I've changed my mind. For the benefit of users with slower
[sgt/puzzles] / pattern.c
1 /*
2 * pattern.c: the pattern-reconstruction game known as `nonograms'.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13
14 #define max(x,y) ( (x)>(y) ? (x):(y) )
15 #define min(x,y) ( (x)<(y) ? (x):(y) )
16
17 enum {
18 COL_BACKGROUND,
19 COL_EMPTY,
20 COL_FULL,
21 COL_UNKNOWN,
22 COL_GRID,
23 NCOLOURS
24 };
25
26 #define BORDER 18
27 #define TLBORDER(d) ( (d) / 5 + 2 )
28 #define GUTTER 12
29 #define TILE_SIZE 24
30
31 #define FROMCOORD(d, x) \
32 ( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE )
33
34 #define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d)))
35
36 #define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x)))
37
38 struct game_params {
39 int w, h;
40 };
41
42 #define GRID_UNKNOWN 2
43 #define GRID_FULL 1
44 #define GRID_EMPTY 0
45
46 struct game_state {
47 int w, h;
48 unsigned char *grid;
49 int rowsize;
50 int *rowdata, *rowlen;
51 int completed, cheated;
52 };
53
54 #define FLASH_TIME 0.13F
55
56 static game_params *default_params(void)
57 {
58 game_params *ret = snew(game_params);
59
60 ret->w = ret->h = 15;
61
62 return ret;
63 }
64
65 static int game_fetch_preset(int i, char **name, game_params **params)
66 {
67 game_params *ret;
68 char str[80];
69 static const struct { int x, y; } values[] = {
70 {10, 10},
71 {15, 15},
72 {20, 20},
73 {25, 25},
74 {30, 30},
75 };
76
77 if (i < 0 || i >= lenof(values))
78 return FALSE;
79
80 ret = snew(game_params);
81 ret->w = values[i].x;
82 ret->h = values[i].y;
83
84 sprintf(str, "%dx%d", ret->w, ret->h);
85
86 *name = dupstr(str);
87 *params = ret;
88 return TRUE;
89 }
90
91 static void free_params(game_params *params)
92 {
93 sfree(params);
94 }
95
96 static game_params *dup_params(game_params *params)
97 {
98 game_params *ret = snew(game_params);
99 *ret = *params; /* structure copy */
100 return ret;
101 }
102
103 static game_params *decode_params(char const *string)
104 {
105 game_params *ret = default_params();
106 char const *p = string;
107
108 ret->w = atoi(p);
109 while (*p && isdigit(*p)) p++;
110 if (*p == 'x') {
111 p++;
112 ret->h = atoi(p);
113 while (*p && isdigit(*p)) p++;
114 } else {
115 ret->h = ret->w;
116 }
117
118 return ret;
119 }
120
121 static char *encode_params(game_params *params)
122 {
123 char ret[400];
124 int len;
125
126 len = sprintf(ret, "%dx%d", params->w, params->h);
127 assert(len < lenof(ret));
128 ret[len] = '\0';
129
130 return dupstr(ret);
131 }
132
133 static config_item *game_configure(game_params *params)
134 {
135 config_item *ret;
136 char buf[80];
137
138 ret = snewn(3, config_item);
139
140 ret[0].name = "Width";
141 ret[0].type = C_STRING;
142 sprintf(buf, "%d", params->w);
143 ret[0].sval = dupstr(buf);
144 ret[0].ival = 0;
145
146 ret[1].name = "Height";
147 ret[1].type = C_STRING;
148 sprintf(buf, "%d", params->h);
149 ret[1].sval = dupstr(buf);
150 ret[1].ival = 0;
151
152 ret[2].name = NULL;
153 ret[2].type = C_END;
154 ret[2].sval = NULL;
155 ret[2].ival = 0;
156
157 return ret;
158 }
159
160 static game_params *custom_params(config_item *cfg)
161 {
162 game_params *ret = snew(game_params);
163
164 ret->w = atoi(cfg[0].sval);
165 ret->h = atoi(cfg[1].sval);
166
167 return ret;
168 }
169
170 static char *validate_params(game_params *params)
171 {
172 if (params->w <= 0 && params->h <= 0)
173 return "Width and height must both be greater than zero";
174 if (params->w <= 0)
175 return "Width must be greater than zero";
176 if (params->h <= 0)
177 return "Height must be greater than zero";
178 return NULL;
179 }
180
181 /* ----------------------------------------------------------------------
182 * Puzzle generation code.
183 *
184 * For this particular puzzle, it seemed important to me to ensure
185 * a unique solution. I do this the brute-force way, by having a
186 * solver algorithm alongside the generator, and repeatedly
187 * generating a random grid until I find one whose solution is
188 * unique. It turns out that this isn't too onerous on a modern PC
189 * provided you keep grid size below around 30. Any offers of
190 * better algorithms, however, will be very gratefully received.
191 *
192 * Another annoyance of this approach is that it limits the
193 * available puzzles to those solvable by the algorithm I've used.
194 * My algorithm only ever considers a single row or column at any
195 * one time, which means it's incapable of solving the following
196 * difficult example (found by Bella Image around 1995/6, when she
197 * and I were both doing maths degrees):
198 *
199 * 2 1 2 1
200 *
201 * +--+--+--+--+
202 * 1 1 | | | | |
203 * +--+--+--+--+
204 * 2 | | | | |
205 * +--+--+--+--+
206 * 1 | | | | |
207 * +--+--+--+--+
208 * 1 | | | | |
209 * +--+--+--+--+
210 *
211 * Obviously this cannot be solved by a one-row-or-column-at-a-time
212 * algorithm (it would require at least one row or column reading
213 * `2 1', `1 2', `3' or `4' to get started). However, it can be
214 * proved to have a unique solution: if the top left square were
215 * empty, then the only option for the top row would be to fill the
216 * two squares in the 1 columns, which would imply the squares
217 * below those were empty, leaving no place for the 2 in the second
218 * row. Contradiction. Hence the top left square is full, and the
219 * unique solution follows easily from that starting point.
220 *
221 * (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case
222 * it's useful to anyone.)
223 */
224
225 static int float_compare(const void *av, const void *bv)
226 {
227 const float *a = (const float *)av;
228 const float *b = (const float *)bv;
229 if (*a < *b)
230 return -1;
231 else if (*a > *b)
232 return +1;
233 else
234 return 0;
235 }
236
237 static void generate(random_state *rs, int w, int h, unsigned char *retgrid)
238 {
239 float *fgrid;
240 float *fgrid2;
241 int step, i, j;
242 float threshold;
243
244 fgrid = snewn(w*h, float);
245
246 for (i = 0; i < h; i++) {
247 for (j = 0; j < w; j++) {
248 fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F;
249 }
250 }
251
252 /*
253 * The above gives a completely random splattering of black and
254 * white cells. We want to gently bias this in favour of _some_
255 * reasonably thick areas of white and black, while retaining
256 * some randomness and fine detail.
257 *
258 * So we evolve the starting grid using a cellular automaton.
259 * Currently, I'm doing something very simple indeed, which is
260 * to set each square to the average of the surrounding nine
261 * cells (or the average of fewer, if we're on a corner).
262 */
263 for (step = 0; step < 1; step++) {
264 fgrid2 = snewn(w*h, float);
265
266 for (i = 0; i < h; i++) {
267 for (j = 0; j < w; j++) {
268 float sx, xbar;
269 int n, p, q;
270
271 /*
272 * Compute the average of the surrounding cells.
273 */
274 n = 0;
275 sx = 0.F;
276 for (p = -1; p <= +1; p++) {
277 for (q = -1; q <= +1; q++) {
278 if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w)
279 continue;
280 /*
281 * An additional special case not mentioned
282 * above: if a grid dimension is 2xn then
283 * we do not average across that dimension
284 * at all. Otherwise a 2x2 grid would
285 * contain four identical squares.
286 */
287 if ((h==2 && p!=0) || (w==2 && q!=0))
288 continue;
289 n++;
290 sx += fgrid[(i+p)*w+(j+q)];
291 }
292 }
293 xbar = sx / n;
294
295 fgrid2[i*w+j] = xbar;
296 }
297 }
298
299 sfree(fgrid);
300 fgrid = fgrid2;
301 }
302
303 fgrid2 = snewn(w*h, float);
304 memcpy(fgrid2, fgrid, w*h*sizeof(float));
305 qsort(fgrid2, w*h, sizeof(float), float_compare);
306 threshold = fgrid2[w*h/2];
307 sfree(fgrid2);
308
309 for (i = 0; i < h; i++) {
310 for (j = 0; j < w; j++) {
311 retgrid[i*w+j] = (fgrid[i*w+j] >= threshold ? GRID_FULL :
312 GRID_EMPTY);
313 }
314 }
315
316 sfree(fgrid);
317 }
318
319 static int compute_rowdata(int *ret, unsigned char *start, int len, int step)
320 {
321 int i, n;
322
323 n = 0;
324
325 for (i = 0; i < len; i++) {
326 if (start[i*step] == GRID_FULL) {
327 int runlen = 1;
328 while (i+runlen < len && start[(i+runlen)*step] == GRID_FULL)
329 runlen++;
330 ret[n++] = runlen;
331 i += runlen;
332 }
333
334 if (i < len && start[i*step] == GRID_UNKNOWN)
335 return -1;
336 }
337
338 return n;
339 }
340
341 #define UNKNOWN 0
342 #define BLOCK 1
343 #define DOT 2
344 #define STILL_UNKNOWN 3
345
346 static void do_recurse(unsigned char *known, unsigned char *deduced,
347 unsigned char *row, int *data, int len,
348 int freespace, int ndone, int lowest)
349 {
350 int i, j, k;
351
352 if (data[ndone]) {
353 for (i=0; i<=freespace; i++) {
354 j = lowest;
355 for (k=0; k<i; k++) row[j++] = DOT;
356 for (k=0; k<data[ndone]; k++) row[j++] = BLOCK;
357 if (j < len) row[j++] = DOT;
358 do_recurse(known, deduced, row, data, len,
359 freespace-i, ndone+1, j);
360 }
361 } else {
362 for (i=lowest; i<len; i++)
363 row[i] = DOT;
364 for (i=0; i<len; i++)
365 if (known[i] && known[i] != row[i])
366 return;
367 for (i=0; i<len; i++)
368 deduced[i] |= row[i];
369 }
370 }
371
372 static int do_row(unsigned char *known, unsigned char *deduced,
373 unsigned char *row,
374 unsigned char *start, int len, int step, int *data)
375 {
376 int rowlen, i, freespace, done_any;
377
378 freespace = len+1;
379 for (rowlen = 0; data[rowlen]; rowlen++)
380 freespace -= data[rowlen]+1;
381
382 for (i = 0; i < len; i++) {
383 known[i] = start[i*step];
384 deduced[i] = 0;
385 }
386
387 do_recurse(known, deduced, row, data, len, freespace, 0, 0);
388 done_any = FALSE;
389 for (i=0; i<len; i++)
390 if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) {
391 start[i*step] = deduced[i];
392 done_any = TRUE;
393 }
394 return done_any;
395 }
396
397 static unsigned char *generate_soluble(random_state *rs, int w, int h)
398 {
399 int i, j, done_any, ok, ntries, max;
400 unsigned char *grid, *matrix, *workspace;
401 int *rowdata;
402
403 grid = snewn(w*h, unsigned char);
404 matrix = snewn(w*h, unsigned char);
405 max = max(w, h);
406 workspace = snewn(max*3, unsigned char);
407 rowdata = snewn(max+1, int);
408
409 ntries = 0;
410
411 do {
412 ntries++;
413
414 generate(rs, w, h, grid);
415
416 /*
417 * The game is a bit too easy if any row or column is
418 * completely black or completely white. An exception is
419 * made for rows/columns that are under 3 squares,
420 * otherwise nothing will ever be successfully generated.
421 */
422 ok = TRUE;
423 if (w > 2) {
424 for (i = 0; i < h; i++) {
425 int colours = 0;
426 for (j = 0; j < w; j++)
427 colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
428 if (colours != 3)
429 ok = FALSE;
430 }
431 }
432 if (h > 2) {
433 for (j = 0; j < w; j++) {
434 int colours = 0;
435 for (i = 0; i < h; i++)
436 colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
437 if (colours != 3)
438 ok = FALSE;
439 }
440 }
441 if (!ok)
442 continue;
443
444 memset(matrix, 0, w*h);
445
446 do {
447 done_any = 0;
448 for (i=0; i<h; i++) {
449 rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
450 done_any |= do_row(workspace, workspace+max, workspace+2*max,
451 matrix+i*w, w, 1, rowdata);
452 }
453 for (i=0; i<w; i++) {
454 rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
455 done_any |= do_row(workspace, workspace+max, workspace+2*max,
456 matrix+i, h, w, rowdata);
457 }
458 } while (done_any);
459
460 ok = TRUE;
461 for (i=0; i<h; i++) {
462 for (j=0; j<w; j++) {
463 if (matrix[i*w+j] == UNKNOWN)
464 ok = FALSE;
465 }
466 }
467 } while (!ok);
468
469 sfree(matrix);
470 sfree(workspace);
471 sfree(rowdata);
472 return grid;
473 }
474
475 struct game_aux_info {
476 int w, h;
477 unsigned char *grid;
478 };
479
480 static char *new_game_seed(game_params *params, random_state *rs,
481 game_aux_info **aux)
482 {
483 unsigned char *grid;
484 int i, j, max, rowlen, *rowdata;
485 char intbuf[80], *seed;
486 int seedlen, seedpos;
487
488 grid = generate_soluble(rs, params->w, params->h);
489 max = max(params->w, params->h);
490 rowdata = snewn(max, int);
491
492 /*
493 * Save the solved game in an aux_info.
494 */
495 {
496 game_aux_info *ai = snew(game_aux_info);
497
498 ai->w = params->w;
499 ai->h = params->h;
500 ai->grid = snewn(ai->w * ai->h, unsigned char);
501 memcpy(ai->grid, grid, ai->w * ai->h);
502
503 *aux = ai;
504 }
505
506 /*
507 * Seed is a slash-separated list of row contents; each row
508 * contents section is a dot-separated list of integers. Row
509 * contents are listed in the order (columns left to right,
510 * then rows top to bottom).
511 *
512 * Simplest way to handle memory allocation is to make two
513 * passes, first computing the seed size and then writing it
514 * out.
515 */
516 seedlen = 0;
517 for (i = 0; i < params->w + params->h; i++) {
518 if (i < params->w)
519 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
520 else
521 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
522 params->w, 1);
523 if (rowlen > 0) {
524 for (j = 0; j < rowlen; j++) {
525 seedlen += 1 + sprintf(intbuf, "%d", rowdata[j]);
526 }
527 } else {
528 seedlen++;
529 }
530 }
531 seed = snewn(seedlen, char);
532 seedpos = 0;
533 for (i = 0; i < params->w + params->h; i++) {
534 if (i < params->w)
535 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
536 else
537 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
538 params->w, 1);
539 if (rowlen > 0) {
540 for (j = 0; j < rowlen; j++) {
541 int len = sprintf(seed+seedpos, "%d", rowdata[j]);
542 if (j+1 < rowlen)
543 seed[seedpos + len] = '.';
544 else
545 seed[seedpos + len] = '/';
546 seedpos += len+1;
547 }
548 } else {
549 seed[seedpos++] = '/';
550 }
551 }
552 assert(seedpos == seedlen);
553 assert(seed[seedlen-1] == '/');
554 seed[seedlen-1] = '\0';
555 sfree(rowdata);
556 return seed;
557 }
558
559 static void game_free_aux_info(game_aux_info *aux)
560 {
561 sfree(aux->grid);
562 sfree(aux);
563 }
564
565 static char *validate_seed(game_params *params, char *seed)
566 {
567 int i, n, rowspace;
568 char *p;
569
570 for (i = 0; i < params->w + params->h; i++) {
571 if (i < params->w)
572 rowspace = params->h + 1;
573 else
574 rowspace = params->w + 1;
575
576 if (*seed && isdigit((unsigned char)*seed)) {
577 do {
578 p = seed;
579 while (seed && isdigit((unsigned char)*seed)) seed++;
580 n = atoi(p);
581 rowspace -= n+1;
582
583 if (rowspace < 0) {
584 if (i < params->w)
585 return "at least one column contains more numbers than will fit";
586 else
587 return "at least one row contains more numbers than will fit";
588 }
589 } while (*seed++ == '.');
590 } else {
591 seed++; /* expect a slash immediately */
592 }
593
594 if (seed[-1] == '/') {
595 if (i+1 == params->w + params->h)
596 return "too many row/column specifications";
597 } else if (seed[-1] == '\0') {
598 if (i+1 < params->w + params->h)
599 return "too few row/column specifications";
600 } else
601 return "unrecognised character in game specification";
602 }
603
604 return NULL;
605 }
606
607 static game_state *new_game(game_params *params, char *seed)
608 {
609 int i;
610 char *p;
611 game_state *state = snew(game_state);
612
613 state->w = params->w;
614 state->h = params->h;
615
616 state->grid = snewn(state->w * state->h, unsigned char);
617 memset(state->grid, GRID_UNKNOWN, state->w * state->h);
618
619 state->rowsize = max(state->w, state->h);
620 state->rowdata = snewn(state->rowsize * (state->w + state->h), int);
621 state->rowlen = snewn(state->w + state->h, int);
622
623 state->completed = state->cheated = FALSE;
624
625 for (i = 0; i < params->w + params->h; i++) {
626 state->rowlen[i] = 0;
627 if (*seed && isdigit((unsigned char)*seed)) {
628 do {
629 p = seed;
630 while (seed && isdigit((unsigned char)*seed)) seed++;
631 state->rowdata[state->rowsize * i + state->rowlen[i]++] =
632 atoi(p);
633 } while (*seed++ == '.');
634 } else {
635 seed++; /* expect a slash immediately */
636 }
637 }
638
639 return state;
640 }
641
642 static game_state *dup_game(game_state *state)
643 {
644 game_state *ret = snew(game_state);
645
646 ret->w = state->w;
647 ret->h = state->h;
648
649 ret->grid = snewn(ret->w * ret->h, unsigned char);
650 memcpy(ret->grid, state->grid, ret->w * ret->h);
651
652 ret->rowsize = state->rowsize;
653 ret->rowdata = snewn(ret->rowsize * (ret->w + ret->h), int);
654 ret->rowlen = snewn(ret->w + ret->h, int);
655 memcpy(ret->rowdata, state->rowdata,
656 ret->rowsize * (ret->w + ret->h) * sizeof(int));
657 memcpy(ret->rowlen, state->rowlen,
658 (ret->w + ret->h) * sizeof(int));
659
660 ret->completed = state->completed;
661 ret->cheated = state->cheated;
662
663 return ret;
664 }
665
666 static void free_game(game_state *state)
667 {
668 sfree(state->rowdata);
669 sfree(state->rowlen);
670 sfree(state->grid);
671 sfree(state);
672 }
673
674 static game_state *solve_game(game_state *state, game_aux_info *ai,
675 char **error)
676 {
677 game_state *ret;
678
679 ret = dup_game(state);
680 ret->completed = ret->cheated = TRUE;
681
682 /*
683 * If we already have the solved state in an aux_info, copy it
684 * out.
685 */
686 if (ai) {
687
688 assert(ret->w == ai->w);
689 assert(ret->h == ai->h);
690 memcpy(ret->grid, ai->grid, ai->w * ai->h);
691
692 } else {
693 int w = state->w, h = state->h, i, j, done_any, max;
694 unsigned char *matrix, *workspace;
695 int *rowdata;
696
697 matrix = snewn(w*h, unsigned char);
698 max = max(w, h);
699 workspace = snewn(max*3, unsigned char);
700 rowdata = snewn(max+1, int);
701
702 memset(matrix, 0, w*h);
703
704 do {
705 done_any = 0;
706 for (i=0; i<h; i++) {
707 memcpy(rowdata, state->rowdata + state->rowsize*(w+i),
708 max*sizeof(int));
709 rowdata[state->rowlen[w+i]] = 0;
710 done_any |= do_row(workspace, workspace+max, workspace+2*max,
711 matrix+i*w, w, 1, rowdata);
712 }
713 for (i=0; i<w; i++) {
714 memcpy(rowdata, state->rowdata + state->rowsize*i, max*sizeof(int));
715 rowdata[state->rowlen[i]] = 0;
716 done_any |= do_row(workspace, workspace+max, workspace+2*max,
717 matrix+i, h, w, rowdata);
718 }
719 } while (done_any);
720
721 for (i = 0; i < h; i++) {
722 for (j = 0; j < w; j++) {
723 int c = (matrix[i*w+j] == BLOCK ? GRID_FULL :
724 matrix[i*w+j] == DOT ? GRID_EMPTY : GRID_UNKNOWN);
725 ret->grid[i*w+j] = c;
726 if (c == GRID_UNKNOWN)
727 ret->completed = FALSE;
728 }
729 }
730
731 if (!ret->completed) {
732 free_game(ret);
733 *error = "Solving algorithm cannot complete this puzzle";
734 return NULL;
735 }
736 }
737
738 return ret;
739 }
740
741 static char *game_text_format(game_state *state)
742 {
743 return NULL;
744 }
745
746 struct game_ui {
747 int dragging;
748 int drag_start_x;
749 int drag_start_y;
750 int drag_end_x;
751 int drag_end_y;
752 int drag, release, state;
753 };
754
755 static game_ui *new_ui(game_state *state)
756 {
757 game_ui *ret;
758
759 ret = snew(game_ui);
760 ret->dragging = FALSE;
761
762 return ret;
763 }
764
765 static void free_ui(game_ui *ui)
766 {
767 sfree(ui);
768 }
769
770 static game_state *make_move(game_state *from, game_ui *ui,
771 int x, int y, int button)
772 {
773 game_state *ret;
774
775 x = FROMCOORD(from->w, x);
776 y = FROMCOORD(from->h, y);
777
778 if (x >= 0 && x < from->w && y >= 0 && y < from->h &&
779 (button == LEFT_BUTTON || button == RIGHT_BUTTON ||
780 button == MIDDLE_BUTTON)) {
781
782 ui->dragging = TRUE;
783
784 if (button == LEFT_BUTTON) {
785 ui->drag = LEFT_DRAG;
786 ui->release = LEFT_RELEASE;
787 ui->state = GRID_FULL;
788 } else if (button == RIGHT_BUTTON) {
789 ui->drag = RIGHT_DRAG;
790 ui->release = RIGHT_RELEASE;
791 ui->state = GRID_EMPTY;
792 } else /* if (button == MIDDLE_BUTTON) */ {
793 ui->drag = MIDDLE_DRAG;
794 ui->release = MIDDLE_RELEASE;
795 ui->state = GRID_UNKNOWN;
796 }
797
798 ui->drag_start_x = ui->drag_end_x = x;
799 ui->drag_start_y = ui->drag_end_y = y;
800
801 return from; /* UI activity occurred */
802 }
803
804 if (ui->dragging && button == ui->drag) {
805 /*
806 * There doesn't seem much point in allowing a rectangle
807 * drag; people will generally only want to drag a single
808 * horizontal or vertical line, so we make that easy by
809 * snapping to it.
810 *
811 * Exception: if we're _middle_-button dragging to tag
812 * things as UNKNOWN, we may well want to trash an entire
813 * area and start over!
814 */
815 if (ui->state != GRID_UNKNOWN) {
816 if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y))
817 y = ui->drag_start_y;
818 else
819 x = ui->drag_start_x;
820 }
821
822 if (x < 0) x = 0;
823 if (y < 0) y = 0;
824 if (x >= from->w) x = from->w - 1;
825 if (y >= from->h) y = from->h - 1;
826
827 ui->drag_end_x = x;
828 ui->drag_end_y = y;
829
830 return from; /* UI activity occurred */
831 }
832
833 if (ui->dragging && button == ui->release) {
834 int x1, x2, y1, y2, xx, yy;
835 int move_needed = FALSE;
836
837 x1 = min(ui->drag_start_x, ui->drag_end_x);
838 x2 = max(ui->drag_start_x, ui->drag_end_x);
839 y1 = min(ui->drag_start_y, ui->drag_end_y);
840 y2 = max(ui->drag_start_y, ui->drag_end_y);
841
842 for (yy = y1; yy <= y2; yy++)
843 for (xx = x1; xx <= x2; xx++)
844 if (from->grid[yy * from->w + xx] != ui->state)
845 move_needed = TRUE;
846
847 ui->dragging = FALSE;
848
849 if (move_needed) {
850 ret = dup_game(from);
851 for (yy = y1; yy <= y2; yy++)
852 for (xx = x1; xx <= x2; xx++)
853 ret->grid[yy * ret->w + xx] = ui->state;
854
855 /*
856 * An actual change, so check to see if we've completed
857 * the game.
858 */
859 if (!ret->completed) {
860 int *rowdata = snewn(ret->rowsize, int);
861 int i, len;
862
863 ret->completed = TRUE;
864
865 for (i=0; i<ret->w; i++) {
866 len = compute_rowdata(rowdata,
867 ret->grid+i, ret->h, ret->w);
868 if (len != ret->rowlen[i] ||
869 memcmp(ret->rowdata+i*ret->rowsize, rowdata,
870 len * sizeof(int))) {
871 ret->completed = FALSE;
872 break;
873 }
874 }
875 for (i=0; i<ret->h; i++) {
876 len = compute_rowdata(rowdata,
877 ret->grid+i*ret->w, ret->w, 1);
878 if (len != ret->rowlen[i+ret->w] ||
879 memcmp(ret->rowdata+(i+ret->w)*ret->rowsize, rowdata,
880 len * sizeof(int))) {
881 ret->completed = FALSE;
882 break;
883 }
884 }
885
886 sfree(rowdata);
887 }
888
889 return ret;
890 } else
891 return from; /* UI activity occurred */
892 }
893
894 return NULL;
895 }
896
897 /* ----------------------------------------------------------------------
898 * Drawing routines.
899 */
900
901 struct game_drawstate {
902 int started;
903 int w, h;
904 unsigned char *visible;
905 };
906
907 static void game_size(game_params *params, int *x, int *y)
908 {
909 *x = SIZE(params->w);
910 *y = SIZE(params->h);
911 }
912
913 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
914 {
915 float *ret = snewn(3 * NCOLOURS, float);
916
917 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
918
919 ret[COL_GRID * 3 + 0] = 0.3F;
920 ret[COL_GRID * 3 + 1] = 0.3F;
921 ret[COL_GRID * 3 + 2] = 0.3F;
922
923 ret[COL_UNKNOWN * 3 + 0] = 0.5F;
924 ret[COL_UNKNOWN * 3 + 1] = 0.5F;
925 ret[COL_UNKNOWN * 3 + 2] = 0.5F;
926
927 ret[COL_FULL * 3 + 0] = 0.0F;
928 ret[COL_FULL * 3 + 1] = 0.0F;
929 ret[COL_FULL * 3 + 2] = 0.0F;
930
931 ret[COL_EMPTY * 3 + 0] = 1.0F;
932 ret[COL_EMPTY * 3 + 1] = 1.0F;
933 ret[COL_EMPTY * 3 + 2] = 1.0F;
934
935 *ncolours = NCOLOURS;
936 return ret;
937 }
938
939 static game_drawstate *game_new_drawstate(game_state *state)
940 {
941 struct game_drawstate *ds = snew(struct game_drawstate);
942
943 ds->started = FALSE;
944 ds->w = state->w;
945 ds->h = state->h;
946 ds->visible = snewn(ds->w * ds->h, unsigned char);
947 memset(ds->visible, 255, ds->w * ds->h);
948
949 return ds;
950 }
951
952 static void game_free_drawstate(game_drawstate *ds)
953 {
954 sfree(ds->visible);
955 sfree(ds);
956 }
957
958 static void grid_square(frontend *fe, game_drawstate *ds,
959 int y, int x, int state)
960 {
961 int xl, xr, yt, yb;
962
963 draw_rect(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
964 TILE_SIZE, TILE_SIZE, COL_GRID);
965
966 xl = (x % 5 == 0 ? 1 : 0);
967 yt = (y % 5 == 0 ? 1 : 0);
968 xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0);
969 yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0);
970
971 draw_rect(fe, TOCOORD(ds->w, x) + 1 + xl, TOCOORD(ds->h, y) + 1 + yt,
972 TILE_SIZE - xl - xr - 1, TILE_SIZE - yt - yb - 1,
973 (state == GRID_FULL ? COL_FULL :
974 state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN));
975
976 draw_update(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
977 TILE_SIZE, TILE_SIZE);
978 }
979
980 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
981 game_state *state, int dir, game_ui *ui,
982 float animtime, float flashtime)
983 {
984 int i, j;
985 int x1, x2, y1, y2;
986
987 if (!ds->started) {
988 /*
989 * The initial contents of the window are not guaranteed
990 * and can vary with front ends. To be on the safe side,
991 * all games should start by drawing a big background-
992 * colour rectangle covering the whole window.
993 */
994 draw_rect(fe, 0, 0, SIZE(ds->w), SIZE(ds->h), COL_BACKGROUND);
995
996 /*
997 * Draw the numbers.
998 */
999 for (i = 0; i < ds->w + ds->h; i++) {
1000 int rowlen = state->rowlen[i];
1001 int *rowdata = state->rowdata + state->rowsize * i;
1002 int nfit;
1003
1004 /*
1005 * Normally I space the numbers out by the same
1006 * distance as the tile size. However, if there are
1007 * more numbers than available spaces, I have to squash
1008 * them up a bit.
1009 */
1010 nfit = max(rowlen, TLBORDER(ds->h))-1;
1011 assert(nfit > 0);
1012
1013 for (j = 0; j < rowlen; j++) {
1014 int x, y;
1015 char str[80];
1016
1017 if (i < ds->w) {
1018 x = TOCOORD(ds->w, i);
1019 y = BORDER + TILE_SIZE * (TLBORDER(ds->h)-1);
1020 y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit;
1021 } else {
1022 y = TOCOORD(ds->h, i - ds->w);
1023 x = BORDER + TILE_SIZE * (TLBORDER(ds->w)-1);
1024 x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit;
1025 }
1026
1027 sprintf(str, "%d", rowdata[j]);
1028 draw_text(fe, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE,
1029 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE,
1030 COL_FULL, str); /* FIXME: COL_TEXT */
1031 }
1032 }
1033
1034 /*
1035 * Draw the grid outline.
1036 */
1037 draw_rect(fe, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1,
1038 ds->w * TILE_SIZE + 3, ds->h * TILE_SIZE + 3,
1039 COL_GRID);
1040
1041 ds->started = TRUE;
1042
1043 draw_update(fe, 0, 0, SIZE(ds->w), SIZE(ds->h));
1044 }
1045
1046 if (ui->dragging) {
1047 x1 = min(ui->drag_start_x, ui->drag_end_x);
1048 x2 = max(ui->drag_start_x, ui->drag_end_x);
1049 y1 = min(ui->drag_start_y, ui->drag_end_y);
1050 y2 = max(ui->drag_start_y, ui->drag_end_y);
1051 } else {
1052 x1 = x2 = y1 = y2 = -1; /* placate gcc warnings */
1053 }
1054
1055 /*
1056 * Now draw any grid squares which have changed since last
1057 * redraw.
1058 */
1059 for (i = 0; i < ds->h; i++) {
1060 for (j = 0; j < ds->w; j++) {
1061 int val;
1062
1063 /*
1064 * Work out what state this square should be drawn in,
1065 * taking any current drag operation into account.
1066 */
1067 if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2)
1068 val = ui->state;
1069 else
1070 val = state->grid[i * state->w + j];
1071
1072 /*
1073 * Briefly invert everything twice during a completion
1074 * flash.
1075 */
1076 if (flashtime > 0 &&
1077 (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) &&
1078 val != GRID_UNKNOWN)
1079 val = (GRID_FULL ^ GRID_EMPTY) ^ val;
1080
1081 if (ds->visible[i * ds->w + j] != val) {
1082 grid_square(fe, ds, i, j, val);
1083 ds->visible[i * ds->w + j] = val;
1084 }
1085 }
1086 }
1087 }
1088
1089 static float game_anim_length(game_state *oldstate,
1090 game_state *newstate, int dir)
1091 {
1092 return 0.0F;
1093 }
1094
1095 static float game_flash_length(game_state *oldstate,
1096 game_state *newstate, int dir)
1097 {
1098 if (!oldstate->completed && newstate->completed &&
1099 !oldstate->cheated && !newstate->cheated)
1100 return FLASH_TIME;
1101 return 0.0F;
1102 }
1103
1104 static int game_wants_statusbar(void)
1105 {
1106 return FALSE;
1107 }
1108
1109 #ifdef COMBINED
1110 #define thegame pattern
1111 #endif
1112
1113 const struct game thegame = {
1114 "Pattern", "games.pattern",
1115 default_params,
1116 game_fetch_preset,
1117 decode_params,
1118 encode_params,
1119 free_params,
1120 dup_params,
1121 TRUE, game_configure, custom_params,
1122 validate_params,
1123 new_game_seed,
1124 game_free_aux_info,
1125 validate_seed,
1126 new_game,
1127 dup_game,
1128 free_game,
1129 TRUE, solve_game,
1130 FALSE, game_text_format,
1131 new_ui,
1132 free_ui,
1133 make_move,
1134 game_size,
1135 game_colours,
1136 game_new_drawstate,
1137 game_free_drawstate,
1138 game_redraw,
1139 game_anim_length,
1140 game_flash_length,
1141 game_wants_statusbar,
1142 };
1143
1144 #ifdef STANDALONE_SOLVER
1145
1146 /*
1147 * gcc -DSTANDALONE_SOLVER -o patternsolver pattern.c malloc.c
1148 */
1149
1150 #include <stdarg.h>
1151
1152 void frontend_default_colour(frontend *fe, float *output) {}
1153 void draw_text(frontend *fe, int x, int y, int fonttype, int fontsize,
1154 int align, int colour, char *text) {}
1155 void draw_rect(frontend *fe, int x, int y, int w, int h, int colour) {}
1156 void draw_line(frontend *fe, int x1, int y1, int x2, int y2, int colour) {}
1157 void draw_polygon(frontend *fe, int *coords, int npoints,
1158 int fill, int colour) {}
1159 void clip(frontend *fe, int x, int y, int w, int h) {}
1160 void unclip(frontend *fe) {}
1161 void start_draw(frontend *fe) {}
1162 void draw_update(frontend *fe, int x, int y, int w, int h) {}
1163 void end_draw(frontend *fe) {}
1164 unsigned long random_upto(random_state *state, unsigned long limit)
1165 { assert(!"Shouldn't get randomness"); return 0; }
1166
1167 void fatal(char *fmt, ...)
1168 {
1169 va_list ap;
1170
1171 fprintf(stderr, "fatal error: ");
1172
1173 va_start(ap, fmt);
1174 vfprintf(stderr, fmt, ap);
1175 va_end(ap);
1176
1177 fprintf(stderr, "\n");
1178 exit(1);
1179 }
1180
1181 int main(int argc, char **argv)
1182 {
1183 game_params *p;
1184 game_state *s;
1185 int recurse = TRUE;
1186 char *id = NULL, *seed, *err;
1187 int y, x;
1188 int grade = FALSE;
1189
1190 while (--argc > 0) {
1191 char *p = *++argv;
1192 if (*p == '-') {
1193 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0]);
1194 return 1;
1195 } else {
1196 id = p;
1197 }
1198 }
1199
1200 if (!id) {
1201 fprintf(stderr, "usage: %s <game_id>\n", argv[0]);
1202 return 1;
1203 }
1204
1205 seed = strchr(id, ':');
1206 if (!seed) {
1207 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
1208 return 1;
1209 }
1210 *seed++ = '\0';
1211
1212 p = decode_params(id);
1213 err = validate_seed(p, seed);
1214 if (err) {
1215 fprintf(stderr, "%s: %s\n", argv[0], err);
1216 return 1;
1217 }
1218 s = new_game(p, seed);
1219
1220 {
1221 int w = p->w, h = p->h, i, j, done_any, max;
1222 unsigned char *matrix, *workspace;
1223 int *rowdata;
1224
1225 matrix = snewn(w*h, unsigned char);
1226 max = max(w, h);
1227 workspace = snewn(max*3, unsigned char);
1228 rowdata = snewn(max+1, int);
1229
1230 memset(matrix, 0, w*h);
1231
1232 do {
1233 done_any = 0;
1234 for (i=0; i<h; i++) {
1235 memcpy(rowdata, s->rowdata + s->rowsize*(w+i),
1236 max*sizeof(int));
1237 rowdata[s->rowlen[w+i]] = 0;
1238 done_any |= do_row(workspace, workspace+max, workspace+2*max,
1239 matrix+i*w, w, 1, rowdata);
1240 }
1241 for (i=0; i<w; i++) {
1242 memcpy(rowdata, s->rowdata + s->rowsize*i, max*sizeof(int));
1243 rowdata[s->rowlen[i]] = 0;
1244 done_any |= do_row(workspace, workspace+max, workspace+2*max,
1245 matrix+i, h, w, rowdata);
1246 }
1247 } while (done_any);
1248
1249 for (i = 0; i < h; i++) {
1250 for (j = 0; j < w; j++) {
1251 int c = (matrix[i*w+j] == UNKNOWN ? '?' :
1252 matrix[i*w+j] == BLOCK ? '#' :
1253 matrix[i*w+j] == DOT ? '.' :
1254 '!');
1255 putchar(c);
1256 }
1257 printf("\n");
1258 }
1259 }
1260
1261 return 0;
1262 }
1263
1264 #endif