statusbar(void)
1748 {
1749 return TRUE;
1750 }
1751
1752 static int game_timing_state(game_state *state)
1753 {
1754 return FALSE;
1755 }
1756
1757 #ifdef COMBINED
1758 #define thegame netslide
1759 #endif
1760
1761 const struct game thegame = {
1762 "Netslide", "games.netslide",
1763 default_params,
1764 game_fetch_preset,
1765 decode_params,
1766 encode_params,
1767 free_params,
1768 dup_params,
1769 TRUE, game_configure, custom_params,
1770 validate_params,
1771 new_game_desc,
1772 game_free_aux_info,
1773 validate_desc,
1774 new_game,
1775 dup_game,
1776 free_game,
1777 TRUE, solve_game,
1778 FALSE, game_text_format,
1779 new_ui,
1780 free_ui,
1781 game_changed_state,
1782 make_move,
1783 game_size,
1784 game_colours,
1785 game_new_drawstate,
1786 game_free_drawstate,
1787 game_redraw,
1788 game_anim_length,
1789 game_flash_length,
1790 game_wants_statusbar,
1791 FALSE, game_timing_state,
1792 0, /* mouse_priorities */
1793 };