Pattern also contains an internal solver, so here's a command-line
[sgt/puzzles] / pattern.c
1 /*
2 * pattern.c: the pattern-reconstruction game known as `nonograms'.
3 *
4 * TODO before checkin:
5 *
6 * - make some sort of stab at number-of-numbers judgment
7 */
8
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 #include <assert.h>
13 #include <ctype.h>
14 #include <math.h>
15
16 #include "puzzles.h"
17
18 #define max(x,y) ( (x)>(y) ? (x):(y) )
19 #define min(x,y) ( (x)<(y) ? (x):(y) )
20
21 enum {
22 COL_BACKGROUND,
23 COL_EMPTY,
24 COL_FULL,
25 COL_UNKNOWN,
26 COL_GRID,
27 NCOLOURS
28 };
29
30 #define BORDER 18
31 #define TLBORDER(d) ( (d) / 5 + 2 )
32 #define GUTTER 12
33 #define TILE_SIZE 24
34
35 #define FROMCOORD(d, x) \
36 ( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE )
37
38 #define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d)))
39
40 #define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x)))
41
42 struct game_params {
43 int w, h;
44 };
45
46 #define GRID_UNKNOWN 2
47 #define GRID_FULL 1
48 #define GRID_EMPTY 0
49
50 struct game_state {
51 int w, h;
52 unsigned char *grid;
53 int rowsize;
54 int *rowdata, *rowlen;
55 int completed;
56 };
57
58 #define FLASH_TIME 0.13F
59
60 static game_params *default_params(void)
61 {
62 game_params *ret = snew(game_params);
63
64 ret->w = ret->h = 15;
65
66 return ret;
67 }
68
69 static int game_fetch_preset(int i, char **name, game_params **params)
70 {
71 game_params *ret;
72 char str[80];
73 static const struct { int x, y; } values[] = {
74 {10, 10},
75 {15, 15},
76 {20, 20},
77 {25, 25},
78 {30, 30},
79 };
80
81 if (i < 0 || i >= lenof(values))
82 return FALSE;
83
84 ret = snew(game_params);
85 ret->w = values[i].x;
86 ret->h = values[i].y;
87
88 sprintf(str, "%dx%d", ret->w, ret->h);
89
90 *name = dupstr(str);
91 *params = ret;
92 return TRUE;
93 }
94
95 static void free_params(game_params *params)
96 {
97 sfree(params);
98 }
99
100 static game_params *dup_params(game_params *params)
101 {
102 game_params *ret = snew(game_params);
103 *ret = *params; /* structure copy */
104 return ret;
105 }
106
107 static game_params *decode_params(char const *string)
108 {
109 game_params *ret = default_params();
110 char const *p = string;
111
112 ret->w = atoi(p);
113 while (*p && isdigit(*p)) p++;
114 if (*p == 'x') {
115 p++;
116 ret->h = atoi(p);
117 while (*p && isdigit(*p)) p++;
118 } else {
119 ret->h = ret->w;
120 }
121
122 return ret;
123 }
124
125 static char *encode_params(game_params *params)
126 {
127 char ret[400];
128 int len;
129
130 len = sprintf(ret, "%dx%d", params->w, params->h);
131 assert(len < lenof(ret));
132 ret[len] = '\0';
133
134 return dupstr(ret);
135 }
136
137 static config_item *game_configure(game_params *params)
138 {
139 config_item *ret;
140 char buf[80];
141
142 ret = snewn(3, config_item);
143
144 ret[0].name = "Width";
145 ret[0].type = C_STRING;
146 sprintf(buf, "%d", params->w);
147 ret[0].sval = dupstr(buf);
148 ret[0].ival = 0;
149
150 ret[1].name = "Height";
151 ret[1].type = C_STRING;
152 sprintf(buf, "%d", params->h);
153 ret[1].sval = dupstr(buf);
154 ret[1].ival = 0;
155
156 ret[2].name = NULL;
157 ret[2].type = C_END;
158 ret[2].sval = NULL;
159 ret[2].ival = 0;
160
161 return ret;
162 }
163
164 static game_params *custom_params(config_item *cfg)
165 {
166 game_params *ret = snew(game_params);
167
168 ret->w = atoi(cfg[0].sval);
169 ret->h = atoi(cfg[1].sval);
170
171 return ret;
172 }
173
174 static char *validate_params(game_params *params)
175 {
176 if (params->w <= 0 && params->h <= 0)
177 return "Width and height must both be greater than zero";
178 if (params->w <= 0)
179 return "Width must be greater than zero";
180 if (params->h <= 0)
181 return "Height must be greater than zero";
182 return NULL;
183 }
184
185 /* ----------------------------------------------------------------------
186 * Puzzle generation code.
187 *
188 * For this particular puzzle, it seemed important to me to ensure
189 * a unique solution. I do this the brute-force way, by having a
190 * solver algorithm alongside the generator, and repeatedly
191 * generating a random grid until I find one whose solution is
192 * unique. It turns out that this isn't too onerous on a modern PC
193 * provided you keep grid size below around 30. Any offers of
194 * better algorithms, however, will be very gratefully received.
195 *
196 * Another annoyance of this approach is that it limits the
197 * available puzzles to those solvable by the algorithm I've used.
198 * My algorithm only ever considers a single row or column at any
199 * one time, which means it's incapable of solving the following
200 * difficult example (found by Bella Image around 1995/6, when she
201 * and I were both doing maths degrees):
202 *
203 * 2 1 2 1
204 *
205 * +--+--+--+--+
206 * 1 1 | | | | |
207 * +--+--+--+--+
208 * 2 | | | | |
209 * +--+--+--+--+
210 * 1 | | | | |
211 * +--+--+--+--+
212 * 1 | | | | |
213 * +--+--+--+--+
214 *
215 * Obviously this cannot be solved by a one-row-or-column-at-a-time
216 * algorithm (it would require at least one row or column reading
217 * `2 1', `1 2', `3' or `4' to get started). However, it can be
218 * proved to have a unique solution: if the top left square were
219 * empty, then the only option for the top row would be to fill the
220 * two squares in the 1 columns, which would imply the squares
221 * below those were empty, leaving no place for the 2 in the second
222 * row. Contradiction. Hence the top left square is full, and the
223 * unique solution follows easily from that starting point.
224 *
225 * (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case
226 * it's useful to anyone.)
227 */
228
229 static int float_compare(const void *av, const void *bv)
230 {
231 const float *a = (const float *)av;
232 const float *b = (const float *)bv;
233 if (*a < *b)
234 return -1;
235 else if (*a > *b)
236 return +1;
237 else
238 return 0;
239 }
240
241 static void generate(random_state *rs, int w, int h, unsigned char *retgrid)
242 {
243 float *fgrid;
244 float *fgrid2;
245 int step, i, j;
246 float threshold;
247
248 fgrid = snewn(w*h, float);
249
250 for (i = 0; i < h; i++) {
251 for (j = 0; j < w; j++) {
252 fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F;
253 }
254 }
255
256 /*
257 * The above gives a completely random splattering of black and
258 * white cells. We want to gently bias this in favour of _some_
259 * reasonably thick areas of white and black, while retaining
260 * some randomness and fine detail.
261 *
262 * So we evolve the starting grid using a cellular automaton.
263 * Currently, I'm doing something very simple indeed, which is
264 * to set each square to the average of the surrounding nine
265 * cells (or the average of fewer, if we're on a corner).
266 */
267 for (step = 0; step < 1; step++) {
268 fgrid2 = snewn(w*h, float);
269
270 for (i = 0; i < h; i++) {
271 for (j = 0; j < w; j++) {
272 float sx, xbar;
273 int n, p, q;
274
275 /*
276 * Compute the average of the surrounding cells.
277 */
278 n = 0;
279 sx = 0.F;
280 for (p = -1; p <= +1; p++) {
281 for (q = -1; q <= +1; q++) {
282 if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w)
283 continue;
284 /*
285 * An additional special case not mentioned
286 * above: if a grid dimension is 2xn then
287 * we do not average across that dimension
288 * at all. Otherwise a 2x2 grid would
289 * contain four identical squares.
290 */
291 if ((h==2 && p!=0) || (w==2 && q!=0))
292 continue;
293 n++;
294 sx += fgrid[(i+p)*w+(j+q)];
295 }
296 }
297 xbar = sx / n;
298
299 fgrid2[i*w+j] = xbar;
300 }
301 }
302
303 sfree(fgrid);
304 fgrid = fgrid2;
305 }
306
307 fgrid2 = snewn(w*h, float);
308 memcpy(fgrid2, fgrid, w*h*sizeof(float));
309 qsort(fgrid2, w*h, sizeof(float), float_compare);
310 threshold = fgrid2[w*h/2];
311 sfree(fgrid2);
312
313 for (i = 0; i < h; i++) {
314 for (j = 0; j < w; j++) {
315 retgrid[i*w+j] = (fgrid[i*w+j] >= threshold ? GRID_FULL :
316 GRID_EMPTY);
317 }
318 }
319
320 sfree(fgrid);
321 }
322
323 static int compute_rowdata(int *ret, unsigned char *start, int len, int step)
324 {
325 int i, n;
326
327 n = 0;
328
329 for (i = 0; i < len; i++) {
330 if (start[i*step] == GRID_FULL) {
331 int runlen = 1;
332 while (i+runlen < len && start[(i+runlen)*step] == GRID_FULL)
333 runlen++;
334 ret[n++] = runlen;
335 i += runlen;
336 }
337
338 if (i < len && start[i*step] == GRID_UNKNOWN)
339 return -1;
340 }
341
342 return n;
343 }
344
345 #define UNKNOWN 0
346 #define BLOCK 1
347 #define DOT 2
348 #define STILL_UNKNOWN 3
349
350 static void do_recurse(unsigned char *known, unsigned char *deduced,
351 unsigned char *row, int *data, int len,
352 int freespace, int ndone, int lowest)
353 {
354 int i, j, k;
355
356 if (data[ndone]) {
357 for (i=0; i<=freespace; i++) {
358 j = lowest;
359 for (k=0; k<i; k++) row[j++] = DOT;
360 for (k=0; k<data[ndone]; k++) row[j++] = BLOCK;
361 if (j < len) row[j++] = DOT;
362 do_recurse(known, deduced, row, data, len,
363 freespace-i, ndone+1, j);
364 }
365 } else {
366 for (i=lowest; i<len; i++)
367 row[i] = DOT;
368 for (i=0; i<len; i++)
369 if (known[i] && known[i] != row[i])
370 return;
371 for (i=0; i<len; i++)
372 deduced[i] |= row[i];
373 }
374 }
375
376 static int do_row(unsigned char *known, unsigned char *deduced,
377 unsigned char *row,
378 unsigned char *start, int len, int step, int *data)
379 {
380 int rowlen, i, freespace, done_any;
381
382 freespace = len+1;
383 for (rowlen = 0; data[rowlen]; rowlen++)
384 freespace -= data[rowlen]+1;
385
386 for (i = 0; i < len; i++) {
387 known[i] = start[i*step];
388 deduced[i] = 0;
389 }
390
391 do_recurse(known, deduced, row, data, len, freespace, 0, 0);
392 done_any = FALSE;
393 for (i=0; i<len; i++)
394 if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) {
395 start[i*step] = deduced[i];
396 done_any = TRUE;
397 }
398 return done_any;
399 }
400
401 static unsigned char *generate_soluble(random_state *rs, int w, int h)
402 {
403 int i, j, done_any, ok, ntries, max;
404 unsigned char *grid, *matrix, *workspace;
405 int *rowdata;
406
407 grid = snewn(w*h, unsigned char);
408 matrix = snewn(w*h, unsigned char);
409 max = max(w, h);
410 workspace = snewn(max*3, unsigned char);
411 rowdata = snewn(max+1, int);
412
413 ntries = 0;
414
415 do {
416 ntries++;
417
418 generate(rs, w, h, grid);
419
420 /*
421 * The game is a bit too easy if any row or column is
422 * completely black or completely white. An exception is
423 * made for rows/columns that are under 3 squares,
424 * otherwise nothing will ever be successfully generated.
425 */
426 ok = TRUE;
427 if (w > 2) {
428 for (i = 0; i < h; i++) {
429 int colours = 0;
430 for (j = 0; j < w; j++)
431 colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
432 if (colours != 3)
433 ok = FALSE;
434 }
435 }
436 if (h > 2) {
437 for (j = 0; j < w; j++) {
438 int colours = 0;
439 for (i = 0; i < h; i++)
440 colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
441 if (colours != 3)
442 ok = FALSE;
443 }
444 }
445 if (!ok)
446 continue;
447
448 memset(matrix, 0, w*h);
449
450 do {
451 done_any = 0;
452 for (i=0; i<h; i++) {
453 rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
454 done_any |= do_row(workspace, workspace+max, workspace+2*max,
455 matrix+i*w, w, 1, rowdata);
456 }
457 for (i=0; i<w; i++) {
458 rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
459 done_any |= do_row(workspace, workspace+max, workspace+2*max,
460 matrix+i, h, w, rowdata);
461 }
462 } while (done_any);
463
464 ok = TRUE;
465 for (i=0; i<h; i++) {
466 for (j=0; j<w; j++) {
467 if (matrix[i*w+j] == UNKNOWN)
468 ok = FALSE;
469 }
470 }
471 } while (!ok);
472
473 sfree(matrix);
474 sfree(workspace);
475 sfree(rowdata);
476 return grid;
477 }
478
479 static char *new_game_seed(game_params *params, random_state *rs)
480 {
481 unsigned char *grid;
482 int i, j, max, rowlen, *rowdata;
483 char intbuf[80], *seed;
484 int seedlen, seedpos;
485
486 grid = generate_soluble(rs, params->w, params->h);
487 max = max(params->w, params->h);
488 rowdata = snewn(max, int);
489
490 /*
491 * Seed is a slash-separated list of row contents; each row
492 * contents section is a dot-separated list of integers. Row
493 * contents are listed in the order (columns left to right,
494 * then rows top to bottom).
495 *
496 * Simplest way to handle memory allocation is to make two
497 * passes, first computing the seed size and then writing it
498 * out.
499 */
500 seedlen = 0;
501 for (i = 0; i < params->w + params->h; i++) {
502 if (i < params->w)
503 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
504 else
505 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
506 params->w, 1);
507 if (rowlen > 0) {
508 for (j = 0; j < rowlen; j++) {
509 seedlen += 1 + sprintf(intbuf, "%d", rowdata[j]);
510 }
511 } else {
512 seedlen++;
513 }
514 }
515 seed = snewn(seedlen, char);
516 seedpos = 0;
517 for (i = 0; i < params->w + params->h; i++) {
518 if (i < params->w)
519 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
520 else
521 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
522 params->w, 1);
523 if (rowlen > 0) {
524 for (j = 0; j < rowlen; j++) {
525 int len = sprintf(seed+seedpos, "%d", rowdata[j]);
526 if (j+1 < rowlen)
527 seed[seedpos + len] = '.';
528 else
529 seed[seedpos + len] = '/';
530 seedpos += len+1;
531 }
532 } else {
533 seed[seedpos++] = '/';
534 }
535 }
536 assert(seedpos == seedlen);
537 assert(seed[seedlen-1] == '/');
538 seed[seedlen-1] = '\0';
539 sfree(rowdata);
540 return seed;
541 }
542
543 static char *validate_seed(game_params *params, char *seed)
544 {
545 int i, n, rowspace;
546 char *p;
547
548 for (i = 0; i < params->w + params->h; i++) {
549 if (i < params->w)
550 rowspace = params->h + 1;
551 else
552 rowspace = params->w + 1;
553
554 if (*seed && isdigit((unsigned char)*seed)) {
555 do {
556 p = seed;
557 while (seed && isdigit((unsigned char)*seed)) seed++;
558 n = atoi(p);
559 rowspace -= n+1;
560
561 if (rowspace < 0) {
562 if (i < params->w)
563 return "at least one column contains more numbers than will fit";
564 else
565 return "at least one row contains more numbers than will fit";
566 }
567 } while (*seed++ == '.');
568 } else {
569 seed++; /* expect a slash immediately */
570 }
571
572 if (seed[-1] == '/') {
573 if (i+1 == params->w + params->h)
574 return "too many row/column specifications";
575 } else if (seed[-1] == '\0') {
576 if (i+1 < params->w + params->h)
577 return "too few row/column specifications";
578 } else
579 return "unrecognised character in game specification";
580 }
581
582 return NULL;
583 }
584
585 static game_state *new_game(game_params *params, char *seed)
586 {
587 int i;
588 char *p;
589 game_state *state = snew(game_state);
590
591 state->w = params->w;
592 state->h = params->h;
593
594 state->grid = snewn(state->w * state->h, unsigned char);
595 memset(state->grid, GRID_UNKNOWN, state->w * state->h);
596
597 state->rowsize = max(state->w, state->h);
598 state->rowdata = snewn(state->rowsize * (state->w + state->h), int);
599 state->rowlen = snewn(state->w + state->h, int);
600
601 state->completed = FALSE;
602
603 for (i = 0; i < params->w + params->h; i++) {
604 state->rowlen[i] = 0;
605 if (*seed && isdigit((unsigned char)*seed)) {
606 do {
607 p = seed;
608 while (seed && isdigit((unsigned char)*seed)) seed++;
609 state->rowdata[state->rowsize * i + state->rowlen[i]++] =
610 atoi(p);
611 } while (*seed++ == '.');
612 } else {
613 seed++; /* expect a slash immediately */
614 }
615 }
616
617 return state;
618 }
619
620 static game_state *dup_game(game_state *state)
621 {
622 game_state *ret = snew(game_state);
623
624 ret->w = state->w;
625 ret->h = state->h;
626
627 ret->grid = snewn(ret->w * ret->h, unsigned char);
628 memcpy(ret->grid, state->grid, ret->w * ret->h);
629
630 ret->rowsize = state->rowsize;
631 ret->rowdata = snewn(ret->rowsize * (ret->w + ret->h), int);
632 ret->rowlen = snewn(ret->w + ret->h, int);
633 memcpy(ret->rowdata, state->rowdata,
634 ret->rowsize * (ret->w + ret->h) * sizeof(int));
635 memcpy(ret->rowlen, state->rowlen,
636 (ret->w + ret->h) * sizeof(int));
637
638 ret->completed = state->completed;
639
640 return ret;
641 }
642
643 static void free_game(game_state *state)
644 {
645 sfree(state->rowdata);
646 sfree(state->rowlen);
647 sfree(state->grid);
648 sfree(state);
649 }
650
651 struct game_ui {
652 int dragging;
653 int drag_start_x;
654 int drag_start_y;
655 int drag_end_x;
656 int drag_end_y;
657 int drag, release, state;
658 };
659
660 static game_ui *new_ui(game_state *state)
661 {
662 game_ui *ret;
663
664 ret = snew(game_ui);
665 ret->dragging = FALSE;
666
667 return ret;
668 }
669
670 static void free_ui(game_ui *ui)
671 {
672 sfree(ui);
673 }
674
675 static game_state *make_move(game_state *from, game_ui *ui,
676 int x, int y, int button)
677 {
678 game_state *ret;
679
680 x = FROMCOORD(from->w, x);
681 y = FROMCOORD(from->h, y);
682
683 if (x >= 0 && x < from->w && y >= 0 && y < from->h &&
684 (button == LEFT_BUTTON || button == RIGHT_BUTTON ||
685 button == MIDDLE_BUTTON)) {
686
687 ui->dragging = TRUE;
688
689 if (button == LEFT_BUTTON) {
690 ui->drag = LEFT_DRAG;
691 ui->release = LEFT_RELEASE;
692 ui->state = GRID_FULL;
693 } else if (button == RIGHT_BUTTON) {
694 ui->drag = RIGHT_DRAG;
695 ui->release = RIGHT_RELEASE;
696 ui->state = GRID_EMPTY;
697 } else /* if (button == MIDDLE_BUTTON) */ {
698 ui->drag = MIDDLE_DRAG;
699 ui->release = MIDDLE_RELEASE;
700 ui->state = GRID_UNKNOWN;
701 }
702
703 ui->drag_start_x = ui->drag_end_x = x;
704 ui->drag_start_y = ui->drag_end_y = y;
705
706 return from; /* UI activity occurred */
707 }
708
709 if (ui->dragging && button == ui->drag) {
710 /*
711 * There doesn't seem much point in allowing a rectangle
712 * drag; people will generally only want to drag a single
713 * horizontal or vertical line, so we make that easy by
714 * snapping to it.
715 *
716 * Exception: if we're _middle_-button dragging to tag
717 * things as UNKNOWN, we may well want to trash an entire
718 * area and start over!
719 */
720 if (ui->state != GRID_UNKNOWN) {
721 if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y))
722 y = ui->drag_start_y;
723 else
724 x = ui->drag_start_x;
725 }
726
727 if (x < 0) x = 0;
728 if (y < 0) y = 0;
729 if (x >= from->w) x = from->w - 1;
730 if (y >= from->h) y = from->h - 1;
731
732 ui->drag_end_x = x;
733 ui->drag_end_y = y;
734
735 return from; /* UI activity occurred */
736 }
737
738 if (ui->dragging && button == ui->release) {
739 int x1, x2, y1, y2, xx, yy;
740 int move_needed = FALSE;
741
742 x1 = min(ui->drag_start_x, ui->drag_end_x);
743 x2 = max(ui->drag_start_x, ui->drag_end_x);
744 y1 = min(ui->drag_start_y, ui->drag_end_y);
745 y2 = max(ui->drag_start_y, ui->drag_end_y);
746
747 for (yy = y1; yy <= y2; yy++)
748 for (xx = x1; xx <= x2; xx++)
749 if (from->grid[yy * from->w + xx] != ui->state)
750 move_needed = TRUE;
751
752 ui->dragging = FALSE;
753
754 if (move_needed) {
755 ret = dup_game(from);
756 for (yy = y1; yy <= y2; yy++)
757 for (xx = x1; xx <= x2; xx++)
758 ret->grid[yy * ret->w + xx] = ui->state;
759
760 /*
761 * An actual change, so check to see if we've completed
762 * the game.
763 */
764 if (!ret->completed) {
765 int *rowdata = snewn(ret->rowsize, int);
766 int i, len;
767
768 ret->completed = TRUE;
769
770 for (i=0; i<ret->w; i++) {
771 len = compute_rowdata(rowdata,
772 ret->grid+i, ret->h, ret->w);
773 if (len != ret->rowlen[i] ||
774 memcmp(ret->rowdata+i*ret->rowsize, rowdata,
775 len * sizeof(int))) {
776 ret->completed = FALSE;
777 break;
778 }
779 }
780 for (i=0; i<ret->h; i++) {
781 len = compute_rowdata(rowdata,
782 ret->grid+i*ret->w, ret->w, 1);
783 if (len != ret->rowlen[i+ret->w] ||
784 memcmp(ret->rowdata+(i+ret->w)*ret->rowsize, rowdata,
785 len * sizeof(int))) {
786 ret->completed = FALSE;
787 break;
788 }
789 }
790
791 sfree(rowdata);
792 }
793
794 return ret;
795 } else
796 return from; /* UI activity occurred */
797 }
798
799 return NULL;
800 }
801
802 /* ----------------------------------------------------------------------
803 * Drawing routines.
804 */
805
806 struct game_drawstate {
807 int started;
808 int w, h;
809 unsigned char *visible;
810 };
811
812 static void game_size(game_params *params, int *x, int *y)
813 {
814 *x = SIZE(params->w);
815 *y = SIZE(params->h);
816 }
817
818 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
819 {
820 float *ret = snewn(3 * NCOLOURS, float);
821
822 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
823
824 ret[COL_GRID * 3 + 0] = 0.3F;
825 ret[COL_GRID * 3 + 1] = 0.3F;
826 ret[COL_GRID * 3 + 2] = 0.3F;
827
828 ret[COL_UNKNOWN * 3 + 0] = 0.5F;
829 ret[COL_UNKNOWN * 3 + 1] = 0.5F;
830 ret[COL_UNKNOWN * 3 + 2] = 0.5F;
831
832 ret[COL_FULL * 3 + 0] = 0.0F;
833 ret[COL_FULL * 3 + 1] = 0.0F;
834 ret[COL_FULL * 3 + 2] = 0.0F;
835
836 ret[COL_EMPTY * 3 + 0] = 1.0F;
837 ret[COL_EMPTY * 3 + 1] = 1.0F;
838 ret[COL_EMPTY * 3 + 2] = 1.0F;
839
840 *ncolours = NCOLOURS;
841 return ret;
842 }
843
844 static game_drawstate *game_new_drawstate(game_state *state)
845 {
846 struct game_drawstate *ds = snew(struct game_drawstate);
847
848 ds->started = FALSE;
849 ds->w = state->w;
850 ds->h = state->h;
851 ds->visible = snewn(ds->w * ds->h, unsigned char);
852 memset(ds->visible, 255, ds->w * ds->h);
853
854 return ds;
855 }
856
857 static void game_free_drawstate(game_drawstate *ds)
858 {
859 sfree(ds->visible);
860 sfree(ds);
861 }
862
863 static void grid_square(frontend *fe, game_drawstate *ds,
864 int y, int x, int state)
865 {
866 int xl, xr, yt, yb;
867
868 draw_rect(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
869 TILE_SIZE, TILE_SIZE, COL_GRID);
870
871 xl = (x % 5 == 0 ? 1 : 0);
872 yt = (y % 5 == 0 ? 1 : 0);
873 xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0);
874 yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0);
875
876 draw_rect(fe, TOCOORD(ds->w, x) + 1 + xl, TOCOORD(ds->h, y) + 1 + yt,
877 TILE_SIZE - xl - xr - 1, TILE_SIZE - yt - yb - 1,
878 (state == GRID_FULL ? COL_FULL :
879 state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN));
880
881 draw_update(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
882 TILE_SIZE, TILE_SIZE);
883 }
884
885 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
886 game_state *state, int dir, game_ui *ui,
887 float animtime, float flashtime)
888 {
889 int i, j;
890 int x1, x2, y1, y2;
891
892 if (!ds->started) {
893 /*
894 * The initial contents of the window are not guaranteed
895 * and can vary with front ends. To be on the safe side,
896 * all games should start by drawing a big background-
897 * colour rectangle covering the whole window.
898 */
899 draw_rect(fe, 0, 0, SIZE(ds->w), SIZE(ds->h), COL_BACKGROUND);
900
901 /*
902 * Draw the numbers.
903 */
904 for (i = 0; i < ds->w + ds->h; i++) {
905 int rowlen = state->rowlen[i];
906 int *rowdata = state->rowdata + state->rowsize * i;
907 int nfit;
908
909 /*
910 * Normally I space the numbers out by the same
911 * distance as the tile size. However, if there are
912 * more numbers than available spaces, I have to squash
913 * them up a bit.
914 */
915 nfit = max(rowlen, TLBORDER(ds->h))-1;
916 assert(nfit > 0);
917
918 for (j = 0; j < rowlen; j++) {
919 int x, y;
920 char str[80];
921
922 if (i < ds->w) {
923 x = TOCOORD(ds->w, i);
924 y = BORDER + TILE_SIZE * (TLBORDER(ds->h)-1);
925 y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit;
926 } else {
927 y = TOCOORD(ds->h, i - ds->w);
928 x = BORDER + TILE_SIZE * (TLBORDER(ds->w)-1);
929 x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit;
930 }
931
932 sprintf(str, "%d", rowdata[j]);
933 draw_text(fe, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE,
934 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE,
935 COL_FULL, str); /* FIXME: COL_TEXT */
936 }
937 }
938
939 /*
940 * Draw the grid outline.
941 */
942 draw_rect(fe, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1,
943 ds->w * TILE_SIZE + 3, ds->h * TILE_SIZE + 3,
944 COL_GRID);
945
946 ds->started = TRUE;
947
948 draw_update(fe, 0, 0, SIZE(ds->w), SIZE(ds->h));
949 }
950
951 if (ui->dragging) {
952 x1 = min(ui->drag_start_x, ui->drag_end_x);
953 x2 = max(ui->drag_start_x, ui->drag_end_x);
954 y1 = min(ui->drag_start_y, ui->drag_end_y);
955 y2 = max(ui->drag_start_y, ui->drag_end_y);
956 } else {
957 x1 = x2 = y1 = y2 = -1; /* placate gcc warnings */
958 }
959
960 /*
961 * Now draw any grid squares which have changed since last
962 * redraw.
963 */
964 for (i = 0; i < ds->h; i++) {
965 for (j = 0; j < ds->w; j++) {
966 int val;
967
968 /*
969 * Work out what state this square should be drawn in,
970 * taking any current drag operation into account.
971 */
972 if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2)
973 val = ui->state;
974 else
975 val = state->grid[i * state->w + j];
976
977 /*
978 * Briefly invert everything twice during a completion
979 * flash.
980 */
981 if (flashtime > 0 &&
982 (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) &&
983 val != GRID_UNKNOWN)
984 val = (GRID_FULL ^ GRID_EMPTY) ^ val;
985
986 if (ds->visible[i * ds->w + j] != val) {
987 grid_square(fe, ds, i, j, val);
988 ds->visible[i * ds->w + j] = val;
989 }
990 }
991 }
992 }
993
994 static float game_anim_length(game_state *oldstate,
995 game_state *newstate, int dir)
996 {
997 return 0.0F;
998 }
999
1000 static float game_flash_length(game_state *oldstate,
1001 game_state *newstate, int dir)
1002 {
1003 if (!oldstate->completed && newstate->completed)
1004 return FLASH_TIME;
1005 return 0.0F;
1006 }
1007
1008 static int game_wants_statusbar(void)
1009 {
1010 return FALSE;
1011 }
1012
1013 #ifdef COMBINED
1014 #define thegame pattern
1015 #endif
1016
1017 const struct game thegame = {
1018 "Pattern", "games.pattern", TRUE,
1019 default_params,
1020 game_fetch_preset,
1021 decode_params,
1022 encode_params,
1023 free_params,
1024 dup_params,
1025 game_configure,
1026 custom_params,
1027 validate_params,
1028 new_game_seed,
1029 validate_seed,
1030 new_game,
1031 dup_game,
1032 free_game,
1033 new_ui,
1034 free_ui,
1035 make_move,
1036 game_size,
1037 game_colours,
1038 game_new_drawstate,
1039 game_free_drawstate,
1040 game_redraw,
1041 game_anim_length,
1042 game_flash_length,
1043 game_wants_statusbar,
1044 };
1045
1046 #ifdef STANDALONE_SOLVER
1047
1048 /*
1049 * gcc -DSTANDALONE_SOLVER -o patternsolver pattern.c malloc.c
1050 */
1051
1052 #include <stdarg.h>
1053
1054 void frontend_default_colour(frontend *fe, float *output) {}
1055 void draw_text(frontend *fe, int x, int y, int fonttype, int fontsize,
1056 int align, int colour, char *text) {}
1057 void draw_rect(frontend *fe, int x, int y, int w, int h, int colour) {}
1058 void draw_line(frontend *fe, int x1, int y1, int x2, int y2, int colour) {}
1059 void draw_polygon(frontend *fe, int *coords, int npoints,
1060 int fill, int colour) {}
1061 void clip(frontend *fe, int x, int y, int w, int h) {}
1062 void unclip(frontend *fe) {}
1063 void start_draw(frontend *fe) {}
1064 void draw_update(frontend *fe, int x, int y, int w, int h) {}
1065 void end_draw(frontend *fe) {}
1066 unsigned long random_upto(random_state *state, unsigned long limit)
1067 { assert(!"Shouldn't get randomness"); return 0; }
1068
1069 void fatal(char *fmt, ...)
1070 {
1071 va_list ap;
1072
1073 fprintf(stderr, "fatal error: ");
1074
1075 va_start(ap, fmt);
1076 vfprintf(stderr, fmt, ap);
1077 va_end(ap);
1078
1079 fprintf(stderr, "\n");
1080 exit(1);
1081 }
1082
1083 int main(int argc, char **argv)
1084 {
1085 game_params *p;
1086 game_state *s;
1087 int recurse = TRUE;
1088 char *id = NULL, *seed, *err;
1089 int y, x;
1090 int grade = FALSE;
1091
1092 while (--argc > 0) {
1093 char *p = *++argv;
1094 if (*p == '-') {
1095 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0]);
1096 return 1;
1097 } else {
1098 id = p;
1099 }
1100 }
1101
1102 if (!id) {
1103 fprintf(stderr, "usage: %s <game_id>\n", argv[0]);
1104 return 1;
1105 }
1106
1107 seed = strchr(id, ':');
1108 if (!seed) {
1109 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
1110 return 1;
1111 }
1112 *seed++ = '\0';
1113
1114 p = decode_params(id);
1115 err = validate_seed(p, seed);
1116 if (err) {
1117 fprintf(stderr, "%s: %s\n", argv[0], err);
1118 return 1;
1119 }
1120 s = new_game(p, seed);
1121
1122 {
1123 int w = p->w, h = p->h, i, j, done_any, max;
1124 unsigned char *matrix, *workspace;
1125 int *rowdata;
1126
1127 matrix = snewn(w*h, unsigned char);
1128 max = max(w, h);
1129 workspace = snewn(max*3, unsigned char);
1130 rowdata = snewn(max+1, int);
1131
1132 memset(matrix, 0, w*h);
1133
1134 do {
1135 done_any = 0;
1136 for (i=0; i<h; i++) {
1137 memcpy(rowdata, s->rowdata + s->rowsize*(w+i),
1138 max*sizeof(int));
1139 rowdata[s->rowlen[w+i]] = 0;
1140 done_any |= do_row(workspace, workspace+max, workspace+2*max,
1141 matrix+i*w, w, 1, rowdata);
1142 }
1143 for (i=0; i<w; i++) {
1144 memcpy(rowdata, s->rowdata + s->rowsize*i, max*sizeof(int));
1145 rowdata[s->rowlen[i]] = 0;
1146 done_any |= do_row(workspace, workspace+max, workspace+2*max,
1147 matrix+i, h, w, rowdata);
1148 }
1149 } while (done_any);
1150
1151 for (i = 0; i < h; i++) {
1152 for (j = 0; j < w; j++) {
1153 int c = (matrix[i*w+j] == UNKNOWN ? '?' :
1154 matrix[i*w+j] == BLOCK ? '#' :
1155 matrix[i*w+j] == DOT ? '.' :
1156 '!');
1157 putchar(c);
1158 }
1159 printf("\n");
1160 }
1161 }
1162
1163 return 0;
1164 }
1165
1166 #endif